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Abstract
The transition between antigorite‐serpentinite and chlorite‐harzburgite at Cerro del

Almirez (Betic Cordillera, Southern Spain) exceptionally marks in the field the front

of antigorite breakdown at high pressure (~16–19 kbar) and temperature (~650°C) in

a paleosubducted serpentinite. These ultramafic lithologies enclose three types of

metarodingite boudins of variable size surrounded by metasomatic reaction rims.

Type 1 Grandite‐metarodingite (garnet+chlorite+diopside+titanite±magnetite±ilmenite)
mainly crops out in the antigorite‐serpentinite domain and has three generations of

garnet. Grossular‐rich Grt‐1 formed during rodingitization at the seafloor (<2 kbar,

~150–325°C, ~FMQ buffer). During subduction, the alternating growth of Grt‐2b
(richer in andradite and pyralspite components than Grt‐1) and Grt‐3 (very rich in

andradite component) reflects the change from internally buffered metamorphic con-

ditions (>10 kbar, ~350–650°C, ~FMQ buffer) to influx events of oxidizing fluids

(fO2 ~HM buffer) released by brucite breakdown in the host antigorite‐serpentinite.
Type 2 Epidote‐metarodingite (epidote+diopside+titanite±garnet) derives from Type

1 and is the most abundant metarodingite type enclosed in dehydrated chlorite‐harz-
burgite. Type 2 formed by increasing μSiO2 (from −884 to −860 kJ/mol) and

decreasing μCaO (from −708 to −725 kJ/mol) triggered by the flux of high amounts

of oxidizing fluids during the high‐P antigorite breakdown in serpentinite. The

growth of Grt‐4, with low‐grandite and high‐pyralspite components, in Type 2

metarodingite accounts for progressive reequilibration of garnet with changing inten-

sive variables. Type 3 Pyralspite‐metarodingite (garnet+epidote+amphibole+chlo-

rite±diopside+rutile) crops out in the chlorite‐harzburgite domain and formed at

peak metamorphic conditions (16–19 kbar, 660–684°C) from Type 2 metarodingite.

This transformation caused the growth of a last generation of pyralspite‐rich garnet

(Grt‐5) and the recrystallization of diopside into tremolitic amphibole at decreasing

fO2 and μCaO (from −726 to −735 kJ/mol) and increasing μMgO (from −630 to

−626 kJ/mol) due to chemical mixing between the metarodingite and the reaction
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rims. The different bulk Fe3+/FeTotal ratios of antigorite‐serpentinite and chlorite‐
harzburgite, and of the three metarodingite types, reflect the highly heterogeneous

oxidation state of the subducting slab and likely point to the transfer of localized oxi-

dized reservoirs, such as metarodingites, into the deep mantle.
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1 | INTRODUCTION

Rodingites are CaO‐rich, SiO2‐, Na2O‐, and K2O‐poor rocks
formed by metasomatic alteration (rodingitization) of mainly
gabbros and basalts. They mostly consist of Ca‐Al and Ca‐
Mg silicates and occur as dykes or boudins (<10 cm to sev-
eral metres thick) included in serpentinized peridotites (e.g.,
Bach & Klein, 2009; Coleman, 1967; Frost, 1975). Since
their first description by Bell, Clarke, and Marshall (1911),
and Benson (1913, Part I), rodingites have been documented
in a range of tectonic settings, including active seafloor
spreading centres (Aumento & Loubat, 1971; Frost, Beard,
McCaig, & Condliffe, 2008; Früh‐Green et al., 2017; Hon-
norez & Kirst, 1975), rifted continental margins (Beard, Ful-
lagar, & Krisha Sinha, 2002), greenstone belts (Anhaeusser,
1979; Attoh, Evans, & Bickford, 2006; Schandl, O'Hanley,
& Wicks, 1989), and Phanerozoic orogenic belts (Austrheim
& Prestvik, 2008; Coleman, 1967; Dubinska, 1995; Evans,
Trommsdorff, & Richter, 1979; Frost, 1975; Hatzipana-
giotou & Tsikouras, 2001; Li, Rahn, & Bucher, 2004; Li,
Zhang, Wei, Ai, & Chen, 2007; Murzin & Shanina, 2007;
Tsikouras et al., 2009; Zanoni, Rebay, & Spalla, 2016).

Rodingitization of mafic igneous rocks and serpentiniza-
tion of their host ultramafic rocks take place simultaneously
on the seafloor (e.g., Arshinov & Merenkov, 1930; Coleman,
1967; Frost, 1975; O'Hanley, Schandl, & Wicks, 1992;
Schandl, O'Hanley, Wicks, & Kyser, 1990; Suzuki, 1954).
Rarely, rodingites form during serpentinization of Archean
komatiites (Mogessie & Rammlmair, 1994; Schandl et al.,
1989), in the mantle wedge above a subducting slab
(Koutsovitis, Magganas, Pomonis, & Ntaflos, 2013), or
through exhumation of slab eclogites (Li et al., 2007). Dur-
ing rodingitization, Ca‐rich and Si‐undersaturated fluids
(Bach & Klein, 2009; Coleman, 1967; Frost & Beard, 2007;
Li et al., 2004) react with igneous mafic rocks, sometimes in
different stages (e.g., Normand & Williams‐Jones, 2007;
Schandl et al., 1989), leading to depletion of Na, K, and Si.

Most petrological studies on metamorphosed rodingites
(metarodingites) focus on their tectonometamorphic evolu-
tion based on their stable mineral assemblages and associ-
ated textures. In some of these investigations, mineralogical
variations between different metarodingite types have been
attributed to different degrees of oceanic metasomatism that

were preserved during subsequent metamorphism (e.g., Fer-
rando, Frezzotti, Orione, Conte, & Compagnoni, 2010; Li
et al., 2004). However, only a few studies have precisely
determined the metamorphic evolution of metarodingites by
detailed thermodynamic modelling (e.g., Li, Rahn, &
Bucher, 2008; Li et al., 2017; Zanoni et al., 2016).

The mineralogical and compositional changes produced
in metarodingites by interaction with enclosing serpentinites
have only seldom been dealt with (Li et al., 2004). Except
for the Cima di Gagnone locality, where metarodingites are
hosted by chlorite‐harzburgite (Evans et al., 1979) formed
after antigorite‐serpentinite dehydration (Evans & Tromms-
dorff, 1978), all other metarodingite studies have examined
rocks hosted by serpentinites, in which antigorite (e.g., Pan-
seri, Fontana, & Tartarotti, 2008; and references therein;
Zanoni et al., 2016) but also chrysotile and lizardite (Cole-
man, 1967; Lan & Liou, 1981) were stable. That precluded
the possibility to study the interaction between metarodin-
gites and the fluids released during antigorite breakdown.

In this work, we describe the main structural, mineralogi-
cal, textural, and compositional features of metarodingites
from Cerro del Almirez (Betic Cordillera, southern Spain)
and present a detailed thermodynamic model of their meta-
morphic evolution during subduction. The Cerro del Almirez
ultramafic massif is a unique location where metarodingite
bodies occur on both sides of the antigorite‐out isograd
mapped in their host ultramafic rocks (Trommsdorff, López‐
Sánchez‐Vizcaíno, Gomez‐Pugnaire, & Müntener, 1998).
The breakdown of antigorite in serpentinite is the main dehy-
dration reaction occurring at high pressure in subduction
zones (Padrón‐Navarta, Tommasi, et al., 2010; Ulmer &
Trommsdorff, 1995). Owing to serpentinite dehydration, oxi-
dizing fluids are released (Debret & Sverjensky, 2017; Deb-
ret et al., 2014, 2015; Merkulova et al., 2017) and may
interact with subducted lithologies, including metarodingites,
inducing mineralogical and/or compositional changes in
rocks and fluids. Therefore, metarodingites from Cerro del
Almirez are ideal for unravelling how fluids from dehydra-
tion reactions may trigger metamorphic/metasomatic reac-
tions in subducted mafic rocks, and how these reactions
affect the compositions of the slab recycled deep in the man-
tle and of fluids that migrate to inner regions of the mantle
wedge where arc magmas are generated.
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2 | GEOLOGICAL SETTING

The Cerro del Almirez ultramafic massif is the largest
(~2.3 km² and 0.4 km thick) of several ultramafic bodies
that crop out in the upper lithological sequence of the
Nevado–Filábride Complex, the lowermost tectono‐meta-
morphic unit of the Internal Zones of the Betic Cordillera
(Figure 1a). The Nevado–Filábride Complex mainly con-
sists of metasedimentary rocks locally intercalated with
metagranites, eclogites, amphibolites and serpentinites
(Gómez‐Pugnaire et al., 2012; and references therein). This
complex likely represents the subducted paleomargin of the
Iberian Variscan Massif (Booth‐Rea, Ranero, Martínez‐
Martínez, & Grevemeyer, 2007; Gómez‐Pugnaire et al.,
2012). Peak eclogite facies conditions were reached during
Alpine subduction in the middle Miocene (Kirchner, Behr,
Loewy, & Stockli, 2016; López‐Sánchez‐Vizcaíno,
Rubatto, Gómez‐Pugnaire, Trommsdorff, & Müntener,
2001; Platt, Anczkiewicz, Soto, Kelley, & Thirlwall, 2006),
followed by retrogression at amphibolite or greenschist
facies conditions during exhumation (Bakker, Jong, Hel-
mers, & Biermann, 1989; Behr & Platt, 2012; Gómez‐Pug-
naire & Fernández‐Soler, 1987).

In the Cerro del Almirez massif, two main ultramafic
lithologies occur: antigorite‐serpentinite (hereafter Atg‐ser-
pentinite) and chlorite‐harzburgite (Chl‐harzburgite), which
are separated by ~1 m thick transitional lithologies (Fig-
ure 1b; Padrón‐Navarta, López‐Sánchez‐Vizcaíno, Garrido,
& Gómez‐Pugnaire, 2011). This contact shows no evidence
of tectonic discontinuity (Trommsdorff et al., 1998) and
represents the arrested dehydration front of Atg‐serpenti-
nite‐producing Chl‐harzburgite, that is, the Atg‐out isograd
according to the reaction:

antigorite ! olivineþ orthopyroxeneþ chloriteþ H2O

(Padrón‐Navarta et al., 2011).

Strongly foliated Atg‐serpentinite (Atg+Ol+Mag±Di±
Tr±Chl±Ti‐Chu; all mineral abbreviations after Whitney &
Evans, 2010) crops out in the upper portion of the massif
(~200 m thick) and records several prograde dehydration
reactions: brucite breakdown (López‐Sánchez‐Vizcaíno,
Gómez‐Pugnaire, Garrido, Padrón‐Navarta, & Mellini,
2009; López‐Sánchez‐Vizcaíno et al., 2005), diopside trans-
formation to tremolite (Jabaloy‐Sánchez, Gómez‐Pugnaire,
Padrón‐Navarta, López‐Sánchez‐Vizcaíno, & Garrido,
2015; Padrón‐Navarta, Tommasi, Garrido, & López‐Sán-
chez‐Vizcaíno, 2012; Trommsdorff et al., 1998), titanian
clinohumite breakdown (López‐Sánchez‐Vizcaíno et al.,
2005, 2009), and antigorite reaction with talc to give
orthopyroxene in SiO2‐rich serpentinites (Padrón‐Navarta,
Hermann, Garrido, López‐Sánchez‐Vizcaíno, & Gómez‐
Pugnaire, 2010). The Atg‐serpentinite finally became

unstable at ~650°C and 16–19 kbar and dehydrated to pro-
grade Chl‐harzburgite (Ol+Opx+Chl+Mag±Tr±Ti‐Chu),
which reached a peak temperature of ~710°C at similar
pressure (López‐Sánchez‐Vizcaíno et al., 2009; Padrón‐
Navarta, Tommasi, et al., 2010). Chl‐harzburgite crops out
in the lower part of the ultramafic body (~200 m thick)
with either granofelsic or spinifex‐like texture (see Padrón‐
Navarta Tommasi, et al., 2010; Padrón‐Navarta et al.,
2011).

Isotopic and trace element studies (Alt et al., 2012;
Marchesi, Garrido, Padrón‐Navarta, López‐Sánchez‐Viz-
caíno, & Gómez‐Pugnaire, 2013) show that the ultramafic
protoliths of the Cerro del Almirez serpentinites were trans-
formed to chrysotile and lizardite serpentinites at ~200°C
in a seafloor setting. The transformation of seafloor serpen-
tinite into Atg‐serpentinite during subduction most proba-
bly lowered the bulk ferric (Fe3+) to ferrous (Fe2+) iron
ratio by magnetite dissolution into fluids (Debret et al.,
2015). Further decrease in the amount of magnetite and
bulk rock Fe3+/FeTotal occurred by antigorite breakdown
(Debret et al., 2015). The metarodingite bodies studied in
this work occur in both Atg‐serpentinite and Chl‐harzbur-
gite with granofelsic‐ or spinifex‐like textures (Tromms-
dorff et al., 1998) and were first described by Puga, Nieto,
Díaz de Federico, Bodinier, and Morten (1999). Similar
metarodingite bodies have also been reported in the Cerro
Blanco and Montenegro ultramafic outcrops in Eastern
Sierra Nevada (Puga et al., 1999).

3 | METHODOLOGY

3.1 | Rock sampling

Twenty crosscuts of metarodingite and host ultramafic
rocks were sampled from Cerro del Almirez, seven in the
Atg‐serpentinite domain and 13 in the Chl‐harzburgite
domain (Figure 1b). Each crosscut includes a homogeneous
sample of metarodingite, the metasomatic lithologies
located between metarodingite and host ultramafic rocks,
one sample of Atg‐serpentinite or Chl‐harzburgite in con-
tact (<20 cm distant) with metarodingite, and one Atg‐ser-
pentinite or Chl‐harzburgite located several metres distant
from the metarodingite body.

3.2 | Bulk rock analyses

Rock chips were cut from homogeneous and unaltered
parts of the samples, avoiding veins, contacts between dif-
ferent rock types and lithological zoning. Sample powders
(mesh size ≤25 μm) were obtained by powdering represen-
tative crushates in an agate disc mill at the facilities of the
Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC‐
UGR, Granada, Spain).
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Bulk‐rock major and minor elements were analysed by
X‐ray fluorescence (XRF) in fused beads or pellets at
IACT. Fused beads were made by weighing rock powders

(~1 g) with dilithium tetraborate flux and fusing the mix-
ture at 1,000°C for 15 min. The analyses were performed
using a BRUKER S4 Pioneer XRF instrument equipped

FIGURE 1 (a) Geological sketch map of the western part of the Nevado‐Filábride Complex of the Betic Cordillera (modified from Jabaloy‐
Sánchez et al., 2015) with location of the Cerro del Almirez ultramafic massif (blue inset) shown in (b). (b) Geological map of the Cerro del
Almirez area with the location of the sampled metarodingite bodies. Coloured circles correspond to the reported metarodingite types and
amphibolitization degree. (c) Sketch column of the lithological sequence of the Cerro del Almirez ultramafic massif showing the different types
and shapes of metarodingite bodies. Not to scale. Same colour key for metarodingite types as in (b). The grey rim represents the metasomatic
reaction rims altogether. (d) Sketch diagram with the distribution pattern of metasomatic reaction rims around a Grandite‐metarodingite boudin.
Not to scale
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with six analysers (LiF200, LiF220, Ge, PE, PX1, PX2).
Within‐run precision (% relative SD), measured by repeated
analyses of international reference materials as external
standards, was better than 3% for all elements except Na
and Mn (6%). Ferrous iron in bulk‐rocks was determined
by potentiometric titration with a standardized perman-
ganate solution at the Geoscience Laboratories (GeoLabs)
of the Ontario Geological Service (Canada).

3.3 | Electron microprobe analyses

Mineral analyses were obtained by a CAMECA SX100
electron microprobe at CIC (University of Granada, Spain)
or a JEOL JXA‐8230 electron microprobe at the Scientific
and Technological Centres of UB (University of Barcelona,
Spain). Both instruments operated with 15–20 kV accelera-
tion voltage, 10–15 nA beam current, and 5 μm beam
diameter. Precision was about ±1.5% for concentrations of
1 wt%. Natural minerals and synthetic glasses were used as
standards. The peak measurement time was 10 s for Na, K,
Mg, Ca, Al, Si, Mn, F and Cl, 20 s for Cr and Ti, and
30 s for Ni.

