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Introduction

Lighter structures (generally made of composite materials, aluminum, ...) are increasingly used in many industrial domains (aerospace industry, auto industry, manufacturing industry, etc.). However, such light structures are generally less rigid, so they are more likely to present excessive vibration problems. Consequently, effectively controlling the vibrations in such light structures is an objective of crucial economic importance. This led to the developments of new smart structures with integrated sensing and actuating capabilities (generally realized with piezoelectric transducers due to their high precision and performance [START_REF] Preumont | Vibration Control of Active Structures, An Introduction[END_REF]). These smart materials/structures allow the development of both passive and active vibration control strategies. Due to the large vibrations in light structures, an active vibration control strategy will generally preferred since this strategy allows a stronger reduction rate.

Active vibration control of flexible structures is a topic that has known a large interest in the literature. In this paper, we extend this literature by considering the situation where the vibration must be rejected in a specific location of the structure where piezoelectric transducers cannot be placed. Such specific zones could e.g. be the location of an antenna on an aircraft fuselage or the location of the passenger's seat in a car. In this situation, we thus aim at reducing the vibration in this specific zone by only using the measurements in other zones. A second challenge tackled in this paper is the fact that we aim at obtaining an important vibration reduction rate (in the specific zone) for vibrations covering a wide frequency range. We will propose a solution to these two challenges and we will verify the validity of the proposed approach by implementing it on a real setup aiming at representing as much as possible the problem at stake. The experimental setup is composed of a free-free aluminum beam where a number of piezoelectric transducers (PZT) have been patched except in the central zone. This central zone will be the one in which the vibration must be reduced. In the considered setup, vibration with a large frequency band can be induced using the force generated by a vibrator located at one end of the beam. To reduce the effect of this force in the central zone of the beam, we will use the measurements of certain of the PZT used as sensors to decide which voltage has to be applied on another set of PZT used as actuators. The relation between measurement and actuation signals will take the form of a model-based controller implemented in D-Space 1 . It is clear that, due to the configuration of the considered setup, the PZT used as sensors and as actuators are necessarily outside the zone where the vibration must be reduced (i.e. the central zone).

Our objective is therefore to determine a feedback controller allowing to significantly reduce the vibration energy in the central zone of the experimental beam when this beam is subject to a force disturbance with a large frequency band. The ability of the control loop to reject such a disturbance is of course limited by the working range of the PZT actuators which is here given by (600, 3000) rad/s. Consequently, by a disturbance with a large frequency band, we mean a disturbance having a large power spectral density in this particular frequency band which covers eleven resonant modes of the beam. This challenging objective requires the use of modern multivariable control design methods. The first reason for this is that these modern control design methods allow to tackle unmeasured performance variables such as the vibration in the central zone where there is no sensor (see e.g. [START_REF] Oomen | Inferential motion control: Identification and robust control framework for positioning an unmeasurable point of interest[END_REF] for an example in another context). Second, as we will show in the sequel, in order to control the eleven resonant modes of the beam, we will need to consider at least two sensors and two actuators i.e. we will have to design a multivariable (MIMO) controller.

In the literature on active vibration control, methods have first been developed to design SISO controllers to control one resonant mode with a collocated sensor-actuator pair [START_REF] Preumont | Vibration Control of Active Structures, An Introduction[END_REF][START_REF] Khot | Active vibration control of cantilever beam by using PID based output feedback controller[END_REF][START_REF] Gupta | Active structural vibration control: Robust to temperature variations[END_REF][START_REF] Wang | Vibration control of smart piezoelectric composite plates[END_REF][START_REF] Qiu | Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate[END_REF]. To control more resonant modes, techniques have also been developed to combine these SISO controllers in parallel [START_REF] Preumont | Vibration Control of Active Structures, An Introduction[END_REF][START_REF] Hegewald | Vibration suppression via smart structures across a temperature range[END_REF]. More recently, modern control design methods such as LQG (static feedback), H 2 control and H ∞ control (dynamic feedback) have also been considered to design MIMO controllers to control multiple modes [START_REF] Palacios-Quiñonero | Vibration control for adjacent structures using local state information[END_REF][START_REF] Palacios-Quiñonero | An effective computational design strategy for H ∞ vibration control of large structures with information constraints[END_REF][START_REF] Koszewnik | The optimal vibration control of the plate structure by using piezo-actuators[END_REF][START_REF] Loghmani | Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain[END_REF][START_REF] Petersen | Minimax LQG optimal control of a flexible beam[END_REF][START_REF] Maruani | A numerical efficiency study on the active vibration control for a FGPM beam[END_REF][START_REF] Trindade | Piezoelectric active vibration control of damped sandwich beams[END_REF][START_REF] Bhattacharya | Finite element analysis and distributed control of laminated composite shells using LQR/IMSC approach[END_REF][START_REF] Wang | Finite element modelling and LQG control of piezoelectric composite structure with distributed sensors and actuators[END_REF][START_REF] Stavroulakis | Design and robust optimal control of smart beams with application on vibrations suppression[END_REF][START_REF] Shimon | Theoretical and experimental study of efficient control of vibrations in a clamped square plate[END_REF][START_REF] Shimon | A theoretical and experimental study of advanced control methods to suppress vibrations in a small square plate subject to temperature variations[END_REF][START_REF] Zhang | Reduced-order robust controller design for vibration reduction[END_REF][START_REF] Jee | H ∞ robust control of flexible manipulator vibration by using a piezoelectric-type servo-damper[END_REF][START_REF] Zhang | Mechatronic design under uncertainties[END_REF][START_REF] Symens | Gain-scheduling control of machine tools with varying structural flexibility[END_REF][START_REF] Paijmans | A gain-scheduling-control technique for mechatronic systems with position-dependent dynamics[END_REF]. However, to our knowledge, this paper is the first one proposing a technique that allows to significantly reduce a vibration covering a frequency range with as many as eleven modes in a zone where there is no actuator and no sensor.

Our technique is based on dynamic H ∞ control [START_REF] Zhou | Essentials of robust control[END_REF] and, as all other modern control design techniques, it requires an accurate model of the to-be-controlled system (i.e. the beam). In this paper, we first deduce a simple physical model of the beam and we then tune its parameters using data collected on the system. As shown in [START_REF] Han | Dynamics of transversely vibrating beams using four engineering theories[END_REF], there are multiple well developed beam bending models and the electromechanical coupling between the beam and the PZT can be derived by applying finite element techniques [START_REF] Wang | Finite element modelling and LQG control of piezoelectric composite structure with distributed sensors and actuators[END_REF][START_REF] Kumar | Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs[END_REF][START_REF] Kant | Modeling of low frequency dynamics of a smart system and its state feedback based active control[END_REF]] using e.g. the commercial software COMSOL [START_REF] Pryor | Multiphysics modeling using COMSOL: a first principles approach[END_REF]. Such a COMSOL approach will be here considered to derive a state-space model relating the system inputs (the disturbance force and the PZT voltages used for actuation) and the system outputs (the PZT voltages used as sensors and the velocities of a number of points in the central zone 2 ), together with a first estimate of the parameters of this model. However, it will be observed that this model is not accurate enough for active vibration control purpose and a more accurate model will be deduced by tuning these parameters using data collected on the experimental setup (grey-box identification, see e.g. [START_REF] Bohlin | Practical grey-box process identification: Theory and Applications[END_REF]). In order to tune the parameters related to these outputs, the vibration velocities in the central zone will be measured using an alternative sensor (i.e. a laser veloci-meter) since no PZT sensors are present in this zone. The obtained identified model will be the one on which the model-based control design approach will be based3 after a model reduction step that only keeps the modes in the disturbance frequency range 4 . Since both resonances and anti-resonances are important for control, we have used a model reduction technique allowing to obtain a reduced-order model close to the original one both at the resonances and at the anti-resonances. We have recently introduced this technique (see [START_REF] Wang | Multi-variable model reduction of smart structure in active vibration control[END_REF]) and its use on a real application is another contribution of this paper.

In addition to the care taken for this model reduction, the H ∞ control paradigm allows to explicitly take into account the modeling error induced by this model reduction step in the design criterion (to guarantee that the controller designed with the reduced-order model also stabilizes the original model). This is one of the main reasons why the H ∞ paradigm is chosen here. This choice is in fact made possible since we also show that, in the case of resonating systems, the main control objective (i.e. minimizing the vibration energy, an objective which is thus more related to the H 2 norm) can also easily be formulated as an H ∞ criterion.

The effectiveness of our approach will be validated via simulations and via actual tests on the available experimental setup.

