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Abstract

Smart structures are light structures with integrated sensing and actuating capabilities (smart materials). In this
paper, the use of such smart materials for active vibration control is considered, in the case where the vibration covers a
large frequency band and the vibration has to be reduced in a region where neither actuation nor sensing is possible. An
accurate model combining physical and data-based modeling is developed. A multi-variable H∞ controller achieving
the desired control objective and taking into account the robustness issues is computed. The validity of the proposed
approach is verified on an experimental setup.

Keywords: active vibration control, beam-piezo system, vibration energy, MIMO feedback controller, model
reduction, H∞ control, robust stability, grey-box identification

1. Introduction

Lighter structures (generally made of composite materials, aluminum, ...) are increasingly used in many industrial
domains (aerospace industry, auto industry, manufacturing industry, etc.). However, such light structures are generally
less rigid, so they are more likely to present excessive vibration problems. Consequently, effectively controlling the
vibrations in such light structures is an objective of crucial economic importance. This led to the developments of new5

smart structures with integrated sensing and actuating capabilities (generally realized with piezoelectric transducers
due to their high precision and performance [1]). These smart materials/structures allow the development of both
passive and active vibration control strategies. Due to the large vibrations in light structures, an active vibration
control strategy will generally preferred since this strategy allows a stronger reduction rate.

Active vibration control of flexible structures is a topic that has known a large interest in the literature. In this10

paper, we extend this literature by considering the situation where the vibration must be rejected in a specific location
of the structure where piezoelectric transducers cannot be placed. Such specific zones could e.g. be the location of an
antenna on an aircraft fuselage or the location of the passenger’s seat in a car. In this situation, we thus aim at reducing
the vibration in this specific zone by only using the measurements in other zones. A second challenge tackled in this
paper is the fact that we aim at obtaining an important vibration reduction rate (in the specific zone) for vibrations15

covering a wide frequency range. We will propose a solution to these two challenges and we will verify the validity of
the proposed approach by implementing it on a real setup aiming at representing as much as possible the problem at
stake. The experimental setup is composed of a free-free aluminum beam where a number of piezoelectric transducers
(PZT) have been patched except in the central zone. This central zone will be the one in which the vibration must be
reduced. In the considered setup, vibration with a large frequency band can be induced using the force generated by a20

vibrator located at one end of the beam. To reduce the effect of this force in the central zone of the beam, we will use
the measurements of certain of the PZT used as sensors to decide which voltage has to be applied on another set of
PZT used as actuators. The relation between measurement and actuation signals will take the form of a model-based
controller implemented in D-Space1. It is clear that, due to the configuration of the considered setup, the PZT used as

1As opposed to passive vibration control, active vibration control thus requires a certain computational power. However, as already mentioned,
the reward is a more important vibration reduction.
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sensors and as actuators are necessarily outside the zone where the vibration must be reduced (i.e. the central zone).25

Our objective is therefore to determine a feedback controller allowing to significantly reduce the vibration energy
in the central zone of the experimental beam when this beam is subject to a force disturbance with a large frequency
band. The ability of the control loop to reject such a disturbance is of course limited by the working range of the
PZT actuators which is here given by (600, 3000) rad/s. Consequently, by a disturbance with a large frequency band,
we mean a disturbance having a large power spectral density in this particular frequency band which covers eleven30

resonant modes of the beam. This challenging objective requires the use of modern multivariable control design
methods. The first reason for this is that these modern control design methods allow to tackle unmeasured performance
variables such as the vibration in the central zone where there is no sensor (see e.g. [2] for an example in another
context). Second, as we will show in the sequel, in order to control the eleven resonant modes of the beam, we will
need to consider at least two sensors and two actuators i.e. we will have to design a multivariable (MIMO) controller.35

In the literature on active vibration control, methods have first been developed to design SISO controllers to control
one resonant mode with a collocated sensor-actuator pair [1, 3, 4, 5, 6]. To control more resonant modes, techniques
have also been developed to combine these SISO controllers in parallel [1, 7]. More recently, modern control design
methods such as LQG (static feedback), H2 control and H∞ control (dynamic feedback) have also been considered to
design MIMO controllers to control multiple modes [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].40

However, to our knowledge, this paper is the first one proposing a technique that allows to significantly reduce a
vibration covering a frequency range with as many as eleven modes in a zone where there is no actuator and no
sensor.

Our technique is based on dynamic H∞ control [25] and, as all other modern control design techniques, it requires
an accurate model of the to-be-controlled system (i.e. the beam). In this paper, we first deduce a simple physical45

model of the beam and we then tune its parameters using data collected on the system. As shown in [26], there are
multiple well developed beam bending models and the electromechanical coupling between the beam and the PZT
can be derived by applying finite element techniques [16, 27, 28] using e.g. the commercial software COMSOL
[29]. Such a COMSOL approach will be here considered to derive a state-space model relating the system inputs (the
disturbance force and the PZT voltages used for actuation) and the system outputs (the PZT voltages used as sensors50

and the velocities of a number of points in the central zone2), together with a first estimate of the parameters of this
model. However, it will be observed that this model is not accurate enough for active vibration control purpose and
a more accurate model will be deduced by tuning these parameters using data collected on the experimental setup
(grey-box identification, see e.g. [30]). In order to tune the parameters related to these outputs, the vibration velocities
in the central zone will be measured using an alternative sensor (i.e. a laser veloci-meter) since no PZT sensors are55

present in this zone. The obtained identified model will be the one on which the model-based control design approach
will be based3 after a model reduction step that only keeps the modes in the disturbance frequency range4. Since
both resonances and anti-resonances are important for control, we have used a model reduction technique allowing
to obtain a reduced-order model close to the original one both at the resonances and at the anti-resonances. We have
recently introduced this technique (see [31]) and its use on a real application is another contribution of this paper.60

In addition to the care taken for this model reduction, the H∞ control paradigm allows to explicitly take into
account the modeling error induced by this model reduction step in the design criterion (to guarantee that the controller
designed with the reduced-order model also stabilizes the original model). This is one of the main reasons why the
H∞ paradigm is chosen here. This choice is in fact made possible since we also show that, in the case of resonating
systems, the main control objective (i.e. minimizing the vibration energy, an objective which is thus more related to65

the H2 norm) can also easily be formulated as an H∞ criterion.
The effectiveness of our approach will be validated via simulations and via actual tests on the available experi-

mental setup.
The rest of the paper is organized as follows. Section 2 describes the experimental setup and points out the control

objective. Section 3 gives an overall explanation of the methodology. The details of the methodology are introduced70

in Section 4 and Section 5. Section 6 applies this methodology on the experimental benchmark. The conclusions are

2These outputs will be used to estimate the vibration energy in the central part of the beam.
3The quality of this identified model will be evidenced by the almost perfect match between the performance achieved by the model-based

controller on the identified model and its performance on the real-life system.
4The model reduction is performed to reduce the complexity of the controller.
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given in the last section.
Notations: Let us denote Gx→y and Tx→y respectively the open-loop and closed-loop transfer function from x to

y, Su the Power Spectrum Density (PSD) of a signal u, ||G||2, ||G||∞ respectively the H2 norm, the H∞ norm of an
LTI system G, σ(A) the maximum singular value of a matrix A, diag(A1, A2, · · · , An) a diagonal or block-diagonal75

matrix with Ai, i = 1, 2, · · · , n the diagonal terms or blocks, AT the transpose of a real matrix A, and A∗ the conjugate
transpose of a complex matrix A.

2. Experimental setup and control objectives

Fig. 1. Pictures of the setup: a general view (top left), the shaker (top right), the central zone and the PZT locations (bottom left), the PZT pairs
(bottom right)

Fig. 2. Schematic diagram of the setup: flat view (top figure); top view (bottom figure)

Fig. 1 shows different pictures of the setup while Fig. 2 gives a schematic description. As already mentioned, the
setup is composed of a beam, horizontally hanged on a support frame by two strings to simulate a free-free condition.80
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A number of PZT are pasted on each side of the beam (in the xy-plane), but not in its central zone which is, as already
mentioned, the zone where the vibration energy has to be attenuated. Two PZT at the same location but on different
sides form a PZT pair. To distinguish the different pairs, they are numbered from 1 to 20 (See Fig. 2). All dimensions
and material properties are summarized in Table 1.

A shaker generates a force disturbance along the z-axis at the right end of the beam. We will only focus on the85

bending modes along the z-axis. Fig. 3 gives a schematic view of the to-be-designed control system. In this figure, f
represents the disturbance force applied by the shaker and the (digital) controller takes as input the sensor voltages Vs

of a number of PZT pairs (that have been sampled after passing through an anti-aliasing filter) and delivers as output
the voltages Va to be applied at a number of other PZT pairs (through an amplifier). These (amplified) voltages Va on
the piezo-actuators will have to induce a force whose effect is to counteract the structural vibration (especially) in the90

central zone. This will in turn imply that, when the controller is active, the transfer function between the disturbance
force and the velocities at different points in the central zone will have (much) less pronounced resonance peaks in the
frequency range of the force disturbance.