X‐ray mapping was performed at 297 nA beam current
and beam size spot (focused). The step (pixel) size was
2 μm and Dwell time 300 ms per pixel. X‐ray maps were
processed with the MATLAB©‐based software XMapTools
(Lanari et al., 2014).

3.4 | Scanning electron microscopy

Qualitative chemical maps were acquired on carbon coated
thin sections using a Carl Zeiss scanning electron micro-
scopy (SEM) equipped with Oxford/Nordlys EBSD and
EDS detectors at the IACT. Automated mapping and data
processing were done using the Aztec software from
Oxford Instruments. Additional maps were acquired with a
Leo 1430VP SEM at the CIC, equipped with an Inca 350
v. 17 Oxford Instruments EDS system.

4 | RESULTS

4.1 | Field occurrence and sample description

Metarodingites are heterogeneously distributed in the ultra-
mafic domains of the Cerro del Almirez massif, that is, in
Atg‐serpentinite, Chl‐harzburgite and close to the dehydra-
tion front defined by the Atg‐out isograd (Figure 1b). The
current location of metarodingite bodies is controlled by
the original distribution of their protoliths and by their pro-
gressive deformation and disruption during subduction.
Their metamorphic evolution resulted in a large variety of
mineralogies, sizes, shapes, and mesostructures (Figure 1c;
Table 1). According to them, three types of metarodingite

can be defined: Type 1 Grandite‐metarodingite, Type 2
Epidote‐metarodingite, and Type 3 Pyralspite‐metarodin-
gite.

Synmetamorphic interaction between metarodingites and
host ultramafic rocks gave place to the progressive growth
of chlorite‐(Chl‐) blackwalls and other metasomatic reac-
tion rims (Figure 1d) of variable thickness (~7–40 cm).

4.1.1 | Structural features of metarodingite
bodies

Metarodingites enclosed in Atg‐serpentinite occur as boudi-
naged and disrupted layers up to 42 m in length and 1.8 m
in thickness. They present different structures depending on
the angle between the contact surface of the body and the
main foliation of host serpentinite. Bodies subparallel or at
low angles with the serpentinite foliation (Figure 2a,b)
occur as boudin trains with different shapes depending on
the intensity of shearing (Goscombe, Passchier, & Hand,
2004). Strike orientation of the boudins surfaces ranges
from NE–SW to NW–SE and they dip between 20° and
45° mainly to N–NW and rarely to W–SW. Only one
body, 15 m long and 0.75 m thick, has E–W strike and
subvertical dip and is oblique to the serpentinite main folia-
tion. In small shear zones in Atg‐serpentinite (Jabaloy‐Sán-
chez et al., 2015), asymmetric boudin trains of
metarodingite are common (Figure 2c). In these cases, the
rodingite boudins are disrupted by small shear zones and
rotated, forming decimetric ellipsoidal bodies embedded in
Chl‐blackwalls (Figure 2c). Chl‐blackwalls have a well‐
developed schistosity continuous with the penetrative S1
foliation of Atg‐serpentinite (Figure 2a,b; Jabaloy‐Sánchez
et al., 2015).

In the Atg‐serpentinite‐hosted metarodingites, two sets
of conjugate fractures are found with low (<60°) dihedral
angles and are few millimetres to two centimetres thick-
ness, filled with garnet, chlorite or epidote (Figure 2a,d).

Metarodingites enclosed in Chl‐harzburgite mostly occur
as small isolated boudins usually <1 m in length and
50 cm thick (Figure 2e,f). Rare decametric boudin trains,
some of them folded, are also visible. The contact surface
orientation of these metarodingite bodies is variable and
ranges between NE and SW strike with 30–50° dip to NW
or SE, and E–W strike with dip to the south ranging
between 50° and subvertical. Millimetre thick conjugate
hybrid joints are commonly filled by amphibole in these
metarodingites (Figure 2d,e). Chl‐blackwalls show a well‐
developed S2 schistosity with transposed hinges of the S1
foliation of Atg‐serpentinite (Figure 3a). In some outcrops,
especially in the Pradomocho Alto and Pradomocho Bajo
ultramafic bodies (Figure 1b), alternating layers of Chl‐
blackwall and amphibolitized metarodingite define a well‐
marked banding parallel to S2 (Figure 2f). In places, a late
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crenulation cleavage (S3) affects the S2 foliation (Figures 2f
and 3a). In contrast with the nondeformed Chl‐harzburgite
host (Jabaloy‐Sánchez et al., 2015; Padrón‐Navarta, Tom-
masi, et al., 2010), S‐C structures in diopside‐rich reaction
rims (Figure 3b) indicate a top‐to‐the‐west sense of shear-
ing, similar to those of Atg‐serpentinite and hosting meta-
pelites (Jabaloy‐Sánchez et al., 2015).

4.1.2 | Metarodingite types and petrography

Metarodingites have different mineralogical and microstruc-
tural features at each side of the dehydration front (Fig-
ure 1b,c). No systematic differences exist between
metarodingite bodies hosted in Chl‐harzburgite with spini-
fex‐like or granofelsic texture.

Type 1 Grandite‐metarodingite (in the following Grand‐
metarodingite) consists of Grs‐ and/or Adr‐rich
Grt+Chl+Di+Ttn+Mag+Ap+Ilm+Aln+Zrn (Table 1). This
is the most abundant type of metarodingite enclosed in
Atg‐serpentinite (Figures 1b,c and 2a–d). In Chl‐harzbur-
gite, it is preserved only as small relicts in the core of
some Type 2 metarodingite boudins.

Macroscopically, Grand‐metarodingite shows a reddish,
garnet‐rich groundmass. Porphyritic igneous textures typi-
cal of basaltic rocks are preserved in places (Figure 4a). At
the thin section scale, Grand‐metarodingite shows a very
fine‐grained (5–50 μm) matrix consisting of allotriomorphic
aggregates of anhedral pinkish or brownish garnet (Grt‐1

hereafter), chlorite, titanite and less abundant diopside (Fig-
ure 4a,b). The fine‐grained Grt‐1 aggregates replaced pla-
gioclase in the original igneous doleritic or fluidal textures
as well as plagioclase phenocrysts (1–3 cm) in porphyritic
basalts (Figure 4a,c). Pseudomorphs after igneous clinopy-
roxene are replaced by diopside with tiny magnetite,
ilmenite, and titanite exsolutions or, more rarely, by garnet‐
diopside symplectites. Rare olivine phenocrysts were
transformed into dark pseudomorphs of chlorite–diopside–
titanite–magnetite (0.5–2 cm). In the most deformed sam-
ples, igneous textures partially or completely recrystallized
to homogeneous granoblastic or slightly oriented textures.
The modal abundance of chlorite increases towards the
contact with the Chl‐blackwall.

Garnet veins of variable thickness (up to 2 cm) fre-
quently cut the rock matrix (Figure 2a,d). Two vein genera-
tions can be distinguished (Figure 4b). The older veins are
thin (<1 cm), display irregular rims, and mainly consist of
Grt‐2 garnet (see Section 4.2.1; Figure 4b). Grt‐2 has a
small grain size (<50 μm) and occurs in massive aggre-
gates with titanite and minor chlorite. The second vein gen-
eration mostly consists of Grt‐3 garnet (see Section 4.2.1).
These veins always cut those containing Grt‐2 (Figure 4b).
They are decimetric in length and up to 2 cm thick (Fig-
ure 2d). Grt‐3 occurs as drusy, projecting aggregates of
coarse (1–2 mm) idiomorphic grains, usually intergrown
with chlorite flakes, rare diopside or epidote, apatite and
large titanite crystals (up to 6 cm; inset in Figure 2d). Both

TABLE 1 Summary of the Cerro del Almirez metarodingite types and associated metasomatic reaction rims

Host rock Lithologies
Key macroscopic and
textural features

Minerals and modal
percentage (vol.%)

Mineral assemblages in
equilibrium

Atg‐Serp Grandite‐
metarodingite
Type 1

Reddish brown, fine‐grained
rocks with relict
igneous texture (porphyritic).
With several veins generations

(Grt‐1+Grt‐2+Grt‐3) 66%+Chl 23%+Di
6.5%+Ttn 3%+Mag 2.7%+Ap
1%+Ilm+Aln+Zrn

Grt‐1+Chl+Di+Mag+Ilm
Grt‐2a+Chl+Di+Mag+Ilm
Grt‐2b+Chl+Ttn±Di
Grt‐3+Chl+Ttn

Atg‐Serp &
Chl‐Harzb

Epidote‐
metarodingite
Type 2

Yellowish, fine‐grained
rocks with granoblastic texture
and relict garnet

Ep 55%+Di 35%+Ttn
5%+(Grt‐3 or Grt‐4)
3.5%±Chl+Ap 1%±Mag±Rt+Ilm+Zrn

Ep+Di+Ttn±Grt‐3±Chl
Ep+Di+Ttn±Grt‐4±Chl

Chl‐Harzb Pyralspite‐
metarodingite
Type 3

Blackish green and
greenish yellow
rocks with granoblastic or
nematoblastic texture

Amp 50%+Ep/Zo 35%+Grt‐5
10%±Chl 0‐4%±Di
1%+Rt 2%+Ap 1%±Ttn±Ilm+Zrn

Grt‐5+Ep/Zo+Amp‐1±Chl±Di+Ttn
Grt‐5+Ep/Zo+Amp‐1±Chl+Rt

Atg‐Serp &
Chl‐Harzb

Chl‐Blackwall Silverish grey,
strongly foliated rock

Chl 70%+Di 22%±Ttn
2%±Mag 2.7%±Ilm
2.7‐4%±Rt 0‐2%+Ap 0.6%±Amp+Zrn

Ch+Di+Ttn+Mag
Chl+Di+Ilm
Chl+Amp‐1+Rt

Atg‐Serp &
Chl‐Harzb

Chl‐Di‐
metasomatic
rim

Bluish white, foliated rock Di 60%+Chl 35%+Mag 4%+Ilm Di+Chl+Mag+Ilm

Atg‐Serp &
Chl‐Harzb

Chl‐Di‐Ol‐
metasomatic
rim

Foliated rock with
orangisch brown
Ol porphyroblasts, and Ti‐Chu

Di 36%+Ol 36%+Chl 21%+Mag
5%±Ti‐Chu±Atg

Ol+Di+Chl+Mag+Ti‐Chu
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FIGURE 2 Field occurrence of metarodingite bodies in the Cerro del Almirez ultramafic massif. (a) Type 1, Grand‐metarodingite dyke
hosted in Atg‐serpentinite with incipient transformation into Epidote‐metarodingite (yellow circle). (b) Barrel‐shaped boudin of Grand‐
metarodingite hosted in Atg‐serpentinite with well‐developed S1 foliation and metasomatic rims. (c) Asymmetric boundin trains of Grand‐
metarodingite hosted in Atg‐serpentinite separated by small shear fractures in the Chl‐blackwall. The sense of shear is indicated. (d) Atg‐
serpentinite‐hosted, zoned boudin with well‐defined Grand‐(to the left; G) and Ep‐metarodingite (to the right; Ep) zones cut by a thick Grt‐3 vein
(enlarged in the upper left inset showing coarse garnet and titanite crystals). Note also two amphibole veins (AV). (e) Partially amphibolitized
Type‐2, Ep‐metarodingite boudin enclosed in Chl‐harzburgites (H). Enlarged inset: epidote‐rich core cut by amphibole veins (AV). (f) Partially
amphibolitized, Type‐3, Pyralspite‐metarodingite boudin with folded S2 foliation in Chlorite‐blackwall and late development of S3 crenulation
cleavage. MR: metarodingite; V: garnet veins; S: Atg‐serpentinite; BW: Chlorite‐blackwall; (CD) Chorite‐diopside metasomatic rim, (CDO)
Chlorite–diopside–olivine–metasomatic rim
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Grt‐2 and Grt‐3 may also occur in the rock matrix rimming
Grt‐1. These three garnet generations display slight aniso-
tropy produced either by cell distortion due to the occur-
rence of OH groups (Andrut, Wildner, & Beran, 2002) or
to strain caused by the intergrowth of different cubic
phases (e.g., Antao, Zaman, Gontijo, Camargo, & Marr,
2015). Exploratory infrared measurements confirm the
occurrence of OH‐groups in the Grand‐metarodingite gar-
nets as well as in diopside (Figure S1).

The occurrence of epidote in Type 1 metarodingite
marks the transition to Type 2 Epidote‐metarodingite (in
the following Ep‐metarodingite). This consists of
Ep+Di±Grt±Chl+Ttn+Ap+Zrn±Mag±Rt±Ilm (Table 1).
Evidence of incipient transformation from Type 1 to Type
2 metarodingites is visible in almost each Grand‐metarodin-
gite outcrop (Figure 2a). However, in the Atg‐serpentinite
domain, well‐developed Ep‐metarodingite assemblages are
present only in some zoned boudins close to the
dehydration front (Figure 1c), in which they show irregular
or patchy, sharp contacts with the garnet‐rich zones (Fig-
ure 2d). Type 2 is the most common metarodingite type
within dehydrated Chl‐harzburgite, where it is usually
observed in the core of boudins that are partially trans-
formed by late, retrograde amphibolitization (see below;
Figures 2e and 4c).

The Ep‐metarodingite is a fine‐grained, granoblastic,
yellowish rock. The matrix is made of polygonal (5–
200 μm) epidote and diopside aggregates, formed after gar-
net, with disseminated chlorite flakes that are less abundant
towards the core of the bodies. Porphyroblasts consisting

of fine‐grained Grt‐1 aggregates are here replaced by
coarse epidote grains (Figure 4c). Small metastable relicts
of Grt‐2 and Grt‐3 are also visible (Figure 4c,d). However,
in some Atg‐serpentinite‐hosted bodies, some of these gar-
net grains (with a Grt‐3 composition) are in equilibrium
with the epidote–diopside–titanite assemblage. In a similar
way, scarce grains of a different garnet (Grt‐4, See Sec-
tion 4.2.1) are present in the Ep‐metarodingite bodies
hosted in Chl‐harzburgite. The Grt‐4 occurs as small
xenomorphic grains locally overgrown by idioblastic
recrystallized rims (Figure 4e). Titanite is more abundant
than in Type 1 metarodingite (Table 1) and forms aggre-
gates (2–6 mm) disseminated in the matrix (which may
include rutile) or thin (0.5 mm) irregular veins.

Type 3 Pyralspite‐metarodingite (in the following Pyr-
als‐metarodingite) crops out only in the Chl‐harzburgite
domain (Figure 1b,c). In the field, it constitutes compact,
decimetre long, ellipsoidal bodies embedded in a banded
blackwall consisting of chlorite‐rich light and amphibole‐
rich dark layers (Figure 2f). The typical metarodingite
assemblage consists of neoblasts of a new pyralspitic garnet
generation Grt (Grt‐5, see Section 4.2.1) +Ep+Zo+Amp
(Amp‐1)±Chl±Di+Rt+Ap+Zrn±Mag±Ttn±Ilm (Table 1).
Grt‐5 occurs as porphyroblasts of variable abundance and
grain size. It is more abundant and smaller (1–3 mm) in the
massive cores of the boudins, where they are rich in inclu-
sions of colourless or slightly pleochroic amphibole (Amp‐
1), chlorite, epidote, zoisite, apatite, rare diopside, titanite in
the core, and rutile in the rim (Figure 4f). Grt‐5 porphyrob-
lasts are hosted in a grano to nematoblastic matrix mainly

FIGURE 3 (a) Polished surface of a Chl‐blackwall hand sample with alternating layers of chlorite (Chl) and diopside (Di). It corresponds to
an Ep‐metarodingite hosted in Chl‐harzburgite. Note the sheath folds (1) parallel to S2 foliation, typical of shear zones and late S3 crenulation
cleavage. (b) Polished surface of a hand‐sample with the chlorite–diopside‐ (lower part) and chlorite–diopside–olivine‐ (upper part) metasomatic
rims of a Grand‐metarodingite hosted in Atg‐serpentinite

1148 | LABORDA‐LÓPEZ ET AL.



consisting of epidote and zoned green‐pleochroic amphibole
(Amp‐2) with colourless cores of Amp‐1, chlorite, zoisite,
rare diopside, and rutile and apatite as accessory phases.