The rest of the paper is organized as follows. Section 2 describes the experimental setup and points out the control objective. Section 3 gives an overall explanation of the methodology. The details of the methodology are introduced in Section 4 and Section 5. Section 6 applies this methodology on the experimental benchmark. The conclusions are given in the last section.

Notations: Let us denote G x→y and T x→y respectively the open-loop and closed-loop transfer function from x to y, S u the Power Spectrum Density (PSD) of a signal u, ||G|| 2 , ||G|| ∞ respectively the H 2 norm, the H ∞ norm of an LTI system G, σ(A) the maximum singular value of a matrix A, diag(A 1 , A 2 , • • • , A n ) a diagonal or block-diagonal matrix with A i , i = 1, 2, • • • , n the diagonal terms or blocks, A T the transpose of a real matrix A, and A * the conjugate transpose of a complex matrix A. Fig. 1 shows different pictures of the setup while Fig. 2 gives a schematic description. As already mentioned, the setup is composed of a beam, horizontally hanged on a support frame by two strings to simulate a free-free condition.

Experimental setup and control objectives

A number of PZT are pasted on each side of the beam (in the xy-plane), but not in its central zone which is, as already mentioned, the zone where the vibration energy has to be attenuated. Two PZT at the same location but on different sides form a PZT pair. To distinguish the different pairs, they are numbered from 1 to 20 (See Fig. 2). All dimensions and material properties are summarized in Table 1.

A shaker generates a force disturbance along the z-axis at the right end of the beam. We will only focus on the bending modes along the z-axis. Fig. 3 gives a schematic view of the to-be-designed control system. In this figure, f represents the disturbance force applied by the shaker and the (digital) controller takes as input the sensor voltages V s of a number of PZT pairs (that have been sampled after passing through an anti-aliasing filter) and delivers as output the voltages V a to be applied at a number of other PZT pairs (through an amplifier). These (amplified) voltages V a on the piezo-actuators will have to induce a force whose effect is to counteract the structural vibration (especially) in the central zone. This will in turn imply that, when the controller is active, the transfer function between the disturbance force and the velocities at different points in the central zone will have (much) less pronounced resonance peaks in the frequency range of the force disturbance. As mentioned in the introduction, the disturbance f will here cover the whole working range of the PZT actuators. In the experimental setup, the PZT are of the type Pz26 (see Table 1) whose working range is approximately (600, 3000) rad/s which covers 11 vibration modes of the experimental beam. In order to attenuate a vibration over such a large frequency band, we show in Appendix A that we need at least two sensors and two actuators (a SISO controller is therefore not sufficient). In Appendix A, we also show that an appropriate choice for these two actuators and these two sensors is to select the 10 th and 16 th PZT pairs as actuators, the 5 th and 11 th PZT pairs as sensors (see Fig. 4 for the location of these PZT pairs).

To sum up, the main objective is to design a 2 × 2 feedback controller that reduces the vibration energy in the central zone of the beam with respect to a force disturbance which has a large PSD in (ω low , ω up ) ∆ = (600, 3000) rad/s. To ensure a good feasibility of the implementation, the order of the controller should be relatively low, which implies that a low-order model containing only the modes in (600, 3000) rad/s should be used to compute the controller. As mentioned in the introduction, a grey-box approach will be used to obtain the model of the beam-piezo system and this model (called the full-order model in the sequel) will also contain modes outside (600, 3000) rad/s. A a consequence, the model order will be reduced and the controller will be designed based on this reduced-order model. This introduces the requirement that the controller remains stable when applied to the full-order model (hence avoiding the so-called spill-over problem). In addition, the controller should have reasonably high magnitude in (600, 3000) rad/s to ensure Fig. 4. Actuators and sensors that are chosen to control the system a high vibration reduction rate while relatively low magnitude outside (600, 3000) rad/s to limit energy consumption.
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For the same reason, one should also take care that sensor/measurement noise (usually located in high frequencies) has limited effect on the control input. A general overview of the methodology is given in Fig. 5 and each step will be detailed in the following sections. As mentioned in the introduction, the model structure of the beam-piezo system is derived using the commercial software COMSOL. Since only a finite number of modes can be tackled by COMSOL, the resulting model is a state-space model that is only valid up to a certain user-chosen frequency which is here chosen slightly larger than the maximal frequency of the disturbance i.e. 3000 rad/s. In this state-space model, the output vector is not only made up of the voltages at the two PZT pairs selected as sensors, but also of the (vibration) velocities at a number of locations in the central zone. An expression for the vibration energy in the central zone can indeed be derived from these velocities. Then, the model parameters, for which COMSOL gives a rough initial estimate, are tuned using grey-box identification in order to obtain a model with better accuracy 5 , yielding the so-called full-order model of the system. This (full-order) model covers a frequency range that is larger than the frequency range of interest (i.e. (600, 3000) rad/s). A model reduction method is therefore proposed and applied to obtain a reduced-order model that is close to the full-order model in the frequency range of interest. The reduced-order model is then used to design the controller using an H ∞ control design procedure. This control design procedure aims at minimizing the vibration energy in the central zone while keeping the control efforts in acceptable proportion and ensuring that the designed controller will stabilize the full-order model. This last objective is tackled by considering the error between the fullorder model and the reduced-order model as an uncertainty. Finally, for the ease of implementation, the obtained controller is reduced without degrading the performance.

Design methodology

Modeling

State-space modeling of the beam-piezo system

Our physical model is based on the following assumptions. First, we only consider the vibration in the z-direction and we will assume that the beam is homogeneous, transverse isotropic and elastic. The effect of bending moments and of lateral displacements will be taken into account in the model, but shear deformation and rotational inertia will be neglected. As discussed before, the boundary condition being free-free, there will be no bending moments or shear forces at both ends of the beam. Note finally that the vibration is generated by a force disturbance applied at one end of the beam as shown in Fig. 2. Based on these assumptions and observations, finite element modeling is performed and leads to a coupling equation (or governing equation) that describes the beam dynamics and the electromechanical coupling between the beam and the PZT [START_REF] Wang | Finite element modelling and LQG control of piezoelectric composite structure with distributed sensors and actuators[END_REF][START_REF] Piefort | Finite element modeling of piezoelectric structures[END_REF]. The commercial software COMSOL allows us to derive an expression of this governing equation reflecting the first N resonant modes. In our case, N will be chosen in such a way that the frequency ω N of this N th mode is slightly larger than the maximal frequency ω up = 3000 rad/s in the frequency band of the disturbance.

Governing equation deduced with COMSOL

The expression of the governing equation up to the N th mode derived via COMSOL can be expressed as follows (see Appendix B for more details). Note that, in the expression below, we have added damping effects, effects that are neglected by COMSOL. To keep the model structure as simple as possible, these damping effects are modeled by two constants κ a and κ s . As we will see in the sequel, such a simple model will indeed be sufficient to represent the dynamics of the system.

M mode • η(t) + (κ a M mode + κ s K mode ) • η(t) + K mode • η(t) + E a • V a (t) + E s • V s (t) = F • f (t), (1) 
-E T s • η(t) + R s • V s (t) = Q s (t). ( 2 
)
with M mode ∈ R N×N the normalized mass matrix (which is equal to the identity),

K mode = diag(ω 2 1 , ω 2 2 , • • • , ω 2 
N ) the stiffness matrix with ω i the frequency of the i th mode, R s = diag(r s 1 , r s 2 , • • • , r s Ns ) the capacity matrix (r s j is the capacity of the j th PZT sensor and N s the number of PZT sensors 6 ). The matrices E a and E s describe the electromechanical coupling between the beam and the PZT actuators and sensors. In addition, the term F • f (t) represents the effect of the external force f (t) on each of the mode and, as introduced before, V a (t) and V s (t) are the voltages on the PZT used, respectively, as actuators and sensors. The variable Q s (t) is a vector containing the electrical charge on the PZT used as sensors. By Ohm's law, Q s (or in fact its derivative) is related to V s as:

Qs (t) = -Y s • V s (t) (3) 
where Y s = diag(y s 1 , y s 2 , • • • , y s Ns ) is the impedance matrix (y s j is the impedance of the j th PZT sensor).