Fig. 3. Block diagram of the controlled system

Table 1: Setup dimensions

Property Value Property Value

Beam density (Aluminum), ρ 2720 kg/m3 PZT material type FerroPerm Pz26
Beam total length, L 2.5 m PZT dimensions 0.05m × 0.05m × 0.0005m
Beam ends, L1 0.45 m Distance between PZT 0.01 m
Beam center, L2 0.42 m Maximum voltage for PZT (guideline) 200 VAC/mm
Beam middle with PZT, L3 0.59 m Cross-section area of beam, AS 159 mm2

Beam hight, h 0.053 m Young’s modulus (Aluminum), Yang 69 GPa
Beam thickness, Le 0.003 m Internal resistance of DSpace ADC channel, yi ≈ 1 MΩ

As mentioned in the introduction, the disturbance f will here cover the whole working range of the PZT actua-
tors. In the experimental setup, the PZT are of the type Pz26 (see Table 1) whose working range is approximately95

(600, 3000) rad/s which covers 11 vibration modes of the experimental beam. In order to attenuate a vibration over
such a large frequency band, we show in Appendix A that we need at least two sensors and two actuators (a SISO
controller is therefore not sufficient). In Appendix A, we also show that an appropriate choice for these two actuators
and these two sensors is to select the 10th and 16th PZT pairs as actuators, the 5th and 11th PZT pairs as sensors (see
Fig. 4 for the location of these PZT pairs).100

To sum up, the main objective is to design a 2 × 2 feedback controller that reduces the vibration energy in the
central zone of the beam with respect to a force disturbance which has a large PSD in (ωlow, ωup) ∆

= (600, 3000) rad/s.
To ensure a good feasibility of the implementation, the order of the controller should be relatively low, which implies
that a low-order model containing only the modes in (600, 3000) rad/s should be used to compute the controller. As
mentioned in the introduction, a grey-box approach will be used to obtain the model of the beam-piezo system and this105

model (called the full-order model in the sequel) will also contain modes outside (600, 3000) rad/s. A a consequence,
the model order will be reduced and the controller will be designed based on this reduced-order model. This introduces
the requirement that the controller remains stable when applied to the full-order model (hence avoiding the so-called
spill-over problem). In addition, the controller should have reasonably high magnitude in (600, 3000) rad/s to ensure
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Fig. 4. Actuators and sensors that are chosen to control the system

a high vibration reduction rate while relatively low magnitude outside (600, 3000) rad/s to limit energy consumption.110

For the same reason, one should also take care that sensor/measurement noise (usually located in high frequencies)
has limited effect on the control input.

3. Design methodology

Control objective
(Specifications)

Beam-piezo system modeling (Full-order model)

COMSOL
model

State-space
representation

Proportional
cenral energy

(Minimization criterion)

Damping
effect

Model
validation

Model improvement
(Gray-box identification)

Improved model
(Full-order model model)

Model reduction
(Reduced-order model)

Error

H∞ control
(Energy criterion reduction,

Robust stability)

Controller reduction

Simulation

Controller implementation
(Experiment)

Central energy estimation

Experimental verification

No

Yes

Fig. 5. Methodology

A general overview of the methodology is given in Fig. 5 and each step will be detailed in the following sections.
As mentioned in the introduction, the model structure of the beam-piezo system is derived using the commercial115
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software COMSOL. Since only a finite number of modes can be tackled by COMSOL, the resulting model is a
state-space model that is only valid up to a certain user-chosen frequency which is here chosen slightly larger than
the maximal frequency of the disturbance i.e. 3000 rad/s. In this state-space model, the output vector is not only
made up of the voltages at the two PZT pairs selected as sensors, but also of the (vibration) velocities at a number of
locations in the central zone. An expression for the vibration energy in the central zone can indeed be derived from120

these velocities. Then, the model parameters, for which COMSOL gives a rough initial estimate, are tuned using
grey-box identification in order to obtain a model with better accuracy5, yielding the so-called full-order model of
the system. This (full-order) model covers a frequency range that is larger than the frequency range of interest (i.e.
(600, 3000) rad/s). A model reduction method is therefore proposed and applied to obtain a reduced-order model that
is close to the full-order model in the frequency range of interest. The reduced-order model is then used to design125

the controller using an H∞ control design procedure. This control design procedure aims at minimizing the vibration
energy in the central zone while keeping the control efforts in acceptable proportion and ensuring that the designed
controller will stabilize the full-order model. This last objective is tackled by considering the error between the full-
order model and the reduced-order model as an uncertainty. Finally, for the ease of implementation, the obtained
controller is reduced without degrading the performance.130

4. Modeling

4.1. State-space modeling of the beam-piezo system

Our physical model is based on the following assumptions. First, we only consider the vibration in the z-direction
and we will assume that the beam is homogeneous, transverse isotropic and elastic. The effect of bending moments
and of lateral displacements will be taken into account in the model, but shear deformation and rotational inertia135

will be neglected. As discussed before, the boundary condition being free-free, there will be no bending moments
or shear forces at both ends of the beam. Note finally that the vibration is generated by a force disturbance applied
at one end of the beam as shown in Fig. 2. Based on these assumptions and observations, finite element modeling
is performed and leads to a coupling equation (or governing equation) that describes the beam dynamics and the
electromechanical coupling between the beam and the PZT [16, 32]. The commercial software COMSOL allows us140

to derive an expression of this governing equation reflecting the first N resonant modes. In our case, N will be chosen
in such a way that the frequency ωN of this N th mode is slightly larger than the maximal frequency ωup = 3000 rad/s
in the frequency band of the disturbance.

4.1.1. Governing equation deduced with COMSOL
The expression of the governing equation up to the N th mode derived via COMSOL can be expressed as follows145

(see Appendix B for more details). Note that, in the expression below, we have added damping effects, effects that
are neglected by COMSOL. To keep the model structure as simple as possible, these damping effects are modeled by
two constants κa and κs. As we will see in the sequel, such a simple model will indeed be sufficient to represent the
dynamics of the system.

Mmode · η̈(t) + (κaMmode + κsKmode) · η̇(t) + Kmode · η(t) + Ea · Va(t) + Es · Vs(t) = F · f (t), (1)

− ET
s · η(t) + Rs · Vs(t) = Qs(t). (2)

with Mmode ∈ RN×N the normalized mass matrix (which is equal to the identity), Kmode = diag(ω2
1, ω

2
2, · · · , ω

2
N) the150

stiffness matrix with ωi the frequency of the ith mode, Rs = diag(rs1 , rs2 , · · · , rsNs
) the capacity matrix (rs j is the capac-

ity of the jth PZT sensor and Ns the number of PZT sensors6). The matrices Ea and Es describe the electromechanical
coupling between the beam and the PZT actuators and sensors. In addition, the term F · f (t) represents the effect of
the external force f (t) on each of the mode and, as introduced before, Va(t) and Vs(t) are the voltages on the PZT used,

5A grey-box identification approach is here preferred over a black-box approach to keep the model order low.
6Ns = 2 in our case
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respectively, as actuators and sensors. The variable Qs(t) is a vector containing the electrical charge on the PZT used155

as sensors. By Ohm’s law, Qs (or in fact its derivative) is related to Vs as:

Q̇s(t) = −Ys · Vs(t) (3)

where Ys = diag(ys1 , ys2 , · · · , ysNs
) is the impedance matrix (ys j is the impedance of the jth PZT sensor).

The vector η(t) = [η1(t), η2(t), · · · , ηN(t)]T in (1) contains the modal coordinates ηi(t) (i = 1...N) of the first N
modes. According to the modal superposition principle, using these modal coordinates, the displacement z(x, t) in
the z-direction at position x (we assume that this displacement is constant along the y-axis) can be approximated7 as160

follows

z(x, t) ≈
N∑

j=1

ϕ̄ j(x) · η j(t)

where ϕ̄ j(x) is the mode shape corresponding to the jth mode at position x (the function ϕ̄ j(x) can also be derived via
COMSOL). The above relation allows us to compute the vibration velocity ν(x, t) for any location on the beam (and
thus also in the central zone):

ν(x, t) = ż(x, t) ≈
N∑

j=1

ϕ̄ j(x) · η̇ j(t) = ϕ(x) · η̇(t)

where ϕ(x) = [ϕ̄1(x), ϕ̄2(x), · · · , ϕ̄N(x)].165

The above equation can be used to determine the velocities νnodei at Nz locations (nodes) xi (i = 1...Nz) equally
distributed in the central zone of the beam i.e. νnodei = ϕnodei · η̇(t) (ϕnodei = ϕ(xi)). These velocities will allow us to
estimate the vibration energy in the central zone.

