
HAL Id: hal-01983612
https://hal.science/hal-01983612v1

Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Classical to Generalized Zero-Shot Learning: A
Simple Adaptation Process

Yannick Le Cacheux, Hervé Le Borgne, Michel Crucianu

To cite this version:
Yannick Le Cacheux, Hervé Le Borgne, Michel Crucianu. From Classical to Generalized Zero-Shot
Learning: A Simple Adaptation Process. Ioannis Kompatsiaris, Benoit Huet, Vasileios Mezaris, Cathal
Gurrin, Wen-Huang Cheng, Stefanos Vrochidis. MultiMedia Modeling. 25th International Conference,
MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings, Part II, 11296, Springer Verlag,
pp.465-477, 2019, Lecture Notes in Computer Science, 978-3-030-05716-9. �10.1007/978-3-030-05716-
9_38�. �hal-01983612�

https://hal.science/hal-01983612v1
https://hal.archives-ouvertes.fr


From Classical to Generalized Zero-Shot

Learning: a Simple Adaptation Process

Yannick Le Cacheux
CEA LIST

Hervé Le Borgne
CEA LIST

Michel Crucianu
CEDRIC Lab – CNAM

September 27, 2018

Abstract

Zero-shot learning (ZSL) is concerned with the recognition of previ-
ously unseen classes. It relies on additional semantic knowledge for which
a mapping can be learned with training examples of seen classes. While
classical ZSL considers the recognition performance on unseen classes only,
generalized zero-shot learning (GZSL) aims at maximizing performance on
both seen and unseen classes. In this paper, we propose a new process for
training and evaluation in the GZSL setting; this process addresses the
gap in performance between samples from unseen and seen classes by pe-
nalizing the latter, and enables to select hyper-parameters well-suited to
the GZSL task. It can be applied to any existing ZSL approach and leads
to a significant performance boost: the experimental evaluation shows
that GZSL performance, averaged over eight state-of-the-art methods, is
improved from 28.5 to 42.2 on CUB and from 28.2 to 57.1 on AwA2.

1 Introduction

Zero-shot learning (ZSL) [1, 2, 3] aims to recognize classes for which no training
example is available. This is often achieved by relying on additional semantic
knowledge, consisting for example in vectors of attributes. During training, a
relation between visual features and semantic attributes is learned from training
examples belonging to the seen classes, for which both modalities (visual and
semantic) are available. This model is then applied in the testing phase on
examples from unseen classes, for which no visual instance was available during
training. Predictions on these classes can thus be made on the basis of the
inferred relation between visual and semantic features.

In classical ZSL, the test set only contains examples from the novel, un-
seen classes, and these classes alone can be predicted. Although this setting
has enabled significant progress in methods linking visual content to semantic

1

ar
X

iv
:1

80
9.

10
12

0v
1 

 [
cs

.L
G

] 
 2

6 
Se

p 
20

18



information in the last few years [4], it is hardly realistic. It seems much more
reasonable to assume that objects which are to be classified can belong to either
a seen class or an unseen class, since in real-life use-cases one could legitimately
want to recognize both former and novel classes. This setting is usually referred
to as generalized zero-shot learning (GZSL).

However, recent work shows that a direct use of a ZSL model in a GZSL
setting usually leads to unsatisfactory results. Indeed, in addition to the number
of candidate classes being higher due to the presence of the seen classes among
them, most samples from unseen classes are incorrectly classified as belonging
to one of the seen classes [5]. Different methods have been proposed to measure
this discrepancy, such as the area under the curve representing all the possible
trade-offs between the accuracies on samples from seen classes versus samples
from unseen classes [5], or their harmonic mean [4] to penalize models with
strong imbalance between the two. While these proposals only measure the
extent of the problem, we aim to explicitly address this issue in addition to
quantifying its impact.

The main contribution of this paper is a new process for training and eval-
uating models in a GZSL setting. In accordance with recent studies, we show
that the application of a ZSL model “out of the box” gives results that are far
from optimal in the GZSL context. We demonstrate how two simple techniques
– the calibration of similarities and the use of appropriately balanced regular-
ization – can dramatically improve the performance of most models. The final
score for the GZSL task can thus be increased up to a factor of two, with no
change regarding the underlying hypotheses of the GZSL task or the data avail-
able at any given time, which means that our process is applicable to any ZSL
model. We also provide new insights on the reasons why these two techniques
are relevant and on the fundamental differences between samples from seen and
unseen classes.

We extensively evaluate these techniques on several recent ZSL methods.
For sanity-check, we independently reproduce results obtained in the literature
before applying our process. We find that some models show a variability in per-
formance with respect to their random initialization, so measures averaged over
several runs should be preferred. We eventually find that, with fair comparison
under unbiased conditions as enabled by our process, a regularized linear model
can give results close to or even better than the state-of-the-art.

2 Related work

An early rigorous definition and evaluation of GZSL was put forward in [5]. The
authors argue that this setting is more realistic than ZSL and highlight the gap
between accuracies on seen and unseen classes when labels from all classes can
be predicted (denoted respectively AU→C and AS→C , and formally defined in
Sec. 3.1). They also introduce the idea of calibration to address this issue and
suggest a new metric for GZSL, Accuracy Under Seen-Unseen Curve (AUSUC),
which measures the trade-off between the two accuracies but does not directly

2



Figure 1: Illustration of how the regularization parameter λ affects the accura-
cies on samples from seen and unseen classes AU→Cu and AS→Cs (see Sec. 3.1)
as measured on CUB [6] (left) and AwA2 [7] (right). Optimal regularization is
not the same in a ZSL setting, where performance is measured by AU→Cu (red
dotted line), and in a GZSL setting, where it is measured by the harmonic mean
of AU→C and AS→C (black dotted line).

provide the expected performance in real use-cases.
An extensive evaluation of recent ZSL methods with a common protocol is

provided in [4], both in ZSL and GZSL settings. The authors use a different
metric for GZSL, the harmonic mean between AU→C and AS→C , which does
not directly quantify the trade-off between accuracies but better estimates the
practical performance of a given model. However, they do not explicitly address
the gap between similarities evaluated on seen and unseen classes [5], which has
a significant impact on the final performance as we show in Sec. 4.3.

Further GZSL results based on the harmonic mean metric are provided
in [8, 9, 10]. All three methods rely on generators of artificial training ex-
amples from unseen classes. However, these methods assume that a semantic
description of all unseen classes is available during training. This assumption
is not necessarily met in practice and makes the inclusion of additional unseen
classes more difficult.

Transductive ZSL methods [11, 12, 13] also assume that additional infor-
mation, taking the form of unlabeled samples from unseen classes, is available
during training. This can naturally lead to improved performance. In this
article, we make none of these assumptions and consider that no information
regarding unseen classes is available at training time.