The vector 1) contains the modal coordinates η i (t) (i = 1...N) of the first N modes. According to the modal superposition principle, using these modal coordinates, the displacement z(x, t) in the z-direction at position x (we assume that this displacement is constant along the y-axis) can be approximated 7 as

η(t) = [η 1 (t), η 2 (t), • • • , η N (t)] T in (
follows z(x, t) ≈ N j=1 φ j (x) • η j (t)
where φ j (x) is the mode shape corresponding to the j th mode at position x (the function φ j (x) can also be derived via COMSOL). The above relation allows us to compute the vibration velocity ν(x, t) for any location on the beam (and thus also in the central zone):

ν(x, t) = ż(x, t) ≈ N j=1 φ j (x) • η j (t) = ϕ(x) • η(t) where ϕ(x) = [ φ1 (x), φ2 (x), • • • , φN (x)].
The above equation can be used to determine the velocities ν node i at N z locations (nodes)

x i (i = 1...N z ) equally distributed in the central zone of the beam i.e. ν node i = ϕ node i • η(t) (ϕ node i = ϕ(x i ))
. These velocities will allow us to estimate the vibration energy in the central zone.

We can now regroup the above equations in the following state-space model having f and V a as inputs, V s and

ν node = [ν node 1 (t), ν node 2 (t), • • • , ν node Nz (t)] T as outputs and x(t) = [η(t), η(t), V s (t)] T as state vector:            ẋ(t) = A • x(t) + B f • f (t) + B a • V a (t) ν node (t) = C e • x(t) V s (t) = C s • x(t) , A =           0 I 0 -K mode -κ a I -κ s K mode -E s 0 R -1 s • E T s -R -1 s • Y s           , B a =           0 -E a 0           , B f =           0 F 0           (4) 
C s = 0 0 I , C e = ϕ node • 0 I 0 , ϕ node = [ϕ T node 1 , ϕ T node 2 , • • • , ϕ T node Nz ] T
For further reference, let us introduce the notation G f ull (s) for the transfer function matrix relating the inputs and outputs of the above model:

           ν node (s) V s (s)            = G f ull (s)            f (s) V a (s)            =            G f ull f →ν node G f ull V a →ν node G f ull f →V s G f ull V a →V s                       f (s) V a (s)            (5)
An expression for G f ull (s) can easily be derived by applying the Laplace transform on the state-space model (4). It is important to note that COMSOL provides us with a first estimate for all parameters 8 in the state-space model (4). In Section 4.2, we will nevertheless show that the values of some of these parameters will have to be refined using data collected on the system for the model described by the above equations to be a good representation of the actual dynamics of the system.

Determination of the vibration energy in the central zone

Before presenting our approach to refine the parameters of the model, let us show how we can derive an expression for the vibration energy in the central zone. Such an expression is important since this central energy has to be minimized by the to-be-designed feedback controller. The central energy E cent (t) at time t is given by:

E cent (t) = 1 2 ρS L 2 L 1 ν(x, t) 2 dx (6) 
where (L 1 , L 2 ) is the location of the central zone, ρ the beam density and S the intersection area. If we assume a steady-state situation, the average central energy over time is given by:

E cent = 1 2 ρS lim T →∞ 1 T T 0 L 2 L 1 ν(x, t) 2 dx dt (7) 
Using the vector ν node introduced in the previous subsection, we have the following integral approximation:

L 2 L 1 ν(x, t) 2 dx ≈ ν node (t) T • ν node (t) • ∆x, (8) 
where ∆x denotes the distance between two nodes. Let us now define the average proportional central energy E p cent as follows:

E p cent = lim T →∞ 1 T T 0 ν node (t) T • ν node (t) • dt (9) 
It is clear that E cent and E p cent are (approximately) proportional. Thus, we can also conclude that reducing E p cent implies reducing E cent . Moreover, if we define the PSD of the disturbance f as |L f ( jω)| 2 with a transfer function L f (s), we can use Parseval's theorem to give the following computable expression of E p cent :

E p cent = 1 2π +∞ -∞ H * ( jω)H( jω)|L f ( jω)| 2 dω = H(s)L f (s) 2 2 ( 10 
)
where H(s) is the vector of transfer functions relating the force f and the vector ν node . In the open-loop situation, H(s) is equal to G f ull f →ν node (s) (see Eq. ( 5)). In the closed-loop situation i.e. when the controller K(s) is active, H(s) is then equal to the closed-loop transfer vector between f and ν node that we will denote by T f ull f →ν node (s). This closed-loop transfer vector can be easily determined by adding the relation9 V a (s) = K(s)V s (s) to Eq. ( 5), yielding:

ν node (s) = T f ull f →ν node f (s).

Model validation and improvement

In Section 4.1, a physical model has been derived for the to-be-controlled system under the form of the state-space model (4) relating the system inputs (the disturbance force f (t) and the actuator vector V a (t)) and the system outputs (the sensor vector V s (t) and the vector v node (t) containing the speed of displacements at a number of points in the central zone). As already mentioned, this physical model is parameterized by a number of physical parameters for which a first estimate can be derived using COMSOL or classical tests. This first estimate is very accurate for K mode , R s and Y s . However, this first estimate is much cruder for the rest of the parameters: κ a , κ s , E a , E s , F and ϕ node . For further reference, these remaining parameters are gathered in a vector θ and we will denote by θ init its first estimate. The vector θ will be further divided in three terms θ T = (θ T 1 , θ T 2 , θ T 3 ): θ 1 contains the scalar parameters κ a , κ s and the elements of the matrices E a and E s , θ 2 contains the elements of the vector F and θ 3 contains the elements in the matrix ϕ node . System identification will be used to obtain a more accurate estimate of the unknown parameter vector θ, denoted θ T id = (θ T 1,id , θ T 2,id , θ T 3,id ). For this purpose, experiments will be performed on the experimental setup and the corresponding input-output data will be collected. Due to the particular structure of the physical model (4), three different types of experiments will be performed and this will allow one to successively deduce accurate estimates for θ 1 , θ 2 and finally θ 3 . These separate identification experiments have the advantage to reduce the complexity of the identification criteria.

Experiment 1. Let us first notice that, when f is forced to zero, the relation between V a and V s is only function of the parameter vector θ 1 (see Eq. ( 4)). An experiment is performed on the experimental setup with f = 0 and with independent white noise signals applied to both actuators (i.e. V a ). Denote V s,m 1 (t = nT s ) with n = 1, 2, • • • , N d the corresponding output voltages measured at a sampling rate T s after the application of an anti-aliasing filter. A more accurate estimate of θ 1 can then be deduced by solving the following output error identification criterion:

θ 1,id = arg min θ 1 1 N d N d n=1 V s,m 1 (nT s ) -Vs (nT s , θ 1 ) T V s,m 1 (nT s ) -Vs (nT s , θ 1 ) ,
where Vs (nT s , θ 1 ) is the output voltage V s (t) predicted by Eq. ( 4) at t = nT s for an arbitrary value of θ 1 and for the input V a (t) applied during the experiment (

f (t) = 0).
This criterion is of course nonlinear in θ 1 . Consequently, the determination of θ 1,id requires an appropriate initialization which in our case can be taken equal to the first estimate of θ 1 , i.e. θ 1,init .

Experiment 2. Notice now that, when V a = 0, the relation between f and V s is function of θ 1 and θ 2 . Since an accurate estimate of θ 1 has been determined in the first experiment (i.e. θ 1,id ), the relation between f and V s can be reduced to a model which is only function of θ 2 . An experiment is therefore performed on the experimental setup with V a = 0 and with a force corresponding to a white noise signal. Denote V s,m 2 (t = nT s ) with n = 1, 2, • • • , N d the corresponding output voltages measured at a sampling rate T s after the application of an anti-aliasing filter. A more accurate estimate of θ 2 can then be deduced by solving the output error identification criterion:

θ 2,id = arg min θ 2 1 N d N d n=1 V s,m 2 (nT s ) -Ṽs (nT s , θ 2 , θ 1,id ) T V s,m 2 (nT s ) -Ṽs (nT s , θ 2 , θ 1,id ) ,
where Ṽs (nT s , θ 2 , θ 1,id ) is the output voltage V s (t) predicted by Eq. ( 4) at t = nT s for an arbitrary value of θ 2 and for θ 1 = θ 1,id and for the applied input force f (t) (V a = 0). This criterion is of course nonlinear in θ 2 , but it can be initialized with the first estimate of θ 2 i.e. θ 2,init . Experiment 3. Notice that the relation between f and v node is function of θ 1 , θ 2 and θ 3 and that an accurate estimate of θ 1 and θ 2 has been deduced via Experiments 1 and 2. Consequently, using a similar approach as in Experiment 2, an estimate of θ 3 i.e. θ 3,id can be deduced by applying a white noise signal at the input f (t) (V a = 0) and by measuring v node i (t) using a laser velocimeter (i = 1, 2, • • • , N z ). The laser velocimeter is necessary to measure v node i (t) since there is no piezo-patches in the central zone 10 . In fact, since a laser velocimeter has to be used to measure v node i , the experiment has to be repeated N z times and each of these N z experiments allows to deduce a part of θ 3,id (i.e. the part containing the parameters in

ϕ node i , i = 1, 2, • • • , N z ).
The approach presented above allows to derive a model G f ull (θ id ) of the to-be-controlled system that is much more accurate than the model corresponding to θ init (i.e. the model deduced by COMSOL). The improvement will be illustrated in Section 6 by comparing the frequency response of the parametric model G f ull (θ id ) with an accurate non-parametric estimate of this frequency response that can be deduced from a frequency analyzer. An almost perfect match between the frequency analyzer estimate and the frequency response of G f ull (θ id ) will be observed while the frequency response of G f ull (θ init ) is indeed much more different. Remark. Note that, before proceeding to the identification of the parameter vector in each of these three steps, the collected data can be pre-filtered using a band-pass filter focusing on the frequency band of interest.