Towards the Chl‐blackwall, the modal abundances of
epidote and diopside decrease until their complete disap-
pearance, chlorite and zoned amphibole define a well‐
marked foliation (S2), and Grt‐5 porphyroblasts are less
abundant but coarser (up to 6 mm). The rims of these gar-
net porphyroblasts are commonly corroded by late fine‐
grained chlorite. Amphibole, titanite and rutile inclusions in
garnet are here arranged in rotated trails defining snowball
orientations that are continuous with the matrix foliation.
This rotation was due to the shearing responsible for the

formation of banding and S2 foliation (Jabaloy‐Sánchez et
al., 2015). This event was previous to the growth of the
green pleochroic rims of amphibole (Amp‐2). Late crenula-
tion (Figures 2f and 3a) defines a S3 foliation and postdates
the main metamorphic assemblage.

4.1.3 | Amphibolitization of metarodingites

The growth of late amphibole (Amp‐2) replacing previous
mineral assemblages is common in all the metarodingite
types. The intensity of amphibolitization is, however, very
variable. In Grand‐metarodingite within Atg‐serpentinite,
Amp‐2 constitutes late, green, idiomorphic grains that

FIGURE 4 (a) Polished surface of a Grand‐metarodingite hand‐sample with preserved porphyritic igneous texture. Lower left inset: same
texture at thin section scale (parallel polars). (1) Garnet (Grt‐1) pseudomorph after igneous plagioclase. (2) Igneous olivine replaced by chlorite,
magnetite and diopside. (3) Igneous Ti‐augite replaced by diopside, magnetite and ilmenite. (b) Texture of Grand‐metarodingite at thin section
with two vein generations mainly consisting of Grt‐2 and Grt‐3 respectively. Diopside was partially replaced by late green amphibole (Amp‐2;
parallel polars). The blue inset corresponds to the compositional maps area in Figure 6a,b. (c) Polished surface of an amphibolitized Ep‐
metarodingite hand‐sample with preserved porphyritic igneous textures (1) and garnet relicts (R). (d) Ep‐metarodingite at thin section with garnet
relicts (Grt‐2b) of a vein partially transformed into epidote (crossed polars). (e) SEM image of Ep‐metarodingite hosted in Chl‐harzburgite with
recrystallized garnet relicts reequilibrated to Grt‐4. (f) Pyrals‐metarodingite at thin section with a Grt‐5 porphyroblast crowded with titanite
inclusions in the core and zoisite (Zo) and amphibole inclusions (Amp‐1) in the rims. Matrix with amphibole (Amp‐1 and Amp‐2), epidote,
zoisite and rutile (Rt). Amp‐3 altered garnet rims. Crossed polars
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overgrow diopside and corrode garnet (Figure 4b). In bou-
dins close to the dehydration front, centimetre thick, irregu-
lar bands or aggregates of dark amphibole are common.
Conjugated sets of millimetre‐thick amphibole veins are
also very abundant (Figure 2d) as well as reopened coarse‐
grained garnet (Grt‐3) veins (Figure 2d) refilled with aggre-
gates of centimetre long, prismatic amphibole.

Within Chl‐harzburgite, all Ep‐metarodingite boudins
are partially replaced by dark green aggregates of Amp‐2
(Figure 2e). Typically, the preserved epidote‐rich cores are
crosscut by conjugated sets of millimetre‐thick amphibole
veins (Figure 2e).

In Pyrals‐metarodingite and enclosing Chl‐blackwall,
amphibolitization can be also related with the growth of
Amp‐2. Grt‐5 porphyroblasts are strongly corroded by a
later, fine‐grained amphibole corona (Amp‐3; Figure 4f).

4.1.4 | Metasomatic reaction rims

Interaction between metarodingites and host Atg‐serpenti-
nite produced three metasomatic rock types that are, from
the metarodingite body to the enclosing serpentinite, the
following chlorite‐ (Chl‐) blackwall, chlorite‐diopside‐
(Chl‐Di‐) rim and chlorite‐diopside‐olivine‐ (Chl‐Di‐Ol‐)
rim (Figure 1d). In the Chl‐harzburgite domain, only the
first two lithologies are generally well developed.

The Chl‐blackwall (5–20 cm thick) is a light silver,
strongly foliated, Chl‐Di schist (Figure 2) with ±Ttn±Ilm±
Rt±Mag+Ap+Zrn. This rock essentially consists of alter-
nating chlorite‐ and diopside‐rich layers and veins parallel
to the main foliation (Figure 3a). Due to intense deforma-
tion, blackwalls in the Chl‐harzburgite domain may consti-
tute strongly thinned bands transposed from metarodingites.
The contact between the Chl‐blackwall and metarodingite
is generally sharp (Figure 2a,b). In some places, rare epi-
dote, amphibole or garnet‐isolated grains or veins are visi-
ble within the blackwall.

At the thin section scale, Chl‐blackwall has a clearly
lepidoblastic texture marked by the preferred orientation of
chlorite flakes. Diopside constitutes hypidiomorphic‐iso-
lated grains or granoblastic aggregates. In the Atg‐serpenti-
nite domain, oriented titanite (up to 1.5 cm) and magnetite
grains are abundant, while ilmenite is less common. The
Chl‐blackwalls in the Chl‐harzburgite domain lack mag-
netite but have large (up to 1 cm) idiomorphic pyrite crys-
tals, abundant ilmenite and, around Pyrals‐metarodingite,
they also have rutile. Rare titanite appears only close to
Ep‐metarodingite bodies.

The Chl‐Di‐ and Chl‐Di‐Ol‐metasomatic rims have vari-
able thicknesses (2–20 cm). The former is a whitish rock
with nematoblastic texture, thin dark intercalations of chlo-
rite between diopside and disseminated magnetite grains.
The contact with the Chl‐Di‐Ol‐rim is defined by the first

occurrence of millimetre to centimetre long brownish
aggregates of olivine, which confer a “leopard skin”
appearance on the rock (Figure 3b). Olivine aggregates
have dark iddingsitic alteration rims and are in places inter-
grown with titanian‐clinohumite. These aggregates are
embedded in a granoblastic matrix of dusty diopside with
clear rims. Chlorite flakes commonly have antigorite relicts
in the core. Magnetite is disseminated in the rock. The con-
tact with Atg‐serpentinite is transitional and defined by the
increasing amount of antigorite, the decrease of diopside
and the absence of chlorite (Antigorite‐Clinopyroxene ser-
pentinite, Figure 1d).

4.2 | Mineral chemistry

4.2.1 | Garnet

According to their composition, the different types of gar-
net can be classified into two main groups: grandite‐ (Grt‐
1, Grt‐2, and Grt‐3) and pyralspite‐garnet (Grt‐5), with a
third group (Grt‐4) of intermediate composition (Table 2
and Table S1).

Grandite‐garnet corresponds to the main rock‐forming
mineral of Grand‐metarodingite and to relict grains in Ep‐
metarodingite hosted by Atg‐serpentinite. These composi-
tions plot along the Grossular‐Andradite side in Figure 5
and their pyralspite components (pyrope, almandine and
spessartine end‐members altogether) are below 25 mol.%.
Several types of grandite garnet can be defined taking into
account their textural and compositional features (Table 2;
Figure 5). Grt‐1 has the highest grossular values and lowest
andradite and pyralspite contents (Grs64-84 Adr5-19 Prp0-1
Alm0-3 Sps0-1 Ti‐Grt2-11 Kat1-5).

Two subtypes of Grt‐2 have been differentiated. Grt‐2a
only occurs as very scarce grains within the first vein gen-
eration in Grand‐metarodingite (Figure 6a,b). It has a pecu-
liar pyralspite‐poor composition (Grs55-59 Adr20-24 Prp0.7-0.9
Alm0.7-0.9 Sps0.2-0.6 Ti‐Grt13-16 Kat1.9-3.4) when compared
with the most abundant garnet type in these veins: Grt‐2b
(Grs42-61 Adr21-31 Prp3-7 Alm7-13 Sps0.6-1 Ti‐Grt3-9 Kat2-3),
richer in andradite and pyralspite end‐members than Grt‐1
(Figure 5). Grt‐2b overgrows the Grt‐2a grains in the first
vein generation (Figure 6a,b). The Grt‐2b relicts are found
in Ep‐metarodingite boudins from both the Atg‐serpentinite
and the Chl‐harzburgite domains (blue triangles and blue
squares in Figure 5, respectively).

Grt‐3 is poorer in pyralspite and richer in andradite
than Grt‐2b (Grs38-56 Adr31-45 Prp1-4 Alm3-8 Sps0.4-0.8 Ti‐
Grt5-10 Kat2-4), especially the grains in Ep‐metarodingites
(Grs34-38 Adr49-53 Prp1-3 Alm2 Sps2 Ti‐Grt4-5 Kat2-3, dark
yellow triangles in Figure 5). Grt‐3 grains from the sec-
ond vein generation in Grand‐metarodingite (Figure 4b)
display a drusy texture and oscillatory zoning in their
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TABLE 2 Garnet average compositions and SD (σ) of microprobe analyses

Garnet

Garnet type
Grt‐1 Grt‐2a Grt‐2b Grt‐3 Grt‐4 Grt‐5 core Grt‐5 rim

Metarod. type
Type 1 Type 1 Type 1 Type 1 Type 2 Type 2 Type 3 Type 3

n 33 11 72 84 7 14 19 29

SiO2 37.11 0.21 36.65 0.19 37.49 0.53 36.53 0.28 36.45 0.10 38.53 0.31 37.69 0.36 38.89 0.43

TiO2 1.94 0.12 2.52 0.22 0.78 0.21 1.23 0.28 0.79 0.07 0.32 0.28 0.17 0.13 0.09 0.04

Al2O3 16.91 0.44 13.36 0.22 14.77 0.93 12.05 0.78 9.42 0.34 19.93 1.33 21.02 0.17 21.56 0.30

Cr2O3 0.01 0.01 0.02 0.01 0.07 0.18 0.03 0.10 0.10 0.03 0.07 0.02 0.00 0.01 0.01 0.02

FeO tot. 5.68 0.74 9.77 0.35 13.46 0.72 14.34 0.76 16.63 0.33 13.63 1.57 23.63 0.30 18.99 0.85

MnO 0.26 0.02 0.20 0.05 0.48 0.10 0.28 0.06 0.89 0.09 2.50 1.07 1.17 0.07 0.54 0.29

MgO 0.13 0.04 0.18 0.03 1.23 0.20 0.70 0.14 0.35 0.15 3.70 1.97 3.26 0.32 7.04 0.37

CaO 35.60 0.36 34.01 0.45 29.96 0.73 32.12 0.55 32.95 0.12 20.65 4.66 12.53 0.37 12.55 0.89

Na2O 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.00 0.00 0.00 0.00

H2O
+ 1.03 0.15 0.59 0.11 0.43 0.25 0.71 0.17 0.55 0.11 0.05 0.09 0.00 0.00 0.00 0.00

Total 98.69 0.27 97.31 0.85 98.67 0.54 98.00 0.43 98.15 0.31 99.38 0.57 99.49 0.50 99.68 0.55

Final FeO 2.06 0.27 3.12 0.30 5.29 0.59 3.49 0.43 1.58 0.11 10.82 1.98 22.16 0.41 17.41 0.68

Final Fe2O3 4.02 0.79 7.39 0.41 9.08 1.02 12.06 0.87 16.72 0.40 3.12 1.42 1.63 0.46 1.76 0.76

Total 99.09 0.29 98.05 0.86 99.58 0.53 99.21 0.44 99.83 0.30 99.69 0.54 99.65 0.46 99.86 0.50

Structural formula is calculated on the basis of 12 oxygen atoms and end-member fraction after Locock (2008)

Si 2.87 0.02 2.92 0.01 2.94 0.03 2.91 0.02 2.93 0.01 2.98 0.01 2.97 0.01 2.97 0.02

Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.01 0.03 0.02

4H+ 0.13 0.02 0.08 0.01 0.06 0.03 0.09 0.02 0.07 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Ti 0.11 0.01 0.15 0.01 0.05 0.01 0.07 0.02 0.05 0.00 0.02 0.02 0.01 0.01 0.01 0.00

Al 1.54 0.04 1.25 0.03 1.37 0.08 1.13 0.07 0.89 0.03 1.80 0.11 1.92 0.02 1.91 0.03

Cr 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe2+ 0.11 0.01 0.15 0.01 0.05 0.01 0.07 0.02 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.00

Fe3+ 0.23 0.05 0.44 0.02 0.54 0.06 0.72 0.05 1.01 0.03 0.18 0.08 0.10 0.03 0.10 0.04

Fe2+ 0.02 0.02 0.06 0.02 0.30 0.05 0.16 0.03 0.06 0.01 0.69 0.14 1.46 0.02 1.11 0.04

Mn2+ 0.02 0.00 0.01 0.00 0.03 0.01 0.02 0.00 0.06 0.01 0.16 0.07 0.08 0.00 0.04 0.02

Mg 0.01 0.01 0.02 0.00 0.14 0.02 0.08 0.02 0.04 0.02 0.43 0.23 0.38 0.04 0.80 0.04

Ca 2.95 0.02 2.90 0.02 2.52 0.07 2.74 0.05 2.83 0.01 1.71 0.39 1.06 0.03 1.03 0.07

End-members (mol.%)

Grossular 70.79 2.31 57.01 1.46 50.56 3.06 44.65 2.84 36.65 1.56 47.05 9.83 31.86 0.91 30.74 2.89

Andradite 11.69 2.32 22.16 1.20 26.85 3.08 36.09 2.71 50.50 1.31 8.02 4.54 2.84 0.45 3.20 1.01

Almandine 0.72 0.61 1.95 0.51 10.07 1.55 5.32 1.09 2.04 0.22 22.89 4.59 48.61 0.75 37.09 1.45

Pyrope 0.45 0.21 0.73 0.11 4.79 0.77 2.75 0.56 1.38 0.60 14.20 7.53 12.76 1.20 26.74 1.42

Spessartine 0.57 0.05 0.46 0.11 1.07 0.23 0.64 0.13 2.02 0.20 5.45 2.36 2.60 0.17 1.18 0.64

Katoite 4.44 0.64 2.60 0.47 1.86 1.09 3.12 0.74 2.47 0.46 0.23 0.38 0.00 0.00 0.00 0.00

Morimotoite 11.14 0.58 14.98 1.25 4.52 1.25 7.28 1.66 4.47 0.46 1.17 1.85 0.01 0.05 0.01 0.04

Uvarovite 0.04 0.03 0.05 0.02 0.23 0.57 0.10 0.33 0.32 0.09 0.21 0.07 0.01 0.03 0.04 0.08

Hutcheonite 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.36 0.49 0.35 0.26 0.11

NaTi garnet 0.03 0.03 0.05 0.02 0.06 0.07 0.04 0.05 0.14 0.05 0.04 0.07 0.00 0.00 0.00 0.00

Morimotoite‐Mg 0.10 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H2O
+ values are estimated to be equal to the amount compensating for the deficiency of silica.
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andradite content (35–45 mol.%, Figure 6a). This is typi-
cal of hydrothermal andraditic garnet precipitating in
voids and cracks full of fluid (Jamtveit & Andersen,
1992). In these veins, Grt‐3 is crosscut by irregular thin
veinlets with Grt‐2b composition (stars in Figure 6a,b).
Thin rims of Grt‐3 also surround both Grt‐1 and Grt‐2 in
Grand‐metarodingite (Figure 6a,b).

All the grandite‐garnet is rich in OH (katoite end‐mem-
ber: Ca3Al2OH12; Table 2), especially Grt‐1 (up to
5 mol.%), and in the Ti‐bearing morimotoite end‐member
(Ca3[TiFe

2+]Si3O12). The latter component is abundant in
Grt‐1 (up to 11 mol.%) and especially in Grt‐2a (up to
16 mol.%) and poorer in Grt‐2b (3–9 mol.%) and Grt‐3 (5–
10 mol.%). Schorlomite (Ca3Ti2[Fe2

3+Si]O12) and NaTi‐
garnet ([Na2Ca]Ti2Si3O12) end‐members only occur in
scarce amounts.