3 Proposed approach

3.1 Problem statement

We denote by Cs the set of classes seen during training and by Cu the set
of unseen classes. We define C = Cs ∪ Cu, with Cs ∩ Cu = ∅. During the

3



training phase, we consider N tr training samples consisting of D-dimensional
visual features Xtr = (xtr

1 , . . . ,x
tr
Ntr )> ∈ RNtr×D and corresponding labels

ytr = (ytr1 , . . . , y
tr
Ntr )> ∈ CsN

tr

, as well as K-dimensional semantic class proto-
types noted by Str = (str1 , . . . , s

tr
|Cs|)

> ∈ R|Cs|×K . We seek to learn a function

f : RD ×RK → R assigning a similarity score to each pair composed of a visual
feature vector and a semantic representation so as to minimize the following
regularized loss:

1

N tr

Ntr∑
n=1

|Cs|∑
c=1

L(f(xtr
n ; strc ), ytrn ) + λΩ[f ] (1)

where L is the loss function and Ω the regularization term weighted by λ.
During the testing phase, we consider N te unlabeled visual samples Xte =
(xte

1 , . . . ,x
te
Nte)> ∈ RNte×D and class prototypes for candidate classes. In a ZSL

setting, the candidate classes Cte are the unseen classes such that Ste ∈ R|Cu|×K .
In a GZSL setting, classes to be predicted can be in either Cu or Cs, such that
Cte = C and the class prototypes are Ste = (ste1 , . . . , s

te
|Cs|, s

te
|Cs|+1, . . . , s

te
|Cs|+|Cu|)

>

∈ R|C|×K . In both cases, given a function f̂ learned in the training phase, we
want to estimate a prediction ŷ for a visual testing sample x such that:

ŷ = argmax
c∈Cte

f̂(x; stec ) (2)

In classical ZSL, performance is measured by the accuracy of unseen classes
among unseen classes, noted AU→Cu , while in GZSL we are interested in the
accuracy of unseen classes among all classes and the accuracy of seen classes
among all classes, noted respectively AU→C and AS→C as in [5]. AS→Cs is
similarly defined.

3.2 Calibration and GZSL split

As evidenced by [5], when a ZSL model is applied in a GZSL setting, AS→C
is usually significantly higher than AU→C . This is because most samples from
unseen classes are incorrectly classified into one of the seen classes. To address
this, a calibration factor γ is added in [5] to penalize seen classes. Eq. (2) then
becomes:

ŷ = argmax
c∈Cte

(
f̂(x; stec )− γ1[c ∈ Cs]

)
(3)

where 1[·] is an indicator function.
The Accuracy Under Seen-Unseen Curve (AUSUC) metric also proposed

in [5] is defined as the area under the curve representing AS→C versus AU→C
when γ varies from −∞ to +∞, which shows the trade-off between the two.

Instead of computing a metric involving all possible trade-offs between AU→C
and AS→C , we look for a single specific value of γ, corresponding to the best
compromise between the two as measured by the harmonic mean of AU→C
and AS→C [4]. We propose to determine the optimal value of γ with a cross-
validation specific to GZSL. Usually in machine learning a dataset is divided at

4



Figure 2: Illustration of the different splits. Each column is a class and each cell
is a sample. In this example there are 20 different classes with 10 samples per
class. Five classes are used for testing, five other for validation and the remaining
ten for training. Among the samples from the validation and training classes,
20% are kept for testing (seen test set) and 20% more samples from training
classes are kept for validation (seen validation set).

random into three parts: a training, a validation and a testing set. In classical
ZSL, this splitting process is done with respect to the classes as opposed to the
samples: a set of classes is used for training, a disjoint set for validation and a
final mutually disjoint set for testing. In GZSL, a fraction (usually 20%) of the
samples from the validation and training sets are kept for testing time to be used
as test samples from seen classes. We refer to this set as the seen test set. Note
that here seen only indicates that these samples belong to seen classes, not that
they have been used during training. To be able to cross-validate parameters
for GZSL, we further keep an additional 20% of the remaining training set to
be used as samples from seen classes when cross-validating parameters; we refer
to this set as the seen validation set. Fig. 2 illustrates this partitioning.

To determine the optimal value of γ we first train a model on the GZSL
training set. We then use the (GZSL) validation set and the seen validation
set to compute the GZSL metric (the harmonic mean) and keep the value γ∗

that maximizes this metric. The ZSL model is subsequently re-trained on the
training, validation and seen validation sets, then class similarities are computed
for the test set. The value γ∗ is subtracted from the similarities of seen classes
and the resulting similarities are used to compute the final GZSL score.

3.3 Regularization for GZSL

The usual approach to optimize the regularized loss (Eq. (1)) in GZSL con-
sists in using the value of λ determined on the ZSL task. We argue here that
this is unlikely to be optimal and provide some insight to justify our position.
Then, we propose a simple method to determine a better value of λ to improve
performance in GZSL.

Figure 1 shows AU→Cu and AS→Cs as a function of λ for a regularized linear
model (ridge regression [14, 15]), measured on the first validation splits of the
proposed splits of [4] on CUB [6] and AwA2 [7].

In each case, there is a value of λ that maximizes the ZSL score AU→Cu ,
indicated by the red dotted vertical line, that we note λ∗ZSL. The overall ten-

5



(a) (b)

Figure 3: (a) MSE of predicted attributes (averaged over attributes and samples)
as a function of the regularization parameter λ; (b) Illustration of the bias-
variance decomposition.

dency for AS→Cs is to decrease as λ increases. This is not a concern for the
ZSL task, since it only considers samples from unseen classes. However, for the
GZSL task, we want the best trade-off between AU→C and AS→C . Note that
AU→C ≤ AU→Cu and AS→C ≤ AS→Cs , with equality only if we are able to per-
fectly distinguish samples from seen and unseen classes. It follows that λ∗GZSL,
the value of λ that maximizes the GZSL score, is not necessarily the same as
λ∗ZSL: a small decrease from λ∗ZSL can significantly increase AS→Cs while only
slightly penalizing AU→Cu . This has a similar impact on the maximum values
obtainable by AS→C and AU→C , and can ultimately improve the GZSL score.
We quantify in Sec. 4.3 the gains attributed to the use of λ∗GZSL.

The reason why λ affects AU→Cu and AS→Cs in this way can be explained
with the bias-variance decomposition. For regression, we generally assume that
we are given a dataset D = (X, t), with samples (xn, tn) independently drawn
from a joint distribution p(x, t), such that p(t|x) = N (t|h(x), σ2), where h is

the true dependence. For a prediction function ĥ estimated from D we can then
write the expected loss on a new pair (x, t) as:

ED,x,t[(t− ĥ(x))2] = σ2 + ED,x[(h(x)− ĥ(x))2] + varD,x[ĥ(x)] (4)

where the first term is the intrinsic noise of the dataset, the second is the
(squared) bias of the predictor and the third is the variance in the estimation of
the predictor. It can be shown [14, 15] that for ridge regression the bias increases
and the variance decreases with the regularization parameter λ, as illustrated
in Fig. 3(b).