Model reduction

In this section, we will present the model reduction technique which will be applied on the (full-order) model G f ull (θ id ) identified in the previous section. The dynamic range of this model is indeed larger than the frequency range of interest (ω low , ω up ) = (600, 3000) rad/s. As already mentioned, the objective is to obtain a reduced-order model having a frequency response which is close to the one of G f ull (θ id ) in (ω low , ω up ) and this not only for the resonances, but also for the anti-resonances. Both are indeed important for control as evidenced in [START_REF] Zhang | Mechatronic design under uncertainties[END_REF]. The model reduction approach proposed in this paper consists of two steps.

The first step that we will call Modal Form Truncation (MFT) is an application of the Aggregation Technique [START_REF] Singh | Handbook of large scale systems engineering applications[END_REF]. The full-order model is transformed into the so-called modal form or Diagonal Canonical Form [START_REF] Williams | Linear state-space control systems[END_REF]. In modal form, the dynamic matrix A is indeed diagonal by block:

A =                  A 1 0 A 2 0 . . . A n                 
where A i is either a scalar (for the poles corresponding to the measurement circuit) or a 2 × 2 matrix (for the poles corresponding to the vibration modes). Consequently, it is rather straightforward to remove those blocks which correspond to the modes outside (ω low , ω up ) and so to reduce the model order. Similar operations can be performed on the other state-space matrices yielding the following reduced-order model for G f ull :

             ẋ = A r • x + B r f • f + B r a • V a ν node = C r e • x V s = C r s • x (11) 
It is important to note that the truncation involved in this first step generally introduces a mismatch between fullorder and reduced-order models around anti-resonance frequencies. Consequently, the second step will adapt the reduced-order model obtained after the first step in order to reduce this mismatch. This is done by considering the relative error between full-order and reduced-order models in the reduction criterion since this definition of the error gives similar weighting to both resonances and anti-resonances [START_REF] Safonov | Model reduction for robust control: A schur relative error method[END_REF]. Note that, for simplicity, we will only adapt the part between V a and V s in the above model. More precizely, we will determine C r,new s and D r,new s in such a way that the following relative error is minimized:

∆( jω) = G -1 V a →V s ( jω) G f ull V a →V s ( jω) -G V a →V s ( jω) (12) 
where G f ull V a →V s is the transfer function between V a and V s in the full-order model (see Eq. ( 5)) and G V a →V s is the transfer function between V a and V s corresponding to the following state-space model:

     ẋ = A r • x + B r a • V a V s = C r,new s • x + D r,new s • V a ( 13 
)
where A r and B r a are the same as the ones obtained after the first model reduction step (see Eq. ( 11)) and where C r,new s and D r,new s will be optimized (note that we have added a direct term to the model to increase the degrees of freedom). As already mentioned, the second step thus only focuses on the relative error pertaining to the part of Eq. ( 11) between V a and V s . The main reasons for this are simplicity and the fact that G V a →V s is the part of the model which is directly involved in the closed-loop system. The error at the anti-resonances is indeed only required to be small for the reduced-order model to be a good model for control purpose. Moreover, we only tune the matrices C r,new 

σ G -1 V a →V s ( jω)(G f ull V a →V s ( jω) -G V a →V s ( jω)) . (14) 
As shown in our recent paper [START_REF] Wang | Multi-variable model reduction of smart structure in active vibration control[END_REF] (see also Appendix C), this optimization problem can be transformed into a convex optimization problem involving Linear Matrix Inequality (LMI) [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] constraints and can therefore be easily solved.

The reduced-order model after this two-step procedure is thus finally given by the following state-space model, which will be used in the next section to design the controller:

             ẋ = A r • x + B r f • f + B r a • V a ν node = C r e • x V s = C r,new s • x + D r,new s • V a (15)
Similarly as in Eq. ( 5), this reduced-order model can be transformed into a matrix of transfer functions that will be denoted by G. In the next section, we will show how to design the controller based on G. Note that, by construction, the reduced-order model G will typically have low gain outside (ω low , ω up ). See e.g. Fig. 12 for a confirmation of this observation.

Controller design via the H ∞ approach

In this section, the H ∞ control approach is first introduced theoretically and then applied to solve our particular active vibration attenuation problem.

H ∞ control approach

Performance and criterion

Restricting attention to disturbance rejection, the objective of H ∞ control is to design a controller K(s) (u(s) = K(s)y(s)) for a system of the type:

q(s) y(s) = G(s) p(s) u(s) (16) 
where u(s) ∈ C n u is the (Laplace transform of the) vector of signals generated by the controller and y(s) ∈ C n y the vector containing the sensor measurements used by the controller K(s). In the above system, we have also p(s) ∈ C n p which is a vector containing the to-be-rejected disturbances and q(s) ∈ C n q which is a vector containing the to-becontrolled outputs. It is to be noted that q does not need to be measured (this aspect will be important in our case) Finally, G(s) is a matrix of transfer functions reflecting the dynamics between these signals. In our case, we will have that u = V a , y = V s , p will be made up of the disturbance f and the measurement noise and q will be made up of v node (since we want to reduce the central energy) and V a (since we want to have limited control efforts). See Section 5.2 for more details.

To define the criterion that will yield the controller K(s), it is important to describe the frequency content of p(s) and the desired frequency content of q(s). For this purpose, let us introduce, for an arbitrary signal x of power spectral density (PSD) S x (ω), the following signal set defined by a stable and inversely stable transfer function W(s):

Ω W = x ∀ω, S x (ω) |W( jω)| 2 (17) 
Based on this expression, we determine transfer functions W p j ( j = 1...n p ) such that each element p j of p belongs to the set Ω W p j and we determine transfer functions W q k (k = 1...n q ) such that, if each element q k of q belongs to the

signal set Ω W -1 q k
, the to-be-controlled outputs q satisfy the desired specifications. The objective of H ∞ control is then to determine a controller K(s) that, when applied to the system described by Eq. ( 16), each element q k of q will belong to Ω W -1 q k (q = 1...n q ) if each element p j of p belongs to Ω W p j ( j = 1...n p ). It is to be noted that, in general, we will not need to define all these transfer functions W p j and W q k . Simplifications will be used which will generally based on the following interpretation of the H ∞ control problem in term of the loop-shaping of the closed-loop transfer functions i.e. if a controller satisfying the above objectives is applied to Eq. ( 16), then the following inequality holds for the closed-loop transfer function T p j →q k between any signal p j ( j = 1...n p ) and any signal q k (q = 1...n q ):

∀ω, |T p j →q k ( jω)| < 1 |W q k ( jω)W p j ( jω)| . ( 18 
)
We can thus also see the transfer functions W p j and W q k as weightings to shape the closed-loop transfer functions. Let us now mathematically formalize the control design problem defined above. For this purpose, let us define the so-called augmented plant P(s):

P(s) = diag(W q 1 , • • • , W q nq , I n y ) G(s)diag(W p 1 , • • • , W p np , I n u ). ( 19 
)
This augmented plant is represented in Fig. 6 where the signals e j ( j = 1...n p ) and z k (k = 1...n q ) are fictive signals that all have a PSD smaller or equal to one when p j belongs to Ω W p j ( j = 1...n p ) and q k belongs to Ω W -1 q k (q = 1...n q ). 

The transfer function between e and z in Eq. ( 20) will be denoted P K in the sequel ( is the so-called Redheffer star product [START_REF] Zhou | Essentials of robust control[END_REF]). Using Eq. ( 20), the H ∞ control criterion described above can be mathematically formulated as the problem of determining a stabilizing controller K(s) such that the following condition holds for the smallest possible scalar γ < 1:

||P(s) K(s)|| ∞ < γ, (21) 
where the H ∞ norm of an arbitrary stable LTI system T is defined as:

||T || ∞ = sup ω σ(T ( jω)). (22) 
Eq. ( 21) implies that each entry of P K has an H ∞ norm smaller than γ < 1, which in turn implies Eq. [START_REF] Shimon | Theoretical and experimental study of efficient control of vibrations in a clamped square plate[END_REF]. Note that the H ∞ controller K designed in this way will have the same order as the augmented plant P.