The pyralspite‐garnet (Grt‐5) only occurs in Type 3 Pyr-
als‐metarodingite. It has more than 60 mol.% of pyralspite
components: Grs17-35 Adr2-7 Prp10-30 Alm35-50 Sps1-10
(Table 2, Figure 5). Grt‐5 shows pyrope enrichment and
almandine and spessartine depletion from the core (Grs28-35
Adr1-2 Prp10-17 Alm47-50 Sps2-4) to the rims (Grs28-31 Adr1-2-3
Prp22‐28 Alm35-41 Sps0-1; Figure 6c). Towards the Chl‐black-
wall, the grossular component in Grt‐5 is lower, but it
increases from the core (Grs17 Adr4-7 Prp17 Alm45 Sps10) to
the rims (Grs27 Adr4-7 Prp30 Alm35 Sps4).

Finally, Grt‐4 grains in Ep‐metarodingite (Table 2 and
Table S1; Figure 4e) have intermediate compositions
between those of grandite‐ and pyralspite‐garnet groups
(Grs35-52 Adr5-20 Prp6-23 Alm13-30 Sps3-10 Ti‐Grt0-6 Kat0-2;
pink circles in Figure 5). Individual Grt‐4 grains display a well‐
defined core to rim increase of the pyralspitic components.

4.2.2 | Chlorite

Chlorite has different compositional ranges in different
rock types (Table S1). In metarodingites, irrespective of
the rock type and textural position, this phase has sheri-
danite‐clinochlore compositions (XMg = Mg/(Mg+Fe2+) =
0.86–0.90, Al/Si = 0.80–0.90). Chlorite in Chl‐blackwall
has slightly higher XMg (0.89–0.95) and lower Al/Si
(0.60–0.79) corresponding to the clinochlore and pen-
ninite end‐members. In the Chl‐Di‐ and Chl‐Di‐Ol‐ meta-
somatic rims, chlorite has similar and rather constant
Mg‐rich, Al‐poor compositions (XMg = 0.93–0.96; Al/
Si = 0.44–0.57), mostly corresponding to penninite. How-
ever, in the Chl‐Di‐Ol‐rim, it has high Cr2O3 contents
(up to 2 wt%) that are negatively correlated with Al2O3

(CrAl-1 exchange vector), similar to chlorite in the transi-
tional ultramafic lithologies between Atg‐serpentinite and
Chl‐harzburgite (Padrón‐Navarta et al., 2011). These high
Cr contents suggest that metasomatic Chl‐Di‐Ol‐rim
derives from precursor Atg‐serpentinite.

4.2.3 | Epidote

Representative epidote compositions are shown in
Table S1. Epidote in equilibrium with chlorite and diopside
in Grt‐3 veins within Grand‐metarodingite is iron‐rich
(XEp=(Ca/[X])

2×Fe3+(Si/3)3=0.60–0.78). In the matrix of
Type 2 Ep‐metarodingite, epidote grains are zoned and
have increasing values of pistacite component from the
core (XEp = 0.11–0.50) to the rims (Xep = 0.49–0.84).
Coarse epidote that replaced Grt‐1 aggregates in Ep‐metar-
odingite and epidote in Pyrals‐metarodingite have similar
composition with XEp = 0.40–0.54. In contrast, zoisite
coexisting with epidote in Pyrals‐metarodingite is Fe3+‐
poor (0.1 a.p.fu.; XEp = 0.1).

4.2.4 | Diopside

Diopside occurs in all the studied lithologies (Table S1).
The XMg ranges between 0.90 and 0.96 in Grand‐ and Pyr-
als‐metarodingites and spans to lower values in Ep‐metaro-
dingite (0.80–0.94) and the metasomatic reaction rims
(0.85–0.99; Table S1). Jadeite+aegirine components are
usually lower than 2 mol.%, except for grains in Pyrals‐
metarodingite which have up to 4 mol.% Jd+Aeg.
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FIGURE 5 Ternary plots with the composition of the different
garnet generations found in the Almirez metarodingites. Pyralspite
sums up the amounts of pyrope, almandine and spessartine
components. Titanium garnet mainly corresponds to morimotoite
component. Triangle symbols correspond to relicts of granditic garnet
(Grt‐2b and Grt‐3) in Ep‐metarodingite hosted in Atg‐serpentinite.
Squares represent relicts of granditic (Grt‐2b) garnet in the cores of
the Grt‐4 grains in Ep‐metarodingites hosted in Chl‐harzburgites
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4.2.5 | Amphibole

Amphibole structural formulae were calculated after
Locock (2014). Composition shows a continuous,
well‐defined trend between tremolite and pargasite end‐
members (Table S1; Figure 7). The Amp‐1 from Pyrals‐
metarodingite ranges between tremolite (XMg = 0.86–0.98)
and Mg‐Hornblende (XMg = 0.84–0.92) compositions.
Extensive late amphibolitization produced Amp‐2 that
plots within the pargasite field (XMg = 0.72–0.85). Amp‐
3, which rims Grt‐5 in Pyrals‐metarodingite, has pargasite
compositions with higher tschermakitic substitution
(XMg = 0.60–0.83; Figure 7).

4.2.6 | Other minerals

Olivine in Chl‐Di‐Ol‐ metasomatic rims hosted by Atg‐ser-
pentinite presents XMg = 0.91–0.92, Ni = 0.005–0.007
a.p.f.u., and Mn = 0.004–0.005 a.p.f.u (Table S1). These
values are similar to those reported for clinopyroxene‐tre-
molite‐rich serpentinite (Padrón‐Navarta et al., 2011). In
the only Chl‐Di‐Ol‐rim found in the Chl‐harzburgite
domain, the XMg range of olivine (0.90–0.91) and its Mn
content (0.002–0.003 a.p.f.u.) are similar to those of olivine
in the wall Chl‐harzburgite, but the Ni (0.012–0.015
a.p.f.u.) contents are much higher than those reported in
any other rock type from the Cerro del Almirez massif.

FIGURE 6 (a, b) Compositional maps of garnet in Grand‐metarodingite (blue inset from Figure 4b, for the andradite (a) and pyralspite
(pyrope+almandine+spessartine); (b) end‐members. Grt‐2a corresponds to the earliest scarce, andradite‐rich and pyralspite‐poor garnet formed in
the first vein generation. White stars mark late veinlets with composition very similar to Grt‐2b crosscutting the Grt‐3 veins. Data obtained using
XMapTools© (module Chem2D and external function Gar‐StructForm‐Fe3+; Lanari et al., 2014). (c) Compositional profile of Grt‐5 in Pyrals‐
metarodingite
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Antigorite in Chl‐Di‐Ol‐rim has Si = 1.88–1.90 and Al =
0.17–0.21 a.p.f.u. (Table S1), similar to Si and Al abun-
dances in antigorite from clinopyroxene‐tremolite‐rich ser-
pentinite and from transitional Chl‐serpentinite (Padrón‐
Navarta et al., 2011).

Magnetite is rich in Cr in Grand‐metarodingite (up to
5.15 wt% Cr2O3) and in all the metasomatic reaction rims
(up to 8.5 wt% Cr2O3). In contrast, magnetite in Ep‐
metarodingite is Cr‐free. Irrespective of the rock type,
titanite has stoichiometric composition with low Al (0.12–
0.41 a.p.f.u.) and F contents (below detection limit;
Table S1).

4.3 | Bulk‐rock compositions and oxidation
state

Bulk‐rock analyses (Table 3) and ternary diagrams in the
ACFS system (Figure 8a) reveal significant compositional
differences between metarodingite types, their associated
metasomatic rims and hosting ultramafic rocks. Type 1
Grand‐metarodingite is the CaO richest (25.7–30.3 wt%)
and SiO2 poorest (34.9–42.2 wt%) metarodingite type.
Compared to Type 1, Type 2 Ep‐metarodingite is CaO
depleted (22.79–24.9 wt%) and SiO2 enriched (43.2–
44.1 wt%) and has similar MgO contents (6.3–6.7 wt%
for both lithologies; Figure 8a). A stronger CaO depletion
(~19 wt%), coupled to MgO enrichment (~9–12 wt%),
characterizes Pyrals‐metarodingite (Figure 8a). Strong
amphibolitization explains the high Na2O contents (up to
1.8 wt%; Table 3) of Pyrals‐metarodingite and some Ep‐
metarodingite samples. All the metasomatic reaction rims
plot at intermediate compositions between those of
metarodingites and host ultramafic rocks. No clear

compositional differences in terms of major elements
exist between Chl‐blackwalls hosted in the Atg‐serpenti-
nite and Chl‐harzburgite domains (Figure 8a).

Systematic differences in terms of bulk Fe3+/FeTotal
ratios exist between the studied lithologies (Figure 8b;
Table 3). The highest values correspond to Grand‐metaro-
dingite (Fe3+/FeTotal = 0.66–0.83) and especially Ep‐metar-
odingite (Fe3+/FeTotal = 0.76–0.89) from the Atg‐
serpentinite domain. Nonamphibolitized Ep‐metarodingite
in Chl‐harzburgite displays values within this range (Fe3+/
FeTotal = 0.78). However, Pyrals‐metarodingite has much
lower Fe3+/FeTotal (0.38–0.48). Amphibolitization of Ep‐
metarodingites was coupled with a decrease in Fe3+/FeTotal
independently of the host (Figure 8b).

Chl‐blackwalls have lower Fe3+/FeTotal than the associ-
ated metarodingites, and Fe3+/FeTotal is higher in Chl‐
blackwalls from the Atg‐serpentinite than from the Chl‐
harzburgite domains (Figure 8b). In contrast, Chl‐Di‐ and
Chl‐Di‐Ol‐ metasomatic rims have Fe3+/FeTotal much
higher than Chl‐blackwalls, similar to values of Atg‐serpen-
tinites. The latter have Fe3+/FeTotal notably higher than
Chl‐harzburgites (Figure 8b), in agreement with the results
of Debret et al. (2015).

4.4 | Chemographic relationships and
metamorphic reactions in metarodingites

The chemographic analysis of metarodingites (Figure 9)
allows the extent of thermodynamic equilibrium achieved
during their metamorphic evolution to be assessed, and
deduction of the reactions that explain the main composi-
tional changes in minerals and bulk‐rocks.

4.4.1 | Grandite‐metarodingite

In the ACFS system, the bulk‐rock compositions of
Grand‐metarodingites plot inside the space defined by
Chl‐Di and Grt‐1 or Grt‐2b or Grt‐3 (Figure 9a). This
indicates that the mineral assemblages of Grand‐metaro-
dingites are in equilibrium. The chemographic relation-
ships between the mineral and bulk‐rock compositions of
these rocks (Figure 9a) reflect: (a) the dominant modal
abundance of garnet compared to chlorite and diopside
(Table 1); (b) the different garnet compositions of Grt‐1,
Grt‐2b and Grt‐3 (Figure 5); and (c) the decrease of the
diopside/chlorite modal ratio accompanied by the change
from Grt‐1 to ‐2b and ‐3. The most primitive bulk com-
position of Grand‐metarodingite plots close to the Grt‐1
—Di tie line and evolved towards the Grt‐2b (or Grt‐3)
—Chl tie line with increasing metamorphic grade (Fig-
ure 9a). This change may have occurred through the
reaction:

  (Al + Fe3+)
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FIGURE 7 Amphibole compositional variation in the A(K+Na)
versus C(Al+Fe3+) plot
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ðGrt-1ÞCa3Al2ðSiO4Þ3ðgrossularÞ þ 5Ca½X�Si2O6ðdiopsideÞ

þ 4H2OðfluidÞ ! ð½X�5AlÞðAlSi3ÞO10ðOHÞ8ðchloriteÞ
þ 10SiO2ðaqÞ þ 8CaOðaqÞ;

(1)

where Grt‐1Grs represents the grossular component in
Grt‐1 and [X] represents the FeMg−1 substitution in
diopside and chlorite. This reaction, and the following
ones, was balanced after the ideal stoichiometric
composition of minerals. At least part of the fluid con-
sumed in Reaction 1 might have come from the break-
down of the katoite component in the primitive
hydrogranditic garnet (Grt‐1) according to the simultane-
ous reaction:

ðGrt-1ÞCa3½Y�2ðSiO4Þ3�xðOHÞ4xðhydrogranditeÞ
þ xSiO2ðaqÞ ! ðGrt-1ÞCa3½Y�2ðSiO4Þ3ðgranditeÞ
þ 2xH2OðfluidÞ;

(2)

where x, with a maximum possible range of 0–3, represents
the SiH-4 substitution in Grt‐1 (ranging between 0.06 and

0.18 in these rocks) and [Y] sums up the octahedral
cations.

During the transformation of Grt‐1 into Grt‐2b or Grt‐3
(Figure 6a,b), the observed decrease in the grossular and
increase in the almandine and andradite contents can be
explained by the breakdown of magnetite according to
reaction:

ðGrt-1ÞCa3Al2ðSiO4Þ3ðgrossularÞ þ 3Fe2þFe3þ2 O4ðmagnetiteÞ

þ 6CaOðaqÞ þ 9SiO2ðaqÞ ! ðGrt-2b-3Þð1� xÞFe2þ3
Al2ðSiO4Þ3ðalmandineÞ þ ðGrt-2b-3Þð3þ xÞCa3Fe3þ2
ðSiO4Þ3ðandraditeÞ þ 3xe�ðelectronsÞ

(3)

where x ranges from 0 to 1. In the case of Grt‐2b x = 0,
thus the amount of almandine is the highest possible one,
and the almandine/andradite ratio (1/3) is similar to that
observed in Grt‐2b (Alm7-13 Adr21-31 mol.%). In the case of
Grt‐3, an oxidizing agent is required to induce the partial
oxidation of Fe2+ from magnetite and x is > 0, (almandine/

TABLE 3 Bulk‐rock analyses of representative samples from the different metarodingite types

Metarodingite type Grandite‐metarodingite
Type 1

Epidote‐metarodingite
Type 2

Amphibolitized epidote‐metarodingite
Type 2

Pyralspite‐metarodingite
Type 3

Host rock Atg‐Serp. Atg‐Serp. Chl‐Harzb. Atg‐Serp. Chl‐Harzb. Chl‐Harzb.
Sample wt% Al14‐64 AL14‐17 AL14‐86 AL14‐26EA AL14‐143 AL 96‐24B
SiO2 35.24 44.13 44.01 40.90 42.13 42.55

Al2O3 16.49 14.57 15.44 17.10 15.42 17.70

TiO2 2.53 1.77 1.51 2.10 1.94 1.98

Fe2O3 tot. 10.01 7.38 7.25 10.65 9.48 8.96

MnO 0.17 0.07 0.09 0.11 0.12 0.14

MgO 6.97 6.37 6.45 7.25 9.17 9.31

CaO 25.72 24.92 24.52 19.5 19.25 17.36

Na2O 0.09 0.20 0.18 1.26 1.21 0.97

K2O 0.020 0.00 0.02 0.59 0.33 0.44

P2O5 0.40 0.2 0.19 0.20 0.24 0.20

LOI 2.31 0.39 0.33 0.34 0.69 0.40

Total 99.95 100.00 99.99 100.00 99.98 100.01

CaO* 24.40 24.27 23.87 18.84 18.46 16.71

FeOtot 9.00 6.64 6.52 9.58 8.53 8.06

FeO** 3.68 1.63 1.92 3.34 4.02 4.97

Fe2O3 5.92 5.56 5.11 6.94 5.02 3.44

Total 99.54 99.81 99.78 99.63 99.53 99.46

A 0.24 0.21 0.21 0.24 0.20 0.21

C 0.26 0.25 0.25 0.20 0.20 0.18

F 0.12 0.08 0.09 0.12 0.14 0.15

S 0.38 0.46 0.46 0.44 0.45 0.46

CaO* = CaO−(3.33 P2O5) apatite Ca correction for pseudosections. FeO** analysed.
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andradite ratio <1/3, Alm2-8 Adr31-53 mol.%). Therefore,
contrary to the transformation of Gr‐1 into Grt‐2, the
growth of Grt‐3 implies an increase in the bulk‐rock Fe3+/
FeTotal ratio.