In the case of ZSL, x corresponds to visual samples and t to attribute(s) to
be estimated from x. The variance comes from both the differences between
samples from the same class (intra-class variance) and from the differences be-
tween classes (inter-class variance). Intra-class variance is usually significantly

6



smaller than inter-class variance in ZSL. Therefore, most of the variance in
Eq. (4) can be attributed to the choice of training classes Cs. For samples from
unseen classes, the bias-variance decomposition applies and there exists a λ cor-
responding to the best trade-off between the two. This is evidenced in Fig. 3(a),
where the red curve shows the Mean Squared Error (MSE) in the predictions of
attributes from unseen classes as a function of λ, for a regularized linear model
on the first validation split of AwA2 [7].

For a sample from a seen class, the variance attributable to the choice of the
training classes is much smaller since, by definition, the seen class is present in
the training dataset. This allows to better estimate attributes from seen classes
and most of the expected error therefore comes from the intrinsic noise and the
bias. Thus, the expected error mostly increases with λ, as evidenced by the blue
curve in Fig. 3(a). If we plausibly assume that the accuracy of predictions for
samples from a given class depends on how well we estimate their attributes,
this explains both why predictions are better for samples from seen classes than
from unseen classes and why their behavior with respect to λ is different.

We then suggest the following procedure to select the optimal value of λ: we
repeat the protocol described in Sec. 3.2 for selecting γ∗ and we take the value of
λ which gives the best result for the harmonic mean between AU→C and AS→C
on the validation set after having subtracted γ∗ from the similarities of seen
classes. The rest of the process is identical: we retrain the ZSL model on the
training, validation and seen validation sets with the hyperparameter λ∗GZSL

that we just determined, we compute similarities for the test set, subtract γ∗

from the similarities of seen classes and compute the resulting GZSL score.

4 Experimental evaluation

4.1 Methods

We independently reimplemented six methods frequently cited in the literature
to evaluate them with our protocol: ALE [16], DeViSE [17], SJE [18], Sync [19],
ESZSL [20] and SAE [21].

In addition, we also evaluate two simple linear models. LinearV → S applies
a linear mapping W ∈ RK×D from the visual space V to the semantic space S
to minimize standard MSE. With Ttr = (strytr

1
, ..., strytr

N
)> ∈ RNtr×K the matrix

whose rows correspond to the class prototypes associated to each training sample
based on its label, the loss function can be formulated as:

1

N tr
‖XtrW> −Ttr‖2F + λ‖W‖2F (5)

LinearS → V is based on [22] where the authors argue that using the semantic
space as the embedding space reduces the variance of the projected points and
thus aggravates the hubness problem [23]. They suggest instead to project
semantic class prototypes onto the visual space and to compute similarities in
this space. Keeping W ∈ RK×D as our linear mapping, we formulate the loss

7



function as:
1

N tr
‖Xtr −TtrW‖2F + λ‖W‖2F (6)

We can easily obtain closed-form solutions for the two models from the
objective functions (5) and (6). For the LinearV → S model we have W =

Ttr>Xtr(Xtr>Xtr + λN trID)−1 (7) and for the LinearS → V model W =

(Ttr>Ttr + λN trIK)−1Ttr>Xtr (8).

4.2 Experimental setting

4.2.1 Datasets

We perform our experiments on two standard datasets for ZSL: Caltech-UCSD-
Birds 200-2011 (CUB) [6] and Animals with Attributes21 (AwA2) [7]. Results
for two additional datasets (SUN Attribute Database [25] and Attributes Pas-
cal and Yahoo [26]) are available in the supplementary material. CUB is a
fine-grained dataset composed of 11788 pictures of birds from 200 species (black
footed albatross, . . . , common yellowthroat). It comes with 312-dimensional bi-
nary attributes for each picture, that are averaged by class to obtain semantic
class prototypes. AwA2 is a coarse-grained dataset comprising 37322 pictures
of 50 animal species (antelope, . . . , zebra). For each class, 85-dimensional at-
tributes are provided.

4.2.2 Splits

The best performing ZSL methods usually rely on visual features obtained with
deep neural networks pre-trained on ImageNet [27], such as GoogLeNet [28] or
ResNet [29]. As evidenced by [4], this induces a huge bias for ZSL datasets
whose classes are not disjoint from categories of ImageNet, as is the case with
AwA2, since test classes cannot be considered truly unseen. We therefore adopt
the approach of [4] and use their terms Standard Split (S.S.) for the split widely
used in the literature and Proposed Split (P.S.) for the split they introduce.
The training and validation splits are further divided for GZSL as described in
Sec. 3.2. Statistics regarding the (GZSL) splits are given in the supplementary
material.

4.2.3 Settings

Attributes are normalized such that each class prototype has unit `2 norm. We
use the 101-layered ResNet [29] pre-trained on ImageNet [27] as visual features
extractor, keeping the D = 2048 activations of the last pooling units.

1AwA2 was recently proposed in [7] as a replacement for the Animals with Attributes
(AwA) dataset [24] whose images are not publicly available.

8



Table 1: ZSL score: per-class accuracy AU→Cu , as reported in [4] and indepen-
dently reproduced. S.S.: Standard Split, P.S.: Proposed Split [4]. Averaged
over 5 runs.

Method
CUB [6] AwA2 [7]

Reported in [4] Reproduced Reported in [4] Reproduced
S.S. P.S. S.S. P.S. S.S. P.S. S.S. P.S.

LinearV → S n/a n/a 41.0 ± 0.0 41.8 ± 0.0 n/a n/a 68.2 ± 0.0 49.7 ± 0.0
LinearS → V n/a n/a 56.0 ± 0.0 53.5 ± 0.0 n/a n/a 85.5 ± 0.0 68.9 ± 0.0
ALE [16] 53.2 54.9 54.8 ± 0.8 54.0 ± 1.2 80.3 62.5 80.3 ± 2.2 62.9 ± 2.3
DeViSE [17] 53.2 52.0 52.5 ± 0.9 52.6 ± 1.3 68.6 59.7 76.6 ± 1.6 62.1 ± 1.6
SJE [18] 55.3 53.9 53.8 ± 2.3 49.2 ± 1.4 69.5 61.9 80.4 ± 2.9 62.2 ± 1.2
ESZSL [20] 55.1 53.9 34.9 ± 0.0 34.9 ± 0.0 75.6 58.6 70.5 ± 0.0 50.8 ± 0.0
Sync [19] 54.1 55.6 56.4 ± 0.9 54.8 ± 0.6 71.2 46.6 65.6 ± 0.8 58.1 ± 0.8
SAE [21] 33.4 33.3 56.2 ± 0.0 53.3 ± 0.0 80.7 54.1 81.1 ± 0.0 62.8 ± 0.0

4.2.4 Metrics

For ZSL, we evaluate the accuracy of samples from unseen classes among unseen
classes AU→Cu . There are two possible ways to define accuracy: most of the

literature uses per sample accuracy, defined as 100 · 1
Nte

∑Nte

n=1 1[ŷ(xte
n ) = yten ],

while in [4] it is argued that per class accuracy, defined as
100 · 1

|Cte|
∑

c∈Cte
1

|{n|yn=c}|
∑

n
yn=c

1[ŷ(xte
n ) = yten ], better takes class imbalance

into account.
We report per class accuracy for fair comparison with the extensive results

of [4]. Nonetheless, to enable comparison with the rest of the literature, we
also provide per sample accuracy results in Table 3. For GZSL we compute the
harmonic mean between AU→C and AS→C , defined as 2·AU→C·AS→C

AU→C+AS→C
.

