

Potential fluctuations on CZTSSe solar cells admittance

Frédérique Ducroquet, Louis Grenet, Raphaël Fillon, Henri Mariette

▶ To cite this version:

Frédérique Ducroquet, Louis Grenet, Raphaël Fillon, Henri Mariette. Potential fluctuations on CZTSSe solar cells admittance. 29th International Conference on Defects in Semiconductors, Jul 2017, Matsue, Japan. hal-01983597

HAL Id: hal-01983597 https://hal.science/hal-01983597

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Potential Fluctuations on CZTSSe Solar Cells Admittance F. Ducroquet^a, L. Grenet^b, R. Fillon^b, H. Mariette^c IMEP-LAHC University of Grenoble-Alpes (UGA), Minatec, Grenoble, France ^aIMEP-LAHC, ^bCEA/LITEN, ^cCEA/INAC, Inst. Néel

- Context

- Low V_{oc} on CZTSSe solar cells \implies role of point defects and potential fluctuations suggested but not clearly established
- Density Functional Theory¹ \implies V_{Cu} and Cu_{Zn}
- create acceptor levels
- are among defects with the lowest formation energy
- may be stabilized by the formation of neutral defect complexes: $[Cu_{Zn}+Zn_{Cu}]$, $[V_{Cu}+Zn_{Cu}]$, $[Cu_{Zn}+Sn_{Zn}]$

2 – Solar cell structure

- Two steps process²:
- Precursors deposition: ZnS by sputtering, Cu/Sn by electron beam evaporation - Selenization: annealing under Se vapor

$V_{oc}(V)$	J _{sc} (A.cm ⁻²)	FF	η (%)
~ 0.33-0.38	~ 0.03	50	~ 5.3-6.6

Objectives:

Influence of potential fluctuations: - on defect analysis - on electrical transport

Soda-lime Glass

Experiment:

Admittance spectroscopy @ 0V from 140K to 300K, 100Hz to 1MHz

3 – Admittance measurement: $C(\omega)$

One capacitance step: response of a deep acceptor level at $E_{aexp} = E_v + (0.2 \pm 0.03) eV$

not observed on G/ ω spectrum

At low temperature, geometrical capacitance value —> CZTSSe absorber fully depleted

 \Rightarrow can explain the strong increase of the series resistance at low temperature generally observed on CZTSSe solar cells.

Ionized defect concentration:

- $5 C(\omega)$ fit
- Potential fluctuations explain the stretching of the capacitance step - E_{afit} (0.28eV) > E_{aexp} due to PF
- Continuous capacitance variation \mathbf{O} superimposed to the defect related step not reproduced by the model \Longrightarrow associated with ω^{s} conductance increase \implies dielectric relaxation effect

6 – localized states transport

Conduction in disordered materials:⁵

 \Rightarrow At moderate temperatures, multitrapping relaxation process dominates: hole transition between extended states below the mobility edge E_m and localized states in band tail

 \Rightarrow neutral complex defects can introduce a high density of states in the band tail: hopping transport near TE, the Transport Energy, can occur at low temperature:

 \Rightarrow low frequency: *dc* conductivity \Rightarrow high frequency/low temperature: universal power-law frequency response

 \Rightarrow hopping through localized states in band tail due to high concentration of neutral complexes

9 – Conclusions

- At low temperature, potential fluctuations effects are enhanced in CZTSSe bulk due to free carrier compensation mechanism.
- High density of neutral complexes can favor the *dc* charge carrier transport due to hopping process in the band tails

10 – Perspectives

- Hopping process in the band tails has to be taken into account to model the *ac* transport properties
- Effect of the potential fluctuations on V_{oc}
- Benefit of an additional shallow doping level

Refs: (1): S. Chen et al, Adv. Mat., 25(11), 1522-1539 (2013), (2) L. Grenet et al. Solar Energy Mat. Solar Cells, 126:135–142, (3) M. Begulawa et Contact: Frédérique Ducroquet: ducroquet@minatec.inpg.fr C.R. Crowell, Solid-State Electron. 17, 203 (1974), (4) B. Pistoulet et al, Phys. Rev. B, 30 5987 (1984), (5) D. Monroe, Phys. Rev. Lett. 54, 146 (1985).