The increase in the pyrope component of Grt‐2b and
Grt‐3 (up to 7 mol.%) compared to Grt‐1 is consistent with
the diopside‐consuming reaction:

ðGrt-1ÞCa3Al2ðSiO4Þ3ðgrossularÞ þ 3CaMgSi2O6ðdiopsideÞ

! Mg3Al2ðSiO4Þ3ðpyropeÞ þ 6CaOðaqÞ þ 6SiO2ðaqÞ
(4)

The growth of titanite, which coexists with Grt‐2b and
Grt‐3, can be explained by Ti release from Grt‐1 through
the breakdown of the garnet morimotoite component:

ðGrt-1ÞCa3TiFe2þSi3O12ðmorimotoiteÞ
þ ðGrt-1ÞCa3Al2ðSiO4Þ3ðgrossularÞ
þ 4CaMgSi2O6ðdiopsideÞ þ 4H2OðfluidÞ
! ðMg4Fe

2þAlÞðAlSi3ÞO10ðOHÞ8ðclinochlore 80Þ
þ CaSiTiO5ðtitaniteÞ þ 10SiO2ðaqÞ þ 9CaOðaqÞ;

(5)

This reaction contributes to the decrease in the bulk
diopside/chlorite ratio (Figure 9a).

4.4.2 | Epidote‐metarodingite

The bulk‐rock compositions of Ep‐metarodingites from
both the Atg‐serpentinite and Chl‐harzburgite domains plot
very close to the tie line epidote–diopside (Figure 9b),
which are the main minerals in these rocks (Table 1). In
agreement with petrographic observations, these composi-
tions are also in equilibrium with low amounts of Grt‐3
and chlorite (Figure 9b). The transformation of Grand‐
into Ep‐metarodingites likely occurred by several indepen-
dent reactions. The breakdown of grandite garnet (Grt‐1,
Grt‐2b, Grt‐3), which represents ~70 vol.% of Grand‐
metarodingite, may have occurred by the hydration reac-
tion:

ðGrt-1-2b-3Þ3Ca3½Y�2ðSiO4Þ3ðgranditeÞ þ H2OðfluidÞ

! 2Ca2Al2½Y �ðSi2O7ÞðSiO4ÞO(OH)ðepidoteÞ þ 5CaOðaqÞ
þ 3SiO2ðaqÞ

(6)

where [Y] represents the Fe3+Al−1 substitution in the garnet
granditic components and in epidote. The possible maxi-
mum range of [Y] consistent with stoichiometry spans from
[Al1] to [Fe3+0.33 Al0.67].
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FIGURE 8 (a) ACFS diagram (Winkler, 1979) showing the bulk‐rock compositional variation of metarodingites, metasomatic reaction rims
and hosting ultramafic rocks. Squares and circles indicate lithologies in the Atg‐serpentinite and Chl‐harzburgite domains respectively.
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A concomitant reaction should have oxidized Fe2+ in
the almandine component of Grt‐2b and Grt‐3 at water‐
saturated conditions:

ðGrt-2b-3Þ3Fe3Al2ðSiO4Þ3ðalmandineÞ
þ 4Ca2Al3ðSi2O7ÞðSiO4ÞOðOHÞðclinozoisiteÞ þ 10CaOðaqÞ

þ 6SiO2ðaqÞ þ 9OH�
ðaqÞ ! 9Ca2Fe3þ

Al2ðSi2O7ÞðSiO4ÞO(OH)ðepidoteÞ þ 2H2OðfluidÞ þ 3e�ðelectronsÞ:
(7)

The observed breakdown of chlorite and growth of new
diopside may have occurred through reaction:

3ð½X�5AlÞðAlSi3ÞO10ðOHÞ8ðchloriteÞ þ 27SiO2ðaqÞ

þ 19CaOðaqÞ ! 15Ca½X�Si2O6ðdiopsideÞ
þ 2Ca2Al3ðSi2O7ÞðSiO4ÞO(OH)ðclinozoisiteÞ þ 11H2OðfluidÞ;

(8)

where [X] represents the FeMg−1 substitution in chlorite
and diopside.

The relative importance of Reactions 6–8 was controlled
by the different chlorite/garnet ratios in precursor Grand‐
metarodingite, which is richer in Chl towards the Chl‐
blackwall. However, an external source of water and an
oxidizing agent (Reaction 7) must be invoked. Addition-
ally, Ti in grandite‐garnet was fully incorporated into titan-
ite by Reaction 5. This may explain the higher amounts of
titanite in Type 2 Ep‐metarodingites compared to Type 1.

Newly formed magnetite, texturally related to titanite, may
have grown by reaction:

ðGrt-1-2b-3ÞCa3TiFe2þðSiO4Þ3ðmorimotoiteÞ
þ ðGrt-1-2b-3Þ4Ca3ðFe3þAlÞðSiO4Þ3ðgranditeÞ
þ 4OH�

ðaqÞ ! 2Ca2Fe3þAl2ðSi2O7ÞðSiO4ÞOðOHÞðepidoteÞ
þ CaTiO5ðtitaniteÞ þ Fe2þFe3þ2 O4ðmagnetiteÞ þ 10CaOðaqÞ
þ 9SiO2ðaqÞ þ H2OðfluidÞ

(9)

Ep‐metarodingites from the Chl‐harzburgite domain
have small recrystallized grains of Grt‐4 (Figure 4e) with
a particular compositional trend (Figure 5). In Figure 9c,
these garnet compositions span the range between grand-
ite garnet (Grt‐3) and newly formed pyralspite garnet
(Grt‐5) of Type 3 metarodingite. Each of these composi-
tions would set a different position of the Grt‐apex of
the Grt‐Ep‐Di‐Chl tetrahedron that defines the mineral
assemblage of Ep‐metarodingite (Figure 9b). Irrespective
of the location of the Grt‐apex, the bulk‐rock composi-
tions of Ep‐metarodingite plot within this tetrahedron,
and hence, Grt‐4 is in equilibrium with the main mineral
assemblage.

4.4.3 | Pyralspite‐metarodingite

Transformation of Ep‐metarodingite into Pyrals‐metarodin-
gite is marked by the crystallization of both pyralspitic Grt‐
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FIGURE 9 Chemographic
relationships for the different metarodingite
types in the ACFS system. Bulk‐rock
compositions are indicated by stars and
mineral compositions by dots. (a) Grandite‐
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5 and amphibole (Amp‐1; green tetrahedron in Figure 9d).
This metarodingite type is usually very poor in Chl and
bulk composition analyses plot within the Chl‐Ep‐Grt‐5‐
Amp‐1 tetrahedron (Figure 9c).

The growth of Grt‐5 can be explained by the following
simultaneous reactions:

15CaMgSi2O6ðdiopsideÞ þ12Ca2Al3ðSi2O7ÞðSiO4Þ
O(OH)ðclinozoisiteÞ ! ðGrt-5ÞMg3Al2ðSiO4Þ3ðpyropeÞ
þ ðGrt-5Þ13Ca3Al2ðSiO4Þ3ðgrossularÞ þ6H2OðfluidÞ

þ12SiO2ðaqÞ ;

(10)

and

9Ca2Fe3þAl2ðSi2O7ÞðSiO4ÞOðOHÞðepidoteÞ þ 2H2OðfluidÞ

þ 3e�ðelectronsÞ ! ðGrt- 5Þ3Fe3Al2ðSiO4Þ3ðalmandineÞ
þ 4Ca2Al3ðSi2O7ÞðSiO4ÞOðOHÞðzoisite=clinozoisiteÞ
þ 10CaOðaqÞ þ 6SiO2ðaqÞ þ 9OH�

ðaqÞ
(11)

These reactions released fluid, CaO and SiO2. Reac-
tion 11 is the reverse of Reaction 7 and produces the reduc-
tion of Fe3+ in epidote to Fe2+ in almandine. This process
may hence account for the strong drop in Fe3+/FeTotal
between Ep‐metarodingite and Pyrals‐metarodingite
(Figure 8b).

Amphibole possibly formed by the diopside‐consuming
reaction:

4CaMgSi2O6ðdiopsideÞ þMgOðaqÞ þ H2OðfluidÞ ! 2CaOðaqÞ
þ Ca2Mg5Si8O24H2ðtremoliteÞ

(12)

which requires the addition of MgO and the loss of CaO in
the metarodingite bulk chemical system. This compositional
change between Ep‐ and Pyrals‐metarodingites (Figures 8a
and 9c) was probably enhanced by chemical potential gradi-
ents between metarodingites and host Chl‐harzburgite.

4.5 | Thermodynamic modelling

Pseudosections for each metarodingite type have been cal-
culated using Perple_X 6.7.6 (Connolly, 2009) in the sys-
tem NCFMASHTO (Figure 10). According to
chemographic analysis (Figure 9), thermodynamic equilib-
rium was reached in every metarodingite type. The reactive
bulk composition considered in the calculations was
obtained: (a) by subtracting from the bulk rock composition
the amount of CaO in apatite (=3.33*P2O5 wt%), not rele-
vant for the rock′s phase relationships; and (b) by exclud-
ing bulk Na2O contents as Na2O concentrates only in
amphibole (Amp‐2 and Amp‐3) formed during retrograde
metasomatic amphibolitization and was not involved in the

prograde metamorphic path of the rocks. We used the inter-
nally consistent thermodynamic database of Holland and
Powell (1998, revised version of 2002) and the following
solid solution models: orthopyroxene, clinopyroxene (Hol-
land & Powell, 1996); olivine, spinel, saphirine, staurolite,
chloritoid (Holland & Powell, 1998); chlorite (Holland,
Blanford, & Stein, 1998); epidote (Holland & Powell,
2011); antigorite (Padrón‐Navarta et al., 2013); amphibole
(Dale, Holland, & Powell, 2000); garnet (White, Powell, &
Holland, 2007); magnetite ulvospinel (Andersen & Linds-
ley, 1988); plagioclase (Newton & Haselton, 1981);
pumpellyite (Massonne & Willner, 2008). Ideal solution
models were adopted for talc, brucite, anthophyllite, wus-
tite, ilmenite, clinohumite, carpholite and sudoite. Zoisite
was considered as a pure phase. The CORK equation of
state for H2O–CO2 fluids (Holland & Powell, 1998) was
used, although fluids have been considered pure H2O.

The lack of suitable solid solution models may explain
some inconsistencies between the observed and predicted
phase compositions. This is especially the case of garnet,
whose solution model does not consider H2O‐ and Ti‐rich
end‐members (Ca3Al2OH12 and Ca3[TiFe

2+]Si3O12, respec-
tively). Thus, excess Ti in the form of low amounts
(<4 vol.%) of ilmenite—not always observed in the rocks
—is commonly predicted by the calculations (e.g., ilm in
the blue‐labelled fields in Figure 10a). Moreover, the
exclusion from calculations of the CaO contents of these
end‐members results in an overestimation (<10 mol.%) of
the calculated amounts of the grossular component.

4.5.1 | Grandite‐metarodingite

The P–T pseudosection for a representative Type 1 Grand‐
metarodingite (Al14‐64 without Na2O component; Table 3) is
shown in Figure 10a. The assemblage observed in this rock
(Grt+Chl+Ttn, labelled in blue) is stable at temperatures and
pressures of 560–675°C and 9–20 kbar, respectively. These
conditions are constrained by the stability of epidote at low‐P
and low‐T, rutile at high‐P, and clinopyroxene at low‐P and
high‐T, which are not present in this rock. The calculated com-
position of garnet (Grs62-64 Adr22-33 Pyrals13-16) matches that
of Grt‐2b (Table 2; Figure 5), and the modal amounts of min-
erals (70–74 vol.% Grt; 23 vol.% Chl; 4 vol.% Ttn) are also
consistent with those of the rock (Table 1).

Grossular‐rich and pyralspite‐poor garnet, similar to
Grt‐1, is stable at <7 kbar and 200–400°C and coexists
with clinopyroxene, chlorite, magnetite, and titanite (Fig-
ure 10a, green label), coinciding with the observed assem-
blage in equilibrium with Grt‐1. Epidote, however, is also
predicted in this field (7–8 vol.%), but this mineral did not
crystallize in Type 1 metarodingite. Moreover, no garnet
composition equivalent to Grt‐3 is predicted to be stable in
the whole P–T field of this pseudosection.
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Besides pressure and temperature, oxygen fugacity
should also have changed during the metamorphic evolu-
tion of Grand‐metarodingite, as evidenced by the variation
in the bulk‐rock Fe3+/FeTotal ratio produced by the crystal-
lization of Grt‐3 (Reaction 3). Isobaric T versus log fO2

pseudosections for the same Grand‐metarodingite sample
calculated at different pressures (Figure 10b,c) show that
the original rodingitic assemblage (Grt+Chl+Cpx+Ma-
g+Ilm) and the observed composition of Grt‐1 (Grs64-84
Adr5-19 Pyrals 0-3) are stable at 2 kbar, 150–325°C and log
fO2 ranging from −55 to −35, equivalent to the fayalite–
magnetite–quartz redox buffer (FMQ) ranging from −2 to
+3 (Figure 10b). These fO2 conditions are well constrained
by the calculated Grt‐1 composition and the lack of epi-
dote, olivine, and vesuvianite in the observed mineral
assemblage.

Grt‐2b is stable at a minimum pressure of 10 kbar. At
this pressure, the typical assemblage (Grt+Chl±Cpx+Ttn
(+Ilm)) coexisting with Grt‐2b is stable at 350–650°C and
log fO2 of −25 to −15, equivalent to FMQ ranging from
−1 to + 3 (Figure 10c). At these conditions, the model pre-
dicts several petrographic and compositional features of
Type‐1 Grand‐metarodingite, such as the stability of titan-
ite, the lack of magnetite, the progressive decrease of diop-
side abundance, and the composition of garnet (Grs65-70
Adr20-30 Pyrals12), which is very similar to that of Grt‐2b
(Grs42-61 Adr21-31 Pyrals10-13). At 10 kbar, epidote‐bearing
assemblages with garnet compositions (Grs<60 Adr>30 Pyr-
als<10) equivalent to those of Grt‐3 are stable at log fO2 >
−19, over and above the magnetite‐hematite redox buffer
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FIGURE 10 P–T‐log fO2 constraints from thermodynamic
modelling using Perple_X for Type 1 Grand‐metarodingite (sample
Al14‐64 bulk‐rock composition; Table 3). (a) P–T pseudosection. The
blue‐labelled assemblages are those observed in the rock. At these
conditions, the Grt‐2b composition is stable, as indicated by isopleths
(dashed lines) for the grossular, andradite and pyralspite
(pyrope+almandine+spessartine) garnet end‐members. Grt‐1
composition is stable at lower P–T conditions (green‐labelled
assemblage), where it coexists with epidote (absent in the rock). (b)
T‐log fO2 pseudosection at 2 kbar. Grt‐1 composition and the observed
coexisting mineral assemblage are stable in the green‐labelled field up
to ~325°C. Stability of this assemblage is limited by that of olivine
and vesuvianite at low log fO2 conditions and by stability of epidote at
high log fO2. (c) T-log fO2 pseudosection at 10 kbar. Grt‐2b
composition (pyralspite >10 mol.%) and the observed coexisting
mineral assemblage are stable in the blue‐labelled fields at >400°C
and log fO2 >−25. Grt‐3 composition (andradite >30 mol.%) and the
observed coexisting mineral assemblage (including up to 16 vol.%
epidote) are stable in the yellow‐labelled fields at >550°C and log fO2

> −15. Thick red and purple lines show the conditions of FMQ and
MH buffers of oxygen fugacity respectively. Stable assemblages in the
numbered fields are shown in Table S2
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(MH), and between 525°C (below which rutile is stable)
and 675°C (above which spinel is stable; Figure 10c). The
maximum pressure at which grandite‐garnet‐bearing assem-
blages are stable cannot be constrained by isobaric T versus
log fO2 phase diagrams.

4.5.2 | Epidote‐metarodingite

The thermodynamic model shown in Figure 10c predicts
the stability of the mineral assemblages of Ep‐metarodin-
gite (yellow‐labelled fields), but the calculated modal pro-
portions (4–16 vol.% epidote and 2–4 vol.% clinopyroxene)
strongly differ from the real ones (~50–55 vol.% epidote
and ~35–40 vol.% clinopyroxene). Thus, increasing oxygen
fugacity alone (log fO2 = −20 to −5) cannot explain the
complete transformation of Grand‐metarodingite into Ep‐
metarodingite. Bulk compositional differences between
these metarodingite types (Figure 8a) and Reactions 6 and
8 instead support that the chemical potentials of SiO2

(μSiO2) and CaO (μCaO) acted, together with pressure,

temperature and fO2, as independent thermodynamic vari-
ables during this transformation (Figure 11a).