Accuracy is again assumed to be per class unless otherwise stated.

4.3 Results

We first evaluate the performances of the different methods in a classical ZSL
setting. Table 1 shows the average per class accuracy measured on testing sets
of the Standard Splits (S.S.) and the Proposed Splits (P.S.) [4] of CUB [6] and
AwA2 [7]. We report the average score and the standard deviation over 5 runs
with different random initializations. We also report the results from [4]. We
see that some methods such as SJE [18] have high variability with respect to
the initialization; for such methods, it is good practice to report average results
since a single test run may not be representative of the true performance of the
model. On the other hand, methods with closed-form or deterministic solutions
such as the LinearV → S , LinearS → V , ESZSL [20] or SAE [21] are not dependent
on the initialization and thus have a standard deviation of 0.

Most of the reproduced scores are consistent with [4], with two notable ex-
ceptions: first, a significant increase in performance is observed with SAE [21]
and can be explained by the fact that similarities are computed in the visual

9



Table 2: GZSL score (harmonic mean of AU→C and AS→C , per class accuracy)
with and without calibration and GZSL regularization. On Proposed Split [4],
averaged over 5 runs.

Method
CUB [6] AwA2 [7]

Reported in [4] Ours Reported in [4] Ours
with calibration - - 3 3 - - 3 3
with λ∗GZSL - - - 3 - - - 3

LinearV → S n/a 18.2 34.3 35.5 n/a 8.3 47.3 48.1
LinearS → V n/a 32.5 41.9 43.5 n/a 44.3 62.7 64.0
ALE [16] 34.4 35.6 45.1 46.2 23.9 26.9 55.8 55.8
DeViSE [17] 32.8 35.1 43.6 43.4 27.8 17.4 54.6 54.6
SJE [18] 33.6 29.7 41.2 44.2 14.4 28.9 58.2 59.0
ESZSL [20] 21.0 17.9 33.7 33.9 11.0 39.9 53.6 53.7
Sync [19] 19.8 33.2 46.2 47.6 18.0 30.6 61.0 61.0
SAE [21] 13.6 25.7 43.1 43.1 2.2 29.5 60.2 60.2
Average 25.9 28.5 41.1 42.2 16.2 28.2 56.7 57.1

Table 3: ZSL and GZSL scores with 10-crop features, evaluated with per class
(p.c.) and per sample (p.s.) accuracies. With calibration and λ∗GZSL. On
P.S. [4], averaged over 5 runs.

Method
CUB [6] AwA2 [7]

ZSL GZSL ZSL GZSL
Acc. p.c. Acc. p.s. H. p.c. H. p.s. Acc. p.c. Acc. p.s. H. p.c. H. p.s.

LinearV → S 45.6 45.6 39.8 39.8 51.0 43.6 49.0 45.6
LinearS → V 57.1 57.2 47.7 48.0 70.4 69.3 65.1 68.7
ALE [16] 57.4 57.5 49.2 49.3 63.0 61.1 56.9 55.5
DeViSE [17] 52.9 52.9 42.4 42.5 63.1 62.2 55.0 50.6
SJE [18] 51.9 52.1 46.7 46.9 63.8 61.6 59.4 57.6
ESZSL [20] 39.0 38.8 38.7 38.6 52.6 51.9 54.4 57.9
Sync [19] 57.5 57.6 48.9 49.1 59.3 56.1 62.6 63.2
SAE [21] 56.1 56.2 46.3 46.6 63.5 65.4 62.3 63.6

space, with results close to those of the LinearS → V model (results are close
to those of LinearV → S when similarities are computed in the semantic space).
Second, the score for ESZSL [20] is significantly lower than reported in [4]. We
found that the use of non-normalized attributes enables to reach performances
comparable with [4], but we could not reproduce the reported results for ES-
ZSL [20] with normalized attributes. For the sake of consistency, we chose to
report results obtained with normalized attributes.

Table 2 shows results for GZSL. We measure the harmonic mean between
per class accuracies AU→C and AS→C on the testing set of the Proposed Split [4].
We evaluate three settings: a ZSL model applied directly in a GZSL setting,
i.e. with no calibration and a regularization specific to ZSL (λ∗ZSL) as opposed
to GZSL (λ∗GZSL); a ZSL model with calibration and ZSL regularization λ∗ZSL;
and a ZSL model with calibration and regularization λ∗GZSL specific to the

10



GZSL problem. We report the average score over 5 runs; standard deviations
are available in the supplementary material. We also report the results from
[4], which correspond to the setting with no calibration and no λ∗GZSL. We can
see that the calibration process significantly improves GZSL performance: in
our experiments, the average score for all models improves from 28.5 with no
calibration to 41.1 with calibration on CUB, and from 28.2 to 56.7 on AwA2.
It is worth noting that the lowest score with calibration is close to or higher
than the highest score without. The use of a regularization parameter specific
to the GZSL task can lead to an additional improvement in performance. In
some cases, the optimal λ is the same for the ZSL task and the GZSL task on
the validation set, leading to no additional improvement over the score with
calibration. However, every time they are different, λ∗GZSL is smaller than
λ∗ZSL, as expected from the results in Sec. 3.3. The only exception is with
DeViSE [17] on CUB: a λ∗GZSL higher than λ∗ZSL was selected during cross-
validation, probably due to random noise, resulting in a slightly lower final
GZSL score.

Table 3 shows results with improved visual features; each original 256× 256
image is cropped into ten 224× 224 images: one in each corner and one in the
center for both the original image and its horizontal symmetry. The ResNet
features of the resulting images are averaged to obtain a 2048-dimensional vec-
tor. We report results for ZSL (AC→Cu , abbreviated Acc.) and GZSL (using
the harmonic mean metric, abbreviated H.) on the testing set of the Proposed
Split [4]. In order to facilitate fair comparison with the rest of the literature,
both per class (p.c.) and per sample (p.s.) metrics are reported. Additional
metrics like AUSUC[5] are available in the supplementary material. Results
with 10-cropped visual features are almost always better than the results with
standard visual features in Table 2. The per sample metrics are on average not
very different from the per class metrics. This is not surprising since classes in
both CUB and AwA2 are fairly balanced.