A robust stability result

Before presenting the particular H ∞ control design used for our active vibration problem, let us recall the so-called Weighted Small Gain Theorem [START_REF] Mackenroth | Robust control systems: theory and case studies[END_REF] which is an important result in robustness analysis and which will be crucial to understand one of the aspects of the chosen H ∞ criterion. For this purpose, let us define the following uncertainty set ∆ containing stable LTI transfer matrices ∆(s):

∆ = ∆(s) | ∆(s) = W 1 (s) ∆(s)W 2 (s) with ∆ ∞ 1 , (23) 
with W 1 and W 2 two given stable transfer matrices. Then, for a stable transfer matrix M d (s), the loop represented in Fig. 7 is stable for all ∆ in ∆ if and only if the following condition holds:

||W 2 M d W 1 || ∞ < 1. ( 24 
)
Fig. 7. Weighted Small Gain Theorem (WSGT)

H ∞ controller design

We are now ready to present the H ∞ criterion we will use to tackle our vibration attenuation problem. Let us for this purpose define the augmented system P as shown in Fig. 8. In this figure, G is the reduced-order model obtained from model reduction (see Section 4.3, Eq. ( 15)), K the to-be-determined controller. This controller generates a signal u that will be applied as voltage V a to the PZT actuators after an amplification by a factor A p (power amplifiers) and uses a signal y which is obtained after filtering the PZT sensors by an anti-aliasing filter. The digital conversion 11 mechanism of the anti-aliasing filter is here replaced by the transfer function F d (s) where Pade Approximation is used to model the introduced delay [START_REF] Glader | Approximation of delay systems-a case study[END_REF]. Recall that N a and N s are respectively the number of PZT actuators and sensors used for control (N a = N s = 2 in our case).

In Fig. 8, we see also that the vector z (corresponding to the to-be-controlled variables q) is made up of v node and of a weighted version z u of u and that the vector e (corresponding to the disturbance signals p) is made up of a weighted version e 1 of the disturbance f generated by the shaker, of a weighted version e 2 of the output measurement noise b and a weighted version e 3 of a signal c that will allows us to deal with the modeling error introduced by the model reduction step (see Section 4.3). Finally, W f , W b , W ∆ and A t are weighting functions (under the form of a SISO transfer function for W ∆ and of constants for W f , W b and A t ) which have to be determined in order to realize the specifications described at the end of Section 2.

Note that Fig. 8 corresponds to the standard form of H ∞ synthesis (see Fig. 6) with P(s) = W q (s) G(s)W p (s) where:

G(s) =           I N z 0 0 0 0 0 0 I N a 0 F d (s)I N s I N s 0                         G(s) 0 0 0 0 0 0 I N s 0 0 0 0 I N a                             1 0 0 0 0 0 A p I N a A p I N a 0 I N s 0 0 0 0 0 I N a              
, 11 The controller will thus be implemented digitally W q (s) =

I N z 0 0 A t W ∆ (s)I N a , W p (s) =               W f (s) 0 0 0 W b (s)I N s 0 0 0 1 A t I N a               . . Fig. 8. Block diagram of H ∞ synthesis
Consequently, the controller K determined using H ∞ synthesis will be such that ||P K|| ∞ < γ holds for the smallest possible γ < 1. The latter in particular implies:

a. ||T e 1 →ν node || ∞ < γ < 1 b. ||T e 3 →z u || ∞ < γ < 1 c. ||T e 1 →z u || ∞ < γ < 1 and ||T e 2 →z u || ∞ < γ < 1
We can now present how we can choose the constant weighting W f , W b , A t and the transfer function weighting W ∆ (s) in such a way that the three inequalities above ensure the control objectives described at the end of Section 2. a. ||T e 1 →ν node || ∞ < γ < 1 The vector of transfer functions T e 1 →ν node is equal to T f →ν node W f . As already mentioned, we will here choose W f as a constant weighting. Consequently, the constraint ||T e 1 →ν node || ∞ < γ < 1 in fact means:

∀ω, σ(T f →ν node ( jω)) < γ W f < 1 W f (25) 
or equivalently:

∀ω, T * f →ν node ( jω)T f →ν node ( jω) < γ W f < 1 W f (26) 
To justify this criterion, let us first consider the open-loop case i.e. the case where K = 0. The transfer vector T f →ν node then reduces to G f →ν node . Due to the resonant nature of the considered system, the largest singular value σ(G f →ν node ) of the transfer vector between f and v node will be made up of sharp peaks (as will be seen in e.g. Fig. 14). This will of course remain the case when a controller K 0 will be applied to the system. However, since the controller K will be designed in such a way that Eq. ( 25) (and other constraints) holds with the smallest γ, the amplitude of these sharp peaks can be made smaller by a smart choice of the constant W f (the larger W f , the larger the peak reduction). Recall now the expression for the central energy, Eq. ( 10), given at the end of Section 4.1.2. Using this expression for the central energy and the sharp peak nature of the considered system, it is clear that a reduction of the peak amplitudes in σ(T f →ν node ) implies a reduction of the central energy.

It is to be noted that, due to the model reduction step of Section 4.3, σ(G f →ν node ) will only present peaks in the frequency band of interest (ω low , ω up ) and will thus have low gain outside of this band. Consequently, by imposing Eq. ( 25), we will only reduce the peaks in the frequency band of interest. This is not a problem since the disturbance will only excite those specific peaks.

b. ||T e 3 →z u || ∞ < γ Even though the model reduction has been done with care (see Section 4.3), an H ∞ controller designed on the reduced-order model G could still destabilize the full-order model G f ull . Ensuring that ||T e 3 →z u || ∞ < γ with γ < 1 will prevent this so-called spill-over problem to happen. Indeed, from Fig. 8, we see that T e 3 →z u is equal to W ∆ T c→u where T c→u is the complementary sensitivity function:

T c→u = (1 -KG V a →V s ) -1 KG V a →V s ( 27 
)
To optimally choose the weighting function W ∆ , recall the robust stability result presented in Section 5.1.2. Using this result, if we choose W ∆ in such a way that the following holds:

∀ω, σ(∆( jω)) |W ∆ ( jω)| ( 28 
)
where ∆ is the relative error defined by Eq. ( 12), an H ∞ controller satisfying ||T e 3 →z u || ∞ = ||W ∆ T c→u || ∞ < 1 will be guaranteed not only to stabilize G, but also G f ull . To show this, let us first note that the part of the full-order model between V a and V s can be written for the ∆ defined in Eq. ( 12) and satisfying Eq. ( 28) as

G f ull V a →V s = G V a →V s (I + ∆),
Let us also note that the closed-loop G f ull V a →V s K can be recast in a closed-loop (∆, M d ) (see Fig. 7) with M d = T c→u . Consequently, the desired stability property is a direct consequence of the robust stability result presented in Section 5.1.2. It is to be noted that, by virtue of this same robust stability result, the H ∞ controller will also stabilize all systems Ḡ that can be expressed as Ḡ = G V a →V s (I + ∆) with a transfer matrix ∆ satisfying Eq. ( 28). Remark. The above approach will only lead to satisfactory results if the relative error ∆ in Eq. ( 12) satisfies the following constraint:

sup ω∈(ω low ,ω up ) σ(∆( jω)) 1. ( 29 
)
Otherwise, the condition ||W ∆ T c→u || ∞ < 1 will imply that σ(T c→u ( jω)) < 1 in (ω low , ω up ), which in turn implies that G V a →V s K is small in (ω low , ω up ). This contradicts the fact that G V a →V s K should be large in (ω low , ω up ) in order to have enough control effect. The expression Eq. ( 29) also gives a quality tag for the reduced-order model. As an example, the second step of the model reduction technique proposed in Section 4.3 is only necessary if Eq. ( 29) is not satisfied after the first step.

c. ||T e 1 →z u || ∞ < γ < 1 and ||T e 2 →z u || ∞ < γ < 1
These parts of the H ∞ criterion pertain to the limitation of the control effort. More precizely, they shape the transfer matrices between the external signals (the force f and the measurement noise vector b) and the vector of control inputs u. We have indeed that T e 1 →z u = A t W ∆ T f →u W f and T e 2 →z u = A t W ∆ T b→u W b . Due to the scalar nature of the weightings, these parts of the criterion ensure:

∀ω, σ(T f →u ( jω)) < 1 |A t W ∆ ( jω)W f | (30) ∀ω, σ(T b→u ( jω)) < 1 |A t W b W ∆ ( jω)| (31) 
As already mentioned, we will choose A t and W b as constant weightings. This simple choice is made possible by the shape of the frequency response of the transfer function weighting W ∆ (s) which will generally have high amplitude outside (ω low , ω up ) since it must satisfy Eq. [START_REF] Kant | Modeling of low frequency dynamics of a smart system and its state feedback based active control[END_REF]. Indeed, the presence of |W ∆ ( jω)| in the above equations ensure that the (high frequency content) noise b will have little influence on the control input and that the control input will have a PSD which is mainly located in the frequency band of interest (ω low , ω up ).