To investigate this hypothesis, a μSiO2–μCaO pseudo-
section was calculated for the same Grand‐metarodingite
bulk composition (Al14‐64; Table 3) at H2O‐saturated
conditions for 16 kbar and 625°C (Figure 11a). These P–
T values are consistent with the stability conditions of
Grt‐2b in Grand‐metarodingites (blue‐labelled fields in
Figure 10a), which form boudins partially transformed
into Ep‐metarodingite in the Atg‐serpentinite domain (Fig-
ure 2d). Fields labelled in red and yellow in Figure 11a
match very well the assemblages of Grand‐ (Grt‐2b‐Chl‐
Ttn) and Ep‐ (Ep‐Cpx‐Ttn‐Grt‐3) metarodingites respec-
tively. The predicted garnet compositions, indicated by
isopleths (Grs65 Adr25 Pyrals10 for Grt‐2b and Grs50-60
Adr33 Pyrals10-20 for Grt‐3), are also consistent with those
of the rocks (Figure 5). Transformation from Grand‐ to
Ep‐metarodingites was thus enhanced by decreasing μCaO
(−708 to −725 kJ/mol) and increasing μSiO2 (−884 to
−860 kJ/mol) values. Moreover, the bulk‐rock

80

70

60

50

30

20
10

0

20

30

30

40

405060

20

10

10

20

30

40

50

60

70

80

90

Chl Ilm Mag Rt Crn

Grt Cpx Ttn 

Ep Chl Ilm Mag Grt Rt

Grt Cpx 
Ves Ttn 

–891

–884

–877

–871

–864

–857

  –726          –719           –711            –704           –696  
μCAO (KJ/mol) 

μS
IO

2 
(K

J/
m

ol
)

1
2

3

4 5

6 7
8

9
10
11

1213

14
16

17

18

19

20
21

22
23 24

P (kbar) =16 
T (ºC) = 625 

60

45

40

45

30

25

20

15

10

5

30

25

20

15

10

50

50

45

40

55

60

65

   Chl Grt 
Cpx Zo 
Ttn

Zo G
rt C

px
 Ttn

Ep Cpx Ttn Grt Qz

 –20     –19    –18    –17     –16     –15     –14     –13     –12
log fO2

T 
(º

C
)

475

500

525

550

575

600

625

650

675

700

725

P (kbar) =16 (a)

Grt Chl Ttn

Grt Ttn Chl Ilm

Ep Cpx Ttn Grt

Grossular
Andradite
Pyralspite

Grossular
Andradite
Pyralspite

Ep Chl Mag Grt Rt
40

Chl Mag Grt Rt Crn Hem 
Ep Grt Chl Ttn

Ep C
px

 C
hl 

Ttn 
Grt 

Ep Cpx T
tn Grt  

(b)

FM
Q

MH

Ep G
rt C

px Z
o Ttn

FIGURE 11 Thermodynamic modelling using Perple_X for constraining the transition from Type 1 to Type 2 metarodingites and for the
stability conditions of Type 2, Ep‐metarodingite. (a) μSiO2‐μCaO pseudosection for the bulk‐rock composition of a Grand‐metarodingite sample
(Al14‐64; Table 3) at constant 16 kbar and 625°C and H2O saturation conditions. It reproduces the transition from Grand‐metarodingite to Ep‐
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lines) are those of Grand‐metarodingite with Grt‐2b. Transition to the typical mineralogy of Ep‐metarodingite (yellow‐labelled fields) and stable
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highest grossular‐andradite contents. Thick red and purple lines show the conditions of FMQ and MH buffers of oxygen fugacity respectively.
Stable assemblages in the numbered fields are shown in Table S2
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composition predicted for Ep‐metarodingite at the stability
conditions marked by the yellow star in Figure 11a (i.e.,
those corresponding to the observed composition of Grt‐3)
compares very well with the composition of a real Ep‐
metarodingite (sample Al14‐17; Table 3) from the Atg‐
serpentinite domain.

The possible influence of fO2 in the stability of Ep‐
metarodingite assemblages is represented in an isobaric T
versus fO2 pseudosection (Figure 11b) for the bulk compo-
sition of sample Al14‐17 (Table 3). As Ep‐metarodingite
bodies with identical mineral assemblages occur both in
Atg‐serpentinite and Chl‐harzburgite domains, the pressure
for modelling (16 kbar) was chosen in agreement with the
minimum pressure at which the assemblages of both Atg‐
serpentinite and Chl‐harzburgite equilibrated (Padrón‐
Navarta et al., 2012). In Ep‐metarodingite, the stability
conditions of the assemblage Ep+Cpx+Ttn+Grt (in yellow;
Figure 11b) span from 475 to 700°C for a wide range of
log fO2 between −20 and −13.2, equivalent to MH ranging
from −2 to −1. Within this field, isopleths indicate that
Grt‐4 (Figure 5) with composition Grs50-55 Adr15-20 Pyr-
als25-30 is stable at >650°C and log fO2 = −15 to −13
(yellow star in Figure 11b). Modal proportions within this
field (32–42 vol.% epidote, 47–53 vol.% clinopyroxene,
2 vol.% garnet, 4 vol.% titanite) also match those of Type
2 Ep‐metarodingite. These results demonstrate that Grt‐4‐
bearing assemblages in Ep‐metarodingite formed at temper-
atures within the Chl‐harzburgite stability field and beyond
Atg breakdown in serpentinite.

4.5.3 | Pyralspite‐metarodingite

Phase relations show that neither Grt‐5 nor tremolite‐rich
amphibole, both typical of Pyrals‐metarodingite, are stable
at conditions modelled in the pseudosection of Figure 11b.
The compositional differences between Type 2 and Type 3
metarodingites (Figure 8a) and metamorphic reactions 10–
12 support that the chemical potentials of MgO (μMgO)
and CaO (μCaO) were independent thermodynamic vari-
ables, jointly with pressure, temperature and fO2, during
the transformation of Ep‐metarodingite into Pyrals‐metaro-
dingite. Another important observation is that a significant
chemical transfer between the metarodingites and the ultra-
mafic host is indeed observed in the complex sequence of
the metasomatic reaction rims that equally attest for spatial
(and temporal) variations in μMgO and μCaO. This varia-
tion in chemical potentials along cm‐ to m‐scale reflects
the time‐dependent (diffusional) process of reequilibration
between the two contrasting bulk chemical compositions
(mafic and ultramafic in origin) induced by fluid‐mediated
dissolution‐precipitation processes. This process allows the
relaxation of the initial stepped chemical potential gradients
by effective chemical diffusion (by advection in the

aqueous fluid) thus justifying the use of μMgO and μCaO
as independent thermodynamic variables.

We thus calculated a μMgO–μCaO pseudosection (Fig-
ure 12a) for the Ep‐metarodingite bulk composition corre-
sponding to the yellow star in Figure 11b, that is, at
16 kbar and 660°C, (i.e., well within the stability field of
Chl‐harzburgite), log fO2 = −14.5 and H2O saturation
conditions.

Fields labelled in yellow and blue colours match very
well the assemblages of Ep‐(Ep+Cpx+Ttn+Grt; hosted in
Chl‐harzburgite) and Pyrals‐(Ep+Chl+Amp+Grt+Cpx+Rt)
metarodingites, respectively (Figure 12a). The μCaO and
μMgO values corresponding to the yellow star are those
established by Perple_X for the stability conditions of Grt‐
4 (yellow star in Figure 11b). The predicted garnet compo-
sitions (indicated by isopleths) in each field are also consis-
tent with those of the corresponding rock type and in
particular with the decrease in the andradite and grossular
end‐members and increase of pyralspitic from Grt‐4 (Grs35-
52 Adr5-20 Prp6-23 Alm13-30 Sps3-10) in Ep‐metarodingite to
Grt‐5 (Grs17-35 Adr2-7 Prp10-30 Alm35-50 Sps1-10) in Pyrals‐
metarodingite. Therefore, as indicated by the white arrow
in Figure 12a, the transformation from Type 2 into Type 3
metarodingites was enhanced by decreasing μCaO (−726
to −735 kJ/mol) and increasing μMgO (−630 to −626 kJ/
mol). Additionally, the predicted bulk‐rock composition of
Pyrals‐metarodingite at the conditions marked by the blue
star in Figure 12a compares well with that of the Pyrals‐
metarodingite sample Al96‐24B (Table 3). The only minor
discrepancies in Al2O3 and MgO may be due to the incom-
plete removal of chlorite‐rich zones during the preparation
of this sample.

Figure 12b shows a P–T pseudosection for a representa-
tive Type 3 Pyrals‐metarodingite (Al96‐24B; Table 3). The
mineral assemblages of Pyrals‐metarodingite are stable at
635–740°C and 7–18.5 kbar (blue labels in Figure 12b). The
main difference between the observed (Ep+Amp+
Grt+Rt+Chl) and predicted (Ep+Amp+Grt+Rt+Chl+Cpx)
mineral assemblages consists in the expected stability of Cpx
(<5 vol.%) at >660°C. Although not present in all Pyrals‐
metarodingites, relicts of diopside have been detected in some
of these samples. Zoisite is observed in the studied rocks, but
the model predicts that this phase is stable at lower pressures
than those corresponding to the actual garnet compositions
(Figure 12b). However, the relative stability of epidote and
zoisite is highly conditioned by slight shifts of oxygen fugac-
ity, and we cannot exclude that the analysed Fe3+/FeTotal ratio
used in calculations was affected by late amphibolitization.

Garnet isopleths constrain the conditions of formation of
Grt‐5 almandine‐rich cores (Alm48-49 Prp17-18 Grs26-28) in
Type 3 Pyrals‐metarodingites at 640–650°C and 11–16 kbar
(Figure 12b), whereas pyrope‐richer rims (Alm37-42 Prp22-30
Grs27-30) formed at 660–684°C and 15.5–18.5 kbar. The
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latter conditions set the peak pressure and temperature for
the prograde evolution of metarodingites at Cerro del
Almirez.

Precise oxygen fugacity conditions for Pyrals‐metarodin-
gite could not be independently determined. However, a log
fO2 value of −14.84 was assumed for the pseudoseccion of
Figure 12a after the stability conditions deduced for Ep‐
metarodingite in Chl‐harzburgite (yellow star in Figure 11b).
At this log fO2 value, the stability conditions of the Pyrals‐
metarodingite assemblages can also be deduced (blue fields
in Figure 12a), and thus, it is assumed that these oxygen
fugacity conditions are valid for these rocks.

5 | DISCUSSION

The Cerro del Almirez metarodingites underwent a com-
plex tectono‐metamorphic evolution including peak

metamorphism at eclogite facies conditions. The deduced
P–T path has been summarized in Figure 13, in which the
different transformation stages of metarodingites were
superposed on a representative pseudosection for the
enclosing serpentinites. Variation in the amount of H2O
coexisting with the serpentinite and Chl‐harzburgite stable
assemblages and their possible correlation with metamor-
phic changes in the hosted metarodingites are also shown
(see discussion below).

5.1 | Seafloor origin of rodingites

Rodingitic metastable assemblages are preserved in the less
deformed Grand‐metarodingites (Figure 2a). Despite the
lack of relicts of igneous rocks, an igneous mafic protolith
of metarodingites is indicated by: (a) preserved igneous
porphyritic textures (Figure 4a,c); (b) garnet pseudomorphs
after plagioclase (Figure 4a; similar to those reported by
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FIGURE 12 Thermodynamic modelling using Perple_X for constraining the transition from Type 2 to Type 3 metarodingites and the stability
conditions of Type 3 Pyrals‐metarodingite. a) μMgO‐μCaO pseudosection at constant 16 kbar, 660°C and H2O saturation conditions for the Ep‐
metarodingite bulk‐rock composition and log fO2 value estimated by Perple_X for the yellow star in Figure 11b (SiO2 = 44.52; TiO2 = 1.79;
Al2O3 = 14.70; O2 = 0.36; FeO = 6.70; MnO = 0.07 wt%). This model reproduces the transition from Ep‐metarodingite (yellow‐labelled
assemblages) to Pyrals‐metarodingite (blue‐labelled assemblages). μCaO and μMgO values marked by the yellow star correspond to those of the
yellow star in Figure 11b. At these conditions, the calculated garnet composition matches that of Grt‐4 grains from Ep‐metarodingites hosted in
Chl‐harzburgites with the lowest almandine, pyrope and the highest grossular contents. Change in garnet composition along the white arrow
matches the observed compositional range of Grt‐4 (Figure 5). Transition to the typical mineralogy of Pyrals‐metarodingite (blue‐labelled fields)
and the stable Grt‐5 composition (blue star) is enhanced by μCaO decrease and μMgO increase. The predicted bulk‐rock composition at the blue
star conditions (SiO2 = 43.6; TiO2 = 1.75; Al2O3 = 14.4; O2 = 0.35; FeO = 6.56; MnO = 0.07; CaO = 17.80; MgO = 12.37; H2O = 2.89 wt%)
compares well with the analysed composition of a Pyrals‐metarodingite from the Chl‐harzburgite domain (sample Al96‐24B; Table 3). (b) P–T
pseudosection for Type 3 Pyralspite‐metarodingite at H2O saturation conditions (sample Al96‐24A bulk‐rock composition excluding Na2O;
Table 3). The blue‐labelled assemblages are those observed in the rock. Garnet isopleths (dashed lines) constrain the stability conditions for the
Grt‐5 cores and rims (blue shaded areas). Peak P–T conditions were reached by rims at 660–684°C and 15.5–18.5 kbar. Stable assemblages in the
numbered fields are shown in Table S2
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Frost et al., 2008), of diopside (with exsolved inclusions of
magnetite and ilmenite) after clinopyroxene (see also Fer-
rando et al., 2010) and of Chl+Di+Mag+Ilm after olivine
(e.g., Früh‐Green et al., 2003); and (c) the presence of Cr‐
rich magnetite, coexisting with Grt‐1, possibly derived
from igneous Cr‐spinel.

Metarodingites in Cerro del Almirez are associated with
Atg‐serpentinites or their dehydration products, that is, Chl‐
harzburgites (Figure 1b). Rodingitization of igneous mafic
rocks is always simultaneous with serpentinization of host
peridotites (Coleman, 1963; O'Hanley, 1996). Rodingites
are typically considered to form by Ca‐metasomatism at
low SiO2 activities at the seafloor (Bach & Klein, 2009;
Coleman, 1967; Frost, 1975; O'Hanley et al., 1992;
Schandl et al., 1990). The Cerro del Almirez ultramafic
rocks were originally serpentinized at ~200°C at the sea-
floor (Alt et al., 2012; Marchesi et al., 2013). Simultaneous
rodingitization of mafic rocks is indicated by the low tem-
perature (150–325°C) and low pressure (2 kbar) calculated
for the stability of the most primitive assemblage preserved
in Grand‐metarodingite (Grt‐1+Chl+Cpx+Mag+Ilm,

Figure 10b). Indeed, the assemblage Hgr+Clc+Di is typical
of current seafloor rodingites (Frost et al., 2008; Früh‐
Green, Plas, & Dell'Angelo, 1996). Moreover, these P–T
conditions are similar to those estimated by O'Hanley et al.
(1992) (~300°C, <800 bar) and Frost et al. (2008)
(~350°C, 0.4–1 kbar) for modern rodingitization at the sea-
floor, and with those calculated by Bach and Klein (2009)
(200–300°C at 500 bar) for gabbro rodingitization by fluids
related to serpentinization of host peridotites. Furthermore,
the amounts of garnet (63–65 wt%), chlorite (18–23 wt%),
and clinopyroxene (6–18 wt%) calculated for rodingites
formed at 300°C (Bach & Klein, 2009; their fig. 10) match
our results at 100–325°C (Figure 10b, green‐labelled field):
64–70 wt% garnet, 18–19 wt% chlorite, and 6–8 wt% diop-
side. Moreover, when the latter data are expressed as vol.%
(61–65% garnet, 20–24% chlorite, 6–9.5% diopside), they
also match very well the observed modal amounts in
Grand‐metarodingite (Table 1): 66% garnet, 23% chlorite,
6.5% diopside.