We can now regroup the above equations in the following state-space model having f and Va as inputs, Vs and
νnode = [νnode1 (t), νnode2 (t), · · · , νnodeNz

(t)]T as outputs and x(t) = [η(t), η̇(t),Vs(t)]T as state vector:170


ẋ(t) = A · x(t) + B f · f (t) + Ba · Va(t)
νnode(t) = Ce · x(t)
Vs(t) = Cs · x(t)

, A =

 0 I 0
−Kmode −κaI − κsKmode −Es

0 R−1
s · E

T
s −R−1

s · Ys

 , Ba =

 0
−Ea

0

 , B f =

0
F
0

 (4)

Cs =
[
0 0 I

]
, Ce = ϕnode ·

[
0 I 0

]
, ϕnode = [ϕT

node1
, ϕT

node2
, · · · , ϕT

nodeNz
]T

For further reference, let us introduce the notation G f ull(s) for the transfer function matrix relating the inputs and
outputs of the above model:νnode(s)

Vs(s)

 = G f ull(s)

 f (s)

Va(s)

 =

 G f ull
f→νnode

G f ull
Va→νnode

G f ull
f→Vs

G f ull
Va→Vs


 f (s)

Va(s)

 (5)

An expression for G f ull(s) can easily be derived by applying the Laplace transform on the state-space model (4).
It is important to note that COMSOL provides us with a first estimate for all parameters8 in the state-space

model (4). In Section 4.2, we will nevertheless show that the values of some of these parameters will have to be175

refined using data collected on the system for the model described by the above equations to be a good representation
of the actual dynamics of the system.

7The approximation is due to the truncation of the higher modes.
8Note that first estimates for κa, κs and Ys are in fact not determined by COMSOL, but can instead be derived using measurement devices (for

Ys) and the half-power method [33] (for κa, κs).
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4.1.2. Determination of the vibration energy in the central zone
Before presenting our approach to refine the parameters of the model, let us show how we can derive an expression

for the vibration energy in the central zone. Such an expression is important since this central energy has to be180

minimized by the to-be-designed feedback controller. The central energy Ecent(t) at time t is given by:

Ecent(t) =
1
2
ρS

∫ L2

L1

ν(x, t)2 dx (6)

where (L1, L2) is the location of the central zone, ρ the beam density and S the intersection area. If we assume a
steady-state situation, the average central energy over time is given by:

Ecent =
1
2
ρS lim

T→∞

1
T

∫ T

0

(∫ L2

L1

ν(x, t)2 dx
)

dt (7)

Using the vector νnode introduced in the previous subsection, we have the following integral approximation:∫ L2

L1

ν(x, t)2dx ≈ νnode(t)T · νnode(t) · ∆x, (8)

where ∆x denotes the distance between two nodes. Let us now define the average proportional central energy Ep
cent as185

follows:

Ep
cent = lim

T→∞

1
T

∫ T

0
νnode(t)T · νnode(t) · dt (9)

It is clear that Ecent and Ep
cent are (approximately) proportional. Thus, we can also conclude that reducing Ep

cent
implies reducing Ecent. Moreover, if we define the PSD of the disturbance f as |L f ( jω)|2 with a transfer function L f (s),
we can use Parseval’s theorem to give the following computable expression of Ep

cent:

Ep
cent =

1
2π

∫ +∞

−∞

H∗( jω)H( jω)|L f ( jω)|2 dω

=
∥∥∥H(s)L f (s)

∥∥∥2
2

(10)

where H(s) is the vector of transfer functions relating the force f and the vector νnode. In the open-loop situation,190

H(s) is equal to G f ull
f→νnode

(s) (see Eq. (5)). In the closed-loop situation i.e. when the controller K(s) is active, H(s) is

then equal to the closed-loop transfer vector between f and νnode that we will denote by T f ull
f→νnode

(s). This closed-loop
transfer vector can be easily determined by adding the relation9 Va(s) = K(s)Vs(s) to Eq. (5), yielding: νnode(s) =

T f ull
f→νnode

f (s).

4.2. Model validation and improvement195

In Section 4.1, a physical model has been derived for the to-be-controlled system under the form of the state-space
model (4) relating the system inputs (the disturbance force f (t) and the actuator vector Va(t)) and the system outputs
(the sensor vector Vs(t) and the vector vnode(t) containing the speed of displacements at a number of points in the
central zone). As already mentioned, this physical model is parameterized by a number of physical parameters for
which a first estimate can be derived using COMSOL or classical tests. This first estimate is very accurate for Kmode,200

Rs and Ys. However, this first estimate is much cruder for the rest of the parameters: κa, κs, Ea, Es, F and ϕnode. For
further reference, these remaining parameters are gathered in a vector θ and we will denote by θinit its first estimate.
The vector θ will be further divided in three terms θT = (θT

1 , θ
T
2 , θ

T
3 ): θ1 contains the scalar parameters κa, κs and

the elements of the matrices Ea and Es, θ2 contains the elements of the vector F and θ3 contains the elements in the
matrix ϕnode. System identification will be used to obtain a more accurate estimate of the unknown parameter vector205

9Note that, in Section 5, the notation K(s) will in fact be used for the controller before amplification.
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θ, denoted θT
id = (θT

1,id, θ
T
2,id, θ

T
3,id). For this purpose, experiments will be performed on the experimental setup and

the corresponding input-output data will be collected. Due to the particular structure of the physical model (4), three
different types of experiments will be performed and this will allow one to successively deduce accurate estimates for
θ1, θ2 and finally θ3. These separate identification experiments have the advantage to reduce the complexity of the
identification criteria.210

Experiment 1. Let us first notice that, when f is forced to zero, the relation between Va and Vs is only function
of the parameter vector θ1 (see Eq. (4)). An experiment is performed on the experimental setup with f = 0 and with
independent white noise signals applied to both actuators (i.e. Va). Denote Vs,m1 (t = nTs) with n = 1, 2, · · · ,Nd the
corresponding output voltages measured at a sampling rate Ts after the application of an anti-aliasing filter. A more
accurate estimate of θ1 can then be deduced by solving the following output error identification criterion:215

θ1,id = arg min
θ1

1
Nd

Nd∑
n=1

(
Vs,m1 (nTs) − V̂s(nTs, θ1)

)T (
Vs,m1 (nTs) − V̂s(nTs, θ1)

)
,

where V̂s(nTs, θ1) is the output voltage Vs(t) predicted by Eq. (4) at t = nTs for an arbitrary value of θ1 and for the
input Va(t) applied during the experiment ( f (t) = 0).

This criterion is of course nonlinear in θ1. Consequently, the determination of θ1,id requires an appropriate initial-
ization which in our case can be taken equal to the first estimate of θ1, i.e. θ1,init.

Experiment 2. Notice now that, when Va = 0, the relation between f and Vs is function of θ1 and θ2. Since an220

accurate estimate of θ1 has been determined in the first experiment (i.e. θ1,id), the relation between f and Vs can be
reduced to a model which is only function of θ2. An experiment is therefore performed on the experimental setup
with Va = 0 and with a force corresponding to a white noise signal. Denote Vs,m2 (t = nTs) with n = 1, 2, · · · ,Nd the
corresponding output voltages measured at a sampling rate Ts after the application of an anti-aliasing filter. A more
accurate estimate of θ2 can then be deduced by solving the output error identification criterion:225

θ2,id = arg min
θ2

1
Nd

Nd∑
n=1

(
Vs,m2 (nTs) − Ṽs(nTs, θ2, θ1,id)

)T (
Vs,m2 (nTs) − Ṽs(nTs, θ2, θ1,id)

)
,

where Ṽs(nTs, θ2, θ1,id) is the output voltage Vs(t) predicted by Eq. (4) at t = nTs for an arbitrary value of θ2 and for
θ1 = θ1,id and for the applied input force f (t) (Va = 0).