5 Conclusion

We proposed a simple process for applying ZSL methods in a GZSL setting. This
process is based on the empirical observation that ZSL models perform differ-
ently on samples from seen and unseen classes. We provided insights about
why this should be expected and suggested steps to overcome these problems.
Through extensive experiments, we showed that this process enables significant
improvements in performance for many existing ZSL methods. Finally, we pro-
vided results under optimal conditions for these methods with different metrics
to support fair comparison with the rest of the state-of-the-art.

11



References

[1] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen
object classes by between-class attribute transfer,” in Proc. CVPR 2009,
pp. 951–958, IEEE, 2009.

[2] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new tasks,”
in AAAI, vol. 1, p. 3, 2008.

[3] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, “Zero-shot
learning with semantic output codes,” in Proc. NIPS 2009, pp. 1410–1418,
2009.

[4] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning – the good, the bad
and the ugly,” in Proc. CVPR 2017, pp. 3077–3086, IEEE, 2017.

[5] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha, “An empirical study
and analysis of generalized zero-shot learning for object recognition in the
wild,” in Proc. ECCV 2016, pp. 52–68, Springer, 2016.

[6] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-
UCSD Birds-200-2011 dataset,” 2011.

[7] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning
– a comprehensive evaluation of the good, the bad and the ugly,” arXiv
preprint arXiv:1707.00600, 2017.

[8] M. Bucher, S. Herbin, and F. Jurie, “Generating visual representations for
zero-shot classification,” in ICCV Workshops: TASK-CV, IEEE, 2017.

[9] V. Kumar Verma, G. Arora, A. Mishra, and P. Rai, “Generalized zero-shot
learning via synthesized examples,” in Proc. CVPR 2010, pp. 4281–4289,
IEEE, 2018.

[10] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating networks
for zero-shot learning,” in Proc. CVPR 2018, IEEE, 2018.

[11] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong, “Transductive multi-view
zero-shot learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 11, pp. 2332–2345, 2015.

[12] E. Kodirov, T. Xiang, Z. Fu, and S. Gong, “Unsupervised domain adap-
tation for zero-shot learning,” in Proc. CVPR 2015, pp. 2452–2460, IEEE,
2015.

[13] M. Rohrbach, S. Ebert, and B. Schiele, “Transfer learning in a transductive
setting,” in Proc. NIPS 2013, pp. 46–54, 2013.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

12



[15] W. N. van Wieringen, “Lecture notes on ridge regression,” arXiv preprint
arXiv:1509.09169, 2015.

[16] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-embedding
for image classification,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 38, no. 7, pp. 1425–1438, 2016.

[17] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al.,
“Devise: A deep visual-semantic embedding model,” in Proc. NIPS 2013,
pp. 2121–2129, 2013.

[18] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, “Evaluation of output
embeddings for fine-grained image classification,” in Proc. CVPR 2015,
pp. 2927–2936, IEEE, 2015.

[19] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha, “Synthesized classifiers
for zero-shot learning,” in Proc. CVPR 2016, pp. 5327–5336, IEEE, 2016.

[20] B. Romera-Paredes and P. Torr, “An embarrassingly simple approach to
zero-shot learning,” in Proc. ICML 2015, pp. 2152–2161, 2015.

[21] E. Kodirov, T. Xiang, and S. Gong, “Semantic autoencoder for zero-shot
learning,” in Proc. CVPR 2017, pp. 4447–4456, IEEE, 2017.

[22] Y. Shigeto, I. Suzuki, K. Hara, M. Shimbo, and Y. Matsumoto, “Ridge
regression, hubness, and zero-shot learning,” in Proc. ECML PKDD 2015,
pp. 135–151, Springer, 2015.

[23] M. Radovanović, A. Nanopoulos, and M. Ivanović, “Hubs in space: Popular
nearest neighbors in high-dimensional data,” Journal of Machine Learning
Research, vol. 11, no. Sep, pp. 2487–2531, 2010.

[24] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classifi-
cation for zero-shot visual object categorization,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–465,
2014.

[25] G. Patterson and J. Hays, “Sun attribute database: Discovering, annotat-
ing, and recognizing scene attributes,” in Proc. CVPR 2012, pp. 2751–2758,
IEEE, 2012.

[26] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects
by their attributes,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, p. Proc. CVPR 2009, IEEE, 2009.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Proc. CVPR 2009, pp. 248–255,
IEEE, 2009.

13



[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. CVPR 2015, pp. 1–9, IEEE, 2015.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR 2016, pp. 770–778, IEEE, 2016.

14



6 Supplementary Material – From Classical to
Generalized Zero-Shot Learning: a Simple Adap-
tation Process

6.1 Details regarding the compared methods

ALE [16], DeViSE [17] and SJE [18] employ bilinear similarity functions of the
form f(x; s) = s>Wx with W ∈ RK×D combined with a hinge rank loss of the
form max(0,M+f(xn; sc)−f(xn; syn

)) for c 6= yn, where M is a margin usually
set to a fraction of the expected value of f(x; s). For a given visual sample xn,
DeViSE simply sums the hinge range losses for all values of c ∈ Cs such that
c 6= yn. ALE sums these terms and adds a multiplicative factor to lessen the
weight of samples for which many classes contribute to the hinge rank loss. SJE
only keeps the loss of the class c corresponding to the maximum of the hinge
loss. We add a regularization term of the form λ‖W‖2F to all these models, ‖·‖F
being the Frobenius norm.

Sync [19] uses ”phantom” objects located in both the visual and semantic
spaces to generate classifiers for unseen classes. We employ the structured loss
described in Sec. 3.2 of [19] as it yields better results. ESZSL [20] is a sim-
ple linear model regularized with respect to the projected visual features of
class prototypes, the projected semantic features of the visual samples and the
projection matrix. One of its advantages is the existence of a closed form so-
lution. SAE [21] learns an autoencoder on visual features aiming to balance a
reconstruction loss and a representation loss so that its internal representation
corresponds to the semantic attributes of visual features.

6.2 Details regarding datasets and splits

In addition to CUB [6] and AwA2 [7], we provide results for two other datasets,
the SUN Attribute Database (SUN) [25] and Attributes Pascal and Yahoo
(aPY) [26]. SUN is a fine-grained dataset comprising 717 categories of scenes
(abbey, . . . , zoo) with 20 images per category, for a total of 14340 images. It
comes with 102-dimensional vectors of attributes for each picture; they are av-
eraged by class to obtain semantic class prototypes. aPY is a coarse-grained
dataset composed of 15339 images from 3 broad categories (animals, objects
and vehicles), further divided into a total of 32 subcategories (aeroplane, . . . ,
zebra). It is rather imbalanced, with the category person representing a third
of all samples. Moreover, with 21 out of 32 classes present in the ImageNet [27]
dataset, it is also highly biased when used in a ZSL context with deep networks
pre-trained on ImageNet [27] as visual features extractors. [4] also provides
Proposed Splits in addition to the Standard Splits for these two other datasets;
we use the same protocol as with CUB [6] and AwA2 [7], described in Sec. 3.2
of the main text, to further divide these splits for GZSL.