The low log fO2 calculated for the primitive rodingite
assemblage (log fO2 = −55 to −35, above FMQ ranging

FIGURE 13 Summary of the proposed P–T path for the Cerro del Almirez metarodingites superposed on a P–T pseudosection calculated for
a representative Atg‐serpentinite. Background colours (see chart) show increasing H2O amounts released with temperature due to prograde
dehydration reactions. The stability limits of chrysotile and lizardite are taken from Evans (2004). Numbers in the white squares mark the
approximate formation conditions for the different garnet generations and metarodingite types shown in the sketch diagrams below: 1:
Rodingitization; 2: Probable Grt‐2a formation conditions during chrysotile‐lizardite breakdown; 3: Grt‐2b formation; 4: Grt‐3 formation during
brucite breakdown; 5: Growth of Ep‐metarodingite due to progressive Atg breakdown; 6: Complete Ep‐metarodingite transformation; 7: Growth of
Grt‐5 rim; 8: Retrograde amphibolitization. Orange stars represent the estimated stability conditions of different rodingites and metarodingites in
literature that are shown for comparison. 1: Cima di Gagnone (Cannaò, Agostini, Scambelluri, Tonarini, & Godard, 2015; Evans & Trommsdorff,
1978; Evans et al., 1979), 2: Zermat Saas (Barnicoat & Fry, 1986; Ferrando et al., 2010; Li et al., 2004; Zanoni et al., 2016), 3: Meliatic Bôrka
Nappe (Li, Putiš, Yang, Koppa, & Dyda, 2014), 4: Kamuikotan Tectonic Belt (Banno, 1986; Katoh & Niida, 1983), 5: Tianshan (Li et al., 2007),
6: Cape San Martín (Franciscan Complex; Coleman, 1967; Ernst, 2011; Terabayashi & Maruyama, 1998), 7: Val Malenco (Berger & Bousquet,
2008; Puschnig, 2002), 8 and 11: JM Asbestos mine (Normand & Williams‐Jones, 2007), 9: Abitibi belt (Schandl et al., 1989), 10: Bou Azzer
(Leblanc & Lbouabi, 1988), 12: Appalachian Piedmont (Mittwede & Schandl, 1992), 13: Cassiar (O'Hanley et al.,1992), 14 and 15: Mid Atlantic
ridge (Frost et al., 2008; Honnorez & Kirst, 1975), 16: Paddy‐Go‐Easy Pass (Frost, 1975)
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from +2 to +3, Figure 10b) supports rodingitization occur-
ring simultaneously with serpentinization at very reducing
conditions (Charlou, Donval, Fouquet, Jean‐Baptiste, &
Holm, 2002; Frost & Beard, 2007; Frost, Evans, Swapp,
Beard, & Mothersole, 2013; Frost et al., 2008). The com-
position of Grt‐1 (Grs64-84 Adr5-19 Prp0-1 Alm0-3 Sps0-1 Ti‐
Grt2-11 Kat1-5) is similar to that of hydrogrossular garnet in
seafloor rodingites, but with lower katoite amounts (13–
16 mol.%; Frost et al., 2008; Rossman & Aines, 1991).
This depletion in water probably reflects the progressive
dehydration of Grt‐1 by Reaction 2 and constitutes the first
subduction‐related compositional change in garnet after
seafloor rodingitization.

Garnet similar to Grt‐1 occurs in metarodingites equili-
brated at subgreenschist to greenschist facies (Boev, Mir-
covski, & Korikovski, 1999; Koutsovitis et al., 2013;
Mittwede & Schandl, 1992; O'Hanley et al., 1992; Perraki
et al., 2010; Pomonis, Tsikouras, Karipi, & Hatzipana-
giotou, 2008; Schandl et al., 1989; Tsikouras, Karipi, &
Hatzipanagiotou, 2013). It is also preserved in metarodin-
gites that reached eclogite facies conditions (Crossley,
Evans, Reddy, & Lester, 2017; Ferrando et al., 2010; Li et
al., 2008).

For the Cerro del Almirez metarodingites, complete
rodingitization at the seafloor is supported by: (a) the lack
of relict igneous protoliths or intermediate assemblages in
the inner parts of the bodies; and (b) the widespread occur-
rence of the rodingitic assemblage (Grt‐1+Chl+Cpx+
Mag+Ilm) in Grand‐metarodingite bodies.

5.2 | Subduction evolution of metarodingites
before the antigorite breakdown in host
serpentinites

5.2.1 | Type 1 grandite‐metarodingite

After rodingitization at the seafloor, mineralogical changes
in metarodingites were mainly driven by subduction‐
related, prograde metamorphic reactions and by interaction
with fluids derived from dehydration and redox reactions
in the host Atg‐serpentinite (Figure 13; stages 2–4). From
~150 to 325°C, depending on pressure, the early assem-
blage Grt‐1+Chl+Cpx+Mag+Ilm was stable at log fO2

conditions corresponding to the FMQ‐buffer and andradite
contents progressively increased in garnet (Figure 10b).
The maximum pressure of stability of Grt‐1 cannot be pre-
cisely constrained but must be lower than 10 kbar, as sup-
ported by the higher amounts of pyralspite components
calculated at this pressure (5–10 mol.%, blue isopleths in
Figure 10c) compared to those in Grt‐1 (<3 mol.%
pyralspite).

In the first set of veins that cut Grand‐metarodingites,
scarce garnet grains occur (Grt‐2a; Figure 6a,b) with high

andradite (24–20 mol.%) and low pyralspite (3–4 mol.%;
green dots in Figure 5). The thermodynamic model predicts
that similar andradite‐rich compositions are stable at
>300°C and log fO2 = −30 to −23, inbetween that of FMQ
and MH (Figure 10b) and coexist with phases (epidote and
spinel) that are not observed in Grand‐metarodingite. We
thus suggest that Grt‐2a crystallized during an episodic flux
of oxidizing fluids that were not buffered by the metarodin-
gite mineral assemblage. Therefore, Grt‐2a was not in equi-
librium with the bulk‐rock composition and cannot be
reproduced by thermodynamic models. Such oxidizing flu-
ids may have been released by the transformation of lizar-
dite to antigorite, concomitant with a decrease in the
magnetite modal amount, at 300–325°C (Debret et al.,
2015) in host serpentinites. This process has been reported
in several Alpine serpentinite localities (Debret et al., 2014)
and might be the reason for the ubiquitous formation of gar-
net similar to Grt‐2a in low to medium grade metarodingite
outcrops (Dubinska, 1995; Hatzipanagiotou & Tsikouras,
2001; Koutsovitis et al., 2013; Mittwede & Schandl, 1992).

Grt‐2b is the main component of the first vein genera-
tion (Figure 6a,b) and also occurs in chlorite‐rich and diop-
side‐poor domains of the matrix or as thin rims
surrounding Grt‐1. Grt‐2b is calculated to be stable with
chlorite and titanite at significantly higher temperature
(560–675°C) and pressure conditions (9–20 kbar) than Grt‐
1 (Figure 10a). However, at oxygen fugacity above FMQ
buffer, this assemblage can be stable at temperatures as
low as 350°C (Figure 10c).

The change from the assemblage Grt‐1+Chl+Cpx+
Mag+Ilm to the assemblage Grt‐2b+Chl+Ttn reflects the
simultaneous development of a set of prograde metamor-
phic reactions in Grand‐metarodingites: Grt‐1 partially
broke down and dehydrated (Reaction 2), reacted with
magnetite (that almost disappeared) producing the alman-
dine and andradite components of Grt‐2b (Reaction 3) and
released Ti from the morimotoite component producing sig-
nificant amounts of titanite (Reaction 5). Reactions 1 and 5
consumed diopside and may thus explain its lack in the
Grt‐2b‐bearing domains of Grand‐metarodingites.

The Grt‐2b+Chl+Ttn assemblage was stable at higher
log fO2 conditions (between the FMQ and MH buffers)
compared to Grt‐1‐bearing assemblages, probably owing to
the release of water by Reaction 2 (Figure 10c). In this dia-
gram, vesuvianite is expected to be stable at buffered FMQ
conditions and temperatures above 550°C. This might
explain the presence of this phase in other metarodingites
equilibrated at high temperature and pressure (e.g., Li et
al., 2004, 2008; Zanoni et al., 2016). In the case of metaro-
dingites from Cerro del Almirez, log fO2 remained buffered
at higher values by the rock mineral assemblage, as evi-
denced by the parallel orientation of the assemblage stabil-
ity fields to the oxygen buffers (Figure 10c).
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Granditic garnet with significant pyralspite contents, as
is the case of Grt‐2b (up to 16 mol.%), has been reported
in other high‐P metarodingites (Evans et al., 1979; Fer-
rando et al., 2010; their Type II and Type IV veins; Cross-
ley et al., 2017). Isopleths from Figure 10a demonstrate
that the amount of the garnet pyralspite component in the
metarodingite system increases with pressure and tempera-
ture, allowing the stability conditions of the Grt‐2b‐bearing
assemblage to be constrained.

Grt‐3 is the main component of the second vein genera-
tion and also rims previous garnet (Figure 6a,b). The Grt‐3
composition cannot be reproduced in the P–T pseudosec-
tion from Figure 10a suggesting that it was not buffered by
the mineral assemblage, but from external fluids that
induced changes in oxygen fugacity. However, T‐log fO2

calculations are not precise enough in constraining the con-
ditions of Grt‐3 formation (Figure 10c). As textural rela-
tionships indicate that Grt‐3 formed after Grt‐2b, the
minimum pressure of its stabilization can be fixed at
10 kbar. Considering the garnet isopleths and the limiting
stability of rutile, the temperature of Grt‐3 crystallization
was >525°C at log fO2 >−19, over and above that of MH
(Figure 10c, yellow‐labelled fields). At these conditions,
the thermodynamic model predicts the presence of small
amounts of coexisting epidote that are also observed in
some veins.

High fO2 conditions during the formation of Grt‐3 were
possibly induced by the release of oxidizing fluids due to
magnetite destabilization during brucite breakdown in host
serpentinite or even during the progressive decrease in the
antigorite amount in serpentinites between 550 and 650°C,
at 20 kbar, as observed in experimental determinations
(Merkulova, Muñoz, Vidal, & Brunet, 2016; Merkulova et
al., 2017). In the Cerro del Almirez Atg‐serpentinites, bru-
cite breakdown occurred at 10 kbar and ~475°C (López‐
Sánchez‐Vizcaíno et al., 2005, 2009; Padrón‐Navarta et al.,
2012). Accordingly, Grt‐3 veins might have formed in a
wide temperature range between ~475 and 625°C in
Grand‐metarodingite (Figure 13; stage 4). Discrepancy with
the mineral assemblages in Figure 10c can be explained by
the lack of complete thermodynamic equilibrium between
the metarodingite mineral assemblages and the external
oxidizing fluids that fluxed through them.

Andradite‐rich garnet similar to Grt‐3 was reported by
Li et al. (2004, 2008) and Ferrando et al. (2010; their veins
V). In the former case, a distinct and continuous change in
fO2 is invoked that progressed from ocean‐floor metamor-
phism to initial burial and then subduction (Li et al., 2004).

Thin veinlets with Grt‐2b composition cut Grt‐3 veins
(white stars in Figure 6a,b) and they may record the stop
in the percolation of oxidizing fluids and the restoration of
fO2 conditions buffered by the rock mineral assemblage.
Alternation of andradite‐rich (equivalent to our Grt‐3) and

andradite‐poor (equivalent to our Grt‐2b) garnet generations
was also described by Ferrando et al. (2010), but they did
not explore the potential reasons for it.

Grt‐3 with the highest andradite contents (up to
53 mol.%) is also in equilibrium within Ep‐metarodingites
close to the Atg‐serpentinite dehydration front. This indi-
cates that oxidizing conditions finally stabilized at log fO2

>−20, over and above that of MH (Figure 11b) at P–T
conditions close to those of Atg breakdown (~650°C and
16–19 kbar, Padrón‐Navarta et al., 2012).

5.2.2 | Grandite‐ to epidote‐metarodingite
transformation

The formation of Ep‐metarodingite after Grand‐metarodin-
gite at Cerro del Almirez was the result of the growth of
epidote after the hydration (Reaction 6) and oxidation
(Reaction 7) of grandite garnet and of the growth of diop-
side after chlorite breakdown (Reaction 8). This partial or
total transformation was driven by the increase of μSiO2

and the drop of μCaO at H2O‐saturated and high fO2 con-
ditions (Figure 11a). The gradients of chemical potentials
during metamorphism were controlled by the strong com-
positional differences between the CaO‐rich Grand‐metaro-
dingites and their MgO‐ and SiO2‐richer host rocks,
including the diopside‐bearing metasomatic rims. The
extent of transformation of Grand‐metarodingite bodies
within the Atg‐serpentinite domain is very variable. In most
cases, transformation was only incipient (Figure 2a). At the
thin section scale, millimetre to centimetre square‐sized
domains can be found that display the complete transition
between the garnet‐bearing assemblages and those consist-
ing of epidote–diopside–titanite and minor amounts of Grt‐
3 (Figure S2), as reproduced by the path (white arrow) in
the calculated pseudosection from Figure 11a.

Transformation to homogeneous Ep‐metarodingite is
well developed only in some boudins close to the dehydra-
tion front (Figure 2d), thus indicating that, in this region,
the physicochemical conditions were more favourable to
the change. In this case, mineral modes indicate that Reac-
tions 6–8 completely consumed garnet and chlorite. During
garnet destabilization, mobile components CaO and SiO2

were released by Reaction 6 and consumed by Reaction 7.
However, grandite components (involved in Reaction 6) in
Grt‐1, ‐2b, and ‐3 were much more abundant than alman-
dine (involved in Reaction 7) and, thus, the global balance
of garnet breakdown resulted in the release of CaO and
SiO2. Due to the higher abundance of garnet compared to
chlorite in Grand‐metarodingite (66 and 23 vol.%, respec-
tively), the amount of these two mobile components con-
tributed to the simultaneous chlorite destabilization through
the CaO‐ (19 moles per 3 moles of consumed chlorite)
and, especially, SiO2‐consuming (27 moles per 3 moles of
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chlorite; Reaction 8). The net balance of Grand‐ to Ep‐
metarodingite transformation was CaO liberation and SiO2

absorption (Figures 8a and 11a). Released CaO most prob-
ably diffused towards the borders of the metarodingite bod-
ies and contributed to the growth of Chl‐Di‐ and Chl‐Di‐
Ol‐metasomatic rims. These reaction rims are clearly
thicker in the boudins with well‐developed Ep‐metarodin-
gite zones (Figure 2b) than around poorly transformed
Grand‐metarodingites (Figure 2a). On the contrary, silica
consumed during the formation of Ep‐metarodingite likely
diffused from the SiO2‐rich wall rocks to the metarodingite
bodies.

Element diffusion and chemical potential gradients are
clearly enhanced by the presence of a free fluid in the
rocks (e.g., Gasc et al., 2016). However, water amounts
released by chlorite breakdown through Reaction 8 were
not sufficient for inducing fluid saturation required by the
thermodynamic model (Figure 11), as evidenced by the
preservation of grandite garnet in rock domains in which
chlorite has already been transformed to diopside
(Figure S2). Thus, an additional external fluid released
from host Atg‐serpentinite must be invoked to favour ele-
ment diffusion in metarodingites. The higher abundance of
Ep‐metarodingite close to the dehydration front is in agree-
ment with a higher concentration of fluids in these areas.

Two possible mechanisms of fluid production in serpen-
tinites that did not reach the conditions of antigorite break-
down (~16–19 kbar, 650°C) are the OH‐titanian
clinohumite breakdown reaction (López‐Sánchez‐Vizcaíno
et al., 2005, 2009; and references therein) and the antigorite
consuming dioposide‐out, tremolite‐in reaction (Tromms-
dorff & Evans, 1974). Considering the very low abundance
of Ti‐Chu compared to antigorite and diopside, the latter
reaction was much more relevant in the Cerro del Almirez
serpentinite (Jabaloy‐Sánchez et al., 2015; López‐Sánchez‐
Vizcaíno et al., 2009). Both reactions, nevertheless, were
almost simultaneous at well‐known pressure and tempera-
ture ranges (16–19 kbar and 620–630°C; López‐Sánchez‐
Vizcaíno et al., 2009; Padrón‐Navarta et al., 2012), thus
constraining the onset of transformation of Grand‐metaro-
dingite into Ep‐metarodingite at these conditions (Fig-
ure 13; stage 5). Experimental determinations by
Merkulova et al. (2017) also agree with a progressive
decrease in the antigorite amount in serpentinites between
550 and 650°C at 20 kbar accompanied by a progressive
loose of H2O.