This criterion is of course nonlinear in θ2, but it can be initialized with the first estimate of θ2 i.e. θ2,init.
Experiment 3. Notice that the relation between f and vnode is function of θ1, θ2 and θ3 and that an accurate estimate

of θ1 and θ2 has been deduced via Experiments 1 and 2. Consequently, using a similar approach as in Experiment 2,230

an estimate of θ3 i.e. θ3,id can be deduced by applying a white noise signal at the input f (t) (Va = 0) and by measuring
vnodei (t) using a laser velocimeter (i = 1, 2, · · · ,Nz). The laser velocimeter is necessary to measure vnodei (t) since
there is no piezo-patches in the central zone10. In fact, since a laser velocimeter has to be used to measure vnodei , the
experiment has to be repeated Nz times and each of these Nz experiments allows to deduce a part of θ3,id (i.e. the part
containing the parameters in ϕnodei , i = 1, 2, · · · ,Nz).235

The approach presented above allows to derive a model G f ull(θid) of the to-be-controlled system that is much
more accurate than the model corresponding to θinit (i.e. the model deduced by COMSOL). The improvement will
be illustrated in Section 6 by comparing the frequency response of the parametric model G f ull(θid) with an accurate
non-parametric estimate of this frequency response that can be deduced from a frequency analyzer. An almost perfect
match between the frequency analyzer estimate and the frequency response of G f ull(θid) will be observed while the240

frequency response of G f ull(θinit) is indeed much more different.
Remark. Note that, before proceeding to the identification of the parameter vector in each of these three steps, the
collected data can be pre-filtered using a band-pass filter focusing on the frequency band of interest.

10The fact that we can refine the parameter vector θ3 using data collected using this laser velocimeter is the main reason for our choice to use
vnode as the physical signal to evaluate the central energy. Other approaches such as the one in [34] does indeed not have this advantage.
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4.3. Model reduction

In this section, we will present the model reduction technique which will be applied on the (full-order) model245

G f ull(θid) identified in the previous section. The dynamic range of this model is indeed larger than the frequency range
of interest (ωlow, ωup) = (600, 3000) rad/s. As already mentioned, the objective is to obtain a reduced-order model
having a frequency response which is close to the one of G f ull(θid) in (ωlow, ωup) and this not only for the resonances,
but also for the anti-resonances. Both are indeed important for control as evidenced in [22]. The model reduction
approach proposed in this paper consists of two steps.250

The first step that we will call Modal Form Truncation (MFT) is an application of the Aggregation Technique [35].
The full-order model is transformed into the so-called modal form or Diagonal Canonical Form [36]. In modal form,
the dynamic matrix A is indeed diagonal by block:

A =


A1 0A2

0
. . .

An


where Ai is either a scalar (for the poles corresponding to the measurement circuit) or a 2 × 2 matrix (for the poles
corresponding to the vibration modes). Consequently, it is rather straightforward to remove those blocks which255

correspond to the modes outside (ωlow, ωup) and so to reduce the model order. Similar operations can be performed
on the other state-space matrices yielding the following reduced-order model for G f ull:

ẋ = Ar · x + Br
f · f + Br

a · Va

νnode = Cr
e · x

Vs = Cr
s · x

(11)

It is important to note that the truncation involved in this first step generally introduces a mismatch between full-
order and reduced-order models around anti-resonance frequencies. Consequently, the second step will adapt the
reduced-order model obtained after the first step in order to reduce this mismatch. This is done by considering the260

relative error between full-order and reduced-order models in the reduction criterion since this definition of the error
gives similar weighting to both resonances and anti-resonances [37]. Note that, for simplicity, we will only adapt the
part between Va and Vs in the above model. More precizely, we will determine Cr,new

s and Dr,new
s in such a way that

the following relative error is minimized:

∆( jω) = G−1
Va→Vs

( jω)
(
G f ull

Va→Vs
( jω) −GVa→Vs ( jω)

)
(12)

where G f ull
Va→Vs

is the transfer function between Va and Vs in the full-order model (see Eq. (5)) and GVa→Vs is the transfer265

function between Va and Vs corresponding to the following state-space model: ẋ = Ar · x + Br
a · Va

Vs = Cr,new
s · x + Dr,new

s · Va
(13)

where Ar and Br
a are the same as the ones obtained after the first model reduction step (see Eq. (11)) and where

Cr,new
s and Dr,new

s will be optimized (note that we have added a direct term to the model to increase the degrees of
freedom). As already mentioned, the second step thus only focuses on the relative error pertaining to the part of
Eq. (11) between Va and Vs. The main reasons for this are simplicity and the fact that GVa→Vs is the part of the model270

which is directly involved in the closed-loop system. The error at the anti-resonances is indeed only required to be
small for the reduced-order model to be a good model for control purpose. Moreover, we only tune the matrices Cr,new

s
and Dr,new

s since we want to improve the behavior at the anti-resonances (which is linked to the state-space matrices C
and D) and not the behavior at the resonances (which are linked to the state-space matrix A).

Finally, since only the behavior in the frequency band (ωlow, ωup) is of interest, we will use the following opti-275

mization problem to determine Cr,new
s and Dr,new

s :
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min
Cr,new

s ,Dr,new
s

sup
ω∈(ωlow,ωup)

σ
(
G−1

Va→Vs
( jω)(G f ull

Va→Vs
( jω) −GVa→Vs ( jω))

)
. (14)

As shown in our recent paper [31] (see also Appendix C), this optimization problem can be transformed into a
convex optimization problem involving Linear Matrix Inequality (LMI) [38] constraints and can therefore be easily
solved.

The reduced-order model after this two-step procedure is thus finally given by the following state-space model,280

which will be used in the next section to design the controller:
ẋ = Ar · x + Br

f · f + Br
a · Va

νnode = Cr
e · x

Vs = Cr,new
s · x + Dr,new

s · Va

(15)

Similarly as in Eq. (5), this reduced-order model can be transformed into a matrix of transfer functions that will be
denoted by G. In the next section, we will show how to design the controller based on G. Note that, by construction,
the reduced-order model G will typically have low gain outside (ωlow, ωup). See e.g. Fig. 12 for a confirmation of this
observation.285

5. Controller design via the H∞ approach

In this section, the H∞ control approach is first introduced theoretically and then applied to solve our particular
active vibration attenuation problem.

5.1. H∞ control approach

5.1.1. Performance and criterion290

Restricting attention to disturbance rejection, the objective of H∞ control is to design a controller K(s) (u(s) =

K(s)y(s)) for a system of the type: [
q(s)
y(s)

]
= G̃(s)

[
p(s)
u(s)

]
(16)

where u(s) ∈ Cnu is the (Laplace transform of the) vector of signals generated by the controller and y(s) ∈ Cny the
vector containing the sensor measurements used by the controller K(s). In the above system, we have also p(s) ∈ Cnp

which is a vector containing the to-be-rejected disturbances and q(s) ∈ Cnq which is a vector containing the to-be-295

controlled outputs. It is to be noted that q does not need to be measured (this aspect will be important in our case)
Finally, G̃(s) is a matrix of transfer functions reflecting the dynamics between these signals. In our case, we will have
that u = Va, y = Vs, p will be made up of the disturbance f and the measurement noise and q will be made up of vnode

(since we want to reduce the central energy) and Va (since we want to have limited control efforts). See Section 5.2
for more details.300

To define the criterion that will yield the controller K(s), it is important to describe the frequency content of p(s)
and the desired frequency content of q(s). For this purpose, let us introduce, for an arbitrary signal x of power spectral
density (PSD) Sx(ω), the following signal set defined by a stable and inversely stable transfer function W(s):

ΩW =

{
x
∣∣∣∣∀ω, Sx(ω) 6 |W( jω)|2

}
(17)

Based on this expression, we determine transfer functions Wp j ( j = 1...np) such that each element p j of p belongs to
the set ΩWp j

and we determine transfer functions Wqk (k = 1...nq) such that, if each element qk of q belongs to the305

signal set ΩW−1
qk

, the to-be-controlled outputs q satisfy the desired specifications. The objective of H∞ control is then to
determine a controller K(s) that, when applied to the system described by Eq. (16), each element qk of q will belong
to ΩW−1

qk
(q = 1...nq) if each element p j of p belongs to ΩWp j

( j = 1...np). It is to be noted that, in general, we will not
need to define all these transfer functions Wp j and Wqk . Simplifications will be used which will generally based on the
following interpretation of the H∞ control problem in term of the loop-shaping of the closed-loop transfer functions310
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i.e. if a controller satisfying the above objectives is applied to Eq. (16), then the following inequality holds for the
closed-loop transfer function Tp j→qk between any signal p j ( j = 1...np) and any signal qk (q = 1...nq):

∀ω, |Tp j→qk ( jω)| <
1

|Wqk ( jω)Wp j ( jω)|
. (18)

We can thus also see the transfer functions Wp j and Wqk as weightings to shape the closed-loop transfer functions.
Let us now mathematically formalize the control design problem defined above. For this purpose, let us define the
so-called augmented plant P(s):315

P(s) = diag(Wq1 , · · · ,Wqnq
, Iny )G̃(s)diag(Wp1 , · · · ,Wpnp

, Inu ). (19)

This augmented plant is represented in Fig. 6 where the signals e j ( j = 1...np) and zk (k = 1...nq) are fictive signals
that all have a PSD smaller or equal to one when p j belongs to ΩWp j

( j = 1...np) and qk belongs to ΩW−1
qk

(q = 1...nq).