We thus have a total of four datasets, each with two different testing sets,
with three different validation sets for each testing set. Statistics regarding

15



Table 4: Statistics of the dataset splits for each of the four datasets, with two
testing splits (Standard Splits or S.S. and Proposed Splits or P.S. as defined in
[4]) per dataset and three validation splits per testing split. Each cell contains
a number of samples on the left and the number of corresponding classes on the
right.

Split Total
Training Validation Testing

Train Seen val Seen test Val Seen test Test

CUB [6]
S.S. val1

11788 / 200

3773 / 100 943 / 100 1178 / 100 2369 / 50 592 / 50
2933 / 50S.S. val2 3798 / 100 949 / 100 1186 / 100 2338 / 50 584 / 50

S.S. val3 3784 / 100 946 / 100 1182 / 100 2355 / 50 588 / 50
P.S. val1 3760 / 100 940 / 100 1175 / 100 2357 / 50 589 / 50

2967 / 50P.S. val2 3760 / 100 940 / 100 1175 / 100 2357 / 50 589 / 50
P.S. val3 3806 / 100 951 / 100 1189 / 100 2300 / 50 575 / 50

AwA2 [7]
S.S. val1

37322 / 50

13284 / 27 3321 / 27 4151 / 27 7665 / 13 1916 / 13
6985 / 10S.S. val2 13041 / 27 3260 / 27 4075 / 27 7969 / 13 1992 / 13

S.S. val3 13908 / 27 3476 / 27 4345 / 27 6887 / 13 1721 / 13
P.S. val1 12940 / 27 3235 / 27 4043 / 27 7353 / 13 1838 / 13

7913 / 10P.S. val2 13404 / 27 3351 / 27 4188 / 27 6773 / 13 1693 / 13
P.S. val3 12965 / 27 3241 / 27 4051 / 27 7322 / 13 1830 / 13

SUN [25]
S.S. val1

14340 / 717

7437 / 581 1859 / 581 2324 / 581 1024 / 64 256 / 64
1440 / 72S.S. val2 7437 / 581 1859 / 581 2324 / 581 1024 / 64 256 / 64

S.S. val3 7437 / 581 1859 / 581 2324 / 581 1024 / 64 256 / 64
P.S. val1 7424 / 580 1856 / 580 2320 / 580 1040 / 65 260 / 65

1440 / 72P.S. val2 7424 / 580 1856 / 580 2320 / 580 1040 / 65 260 / 65
P.S. val3 7424 / 580 1856 / 580 2320 / 580 1040 / 65 260 / 65

aPY [26]
S.S. val1

15339 / 32

6424 / 13 1606 / 13 2007 / 13 2127 / 7 531 / 7
2644 / 12S.S. val2 6608 / 13 1652 / 13 2064 / 13 1897 / 7 474 / 7

S.S. val3 6644 / 13 1660 / 13 2076 / 13 1852 / 7 463 / 7
P.S. val1 3896 / 15 973 / 15 1217 / 15 1064 / 5 265 / 5

7924 / 12P.S. val2 3716 / 15 928 / 15 1161 / 15 1288 / 5 322 / 5
P.S. val3 3271 / 15 817 / 15 1021 / 15 1845 / 5 461 / 5

these splits are available in Table 4. For a given dataset and testing set, the
average score over the three different validation splits is employed for selecting
hyperparameters by cross-validation.

Intra-class and inter-class variances for each dataset are reported in Table 5.

6.3 Additional results

Table 6 is an extended version of Table 1 in the main text. It reports the per
class accuracy AU→Cu measured on the Standard Splits (S.S.) and the Proposed
Splits (P.S.) [4] of CUB [6] and AwA2 [7], with the addition of the two datasets
SUN [25] and aPY [26]. Results are averaged over five runs with different
random initializations.

Results on SUN [25] are mostly consistent with what has been observed on
CUB [6] and AwA2 [7]. The addition of a regularization parameter to ALE [16],
DeViSE [17] and SJE [18] enables a slight increase in the ZSL score. The
LinearS → V model reaches performances close to or even better than the state-

16



Table 5: Intra-class and inter-class variance for each dataset.
Dataset Intra-class variance Inter-class variance
CUB [6] 138.0 231.9
AwA2 [7] 226.4 379.0
SUN [25] 239.9 397.3
aPY [26] 262.4 370.5

of-the-art. A significant increase in performance is observed with SAE [21] and
can be explained by the fact that similarities are computed in the visual space,
with results close to those of the LinearS → V model (results are close to those of
LinearV → S when similarities are computed in the semantic space). The score
for ESZSL [20] is significantly lower than reported in [4]. We found that the use
of non-normalized attributes enables to reach performances comparable with [4],
but we could not reproduce the reported results for ESZSL [20] with normalized
attributes. For the sake of consistency, we chose to report results obtained with
normalized attributes.

Results on aPY [26] are more mixed: important differences between reported
and reproduced scores exist on at least one split for most methods. This can
be explained by the nature of this dataset: the low number of classes, the
class imbalance and the high bias due to the presence of most of its classes in
ImageNet [27] imply that the validation sets can be significantly different from
the test sets. For example, the average validation score on the three validation
splits is 55.2 for DeViSE [17], but this score drops to an average of 29.0 on the
testing set. It is therefore difficult to find relevant hyperparameters.

Table 7 is an extended version of Table 2 in the main text. It reports the
average GZSL score, as measured by the harmonic mean between AU→C and
AS→C , for the evaluated methods on the four datasets with and without our
process. The results on SUN [25] are again mostly consistent with what has
been observed on CUB [6] and AwA2 [7], while results on aPY [26] differ due to
the nature of the dataset. In particular, due to the difficulty in selecting good
hyperparameters on this dataset, the regularization parameter selected for the
GZSL task is not always relevant and does not lead to an increase in the final
score.

Table 8 is an extended version of Table 3 in the main text. It reports results
for the ZSL and the GZSL tasks when visual features are improved with 10-
crop. The AUSUC metric [5] has been added for GZSL; the accuracies used for
computing the Seen-Unseen Curve are the per sample accuracies as is usually the
case. Visual features obtained with 10-crop almost always lead to better results
on CUB [6], AwA2 [7] and SUN [25], while again no clear pattern is visible
for aPY [26]. It is worth noting that although the harmonic mean score and
the AUSUC score are visibly correlated, a better AUSUC does not necessarily
imply a better harmonic mean. For example, among the bilinear compatibility
models ALE [16], DeViSE [17] and SJE [18] on the AwA2 [7] dataset, DeViSE
has the highest AUSUC score with 0.538 (compared to respectively 0.512 and

17



0.529 for ALE and SJE) but the lowest harmonic mean score with 55.0 (per
class accuracy, compared to respectively 56.9 and 59.4 for ALE and SJE).