The irregular distribution of Ep‐metarodingites in the
Atg‐serpentinite domain and their higher abundance close
to the dehydration front attest to a very irregular flux pat-
tern of fluids within metarodingites. Even in the case of
the most transformed boudins, the distribution of Ep‐metar-
odingite lacks a well‐defined development pattern (e.g.,
from rims to core) suggesting that the transformation into

Ep‐metarodingite progressed only in the boudin volume
that attained fluid saturation.

The calculated prevailing oxidized conditions for the
formation of Ep‐metarodingites (Figure 11b) and their gen-
erally higher Fe3+/FeTotal compared to Grand‐metarodin-
gites (Figure 8b) might be due to the combined effects of
oxidizing Reaction 7 and oxidizing external fluids that
fluxed through metarodingites. Calculations of Debret and
Sverjensky (2017) point to high oxygen fugacity and high
amounts of dissolved sulphates in fluids released from
dehydrating serpentinites at the onset of tremolite formation
and magnetite consumption (>630°C, 20 kbar). Oxygen
release during progressive and simultaneous breakdown of
antigorite and magnetite at similar P–T conditions was also
reported in experiments (Merkulova et al., 2017). Forma-
tion of Ep‐metarodingites from the Atg‐serpentinite domain
at oxidizing conditions also accounts for the composition
of Grt‐3 in these rocks, which has the highest andradite
contents of any garnet type in the Cerro del Almirez metar-
odingites (dark yellow triangles in Figure 5).

5.3 | Evolution of metarodingites during and
after serpentinite dehydration

5.3.1 | Type 2 epidote‐metarodingite

Beyond the dehydration front, that is, within the Chl‐harz-
burgite domain, all the metarodingite bodies are trans-
formed into Ep‐metarodingite, and Grand‐metarodingite
only occurs as scarce relicts in the core of some boudins.
This supports the hypothesis that flux of high amounts
(~9 wt% H2O; Padrón‐Navarta, Tommasi, et al., 2010) of
oxidizing fluids (Debret & Sverjensky, 2017; Debret et al.,
2015; Merkulova et al., 2017) released during Atg‐break-
down in serpentinite favored the transformation of Grand‐
metarodingite into Ep‐metarodingite (Figure 13, stage 6).

However, Ep‐metarodingites in the Atg‐serpentinite and
Chl‐harzburgite domains show significant mineralogical
and compositional differences, in particular the presence in
the latter of (a) a new generation of progressively pyral-
spite‐richer garnet (Grt‐4; Figure 5) in equilibrium with
epidote–diopside–titanite and (b) a generally lower bulk
Fe3+/FeTotal ratio (Figure 8b). Grt‐4 formed by re‐equili-
brium of relict Grt‐2b and Grt‐3 grains, as evidenced by
their higher pyralspite contents, which increase towards the
borders, and the common precipitation of idiomorphic rims.
H2O saturation conditions and increasing temperatures
facilitated this re‐equilibrium (Ague & Carlson, 2013) as
well as the large reactive surface of the grains owing to
their small size and irregular shape. Equilibrium conditions
of Grt‐4 have been calculated at 16 kbar, 670°C, log fO2 =
−14.5 and H2O‐saturated conditions (yellow star in Fig-
ure 11b), well within the stability field of Chl‐harzburgite.
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This log fO2 value matches the estimations of Debret et al.
(2015) for the host Chl‐harzburgite.

Due to the strong compositional differences between
metarodingites and their host ultramafic rocks, chemical
potential gradients of CaO and MgO were the driving
forces of the change of Grt‐4 composition towards pyral-
spite‐rich contents (as indicated by the values of garnet iso-
pleths along the white arrow in Figure 12a). The direction
of the μMgO gradient was opposite to that of μCaO (Fig-
ure 13, stage 6) and was probably responsible for the
observed stabilization of chlorite richer zones around
metarodingite boudins (Li et al., 2004), but this effect was
not evident in their cores. This only happened when the
boudins were small enough, as is the case of the Ep‐metar-
odingites hosted by Chl‐harzburgite.

5.3.2 | Ep‐ to Pyrals‐metarodingite
transformation

With increasing temperature, retention of the μCaO and
μMgO gradients at H2O saturation conditions favoured the
transformation of Ep‐metarodingite into Type 3 Pyrasl‐
metarodingite (blue fields in Figure 12a) in some small
boudins of the Chl‐harzburgite domain (Figure 2f).

This transformation occurred through epidote‐consuming
Reactions 10 and 11, which, respectively, account for the
pyrope and almandine components in the crystallization of
Grt‐5. However, Reaction 11 is a reducing reaction. The
driving force of this reduction might have been the strong
gradient in the oxygen quantity (nO2; Evans, 2006; Tumi-
ati, Godard, Martin, Malaspina, & Poli, 2015) between Ep‐
metarodingite and host Chl‐harzburgites, as revealed by the
sharp difference in their Fe3+/FeTotal ratios: ~0.8 and 0.25–
0.5 respectively (Figure 8b). These low values in Chl‐harz-
burgite can be explained by the strong drop in Fe3+/FeTotal
ratio produced during the transformation of Atg‐serpentinite
(0.63–0.74) into Chl‐harzburgite owing to the very signifi-
cant reduction of Fe3+ hosted in both magnetite and antig-
orite during dehydration (Debret et al., 2015). The
subsequent transformation of Ep‐metarondigite into Pyrals‐
metarodingite caused the progressive change of the Fe3+/
FeTotal ratio in metarodingites, which finally re‐equilibrated
at values (0.38–0.35) within the range of Chl‐harzburgites
(Figure 8b). Increasing μMgO and decreasing μCaO (Fig-
ure 12a) also triggered the crystallization of tremolitic
amphibole (Amp‐1) in Pyrals‐metarodingite by diopside‐
consuming Reaction 12.

Despite significant changes in μMgO, μCaO and Fe3+/
FeTotal, thermodynamic equilibrium was reached in Pyrals‐
metarodingite as evidenced by the good agreement between
the modelled stable assemblages, modal amounts and min-
eral chemistry (Figure 12b) and those observed in rocks.
The estimated P–T conditions calculated for the almandine‐

rich cores of Grt‐5 (11–16 kbar, 640–650°C), and espe-
cially their pyrope‐rich rims (15.5–18.5 kbar, 660–684°C;
Figure 12b), mark the peak metamorphic conditions of
metarodingites. The latter compare very well with indepen-
dent P–T determinations for host Chl‐harzburgites (16–
19 kbar, <710°C, López‐Sánchez‐Vizcaíno et al., 2005,
2009; Padrón‐Navarta, Hermann, et al., 2010) and for some
ophicarbonate lenses hosted within these same rocks
(18 kbar, 650–670°C; Menzel, Garrido, López‐Sánchez‐
Vizcaíno, Marchesi, & Hidas, 2017).

Metarodingites from Cima di Gagnone in the Central
Alps are also hosted in Chl‐harzburgite formed after ser-
pentinite dehydration (Evans & Trommsdorff, 1978). Simi-
lar to the Cerro del Almirez Pyrals‐metarodingites, they are
rich in epidote (up to 25 vol.%), in garnet with composition
close to that of Grt‐5 and have very similar bulk composi-
tions except for lower Al2O3 (Evans, Trommsdorff, &
Goles, 1981). All these features support a comparable, sub-
duction‐related metamorphic evolution for these two metar-
odingite suites.

The only previous study of the Cerro del Almirez metar-
odingites (Puga et al., 1999) used a completely different ter-
minology that is not sustained by our study. According to
these authors, only the here‐called Grand‐metarodingites
can be considered as pure metarodingites and all other types
are referred to as “eclorodingites,” that is, rocks with “tran-
sitional parageneses from rodingites to eclogites,” attributed
to metamorphism of protoliths, which underwent different
degrees of oceanic metasomatism and Na2O loss. As dis-
cussed, all our results support a very different interpretation:
(a) complete seafloor rodingitization affected the mafic pro-
toliths of the Cerro del Almirez metarodingites (Section 5.1);
(b) all their mineralogical and bulk compositional changes
took place during subduction metamorphism; and (c) all
Na2O present in some rocks was clearly gained during retro-
grade amphibolitization (see below).

5.3.3 | Retrograde amphibolitization

The mineral assemblages of all metarodingite types from
Cerro del Almirez were partially replaced by late Na‐bear-
ing Ca‐amphibole corresponding to the above‐defined
Amp‐2 (Figures 2e,f and 7). Textural relationships and low
bulk Na2O contents of Grand‐metarodingites (Table 3)
indicate that amphibolitization was caused by percolation
of external alkali‐rich fluids. The very low abundances of
Na2O and K2O in both Atg‐serpentinite and Chl‐harzbur-
gite (Garrido et al., 2005) support that these fluids were
probably released from metasedimentary rocks that host the
Cerro del Almirez ultramafic complex (Figure 1a). Accord-
ing to Jabaloy‐Sánchez et al. (2015), the Cerro del Almirez
ultramafic massif and their host metasedimentary rocks
were coupled after the peak of metamorphism and
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underwent a common tectonometamorphic evolution during
exhumation. The retrograde origin of amphibolitization is
also in agreement with textural relationships in Pyrals‐
metarodingites, in which Amp‐2 crystallization occurred
after that of Amp‐1, which in turn marks the peak meta-
morphic conditions in equilibrium with Grt‐5.

5.4 | The role of metarodingites in the redox
state of subduction zones

Serpentinites and metarodingites are coupled in exhumed
metamorphic terranes owing to their simultaneous formation
and paired evolution during subduction. Nevertheless, the
significance of metarodingites for the petrological and geo-
chemical processes that take place in subduction zones has
been usually disregarded. Increasing attention has been
recently devoted to the presence of relatively oxidized mate-
rials in subduction zones and their role on deep element
cycling (e.g., Evans & Powell, 2015; Malaspina et al., 2017;
Tumiati et al., 2015). Oxidizing agents may be transported
into the subarc mantle by metamorphic fluids produced by
devolatilization of the subducting slab (Evans, 2012). The
oxidizing capacity of these fluids relative to a reference state
(the redox budget; Evans, 2006) is of great importance for
the composition of arc magmatism and arc‐related ore
deposits (Evans & Powell, 2015 and references therein). The
role of dehydration reactions in serpentinite for the redox
state of subduction zones has been well studied (Debret &
Sverjensky, 2017; Debret et al., 2014, 2015; Merkulova et
al., 2017). These studies emphasized the importance of flu-
ids released from serpentinites as oxidizing agents of adja-
cent slab lithologies (mostly anhydrous mantle peridotites)
at the metre scale. However, metarodingites have been rarely
considered in the studies of fluid–rock interactions in sub-
duction zones (Crossley et al., 2017).

The metarodingites from the Cerro del Almirez ultra-
mafic complex are an illustrative and unique case study of
the subduction evolution of igneous mafic rocks originally
rodingitized at the seafloor. Their mineralogical, textural,
and compositional features, generally reproduced by the
thermodynamic models presented in this work (Figures 10–
12), reveal that metarodingites were affected by the main
dehydration and redox reactions that occurred in their host
serpentinite.

Higher Fe3+/FeTotal ratios in Ep‐ than in Grand‐metaro-
dingites (Figure 8b) indicate that metarodingites oxidized
during dehydration of host serpentinites up to Atg‐break-
down. Thus, metarodingite bodies enclosed in Atg‐serpenti-
nites, and in their reaction product Chl‐harzburgites, acted as
sinks of oxidizing fluids travelling from dehydrating serpen-
tinites to the inner mantle wedge. Subsequent transformation
into Pyrals‐metarodingite strongly decreased Fe3+/FeTotal,
which reached values in equilibrium with the host Chl‐

harzburgite (Figure 8b). Therefore, the transformation of
Ep‐metarodingite into Pyrals‐metarodingite further released
oxidizing fluids at temperatures ~40°C higher than those
corresponding to Atg‐breakdown (Figure 13; stage 7).

However, field observations in Cerro del Almirez show
that Type 3 Pyrals‐metarodingites are scarce, and so signif-
icant volumes of Fe3+‐rich metarodingite boudins (Type 1
and Type 2) were metastably preserved within the Chl‐
harzburgite domain far beyond the antigorite dehydration
front (Figure 1b). The kinetic limitation for reequilibration
can be explained by the strong rheology (dominated by
garnet, e.g., Karato, Wang, Liu, & Fujino, 1995) and the
intrinsically low permeability (e.g., Katayama, Terada,
Okazaki, & Tanikawa, 2012) of metarodingites. Similar
preservation of metastable metarodingite bodies is reported
also at Cima di Gagnone (Evans et al., 1979). This sug-
gests that Fe3+‐rich, metastable metarodingites can be
transported to the deep mantle through subduction, and
their recycling into the asthenosphere may affect the oxida-
tion state of the deep Earth.

6 | CONCLUSIONS

Field and textural relationships, mineral and bulk‐rock
compositions, chemographic analyses, and thermodynamic
models constrain the subduction evolution of metarodin-
gites from Cerro del Almirez, the unique locality in the
world where the Atg‐out isograd in subducted serpentinite
has been recognized in the field. After complete rodingiti-
zation of igneous mafic protoliths at highly reducing condi-
tions in a seafloor setting (<2 kbar, ~150–325°C, ~FMQ
buffer), Grand‐metarodingite (grossular‐rich garnet (Grt‐1),
diopside, chlorite, and magnetite) recrystallized during sub-
duction. Then, two generations of garnet formed in Grand‐
metarodingite by prograde metamorphism at high pressure
(>10 kbar, ~350–650°C). Grt‐2b, which is richer in andra-
dite and pyralspite components than Grt‐1, crystallized at
conditions buffered by the metarodingite bulk‐rock compo-
sitions (fO2~FMQ buffer). Grt‐3, notably richer in andra-
dite, formed during flux of oxidizing fluids likely released
from brucite and antigorite breakdown in host Atg‐serpenti-
nites (fO2~MH buffer). Transformation of Grand‐metaro-
dingite into Ep‐metarodingite (epidote, diopside, garnet,
and titanite), was driven by the simultaneous effects of
increasing μSiO2 and decreasing μCaO gradients, triggered
by the flux of high amounts of oxidizing fluids released
during high‐pressure final Atg‐breakdown in host serpen-
tinites. Within Chl‐harzburgites produced by serpentinite
dehydration, some epidote‐metarodingite bodies trans-
formed into pyralspite‐metarodingites (Grt‐5, tremolitic
Amp‐1, epidote, zoisite, chlorite and rutile) at peak meta-
morphic conditions (16–19 kbar, 660–684°C) by
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decreasing μCaO and increasing μMgO gradients and
inducing a strong drop in the bulk‐rock Fe3+/FeTotal ratio.
The contrasting Fe3+/FeTotal ratios between Atg‐serpentinite
and Chl‐harzburgite, and between the three metarodingite
types enclosed in these ultramafic rocks attest for the
highly heterogeneous oxidation degree of the subducting
slab and the role of metarodingites in the transfer of oxi-
dized materials to the deep mantle beyond the Atg‐out iso-
grad in subducted serpentinites.
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TABLE S1 Summary of representative microprobe analy-
ses of all minerals for selected samples
FIGURE S1 Representative IR normalised spectra for gar-
net and diopside showing the occurrence of structurally
bounded hydroxyl groups in a Grandite‐metarodingite
(sample AL14‐04‐C)
FIGURE S2 Transition at the thin section scale between
Grand‐ and Ep‐metarodingite. (a) Scanned image of a com-
plete thin section showing the “patchy” distribution of this
transformation and the preservation of a relict garnet vein
in the lower part. Dark green areas are rich in late amphi-
bole. The location of micrographs from b is outlined in
blue colour. (b) Micrographs of selected areas (with paral-
lel and crossed polars: left and right images, respectively)
showing the complete transition from garnet‐rich zones,
with only incipient transformation into green microaggre-
gates of epidote (1), to zones progressively richer in epi-
dote and diopside (2), and the final transformation to the
typical assemblage of Ep‐metarodingite with only rare gar-
net relicts (3). Chlorite is lacking in every zone
TABLE S2 Stable assemblages in the number‐labelled
fields from pseudosections in Figures 10–12
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