Fig. 6. Standard form of H∞ synthesis

Denoting e = [e1, · · · , enp ]T and z = [z1, · · · , znq ]T , the closed-loop system can then be rewritten as:[
z(s)
y(s)

]
= P(s)

[
e(s)
u(s)

]
u(s) = K(s)y(s)

. (20)

The transfer function between e and z in Eq. (20) will be denoted P?K in the sequel (? is the so-called Redheffer
star product [25]). Using Eq. (20), the H∞ control criterion described above can be mathematically formulated as the320

problem of determining a stabilizing controller K(s) such that the following condition holds for the smallest possible
scalar γ < 1:

||P(s) ? K(s)||∞ < γ, (21)

where the H∞ norm of an arbitrary stable LTI system T is defined as:

||T ||∞ = sup
ω
σ(T ( jω)). (22)

Eq. (21) implies that each entry of P?K has an H∞ norm smaller than γ < 1, which in turn implies Eq. (18). Note
that the H∞ controller K designed in this way will have the same order as the augmented plant P.325
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5.1.2. A robust stability result
Before presenting the particular H∞ control design used for our active vibration problem, let us recall the so-called

Weighted Small Gain Theorem [39] which is an important result in robustness analysis and which will be crucial to
understand one of the aspects of the chosen H∞ criterion. For this purpose, let us define the following uncertainty set
∆ containing stable LTI transfer matrices ∆(s):330

∆ =
{
∆(s) | ∆(s) = W1(s)∆̂(s)W2(s) with

∥∥∥∆̂∥∥∥
∞
6 1

}
, (23)

with W1 and W2 two given stable transfer matrices. Then, for a stable transfer matrix Md(s), the loop represented in
Fig. 7 is stable for all ∆ in ∆ if and only if the following condition holds:

||W2MdW1||∞ < 1. (24)

Fig. 7. Weighted Small Gain Theorem (WSGT)

5.2. H∞ controller design

We are now ready to present the H∞ criterion we will use to tackle our vibration attenuation problem. Let us for
this purpose define the augmented system P as shown in Fig. 8. In this figure, G is the reduced-order model obtained335

from model reduction (see Section 4.3, Eq. (15)), K the to-be-determined controller. This controller generates a signal
u that will be applied as voltage Va to the PZT actuators after an amplification by a factor Ap (power amplifiers) and
uses a signal y which is obtained after filtering the PZT sensors by an anti-aliasing filter. The digital conversion11

mechanism of the anti-aliasing filter is here replaced by the transfer function Fd(s) where Pade Approximation is used
to model the introduced delay [40]. Recall that Na and Ns are respectively the number of PZT actuators and sensors340

used for control (Na = Ns = 2 in our case).
In Fig. 8, we see also that the vector z (corresponding to the to-be-controlled variables q) is made up of vnode

and of a weighted version zu of u and that the vector e (corresponding to the disturbance signals p) is made up of a
weighted version e1 of the disturbance f generated by the shaker, of a weighted version e2 of the output measurement
noise b and a weighted version e3 of a signal c that will allows us to deal with the modeling error introduced by the345

model reduction step (see Section 4.3). Finally, W f , Wb, W∆ and At are weighting functions (under the form of a
SISO transfer function for W∆ and of constants for W f , Wb and At) which have to be determined in order to realize the
specifications described at the end of Section 2.

Note that Fig. 8 corresponds to the standard form of H∞ synthesis (see Fig. 6) with P(s) = Wq(s)G̃(s)Wp(s) where:

G̃(s) =

INz 0 0 0
0 0 0 INa

0 Fd(s)INs INs 0




G(s) 0 0
0 0

0 0 INs 0
0 0 0 INa



1 0 0 0
0 0 ApINa ApINa

0 INs 0 0
0 0 0 INa

 ,

11The controller will thus be implemented digitally
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Wq(s) =

[
INz 0
0 AtW∆(s)INa

]
, Wp(s) =


W f (s) 0 0

0 Wb(s)INs 0

0 0
1
At

INa

 .

.

Fig. 8. Block diagram of H∞ synthesis

Consequently, the controller K determined using H∞ synthesis will be such that ||P ? K||∞ < γ holds for the350

smallest possible γ < 1. The latter in particular implies:

a. ||Te1→νnode ||∞ < γ < 1

b. ||Te3→zu ||∞ < γ < 1

c. ||Te1→zu ||∞ < γ < 1 and ||Te2→zu ||∞ < γ < 1

We can now present how we can choose the constant weighting W f , Wb, At and the transfer function weighting355

W∆(s) in such a way that the three inequalities above ensure the control objectives described at the end of Section 2.
a. ||Te1→νnode ||∞ < γ < 1
The vector of transfer functions Te1→νnode is equal to T f→νnode W f . As already mentioned, we will here choose W f as

a constant weighting. Consequently, the constraint ||Te1→νnode ||∞ < γ < 1 in fact means:

∀ω, σ(T f→νnode ( jω)) <
γ∣∣∣W f

∣∣∣ < 1∣∣∣W f
∣∣∣ (25)

or equivalently:360

∀ω,
√

T ∗f→νnode
( jω)T f→νnode ( jω) <

γ∣∣∣W f
∣∣∣ < 1∣∣∣W f

∣∣∣ (26)

To justify this criterion, let us first consider the open-loop case i.e. the case where K = 0. The transfer vector
T f→νnode then reduces to G f→νnode . Due to the resonant nature of the considered system, the largest singular value
σ(G f→νnode ) of the transfer vector between f and vnode will be made up of sharp peaks (as will be seen in e.g. Fig. 14).
This will of course remain the case when a controller K , 0 will be applied to the system. However, since the
controller K will be designed in such a way that Eq. (25) (and other constraints) holds with the smallest γ, the365

amplitude of these sharp peaks can be made smaller by a smart choice of the constant W f (the larger W f , the larger the
peak reduction). Recall now the expression for the central energy, Eq. (10), given at the end of Section 4.1.2. Using
this expression for the central energy and the sharp peak nature of the considered system, it is clear that a reduction of
the peak amplitudes in σ(T f→νnode ) implies a reduction of the central energy.
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It is to be noted that, due to the model reduction step of Section 4.3, σ(G f→νnode ) will only present peaks in370

the frequency band of interest (ωlow, ωup) and will thus have low gain outside of this band. Consequently, by im-
posing Eq. (25), we will only reduce the peaks in the frequency band of interest. This is not a problem since the
disturbance will only excite those specific peaks.

b. ||Te3→zu ||∞ < γ
Even though the model reduction has been done with care (see Section 4.3), an H∞ controller designed on the375

reduced-order model G could still destabilize the full-order model G f ull. Ensuring that ||Te3→zu ||∞ < γ with γ < 1 will
prevent this so-called spill-over problem to happen. Indeed, from Fig. 8, we see that Te3→zu is equal to W∆Tc→u where
Tc→u is the complementary sensitivity function:

Tc→u = (1 − KGVa→Vs )
−1KGVa→Vs (27)

To optimally choose the weighting function W∆, recall the robust stability result presented in Section 5.1.2. Using
this result, if we choose W∆ in such a way that the following holds:380

∀ω, σ(∆( jω)) 6 |W∆( jω)| (28)

where ∆ is the relative error defined by Eq. (12), an H∞ controller satisfying ||Te3→zu ||∞ = ||W∆Tc→u||∞ < 1 will be
guaranteed not only to stabilize G, but also G f ull. To show this, let us first note that the part of the full-order model
between Va and Vs can be written for the ∆ defined in Eq. (12) and satisfying Eq. (28) as

G f ull
Va→Vs

= GVa→Vs (I + ∆),

Let us also note that the closed-loop G f ull
Va→Vs

? K can be recast in a closed-loop (∆,Md) (see Fig. 7) with Md =

Tc→u. Consequently, the desired stability property is a direct consequence of the robust stability result presented in385

Section 5.1.2. It is to be noted that, by virtue of this same robust stability result, the H∞ controller will also stabilize
all systems Ḡ that can be expressed as Ḡ = GVa→Vs (I + ∆) with a transfer matrix ∆ satisfying Eq. (28).
Remark. The above approach will only lead to satisfactory results if the relative error ∆ in Eq. (12) satisfies the
following constraint:

sup
ω∈(ωlow,ωup)

σ(∆( jω)) 6 1. (29)

Otherwise, the condition ||W∆Tc→u||∞ < 1 will imply that σ(Tc→u( jω)) < 1 in (ωlow, ωup), which in turn implies390

that GVa→Vs K is small in (ωlow, ωup). This contradicts the fact that GVa→Vs K should be large in (ωlow, ωup) in order
to have enough control effect. The expression Eq. (29) also gives a quality tag for the reduced-order model. As an
example, the second step of the model reduction technique proposed in Section 4.3 is only necessary if Eq. (29) is not
satisfied after the first step.