The constant weightings A t and W b can be used to limit the amplitude of the control effort (whose frequency content will be concentrated in (ω low , ω up ) via |W ∆ ( jω)|) and we can make a distinction between the contribution of f and b in this control effort by independently tuning A t and W b . A good practice is to increase these constants as long as the H ∞ criterion remains solvable for a constant γ < 1. As already mentioned, the required control efforts (and thus the extent with which the constants can be increased) depends on the desired central energy reduction (see item a. above).

Controller reduction and discretization

As mentioned in Section 3, for the ease of the implementation, the obtained H ∞ controller will be reduced without degrading the performance. Due to the choice of the weighting functions discussed in the previous subsection, the obtained H ∞ controller will have low gain dynamics outside the frequency range of interest. Moreover, these dynamics outside the frequency range of interest are not/less important for the control objectives and can therefore be removed in the reduced-order controller. Consequently, the simple and widely used Balanced Truncation method [START_REF] Baur | Model order reduction for linear and nonlinear systems: A system-theoretic perspective[END_REF] can be applied to perform controller reduction. More precisely, we determine the controller with the lowest order that nevertheless preserve the stability and the level of performance with the full-order model.

Since the controller will be implemented in a digital signal processor 12 , the obtained reduced-order controller has finally to be discretized. The sampling time should be chosen small enough to guarantee that the frequency response of the discrete-time controller remains close to the continuous-time controller at frequencies lower than ω up .

Application

Beam-piezo system model

Following the procedure in Section 4.1, we derive a state-space model G f ull (θ init ) (see Eq. ( 4)-( 5)) using COMSOL. Since the frequency range of interest is (600, 3000) rad/s, the dimension of the vector η(t) in Eq. ( 4) is chosen equal to 20. The frequency ω 20 corresponding to the 20 th mode is indeed slightly larger than ω up = 3000 rad/s. The dimension N z of the vector ν node is here chosen equal to 19. Recall also that V a and V s will pertain to 10 th and 16 th PZT pairs and the 5 th and 11 th PZT pairs, respectively. Consequently, the state vector x in the derived state-space model G f ull (θ init ) is of dimension 42.

Let us now compare the frequency response of G f ull (θ init ) and the one of the experimental setup. A very accurate non-parametric estimate of the latter can be derived using a frequency analyzer (an HP 35652B in our case). Such a frequency analyzer deduces an estimate of the frequency response of a SISO transfer function by averaging out the ratio of the Fourier transforms of the output and the input over multiple experiments. In Fig. 9 (where we focus on the dynamics between V a and V s ), we observe a large discrepancy between this accurate estimate of the frequency response of the setup (in blue) and the frequency response of the initial model G f ull (θ init ) (in yellow). Such a discrepancy is also visible for the other dynamics of the system. To obtain a more accurate parametric model of the setup, we have applied the grey-box identification procedure of Section 4.2 yielding the model G f ull (θ id ). Note that, in this identification procedure, all input-output data sets have been first pre-filtered by a band pass filter focusing on the frequency range of interest. As shown in Fig. 10 for the dynamics between V a and V s , the obtained identified model G f ull (θ id ) has a frequency response which is much closer to the accurate non-parametric estimate obtained via the frequency analyzer. The model G f ull (θ id ) will therefore be used in the sequel for controller design (after a reduction step).

The model reduction approach proposed in Section 4.3 is applied to G f ull (θ id ). By removing the poles outside the frequency band of interest (600, 3000) rad/s, the MFT step (the first step) yields a model of order 24. As shown in blue in Fig. 11, the maximum singular value σ(∆( jω)) of the modeling error ∆( jω) (see Eq. ( 12)) in the frequency band of interest is excessive: Eq. ( 29) is far from satisfied. The second step is therefore performed and it yields the reducedorder model whose difference ∆( jω) with the full-order model now satisfies Eq. ( 29), as can be seen in Fig. 11. When looking at the dynamics between V a and V s in the frequency range of interest, we observe in Fig. 12 that, with respect to the model obtained after the first model reduction step, the frequency response of the reduced-order model obtained after the second step is closer to the one of the full-order model, especially at the anti-resonances. The model [START_REF] Bhattacharya | Finite element analysis and distributed control of laminated composite shells using LQR/IMSC approach[END_REF] (denoted G) will therefore be the one that will be used for control design (its order is also equal to 24). 

H ∞ controller design for the beam-piezo system

The controller will be designed using the procedure described in Section 5.2. Let us first discuss the choice of the weighting W ∆ (s). This weighting is chosen as a simple transfer function that satisfies Eq. ( 28). The modulus of the frequency response of the chosen W ∆ is represented in Fig. 13 and we observe that Eq. ( 28) is indeed satisfied. To We observe peaks up to -10 dB in this figure. In order to reduce the vibration energy, we will need to reduce these peaks. After some trial and error, we have here decided to impose that, in closed-loop, σ(T f →ν node ( jω)) will not present peaks that are larger than -19 dB and we therefore choose W f = 6.9. Given this choice of W f , we then reduce the constant weightings A t and W b as much as possible to keep the H ∞ criterion solvable with a γ < 1. This is done in order to reduce as much as possible the control efforts while guaranteeing ∀ω, σ(T f →ν node ( jω)) < -19 dB. The values that are finally chosen are A t = 3.9 and W b = 1 which, together with the other weightings 13 , lead to a controller K of order 52 for which the H ∞ criterion holds with γ = 0.9923. The frequency response of this controller K is given in blue in Fig. 15.

The closed-loop quantity σ(T f →ν node ( jω)) obtained with this controller is compared with the open-loop quan-tity σ(G f →ν node ( jω)) in Fig. 14.a and we observe that most of the peaks are severely reduced (and that, as imposed, ∀ω, σ(T f →ν node ( jω)) < -19 dB). As will be seen later, this peak reduction is performed with an acceptable control action for typical disturbance force f . Further reduction would of course be possible, but at the cost of higher control actions (and thus more energy consumption).

As imposed in the H ∞ criterion, the controller K designed with the reduced-order model G indeed stabilizes the full-order model G f ull (θ id ) and, when this controller is applied to G f ull (θ id ), we obtain a very similar peak reduction as with the reduced-order model G (compare Fig. ) obtained when applying the full-order controller K (red) and the reduced-order controller K red (yellow) to the full-order model. We have also performed simulations with both controllers and found that the level of the control efforts remains very similar even in the presence of measurement noise. It is to be noted that we do not evaluate the performance of the reduced-order controller based on the chosen H ∞ criterion since this criterion is only a mathematical formulation of the desired performance level and since there are controllers that do not (perfectly) satisfy the H ∞ criterion, but that nevertheless lead to a satisfactory performance level in terms of the stabilization of the full-order model, the vibration attenuation and the level of the control efforts. The frequency response of the reduced-order controller K red is represented in red in Fig. 15 and compared with the one of the full-order controller K. It is to be noted that both K and K red are stable transfer functions. ( jω)) (blue), σ(T f →ν node ( jω)) when the full-order controller is applied to the full-order model (red) and σ(T f →ν node ( jω)) when the reduced-order controller is applied to the full-order model (yellow)

Proportional central energy reduction

Let us analyze further the performance of the closed-loop made up of the reduced-order controller K red and the full-order model G f ull . By comparing the blue and yellow curves in Fig. 16, we can expect that the reduction of the vibration energy in the central zone will be important. Using Eq. ( 10), the reduction rate of the proportional central

r p e =              1 - E p cent CL E p cent OL              × 100% =         1 - ||T f →ν node L f || 2 2 ||G f ull f →ν node L f || 2 2         × 100% (32) 
where T f →ν node is here the closed-loop transfer vector between f and v node in the loop made up of K red and G f ull and where L f (s) is a transfer function such that the PSD of f is given by |L f ( jω)| 2 . When L f is given by a band-pass filter in the frequency range of interest (600, 3000) rad/s, the reduction rate r p e is equal to 59.6 %. When L f corresponds to the PSD of the actual disturbance force f generated by the shaker, the reduction rate r p e is then equal to 62.5 %.