18



Table 6: Previously reported and independently reproduced ZSL per-class ac-
curacy. S.S.: Standard Split, P.S.: Proposed Split [4]. Averaged over 5 runs.

Method
Reported in [4] Reproduced
S.S. P.S. S.S. P.S.

CUB [6]
LinearV → S n/a n/a 41.0 ± 0.0 41.8 ± 0.0
LinearS → V n/a n/a 56.0 ± 0.0 53.5 ± 0.0
ALE [16] 53.2 54.9 54.8 ± 0.8 54.0 ± 1.2
DeViSE [17] 53.2 52.0 52.5 ± 0.9 52.6 ± 1.3
SJE [18] 55.3 53.9 53.8 ± 2.3 49.2 ± 1.4
ESZSL [20] 55.1 53.9 34.9 ± 0.0 34.9 ± 0.0
Sync [19] 54.1 55.6 56.4 ± 0.9 54.8 ± 0.6
SAE [21] 33.4 33.3 56.2 ± 0.0 53.3 ± 0.0

AwA2 [7]
LinearV → S n/a n/a 68.2 ± 0.0 49.7 ± 0.0
LinearS → V n/a n/a 85.5 ± 0.0 68.9 ± 0.0
ALE [16] 80.3 62.5 80.3 ± 2.2 62.9 ± 2.3
DeViSE [17] 68.6 59.7 76.6 ± 1.6 62.1 ± 1.6
SJE [18] 69.5 61.9 80.4 ± 2.9 62.2 ± 1.2
ESZSL [20] 75.6 58.6 70.5 ± 0.0 50.8 ± 0.0
Sync [19] 71.2 46.6 65.6 ± 0.8 58.1 ± 0.8
SAE [21] 80.7 54.1 81.1 ± 0.0 62.8 ± 0.0

SUN [25]
LinearV → S n/a n/a 50.8 ± 0.0 46.7 ± 0.0
LinearS → V n/a n/a 62.8 ± 0.0 61.5 ± 0.0
ALE [16] 59.1 58.1 63.5 ± 0.5 59.4 ± 0.3
DeViSE [17] 57.5 56.5 61.6 ± 0.3 58.4 ± 0.3
SJE [18] 57.1 53.7 59.9 ± 0.6 55.3 ± 1.1
ESZSL [20] 57.3 54.5 21.0 ± 0.0 16.0 ± 0.0
Sync [19] 59.1 56.3 58.5 ± 0.5 56.6 ± 1.8
SAE [21] 42.4 40.3 63.7 ± 0.0 61.0 ± 0.0

aPY [26]
LinearV → S n/a n/a 30.0 ± 0.0 31.6 ± 0.0
LinearS → V n/a n/a 42.2 ± 0.0 40.0 ± 0.0
ALE [16] 30.9 39.7 16.0 ± 5.7 30.4 ± 0.9
DeViSE [17] 35.4 39.8 30.3 ± 3.2 29.0 ± 1.1
SJE [18] 32.0 32.9 18.9 ± 2.7 33.5 ± 1.9
ESZSL [20] 34.4 38.3 31.6 ± 0.0 16.3 ± 0.0
Sync [19] 39.7 23.9 34.1 ± 0.5 35.5 ± 0.1
SAE [21] 8.3 8.3 31.7 ± 0.0 29.0 ± 0.0

19



Table 7: GZSL score (harmonic mean of AU→C and AS→C , per class accuracy)
with and without calibration and GZSL regularization. On Proposed Split [4],
averaged over 5 runs.
Method Reported in [4] Ours
with calibration - - 3 3
with λ∗GZSL - - - 3

CUB [6]
LinearV → S n/a 18.2 ± 0.0 34.3 ± 0.0 35.5 ± 0.0
LinearS → V n/a 32.5 ± 0.0 41.9 ± 0.0 43.5 ± 0.0
ALE [16] 34.4 35.6 ± 1.3 45.1 ± 1.3 46.2 ± 1.0
DeViSE [17] 32.8 35.1 ± 0.6 43.6 ± 1.1 43.4 ± 0.7
SJE [18] 33.6 29.7 ± 1.7 41.2 ± 0.6 44.2 ± 1.0
ESZSL [20] 21.0 17.9 ± 0.0 33.7 ± 0.0 33.9 ± 0.0
Sync [19] 19.8 33.2 ± 1.0 46.2 ± 0.8 47.6 ± 0.2
SAE [21] 13.6 25.7 ± 0.0 43.1 ± 0.0 43.1 ± 0.0
Average (CUB) 25.9 28.5 41.1 42.2

AwA2 [7]
LinearV → S n/a 8.3 ± 0.0 47.3 ± 0.0 48.1 ± 0.0
LinearS → V n/a 44.3 ± 0.0 62.7 ± 0.0 64.0 ± 0.0
ALE [16] 23.9 26.9 ± 1.5 55.8 ± 1.7 55.8 ± 1.7
DeViSE [17] 27.8 17.4 ± 4.1 54.6 ± 1.2 54.6 ± 1.2
SJE [18] 14.4 28.9 ± 2.3 58.2 ± 0.9 59.0 ± 1.9
ESZSL [20] 11.0 39.9 ± 0.0 53.6 ± 0.0 53.7 ± 0.0
Sync [19] 18.0 30.6 ± 0.3 61.0 ± 0.5 61.0 ± 0.5
SAE [21] 2.2 29.5 ± 0.0 60.2 ± 0.0 60.2 ± 0.0
Average (AwA2) 16.2 28.2 56.7 57.1

SUN [25]
LinearV → S n/a 16.3 ± 0.0 23.3 ± 0.0 25.2 ± 0.0
LinearS → V n/a 24.4 ± 0.0 34.2 ± 0.0 34.8 ± 0.0
ALE [16] 26.3 26.9 ± 0.3 33.6 ± 0.2 33.6 ± 0.2
DeViSE [17] 20.9 25.2 ± 0.2 31.4 ± 0.4 31.4 ± 0.4
SJE [18] 19.8 25.5 ± 0.6 34.9 ± 0.4 35.3 ± 0.4
ESZSL [20] 15.8 6.7 ± 0.0 11.1 ± 0.0 11.1 ± 0.0
Sync [19] 13.4 20.6 ± 0.8 27.9 ± 1.0 27.9 ± 1.0
SAE [21] 11.8 25.1 ± 0.0 34.0 ± 0.0 34.7 ± 0.0
Average (SUN) 18.0 21.3 28.8 29.2

aPY [26]
LinearV → S n/a 4.0 ± 0.0 32.7 ± 0.0 32.7 ± 0.0
LinearS → V n/a 21.5 ± 0.0 39.1 ± 0.0 39.2 ± 0.0
ALE [16] 8.7 19.4 ± 0.5 30.1 ± 0.9 29.6 ± 1.1
DeViSE [17] 9.2 20.7 ± 0.7 28.0 ± 1.0 27.4 ± 1.1
SJE [18] 6.9 16.1 ± 1.3 36.3 ± 1.2 36.3 ± 1.2
ESZSL [20] 4.6 13.3 ± 0.0 20.6 ± 0.0 20.4 ± 0.0
Sync [19] 13.3 13.8 ± 0.1 36.4 ± 0.1 36.4 ± 0.1
SAE [21] 0.9 16.7 ± 0.0 33.8 ± 0.0 32.1 ± 0.0
Average (aPY) 7.3 15.7 32.1 31.8