c. ||Te1→zu ||∞ < γ < 1 and ||Te2→zu ||∞ < γ < 1395

These parts of the H∞ criterion pertain to the limitation of the control effort. More precizely, they shape the
transfer matrices between the external signals (the force f and the measurement noise vector b) and the vector of
control inputs u. We have indeed that Te1→zu = AtW∆T f→uW f and Te2→zu = AtW∆Tb→uWb. Due to the scalar nature of
the weightings, these parts of the criterion ensure:

∀ω, σ(T f→u( jω)) <
1

|AtW∆( jω)W f |
(30)

∀ω, σ(Tb→u( jω)) <
1

|AtWbW∆( jω)|
(31)

As already mentioned, we will choose At and Wb as constant weightings. This simple choice is made possible by400

the shape of the frequency response of the transfer function weighting W∆(s) which will generally have high amplitude
outside (ωlow, ωup) since it must satisfy Eq. (28). Indeed, the presence of |W∆( jω)| in the above equations ensure that
the (high frequency content) noise b will have little influence on the control input and that the control input will have
a PSD which is mainly located in the frequency band of interest (ωlow, ωup).
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The constant weightings At and Wb can be used to limit the amplitude of the control effort (whose frequency405

content will be concentrated in (ωlow, ωup) via |W∆( jω)|) and we can make a distinction between the contribution of f
and b in this control effort by independently tuning At and Wb. A good practice is to increase these constants as long
as the H∞ criterion remains solvable for a constant γ < 1. As already mentioned, the required control efforts (and
thus the extent with which the constants can be increased) depends on the desired central energy reduction (see item
a. above).410

5.3. Controller reduction and discretization
As mentioned in Section 3, for the ease of the implementation, the obtained H∞ controller will be reduced without

degrading the performance. Due to the choice of the weighting functions discussed in the previous subsection, the
obtained H∞ controller will have low gain dynamics outside the frequency range of interest. Moreover, these dynamics
outside the frequency range of interest are not/less important for the control objectives and can therefore be removed415

in the reduced-order controller. Consequently, the simple and widely used Balanced Truncation method [41] can
be applied to perform controller reduction. More precisely, we determine the controller with the lowest order that
nevertheless preserve the stability and the level of performance with the full-order model.

Since the controller will be implemented in a digital signal processor12, the obtained reduced-order controller has
finally to be discretized. The sampling time should be chosen small enough to guarantee that the frequency response420

of the discrete-time controller remains close to the continuous-time controller at frequencies lower than ωup.

6. Application

6.1. Beam-piezo system model
Following the procedure in Section 4.1, we derive a state-space model G f ull(θinit) (see Eq. (4)-(5)) using COMSOL.

Since the frequency range of interest is (600, 3000) rad/s, the dimension of the vector η(t) in Eq. (4) is chosen equal425

to 20. The frequency ω20 corresponding to the 20th mode is indeed slightly larger than ωup = 3000 rad/s. The
dimension Nz of the vector νnode is here chosen equal to 19. Recall also that Va and Vs will pertain to 10th and 16th

PZT pairs and the 5th and 11th PZT pairs, respectively. Consequently, the state vector x in the derived state-space
model G f ull(θinit) is of dimension 42.

Let us now compare the frequency response of G f ull(θinit) and the one of the experimental setup. A very accurate430

non-parametric estimate of the latter can be derived using a frequency analyzer (an HP 35652B in our case). Such a
frequency analyzer deduces an estimate of the frequency response of a SISO transfer function by averaging out the
ratio of the Fourier transforms of the output and the input over multiple experiments. In Fig. 9 (where we focus on
the dynamics between Va and Vs), we observe a large discrepancy between this accurate estimate of the frequency
response of the setup (in blue) and the frequency response of the initial model G f ull(θinit) (in yellow). Such a discrep-435

ancy is also visible for the other dynamics of the system. To obtain a more accurate parametric model of the setup,
we have applied the grey-box identification procedure of Section 4.2 yielding the model G f ull(θid). Note that, in this
identification procedure, all input-output data sets have been first pre-filtered by a band pass filter focusing on the
frequency range of interest. As shown in Fig. 10 for the dynamics between Va and Vs, the obtained identified model
G f ull(θid) has a frequency response which is much closer to the accurate non-parametric estimate obtained via the440

frequency analyzer. The model G f ull(θid) will therefore be used in the sequel for controller design (after a reduction
step).

The model reduction approach proposed in Section 4.3 is applied to G f ull(θid). By removing the poles outside the
frequency band of interest (600, 3000) rad/s, the MFT step (the first step) yields a model of order 24. As shown in blue
in Fig. 11, the maximum singular value σ(∆( jω)) of the modeling error ∆( jω) (see Eq. (12)) in the frequency band of445

interest is excessive: Eq. (29) is far from satisfied. The second step is therefore performed and it yields the reduced-
order model whose difference ∆( jω) with the full-order model now satisfies Eq. (29), as can be seen in Fig. 11. When
looking at the dynamics between Va and Vs in the frequency range of interest, we observe in Fig. 12 that, with respect
to the model obtained after the first model reduction step, the frequency response of the reduced-order model obtained
after the second step is closer to the one of the full-order model, especially at the anti-resonances. The model (15)450

(denoted G) will therefore be the one that will be used for control design (its order is also equal to 24).

12DSpace (Type: DS1104) in our case
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Fig. 9. Comparison of the frequency response from Va to Vs: non-parametric estimate obtained with the frequency analyzer (blue) and initial model
G f ull

Va→Vs
(θinit) (yellow)

Fig. 10. Comparison of the frequency response from Va to Vs: non-parametric estimate obtained with the frequency analyzer (blue) and identified
model G f ull

Va→Vs
(θid) (red)

6.2. H∞ controller design for the beam-piezo system
The controller will be designed using the procedure described in Section 5.2. Let us first discuss the choice of the

weighting W∆(s). This weighting is chosen as a simple transfer function that satisfies Eq. (28). The modulus of the
frequency response of the chosen W∆ is represented in Fig. 13 and we observe that Eq. (28) is indeed satisfied. To455
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.

Fig. 11. σ(∆( jω)) after the first model reduction step (blue) and after the second model reduction step (red)

.

Fig. 12. Frequency response of G f ull
Va→Vs

(blue), of GVa→Vs after the first model reduction step (red) and of this model after the second model
reduction step

choose the constant weighting W f , let us first consider the quantity σ(G f→νnode ( jω)) (represented in blue in Fig. 14.a).
We observe peaks up to −10 dB in this figure. In order to reduce the vibration energy, we will need to reduce these
peaks. After some trial and error, we have here decided to impose that, in closed-loop, σ(T f→νnode ( jω)) will not present
peaks that are larger than −19 dB and we therefore choose W f = 6.9. Given this choice of W f , we then reduce the
constant weightings At and Wb as much as possible to keep the H∞ criterion solvable with a γ < 1. This is done in460

order to reduce as much as possible the control efforts while guaranteeing ∀ω, σ(T f→νnode ( jω)) < −19 dB. The values
that are finally chosen are At = 3.9 and Wb = 1 which, together with the other weightings13, lead to a controller K of
order 52 for which the H∞ criterion holds with γ = 0.9923. The frequency response of this controller K is given in
blue in Fig. 15.

The closed-loop quantity σ(T f→νnode ( jω)) obtained with this controller is compared with the open-loop quan-465

13The gain of the power amplifier (see Fig. 8) is here given by Ap = −10 and the Pade filter Fd approximates a delay of of 1.6 × 10−4 s.
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tity σ(G f→νnode ( jω)) in Fig. 14.a and we observe that most of the peaks are severely reduced (and that, as imposed,
∀ω, σ(T f→νnode ( jω)) < −19 dB). As will be seen later, this peak reduction is performed with an acceptable control
action for typical disturbance force f . Further reduction would of course be possible, but at the cost of higher control
actions (and thus more energy consumption).

As imposed in the H∞ criterion, the controller K designed with the reduced-order model G indeed stabilizes the470

full-order model G f ull(θid) and, when this controller is applied to G f ull(θid), we obtain a very similar peak reduction
as with the reduced-order model G (compare Fig. 14.a and Fig. 14.b). Note that, as expected, only the modes in
(600, 3000) rad/s are reduced in the closed-loop made up of K and G f ull(θid) (see Fig. 14.b).