The above expression neglects the effect of the measurement noise b on v node in the closed-loop situation. We have therefore performed simulations by adding a realistic measurement noise and have observed that the effect of the measurement noise b on v node is negligible. These simulations have also allowed us to verify that the control efforts (due to the presence of both f and b) remain at all time in the working range of the actuators.

Let us now verify whether this control performance (in particular the large reduction rate) can also be achieved in practice when the reduced-order controller K red is applied on the real setup.

Experimental results

To evaluate the actual reduction rate obtained on the experimental setup, we will compare the open-loop situation where the force f (of PSD |L f ( jω)| 2 ) is applied to the beam without control actions (V a = 0) and the closed-loop situation where the force f is applied and the controller K red is active (the controller is implemented in a DSpace environment (DS1104 in our case)).

In both situations, ν node i (t) = ν(x i , t) is measured via the laser velocimeter at the N z = 19 nodes x i that have been chosen in the central zone 14 . In the top part of Fig. 17, we represent, as a function of the time, the vibration velocity ν node i (t) = ν(x i , t) of one of these nodes during an experiment where the controller is kept inactive (open-loop situation) from t = 0 till t = 10 seconds and then the controller is activated for 10 seconds, etc... We can clearly observe the velocity reduction when the controller is active. Evaluating the (proportional) vibration energy E p node i at node i as the average value of ν 2 node i (t) in the open-loop and closed-loop situation, the reduction of the vibration energy at this particular node is equal to 65.4%. This reduction rate is consistent with the one observed in simulations (with and without measurement noise) and which were respectively equal to 63.1% and 65.1%. In Fig. 17, the voltages applied on the two actuators (i.e. V a ) are also represented and they remain at all time within the working limits of the piezo-actuators.

Let us now formally evaluate the reduction rate of the energy in the central zone obtained on the experimental setup using the measurements ν node i (t) = ν(x i , t) at all 19 nodes. For this purpose, we will estimate the central energy E p cent in the open-loop and the closed-loop situations as E p cent = 19 i=1 E p node i (see Eq. ( 9)). Based on the central energy obtained in this way in open and in closed loop 15 , we have evaluated the energy reduction rate to 58.9%. We thus observe that this estimate of the experimental reduction rate is very close to the one that is theoretically computed on the loop made up of the controller K red and of the full-order model G f ull (θ id ) (i.e. 62.5%).

It can therefore be concluded that the model deduced from grey-box identification G f ull (θ id ) was a good model of the experimental setup for control purpose. It is also to be stressed that the model improvement via grey-box identification is necessary. Indeed, if the H ∞ controller is designed based on the initial model G f ull (θ init ) and then applied on G f ull (θ id ), the obtained energy reduction rate would go down to only 46%.

Let us further illustrate the energy reduction rate of 58.9%. Using the measurements ν node i (t) = ν(x i , t) obtained at all 19 nodes and the applied disturbance force f , we use the frequency analyzer to estimate the frequency responses of the transfer functions between f and ν node i (i = 1... [START_REF] Shimon | A theoretical and experimental study of advanced control methods to suppress vibrations in a small square plate subject to temperature variations[END_REF]) in the open-loop and the closed-loop situations. We subsequently compute, for both the open-loop and the closed-loop situations, the largest singular value of the vector made up of these 19 frequency responses. These two singular values are plotted as a function of the frequency in Fig. 18. Even though we can see some discrepancies between this figure and Fig. 16 (that can be due among other things to the inherent difficulties in this validation step of pointing the laser velocimeter at exactly the same 19 positions as during the identification procedure), we also clearly observe that the eleven modes in the frequency band of interest (600, 3000) rad/s are effectively controlled and most of them have more than 10 dB reduction with 15 dB being the maximum reduction. Such peak reductions can also be observed in other papers (see e.g. [START_REF] Feliu-Talegon | Fractional-order integral resonant control of collocated smart structures[END_REF][START_REF] Koszewnik | The optimal vibration control of the plate structure by using piezo-actuators[END_REF][START_REF] Loghmani | Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain[END_REF][START_REF] Petersen | Minimax LQG optimal control of a flexible beam[END_REF][START_REF] Trindade | Piezoelectric active vibration control of damped sandwich beams[END_REF]), but on fewer resonance peaks (meaning that the reduction rate will be smaller). Note moreover that the control problem is here more complex since the energy reduction is achieved in a zone where there are no actuators and no sensors. in the other parts of the beam. We have therefore also measured the velocity at one point on the left side of the central zone and at one point on the right side of this central zone (see Fig. 19) and we have observed that the vibration at these two points is also reduced in closed-loop: the reduction of the vibration energy at these two nodes are respectively equal to 56.8% and 49.8%, however smaller than that of the measured point in the central zone (i.e. 65.4%). 

Conclusion

This paper proposes a methodology to solve a particular vibration control problem, that is to reduce the vibration in a specific zone of a flexible smart structure where neither actuation nor sensing is possible. This methodology is applied on a long thin aluminium beam with PZT where the vibration in the central zone is to be reduced. A combination of physical and data-based modeling allows us to obtain an accurate model and then a multi-variable H ∞ controller is computed. The simulation and the experimental results prove that the obtained model is very close to the actual experimental set-up and the controller is able to effectively reduce the vibration in the central zone of the beam under a force disturbance over a large frequency range. A very high reduction rate is obtained. It should be noted that the obtained controller is centralized, i.e. it processes all sensor data to generate all feedback control signals. The drawback of this approach is the complexity of the physical connections and the high computational burden on the centralized processor. The future work will focus on decentralized or distributed control with numerous localized controllers working together, reducing in this way the physical connection complexity and the computational burden.

Appendix A. PZT selection

If a mode must be controlled, it should effectively be excited/detected by the actuator/sensor. This means that the peaks corresponding to all these modes must be clearly seen in the frequency response with a relatively high magnitude. Therefore, the frequency response, which can be measured by a frequency analyzer, between different actuators and sensors are compared and we found that the frequency response from one actuator to one sensor always has some peaks that can not be clearly seen or only have low magnitude. Such peaks are not always at the same frequencies in the response between other actuator and sensor. Fig. A.20 shows an example of this phenomenon. The blue line and red line are respectively the frequency response from the 10 th to the 11 th PZT pair and from the 16 th to the 11 th PZT pair. At the frequency circled by ellipse 1, the red line shows a much higher peak than the blue line while at the frequencies circled by ellipse 2 and 3, an opposite situation occurs. This phenomenon can be explained by the position of the PZT pair. If a PZT pair is located close to the node of a certain mode shape, this mode cannot be effectively excited or detected because the deformation at the node is very weak. Therefore, the corresponding peak in the frequency response will be very small or even disappear (it in fact depends on how close to the node the PZT pair is). This also proves that a SISO controller is not enough to control all the modes. As a result, the PZT pairs used for control are chosen in the way that when all the frequency responses between the chosen actuators and sensors are represented together in the same plot, all the peaks corresponding to the to-be-controlled modes can be clearly seen with a relatively high magnitude. At the same time, in order to balance the control effect, there should be at least one actuator and one sensor on each side of the central zone. In order to solve the above problem, necessary approximating has to be made because the constraint in Eq. (C.1) can not be transformed into LMI constraints. That is the reason way the following proposition is made. and n a the dimension of A.

X =           P 0 0 C r D r 0 0 0 γ 2 I           , N =                   A B 0 -E rδ 0 F rδ 0 0 0 -I 0 0 0 I 2                   , Q =               B δ B * δ /
Problem (C.4) is a linear cost minimization problem. There exist efficient algorithms to solve this problem, see [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. The proof of Theorem 2 can be found in [START_REF] Wang | Multi-variable model reduction of smart structure in active vibration control[END_REF].
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 12 Fig. 1. Pictures of the setup: a general view (top left), the shaker (top right), the central zone and the PZT locations (bottom left), the PZT pairs (bottom right)
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 3 Fig. 3. Block diagram of the controlled system
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 5 Fig. 5. Methodology
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  and D r,new s since we want to improve the behavior at the anti-resonances (which is linked to the state-space matrices C and D) and not the behavior at the resonances (which are linked to the state-space matrix A).Finally, since only the behavior in the frequency band (ω low , ω up ) is of interest, we will use the following optimization problem to determine C r,new s low ,ω up )
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 6 Fig. 6. Standard form of H ∞ synthesis Denoting e = [e 1 , • • • , e n p ] T and z = [z 1 , • • • , z n q ] T , the closed-loop system can then be rewritten as: z(s) y(s) = P(s) e(s) u(s) u(s) = K(s)y(s) .(20)
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 910 Fig. 9. Comparison of the frequency response from V a to V s : non-parametric estimate obtained with the frequency analyzer (blue) and initial model G f ull Va→Vs (θ init ) (yellow)
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 11 Fig. 11. σ(∆( jω)) after the first model reduction step (blue) and after the second model reduction step (red)

Fig. 12 .