20



Table 8: ZSL and GZSL scores with 10-crop features, evaluated with per class
(p.c.) and per sample (p.s.) accuracies. With calibration and λ∗GZSL. On
P.S. [4], averaged over 5 runs.

Method
ZSL GZSL

Acc. p.c. Acc. p.s. H. p.c. H. p.s. AUSUC

CUB [6]
LinearV → S 45.6 ± 0.0 45.6 ± 0.0 39.8 ± 0.0 39.8 ± 0.0 0.246 ± 0.000
LinearS → V 57.1 ± 0.0 57.2 ± 0.0 47.7 ± 0.0 48.0 ± 0.0 0.315 ± 0.000
ALE [16] 57.4 ± 0.3 57.5 ± 0.3 49.2 ± 0.6 49.3 ± 0.6 0.347 ± 0.005
DeViSE [17] 52.9 ± 1.0 52.9 ± 1.0 42.4 ± 0.8 42.5 ± 0.7 0.270 ± 0.007
SJE [18] 51.9 ± 1.7 52.1 ± 1.7 46.7 ± 0.9 46.9 ± 1.0 0.308 ± 0.009
ESZSL [20] 39.0 ± 0.0 38.8 ± 0.0 38.7 ± 0.0 38.6 ± 0.0 0.224 ± 0.000
Sync [19] 57.5 ± 1.8 57.6 ± 1.8 48.9 ± 1.2 49.1 ± 1.2 0.337 ± 0.018
SAE [21] 56.1 ± 0.0 56.2 ± 0.0 46.3 ± 0.0 46.6 ± 0.0 0.307 ± 0.000

AwA2 [7]
LinearV → S 51.0 ± 0.0 43.6 ± 0.0 49.0 ± 0.0 45.5 ± 0.0 0.357 ± 0.000
LinearS → V 70.4 ± 0.0 69.3 ± 0.0 65.1 ± 0.0 68.7 ± 0.0 0.598 ± 0.000
ALE [16] 63.0 ± 1.8 61.1 ± 1.7 56.9 ± 1.8 55.5 ± 2.2 0.521 ± 0.014
DeViSE [17] 63.1 ± 1.8 62.2 ± 0.6 55.0 ± 1.7 50.6 ± 0.8 0.538 ± 0.005
SJE [18] 63.8 ± 2.0 61.6 ± 2.8 59.4 ± 1.2 57.6 ± 1.8 0.529 ± 0.022
ESZSL [20] 52.6 ± 0.0 51.9 ± 0.0 54.4 ± 0.0 57.9 ± 0.0 0.434 ± 0.000
Sync [19] 59.3 ± 0.2 56.1 ± 0.4 62.6 ± 0.1 63.2 ± 0.2 0.511 ± 0.003
SAE [21] 63.5 ± 0.0 65.4 ± 0.0 62.3 ± 0.0 63.6 ± 0.0 0.585 ± 0.000

SUN [25]
LinearV → S 48.6 ± 0.0 48.6 ± 0.0 26.7 ± 0.0 25.8 ± 0.0 0.107 ± 0.000
LinearS → V 62.0 ± 0.0 62.0 ± 0.0 36.3 ± 0.0 35.4 ± 0.0 0.184 ± 0.000
ALE [16] 62.2 ± 0.2 62.2 ± 0.2 34.9 ± 0.2 34.4 ± 0.3 0.183 ± 0.002
DeViSE [17] 61.2 ± 0.3 61.2 ± 0.3 32.5 ± 0.4 32.1 ± 0.4 0.167 ± 0.003
SJE [18] 58.2 ± 0.8 58.4 ± 0.8 36.8 ± 0.6 36.0 ± 0.4 0.194 ± 0.002
ESZSL [20] 17.2 ± 0.0 17.2 ± 0.0 11.8 ± 0.0 11.6 ± 0.0 0.169 ± 0.000
Sync [19] 56.6 ± 1.8 56.6 ± 1.8 27.9 ± 1.0 27.2 ± 1.1 0.123 ± 0.008
SAE [21] 62.7 ± 0.0 62.7 ± 0.0 35.9 ± 0.0 35.1 ± 0.0 0.185 ± 0.000

aPY [26]
LinearV → S 28.6 ± 0.0 12.5 ± 0.0 33.3 ± 0.0 16.2 ± 0.0 0.081 ± 0.000
LinearS → V 40.6 ± 0.0 23.9 ± 0.0 38.4 ± 0.0 21.0 ± 0.0 0.098 ± 0.000
ALE [16] 31.3 ± 1.0 16.8 ± 2.7 31.5 ± 0.9 21.1 ± 1.0 0.101 ± 0.005
DeViSE [17] 30.9 ± 0.9 16.4 ± 1.6 28.7 ± 1.2 19.8 ± 0.8 0.096 ± 0.005
SJE [18] 34.1 ± 0.8 16.4 ± 1.6 36.9 ± 0.7 23.0 ± 1.2 0.110 ± 0.009
ESZSL [20] 12.2 ± 0.0 7.2 ± 0.0 17.1 ± 0.0 11.6 ± 0.0 0.077 ± 0.000
Sync [19] 34.9 ± 0.2 16.8 ± 0.2 37.4 ± 0.1 19.4 ± 0.1 0.102 ± 0.001
SAE [21] 29.5 ± 0.0 11.1 ± 0.0 32.7 ± 0.0 13.0 ± 0.0 0.058 ± 0.000

21


	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Problem statement
	3.2 Calibration and GZSL split
	3.3 Regularization for GZSL

	4 Experimental evaluation
	4.1 Methods
	4.2 Experimental setting
	4.2.1 Datasets
	4.2.2 Splits
	4.2.3 Settings
	4.2.4 Metrics

	4.3 Results

	5 Conclusion
	6 Supplementary Material – From Classical to Generalized Zero-Shot Learning: a Simple Adaptation Process
	6.1 Details regarding the compared methods
	6.2 Details regarding datasets and splits
	6.3 Additional results