Fig. 13. σ(∆( jω)) (blue) and |W∆( jω)| (red)

Fig. 14. On the left (Figure a), σ(G f→νnode ( jω)) (blue) and σ(T f→νnode ( jω)) (red) when the controller K is applied to the reduced-order model G.
On the right (Figure b), σ(G f ull

f→νnode
( jω)) (blue) and σ(T f→νnode ( jω)) (red) when the controller K is applied to the full-order model G f ull

6.3. Reduced-order controller

Using Balanced Truncation, the order of the controller K can be reduced to 30 without destabilizing the full-475

order model and without significant change in the closed-loop performance of the controller. Fig. 16 indeed shows
the almost perfect match between the closed-loop quantities σ(T f→νnode ( jω)) obtained when applying the full-order
controller K (red) and the reduced-order controller Kred (yellow) to the full-order model. We have also performed
simulations with both controllers and found that the level of the control efforts remains very similar even in the
presence of measurement noise. It is to be noted that we do not evaluate the performance of the reduced-order480
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controller based on the chosen H∞ criterion since this criterion is only a mathematical formulation of the desired
performance level and since there are controllers that do not (perfectly) satisfy the H∞ criterion, but that nevertheless
lead to a satisfactory performance level in terms of the stabilization of the full-order model, the vibration attenuation
and the level of the control efforts. The frequency response of the reduced-order controller Kred is represented in red
in Fig. 15 and compared with the one of the full-order controller K. It is to be noted that both K and Kred are stable485

transfer functions.

Fig. 15. Modulus of the frequency response of the full-order controller K (blue) and of the reduced-order controller Kred (red)

Fig. 16. σ(G f ull
f→νnode

( jω)) (blue), σ(T f→νnode ( jω)) when the full-order controller is applied to the full-order model (red) and σ(T f→νnode ( jω)) when
the reduced-order controller is applied to the full-order model (yellow)

6.4. Proportional central energy reduction
Let us analyze further the performance of the closed-loop made up of the reduced-order controller Kred and the

full-order model G f ull. By comparing the blue and yellow curves in Fig. 16, we can expect that the reduction of the
vibration energy in the central zone will be important. Using Eq. (10), the reduction rate of the proportional central490

energy Ep
cent can be deduced as follows:
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rp
e =

1 −
(
Ep

cent

)
CL(

Ep
cent

)
OL

 × 100% =

1 − ||T f→νnode L f ||
2
2

||G f ull
f→νnode

L f ||
2
2

 × 100% (32)

where T f→νnode is here the closed-loop transfer vector between f and vnode in the loop made up of Kred and G f ull and
where L f (s) is a transfer function such that the PSD of f is given by |L f ( jω)|2. When L f is given by a band-pass filter
in the frequency range of interest (600, 3000) rad/s, the reduction rate rp

e is equal to 59.6 %. When L f corresponds
to the PSD of the actual disturbance force f generated by the shaker, the reduction rate rp

e is then equal to 62.5 %.495

The above expression neglects the effect of the measurement noise b on vnode in the closed-loop situation. We
have therefore performed simulations by adding a realistic measurement noise and have observed that the effect of the
measurement noise b on vnode is negligible. These simulations have also allowed us to verify that the control efforts
(due to the presence of both f and b) remain at all time in the working range of the actuators.

Let us now verify whether this control performance (in particular the large reduction rate) can also be achieved in500

practice when the reduced-order controller Kred is applied on the real setup.

6.5. Experimental results
To evaluate the actual reduction rate obtained on the experimental setup, we will compare the open-loop situation

where the force f (of PSD |L f ( jω)|2) is applied to the beam without control actions (Va = 0) and the closed-loop
situation where the force f is applied and the controller Kred is active (the controller is implemented in a DSpace505

environment (DS1104 in our case)).
In both situations, νnodei (t) = ν(xi, t) is measured via the laser velocimeter at the Nz = 19 nodes xi that have

been chosen in the central zone14. In the top part of Fig. 17, we represent, as a function of the time, the vibration
velocity νnodei (t) = ν(xi, t) of one of these nodes during an experiment where the controller is kept inactive (open-loop
situation) from t = 0 till t = 10 seconds and then the controller is activated for 10 seconds, etc... We can clearly510

observe the velocity reduction when the controller is active. Evaluating the (proportional) vibration energy Ep
nodei

at
node i as the average value of ν2

nodei
(t) in the open-loop and closed-loop situation, the reduction of the vibration energy

at this particular node is equal to 65.4%. This reduction rate is consistent with the one observed in simulations (with
and without measurement noise) and which were respectively equal to 63.1% and 65.1%.

Fig. 17. Velocity of an arbitrary point in the central zone (top figure) for an experiment consisting of switching on and off the controller Kred every
10 seconds, first element of Va (mid-figure) and second element of Va (bottom figure)

In Fig. 17, the voltages applied on the two actuators (i.e. Va) are also represented and they remain at all time515

within the working limits of the piezo-actuators.

14in fact, 19 different experiments have to be performed to obtain this result since only one laser velocimeter is available
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Let us now formally evaluate the reduction rate of the energy in the central zone obtained on the experimental
setup using the measurements νnodei (t) = ν(xi, t) at all 19 nodes. For this purpose, we will estimate the central energy
Ep

cent in the open-loop and the closed-loop situations as Ep
cent =

∑19
i=1 Ep

nodei
(see Eq. (9)).

Based on the central energy obtained in this way in open and in closed loop15, we have evaluated the energy520

reduction rate to 58.9%. We thus observe that this estimate of the experimental reduction rate is very close to the one
that is theoretically computed on the loop made up of the controller Kred and of the full-order model G f ull(θid) (i.e.
62.5%).

It can therefore be concluded that the model deduced from grey-box identification G f ull(θid) was a good model
of the experimental setup for control purpose. It is also to be stressed that the model improvement via grey-box525

identification is necessary. Indeed, if the H∞ controller is designed based on the initial model G f ull(θinit) and then
applied on G f ull(θid), the obtained energy reduction rate would go down to only 46%.

Let us further illustrate the energy reduction rate of 58.9%. Using the measurements νnodei (t) = ν(xi, t) obtained at
all 19 nodes and the applied disturbance force f , we use the frequency analyzer to estimate the frequency responses
of the transfer functions between f and νnodei (i = 1...19) in the open-loop and the closed-loop situations. We subse-530

quently compute, for both the open-loop and the closed-loop situations, the largest singular value of the vector made
up of these 19 frequency responses. These two singular values are plotted as a function of the frequency in Fig. 18.
Even though we can see some discrepancies between this figure and Fig. 16 (that can be due among other things to
the inherent difficulties in this validation step of pointing the laser velocimeter at exactly the same 19 positions as
during the identification procedure), we also clearly observe that the eleven modes in the frequency band of interest535

(600, 3000) rad/s are effectively controlled and most of them have more than 10 dB reduction with 15 dB being the
maximum reduction. Such peak reductions can also be observed in other papers (see e.g. [42, 10, 11, 12, 14]), but on
fewer resonance peaks (meaning that the reduction rate will be smaller). Note moreover that the control problem is
here more complex since the energy reduction is achieved in a zone where there are no actuators and no sensors.

Fig. 18. σ(G f→νnode ,m( jω)) (blue) and σ(T f→νnode ,m( jω)) (red) measured on the experimental set-up

Our objective was thus to reduce the vibration in the central zone of the beam. One could wonder what happens540

in the other parts of the beam. We have therefore also measured the velocity at one point on the left side of the central
zone and at one point on the right side of this central zone (see Fig. 19) and we have observed that the vibration at these
two points is also reduced in closed-loop: the reduction of the vibration energy at these two nodes are respectively
equal to 56.8% and 49.8%, however smaller than that of the measured point in the central zone (i.e. 65.4%).

15It is to be noted that, as opposed to what is done for
(
Ep

cent

)
CL

in Eq. (32), the above manner to evaluate the central energy in the closed-loop

situation considers the influence of both the disturbance force f and the measurement noise b.
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Fig. 19. Velocity of one point on the left (top figure), velocity of one point on the right (bottom figure)

7. Conclusion545

This paper proposes a methodology to solve a particular vibration control problem, that is to reduce the vibration
in a specific zone of a flexible smart structure where neither actuation nor sensing is possible. This methodology
is applied on a long thin aluminium beam with PZT where the vibration in the central zone is to be reduced. A
combination of physical and data-based modeling allows us to obtain an accurate model and then a multi-variable H∞
controller is computed. The simulation and the experimental results prove that the obtained model is very close to the550

actual experimental set-up and the controller is able to effectively reduce the vibration in the central zone of the beam
under a force disturbance over a large frequency range. A very high reduction rate is obtained. It should be noted
that the obtained controller is centralized, i.e. it processes all sensor data to generate all feedback control signals.
The drawback of this approach is the complexity of the physical connections and the high computational burden on
the centralized processor. The future work will focus on decentralized or distributed control with numerous localized555

controllers working together, reducing in this way the physical connection complexity and the computational burden.
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Appendix A. PZT selection

If a mode must be controlled, it should effectively be excited/detected by the actuator/sensor. This means that
the peaks corresponding to all these modes must be clearly seen in the frequency response with a relatively high
magnitude. Therefore, the frequency response, which can be measured by a frequency analyzer, between different560

actuators and sensors are compared and we found that the frequency response from one actuator to one sensor always
has some peaks that can not be clearly seen or only have low magnitude. Such peaks are not always at the same
frequencies in the response between other actuator and sensor. Fig. A.20 shows an example of this phenomenon. The
blue line and red line are respectively the frequency response from the 10th to the 11th PZT pair and from the 16th

to the 11th PZT pair. At the frequency circled by ellipse 1, the red line shows a much higher peak than the blue line565

while at the frequencies circled by ellipse 2 and 3, an opposite situation occurs. This phenomenon can be explained
by the position of the PZT pair. If a PZT pair is located close to the node of a certain mode shape, this mode cannot be
effectively excited or detected because the deformation at the node is very weak. Therefore, the corresponding peak
in the frequency response will be very small or even disappear (it in fact depends on how close to the node the PZT
pair is). This also proves that a SISO controller is not enough to control all the modes. As a result, the PZT pairs used570

for control are chosen in the way that when all the frequency responses between the chosen actuators and sensors are
represented together in the same plot, all the peaks corresponding to the to-be-controlled modes can be clearly seen
with a relatively high magnitude. At the same time, in order to balance the control effect, there should be at least one
actuator and one sensor on each side of the central zone.

Fig. A.20. Frequency response from the 10th to the 11th PZT pair (blue) and from the 16th to the 11th PZT pair (red)

Fig. A.21. Frequency response comparison: the 10th, the 16th to the 5th, the 11th

Finally, in order to avoid local strain, the chosen actuators and sensors should not be too close to each other.575

Indeed, according to [43], when a piezoelectric patch is used as actuator, in addition to excite vibration modes, it
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also induces a local deformation. If the sensor is too close to the actuator, this local deformation can perturb the
measurement of the vibration movement.

Considering all the above considerations and comparing different frequency responses, the 10th and the 16th PZT
pairs are finally chosen as actuators and the 5th and the 11th PZT pairs as sensors (see Fig. 4). Indeed, as can be seen580

in Fig. A.21, all the peaks of interest are clearly seen. Moreover, the chosen actuators and sensors are not too close to
each other and we have an actuator and a sensor on both sides of the central zone.
Remark. Even though more systematic approaches for the selection of the PZT pairs are available in the literature
(see e.g. [44]), the simple approach above was satisfactory for our purpose.

Appendix B. Governing equation and damping effect585

The normalized governing equation with the first N modes and NP PZT pairs (both actuators and sensors) is in the
form below: [

Mmode 0
0 0

] [
η̈(t)
V̈(t)

]
+

[
Kmode E
−ET R

] [
η(t)
V(t)

]
=

[
F · f (t)

Q(t)

]
(B.1)

where R = diag(r1, r2, · · · , rNP ) is the capacity matrix with r j the capacity of the jth PZT pairs and E the electrome-
chanical coupling matrix. V(t) and Q(t) are respectively the voltage vector and the charge vector of all the PZT pairs.
Other parameters and variables have the same meaning as described in Section 4.1.590

Remark. In COMSOL, the first N modes are solved under the condition that there is no voltage excitation on PZT,
which means V(t) = 0. In fact, Eq. (B.1) is considered as a truncated model of the actual system because the actual
system contains an infinite number of modes. In order to correct the error introduced by the truncation, stationary
analysis is also done where the capacity matrix R is corrected to make sure that when PZT is excited by a constant
voltage (for example V(t) = 1), the induced charge Q(t) of Eq. (B.1) and of the actual system with infinite modes are595

equal.
Now the actuators and sensors are considered separately. Denote Va the actuator voltage vector and Vs the sensor

voltage vector. The voltages of the unused PZT pairs are set to zero. Then, Eq. (2) can be obtained and also the so
called modal equation:

Mmode · η̈(t) + Kmode · η(t) + Ea · Va(t) + Es · Vs(t) = F · f (t) (B.2)

where Ea, Es, Rs, Va(t), Vs(t) and Qs(t) are exactly the same parameters and variables mentioned in Section 4.1 and600

they are respectively part of E, R, V(t) and Q(t).
Eq. (B.2) does not have damping effect. The damping effect corresponds to the first derivative term. Denote X the

coefficient of the first derivative term, then the modal equation with damping effect is as below:

Mmode · η̈(t) + X · η̇(t) + Kmode · η(t) + Ea · Va(t) + Es · Vs(t) = F · f (t). (B.3)

Here, the Rayleigh Damping [45] is introduced which defines X as:

X = κaMmode + κsKmode, (B.4)

where κa and κs are two damping constants. Eq. (1) is thus obtained.605

Appendix C. Relative error minimization by LMI

Denote G a full-order model whose state-space representation is (A, B,C,D) and Gr the truncated model to be
optimized whose state-space representation is (Ar, Br,Cr,Dr). G and Gr are close in (ω,ω) where Gr keeps the poles
of G which means:

λ(Ar) ⊂ λ(A)

where λ(·) denotes the set of eigenvalues. Eq. (14) is rewritten as:610
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min
Cr ,Dr

γ

such that

∀ω ∈ (ω,ω), σ
(
Gr( jω)−1(G( jω) −Gr( jω))

)
< γ

(C.1)

In order to solve the above problem, necessary approximating has to be made because the constraint in Eq. (C.1)
can not be transformed into LMI constraints. That is the reason way the following proposition is made.

Proposition 1. ∀ω such that σ
(
G( jω)−1(G( jω) −Gr( jω))

)
� 1 then:

σ
(
G( jω)−1(G( jω) −Gr( jω))

)
≈ σ

(
Gr( jω)−1(G( jω) −Gr( jω))

)
� 1 (C.2)

Proof.
σ

(
G( jω)−1(G( jω) −Gr( jω))

)
= σ

(
I −G( jω)−1Gr( jω)

)
� 1

⇔ G( jω)−1Gr( jω) ≈ I

⇔ σ
(
Gr( jω)−1G( jω)

)
=

1
σ

(
G( jω)−1Gr( jω)

) ≈ 1

where I is identity. Then,

σ
(
Gr( jω)−1(G( jω) −Gr( jω))

)
= σ

(
G−1

r ( jω)G( jω)G( jω)−1(G( jω) −Gr( jω))
)

6 σ
(
G−1

r ( jω)G( jω)
)
σ

(
G( jω)−1(G( jω) −Gr( jω))

)
� 1

615

Using Proposition 1, Eq. (C.1) is approximated by:

min
Cr ,Dr

γ

such that

∀ω ∈ (ω,ω), σ
(
G( jω)−1(G( jω) −Gr( jω))

)
< γ

(C.3)

The solution of Eq. (C.1) is approximately the solution of Eq. (C.3) which can be directly transformed into LMI
constrains as described in the following theorem:

Theorem 2. Consider G, the model of an LTI continuous system with the state-space representation denoted as
(A, B,C,D), and Gr, a reduced model of G with the state-space representation denoted as (Ar, Br,Cr,Dr) such that620

λ(Ar) ⊂ λ(A). γ is a real positive number. The solution of Eq. (C.3) is given by solving the following LMI problem:

min
Cr ,Dr ,P∈Cna×na

γ2

such that

P + P∗ < 0, K + K∗ > 0

(C.4)

where

K = XN + Q (C.5)

X =

 P 0

0
Cr Dr 0
0 0 γ2I

 , N =


Ã B̃

0 −Erδ 0 Frδ

0 0 0 −I

0 0 0
I
2

 , Q =


BδB∗δ/2 0 0 0

0 0 0 0
DδB∗δ 0 DδD∗δ/2 Dδ

B∗δ 0 0 0


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Ã =

[
A∗δ 0
0 Arδ

]
, B̃ =

[
C∗δ 0
0 Brδ

]
, Erδ = (I +

j
ω

Ar)−1, Frδ =
j
ω

ErδBr

Aδ = −ωI − j(1 −
ω

ω
)A(I +

j
ω

A)−1, Bδ = − j(1 −
ω

ω
)(I +

j
ω

A)−1B,

Cδ = C(I +
j
ω

A)−1, Dδ = D −
j
ω

C(I +
j
ω

A)−1B,

Arδ = −ωI − j(1 −
ω

ω
)Ar(I +

j
ω

Ar)−1, Brδ = − j(1 −
ω

ω
)(I +

j
ω

Ar)−1Br,

Crδ = Cr(I +
j
ω

Ar)−1, Drδ = Dr −
j
ω

Cr(I +
j
ω

Ar)−1Br.

(C.6)

and na the dimension of Ã.

Problem (C.4) is a linear cost minimization problem. There exist efficient algorithms to solve this problem, see
[38]. The proof of Theorem 2 can be found in [31].625
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