 12 Fig. 12. Frequency response of G f ull Va→Vs (blue), of G Va→Vs after the first model reduction step (red) and of this model after the second model reduction step

  14.a and Fig. 14.b). Note that, as expected, only the modes in (600, 3000) rad/s are reduced in the closed-loop made up of K and G f ull (θ id ) (see Fig. 14.b).
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 1314 Fig. 13. σ(∆( jω)) (blue) and |W ∆ ( jω)| (red)
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 1516 Fig. 15. Modulus of the frequency response of the full-order controller K (blue) and of the reduced-order controller K red (red)
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 17 Fig. 17. Velocity of an arbitrary point in the central zone (top figure) for an experiment consisting of switching on and off the controller K red every 10 seconds, first element of V a (mid-figure) and second element of V a (bottom figure)

Fig. 18 .

 18 Fig. 18. σ(G f →ν node ,m ( jω)) (blue) and σ(T f →ν node ,m ( jω)) (red) measured on the experimental set-up Our objective was thus to reduce the vibration in the central zone of the beam. One could wonder what happens

Fig. 19 .

 19 Fig. 19. Velocity of one point on the left (top figure), velocity of one point on the right (bottom figure)

Fig. A. 20 .

 20 Fig. A.20. Frequency response from the 10 th to the 11 th PZT pair (blue) and from the 16 th to the 11 th PZT pair (red)

Finally

  , in order to avoid local strain, the chosen actuators and sensors should not be too close to each other. Indeed, according to[START_REF] Ji | Novel approach of self-sensing actuation for active vibration control[END_REF], when a piezoelectric patch is used as actuator, in addition to excite vibration modes, it minC r ,D r γ such that ∀ω ∈ (ω, ω), σ G r ( jω) -1 (G( jω) -G r ( jω)) < γ (C.1)

Proposition 1 . 1 ⇔ 1 615(

 111 ∀ω such that σ G( jω) -1 (G( jω) -G r ( jω)) 1 then:σ G( jω) -1 (G( jω) -G r ( jω)) ≈ σ G r ( jω) -1 (G( jω) -G r ( jω)) 1 (C.2) Proof. σ G( jω) -1 (G( jω) -G r ( jω)) = σ I -G( jω) -1 G r ( jω) G( jω) -1 G r ( jω) ≈ I ⇔ σ G r ( jω) -1 G( jω) = 1 σ G( jω) -1 G r ( jω) ≈1where I is identity. Then,σ G r ( jω) -1 (G( jω) -G r ( jω)) = σ G -1 r ( jω)G( jω)G( jω) -1 (G( jω) -G r ( jω)) σ G -1 r ( jω)G( jω) σ G( jω) -1 (G( jω) -G r ( jω))Using Proposition 1, Eq. (C.1) is approximated by: minC r ,D r γ such that ∀ω ∈ (ω, ω), σ G( jω) -1 (G( jω) -G r ( jω)) < γ (C.3)The solution of Eq. (C.1) is approximately the solution of Eq. (C.3) which can be directly transformed into LMI constrains as described in the following theorem: Theorem 2. Consider G, the model of an LTI continuous system with the state-space representation denoted as (A, B, C, D), and G r , a reduced model of G with the state-space representation denoted as (A r , B r , C r , D r ) such that λ(A r ) ⊂ λ(A). γ is a real positive number. The solution of Eq. (C.3) is given by solving the following LMI problem: min C r ,D r ,P∈C na ×na γ 2 such that P + P * < 0, K + K * > 0

  = -ωIj(1 -ω ω )A r (I + j ω A r ) -1 , B rδ =j(1 -ω ω )(I + j ω A r ) -1 B r , C rδ = C r (I + j ω A r ) -1 , D rδ = D r -j ω C r (I + j ω A r ) -1 B r .(C.6)
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As opposed to passive vibration control, active vibration control thus requires a certain computational power. However, as already mentioned, the reward is a more important vibration reduction.Preprint submitted to Control Engineering PracticeDecember 6,

These outputs will be used to estimate the vibration energy in the central part of the beam.

The quality of this identified model will be evidenced by the almost perfect match between the performance achieved by the model-based controller on the identified model and its performance on the real-life system.

The model reduction is performed to reduce the complexity of the controller.

A grey-box identification approach is here preferred over a black-box approach to keep the model order low.

N s = 2 in our case

The approximation is due to the truncation of the higher modes.

Note that first estimates for κ a , κ s and Y s are in fact not determined by COMSOL, but can instead be derived using measurement devices (for Y s ) and the half-power method[START_REF] Meirovitch | Elements of vibration analysis[END_REF] (for κ a , κ s ).

Note that, in Section 5, the notation K(s) will in fact be used for the controller before amplification.

The fact that we can refine the parameter vector θ 3 using data collected using this laser velocimeter is the main reason for our choice to use v node as the physical signal to evaluate the central energy. Other approaches such as the one in[START_REF] Moheimani | Spatial control of vibration: theory and experiments[END_REF] does indeed not have this advantage.

DSpace (Type: DS1104) in our case

The gain of the power amplifier (see Fig.8) is here given by A p = -10 and the Pade filter F d approximates a delay of of 1.6 × 10 -4 s.

in fact, 19 different experiments have to be performed to obtain this result since only one laser velocimeter is available

It is to be noted that, as opposed to what is done for E p cent CL in Eq. (32), the above manner to evaluate the central energy in the closed-loop situation considers the influence of both the disturbance force f and the measurement noise b.

energy E p cent can be deduced as follows: also induces a local deformation. If the sensor is too close to the actuator, this local deformation can perturb the measurement of the vibration movement. Considering all the above considerations and comparing different frequency responses, the 10 th and the 16 th PZT pairs are finally chosen as actuators and the 5 th and the 11 th PZT pairs as sensors (see Fig. 4). Indeed, as can be seen in Fig. A.21, all the peaks of interest are clearly seen. Moreover, the chosen actuators and sensors are not too close to each other and we have an actuator and a sensor on both sides of the central zone. Remark. Even though more systematic approaches for the selection of the PZT pairs are available in the literature (see e.g. [START_REF] Gawronski | Advanced structural dynamics and active control of structures[END_REF]), the simple approach above was satisfactory for our purpose.

Appendix B. Governing equation and damping effect

The normalized governing equation with the first N modes and N P PZT pairs (both actuators and sensors) is in the form below:

where

) is the capacity matrix with r j the capacity of the j th PZT pairs and E the electromechanical coupling matrix. V(t) and Q(t) are respectively the voltage vector and the charge vector of all the PZT pairs. Other parameters and variables have the same meaning as described in Section 4.1.

Remark. In COMSOL, the first N modes are solved under the condition that there is no voltage excitation on PZT, which means V(t) = 0. In fact, Eq. (B.1) is considered as a truncated model of the actual system because the actual system contains an infinite number of modes. In order to correct the error introduced by the truncation, stationary analysis is also done where the capacity matrix R is corrected to make sure that when PZT is excited by a constant voltage (for example V(t) = 1), the induced charge Q(t) of Eq. (B.1) and of the actual system with infinite modes are equal. Now the actuators and sensors are considered separately. Denote V a the actuator voltage vector and V s the sensor voltage vector. The voltages of the unused PZT pairs are set to zero. Then, Eq. ( 2) can be obtained and also the so called modal equation:

where E a , E s , R s , V a (t), V s (t) and Q s (t) are exactly the same parameters and variables mentioned in Section 4.1 and they are respectively part of E, R, V(t) and Q(t).

Eq. (B.2) does not have damping effect. The damping effect corresponds to the first derivative term. Denote X the coefficient of the first derivative term, then the modal equation with damping effect is as below:

Here, the Rayleigh Damping [START_REF] Erturk | Piezoelectric Energy Harvesting[END_REF] is introduced which defines X as:

where κ a and κ s are two damping constants. Eq. ( 1) is thus obtained.

Appendix C. Relative error minimization by LMI

Denote G a full-order model whose state-space representation is (A, B, C, D) and G r the truncated model to be optimized whose state-space representation is (A r , B r , C r , D r ). G and G r are close in (ω, ω) where G r keeps the poles of G which means:

where λ(•) denotes the set of eigenvalues. Eq. ( 14) is rewritten as: