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Abstract

In this paper one extends results of Bendixson [B] and Dumortier [D]
about the germs of vector fields with an isolated singularity at the origin
of IR2, not accumulated by periodic orbits. As new tool, one introduces
minimal curves, which are curves surrounding the origin, with a minimal
number of contact points with the vector field. Moreover, the arguments
are essentially topological, with no use of a desingularization theory, as
it is the case in [D].
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1. Introduction

In this paper we consider a germ (X, 0) of vector field at the origin 0 ∈ IR2.

This germ is represented by a vector field X, defined on an arbitrarily small
neighborhood W of the origin. We will assume that the origin is an isolated
singularity of (X, 0). This means that we can choose W such that the origin is
the unique singularity of X on W.

Ivar Bendixson, in his seminal work [B] published in 1903, uses the ideas of
Henri Poincaré [P], to give general topological properties of the phase portrait
of such a germ, also assumed to be isolated from periodic orbits. In the Part I
of his article Bendixson proves general theorems for a germ of class C1, intro-
ducing the notions of nodal regions and pair of orbits crossing the origin (these
notions are recalled in 2.3). It is in this Part I that he states and proves that
is known as Theorem of Poincaré-Bendixson, which in modern language may
be formulated as follows: the limit set of an orbit contained in a bounded open
region of the plane is a singular point, a periodic orbit or a graphic (a closed
invariant topological curve made by orbits joining singular points). In the Part
II of his article Bendixson proves general theorems for analytic germs with an
algebraically isolated singularity (he says, with components X, Y holomorphic
without a common factor). He gives properties of orbits tending toward the
origin (recalled in 3.2), and proves that there is a finite number of nodal regions
and a finite number the pair of pairs of orbits crossing the origin. He relates
these numbers with the topological index of the vector field at the origin.

In the present article I shall present some results in the spirit of the above
mentioned results of Bendixson. In order to give a precise account of them, I
want to introduce a more modern terminology. The following definitions are for
germs of vector field at the origin, of class C1.

Definition 1 A sector at the origin of IR2, is the image by an homeomorphism
sending 0 on 0, of an angular sector defined by {0 ≤ θ ≤ θ0 | r ≤ r0} in polar
coordinates (r, θ). We assume that a sector is equiped with a vector field of one
of the 3 different types :

1. Hyperbolic sector : The sides are two orbits L+, L− with ω(L−) =
α(L+) = {0}. There are transverse sections σ to L− and τ to L+. The
orbit γp through p ∈ σ reaches τ at a first point q(p). When p → L− ∩ σ
we have that q(p) → L+ ∩ τ and that the arc of orbit between p and q(p)
has a Hausdorff limit contained into L+∪L−. We can define as sector the
union of these arcs and of their limit on L+ ∪ L−.
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2. Elliptic sector : A disk D(Γ), singular at the origin, (I shall say a
pinched disk), bounded by an orbit Γ such that ω(Γ) = α(Γ) = {0}. Each
orbit γ inside D(Γ) has the same limit properties and also bounds a pinched
disk D(γ). Moreover, if γ1, γ2 are two such orbits, we have that γ1 ⊂ D(γ2)
or γ2 ⊂ D(γ1).

3. Parabolic sector : Every orbit has the origin as one of the limit sets. It
is an attracting parabolic sector if each orbit γ tends towards 0 for positive
time (ω(γ) = {0}). It is a repulsing parabolic sector if each orbit γ tends
towards 0 for negative time (α(γ) = {0}).

The different sectors are represented in Figure 1.

Hyperbolic Elliptic Parabolic

Figure 1 : Sectors

It is easy to find models for each of them : four hyperbolic sectors appear
in an hyperbolic linear saddle; two elliptic sectors appear in the holomorphic
differential equation ż = z2, corresponding to the real differential equation :
ẋ = x2 − y2, ẏ = 2xy; parabolic sectors appear in linear nodes (in fact a whole
neighborhood of the origin may be considered as a unique generalized parabolic
sector, taking θ0 = 2π).

Definition 2 A topological node (at the origin) is a germ of C1 vector field
represented by a vector field X on a neighborhood W of the origin, such that
each orbit has the origin as ω-set or such that each orbit has the origin as α-set.
In other words, if (r(t), θ(t)) is the trajectory through any point m ∈ W, written
in polar coordinates, we have that r(t)→ 0 ∈ IR2 when t→ +∞ for any m ∈ W
or that r(t) → 0 ∈ IR2 when t → −∞ for any m ∈ W (nothing is asked for
θ(t)).
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Definition 3 A C1 vector field X admits a sectoral decomposition on a neigh-
borhood W of the origin homeomorphic to a disk if W is a finite union of sectors
of the three types defined in Definition 1. When one turns around the origin,
two successive elliptic or hyperbolic sectors are separated by a unique parabolic
sector, which, between two successive hyperbolic sectors, may be reduced to a
single orbit. See Figure 2.

Figure 2 : A sectoral decomposition

The principal difference between the present work and the one of Bendixson
is that it is made a systematic use of the contact points along closed curves
embedded near the origin and surrounding it. More precisely one considers
minimal curves and contact indexes c(X,W ), c(X, 0) associated to them (see
2.1). Orbits cutting minimal curves have remarkable properties given in 2.2 :
for instance, an orbit cannot cut a minimal curve in more than two points.
Using these properties, one derives general results for C1 germs of vector field,
rather comparable to the results given in Part I of [B]. A new result (not existing
in[B]) is proved in 2.5 : a C1 germ with finite contact index c(X, 0) and isolated
from periodic orbits, is a topological node or admits a sectoral decomposition
(Theorem 2 in 2.5).

In Part II of [B], Bendixson has proved results rather similar to the ones
stated in Theorem 2, under the stronger hypothesis that the germ of vector field
is analytic (he said holomorphic), without common factor for the components.
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In fact, these conditions imply that c(X, 0) < ∞, that allows to use Theorem
2. But in order to have this condition, one does not need the assumption of
analyticity, as it is shown in Theorem 3.

Theorem 2 and Theorem 3 are used together in order to prove the main theo-
rem below. In order to state it, we need some well known definitions concerning
the orbits tending to the origin for positive or negative time : a characteristic
orbit is an orbit tending toward the origin with a limit tangent direction and
a spiral is an orbit which tends toward the origin, while turning indefinitely
around it. A node is a germ of vector field where all the orbits outside the
origin are characteristic orbits and a focus, when the same orbits are spirals.
Clearly, nodes and focuses are topological nodes. Precise definitions are recalled
in 3.2.

We can now state the main Theorem :

Theorem 1 (Main Theorem)
For an integer k ≥ 1, let (X, 0) be a germ of C2k+3 vector field at the origin of

IR2, with a (topologically) isolated singularity at the origin, not accumulated by
periodic orbits (i.e., the origin is isolated from periodic orbits). Let also assume
that at the origin, the (k − 1)-jet of (X, 0) is zero but not the k-jet. Then, the
germ (X, 0) is a focus, a node or admits a sectoral decomposition, where every
orbit tending toward the origin, for positive or negative time, is a characteristic
orbit.

Moreover, the number of sectors is bounded by 2(k + 1). It follows that the
topological index i(X, 0) verifies that −k ≤ i(X, 0) ≤ k+ 2 and that the number
of possible phase portraits for (X, 0) is roughly bounded by 24(k+1).

Remark 1 A sufficient condition for a germ (X, 0) with an isolated singularity
at the origin, to be isolated from periodic orbits, is to have at least a character-
istic orbit. In this case (X, 0) admits a sectoral decomposition (maybe reduced
to a node). This condition may be more easy to check.

We can compare this result with the results obtained by Bendixson in Part
II of [B]. As mentioned above, Bendixson supposed that the vector field is
analytic with no common factor for the two components. But, looking at his
proofs, it appears that Bendixson did not used the analyticity, but just that the
germ has a non-zero jet and an isolated singularity at the origin, isolated from
periodic orbits (exactly as in the statement of Theorem 1). Moreover, he did
not introduced explicitly the notion of sectoral decomposition and he used a
more general notion that the one of elliptic sector, that he called a closed nodal
region. In a neighborhood of the origin where this point is the unique singularity,
a closed nodal region is just a pinched disk D(Γ) bounded an orbit Γ such that
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ω(Γ) = α(Γ) = 0. It is an easy consequence of the Bendixson-Poincaré theory
that each other orbit contained into D(Γ) has the same property. Elliptic sectors
are example of closed nodal region but the phase portrait inside closed nodal
region D(Γ) may be much more complicated than in the case of an elliptic sector.
In fact one can introduced a partial order between the orbits in a closed nodal
region D(Γ), saying that γ is less than γ′ if D(γ) ⊂ D(γ′). This order is total
precisely when D(Γ) is an elliptic sector. If not, the order is just partial and it
may happen for instance inside a closed nodal region, that there are infinitely
many orbits not comparable 2 by 2, . A part of the results of Bendixson may
be also found in the Chapter X of Lefschetz’s book [L].

A more recent work about singularities of smooth planar vector fields, is the
one of Dumortier [D] where the hypothesis that the singularity is topologically
isolated is replaced by a strongest one : one considers a germ (X, 0) with an
algebraically isolated singularity at the origin. This means that, in the ring of
smooth germs of functions at the origin, the ideal (P,Q) generated the compo-
nents of the vector field X = P ∂

∂x
+Q ∂

∂y
, contains a powerMk of the maximal

idealM (the germ is said algebraically isolated at order k−1, a condition which
depends just of its (k − 1)-jet). In fact Dumortier can replace this hypothesis
by a weakest one : the vector field verifies in a neighborhood of the origin, a
 Lojasiewicz inequality of order L : ||X(m)|| =

√
P 2 +Q2 ≥ c||m||L, for a con-

stant c > 0 and some L ∈ IN. It is easy to see that if a germ is algebraically
isolated at order k−1, then, it verifies a  Lojasiewicz inequality of order L, where
2L ≥ k, and this last property implies that the origin is a topologically isolated
singularity.

The study of Dumortier is much more algebraic than the present one. A
theory of desingularization by successive blowing up was developed in order to
prove a result of desingularization for the smooth germs of vector field veri-
fying a  Lojasiewicz inequality. Dumortier deduces from his desingularization
theory a result which is stronger than Theorem 1 : if the germ (X, 0) verifies a
 Lojasiewicz inequality and has a characteristic orbit, then there is a k-jet of the
germ (X, 0) which determines its phase portrait. Moreover this phase portrait
admits a sectoral decomposition (may be reduced to a node) which is deter-
mined by the k-jet of (X, 0). In contrast with the topological proof given in
the present paper, the proof of Dumortier is constructive in the sense that the
sectoral decomposition can be obtained from the singular points, all elementary,
obtained for the desingularized vector field.

As the existence of a characteristic orbit implies that the origin is isolated
from periodic orbits and as the origin is isolated if it verifies a  Lojasiewicz
inequality, we can apply Theorem 1 under the conditions of the Dumortier’s
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result. Moreover, if zk is any non-zero k-jet of vector field, there is always
a smooth germ (X, 0) with the origin as algebraically isolated singularity and
such that jkX(0) = zk, and there are infinitely many such germs with 2 by
2 distinct jets of arbitrarily high degree. On the other side Theorem 1 says
that there exists a finite collection Ck of sectoral decompositions, depending
just on the number k, such that if (X, 0) has a characteristic through the origin
and a non-zero k-jet, then its phase portrait belongs to Ck. As an example,
let us consider the 1-jet z1 = y ∂

∂y
. The infinity of polynomial vector fields

Xl,± = y ∂
∂y
± xl ∂

∂x
, with l ≥ 2, have z1 as 1-jet and are algebraically isolated,

each of them with characteristic orbits through the origin. They have just one
of the three possible sectoral decompositions : a single node, two hyperbolic
and one parabolic sectors or four hyperbolic sectors. This result is even true for
a vector field as X∞ = y ∂

∂y
+f(x) ∂

∂x
, where f is a smooth germ with an isolated

singularity and a infinite jet equal to zero, for instance f(x) = e−1/x2 . For such
a vector field, the origin does not verify a  Lojasiewicz inequality.

Acknowledgments I am grateful to Etienne Ghys for having inspire this topo-
logical work.

2. Phase portrait for a C1 vector field near an isolated singularity

In this section we consider a germ of vector field at 0 ∈ IR2, of class C1,
such that the origin is an isolated singularity. We choose a representative for
this germ : a C1 vector field X given on an arbitrary small neighborhood W0 of
0 ∈ IR2, diffeomorphic to an Euclidean disk. We assume that 0 is an isolated
singularity of X on W0.

2.1. Minimal curves and contact indexes

Definition 4 In the text, a disk will be a neighborhood of 0, contained into W0

and C1 diffeomorphic to an Euclidean disk. The term curve will always design a
curve C1-diffeomorphic to S1, embedded in W0 \ {0} and surrounding the origin
(i.e. generating the 1-homology of W0 \ {0}). A curve γ is the boundary of a
disk W (γ).

Let γ be a curve. A contact point on γ is a point where X is tangent at γ. If
γ(s) : S1 → W0 is a C1 parametrization of γ, the contact points on γ correspond
to the zeros of the continuous function n(s) : s→< X(γ(s)), N(γ(s)) >, where
< ·, · > is the Euclidean scalar product and N is a C0 vector field along the
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curve γ, orthogonal to it.

Definition 5 An isolated contact point m on a curve γ is said even if the
function n(s) changes of sign at m and odd if not. The trajectory through an
even contact point is locally on one side of γ (at an odd contact point the orbit is
topologically transverse to γ). We say that a curve if generic if all its contacts
points are even. These points are necessarily isolated and then are in finite
number. We will call contact index c(γ) ∈ IN, the (finite) number of (even)
contact points along a generic curve γ.

Remark 2 The notions of contact points, even or odd contact points, generic
curve and then of of contact index are independent of the choice of the orthogonal
vector field N. Let us also notice that for smooth vector fields, the contact points
of finite order with a smooth curve are even or odd if their order of contact are
respectively even or odd.

even contact odd contact

Figure 3

γ γ

For a generic curve γ, the number c(γ) of even contact points is even (they
are end points of an even number of intervals on γ where the function n(s) is
alternatively > 0 and < 0). .

By using coverings of curves by well-chosen C1 tubular neighborhoods of X,
it is easy to show that the generic curves are dense in the space of C1-curves,
for the C0 topology. For instance an odd point can be eliminated by a C0

perturbation of the curve, located in its neighborhood. In particular there exist
generic curves on any disk.

As the orbit at an even contact point is locally on one side of the curve, we
can distinguish two types of even contact points for a generic curve :

Definition 6 Let γ be a generic curve. An (even) contact point m is said to
be an interior contact point if locally the orbit of m is inside W (γ). If not,
the (even) contact point is said to be an exterior contact point. Let ci(γ) the
the number of interior contact points and ce(γ) the number of exterior contact
points. We have that c(γ) = ci(γ)+ ce(γ). The interlinking of the set of exterior
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contact points with the set of interior contact points along the curve γ traveled
in the direct sense, will be called the arrangement of contact points on γ. It may
be represented, up a cyclic permutation, by a list of c(γ) symbols taken in the
set {i, e}, with ci(γ) symbols i and ce(γ) symbols e (in Figure 2, for the disk
boundary γ which is a generic curve, we have that ci(γ) = 2, ce(γ) = 2 and the
arrangement (i, i, e, e)).

This distinction between interior and exterior contact points will be crucial for
the topological analysis of the phase portrait presented in this paper. For this
moment, I just want to indicate the relation with the topological index of the
germ (X, 0). I recall that if (X, 0) is a germ of a vector field with the origin as
isolated singularity, we can define the topological index i(X, 0) in the following
way. We choose a representative X of the germ on a neighborhood W0, where
0 is the unique singularity. Next, we consider any curve γ ⊂ W0, and take a
parametrization γ(s) with the direct orientation. Then the topological index
i(X, 0) ∈ ZZ is the degree of the continuous map

s ∈ S1 → X

||X||
(
γ(s)

)
∈ S1.

Now, if γ is a generic curve, it is easy to see that :

i(X, 0) =
1

2

(
ci(γ)− ce(γ)

)
+ 1 (1)

Let us notice that, as c(γ) = ci(γ) + ce(γ) is even, we have that ci(γ)− ce(γ) is
also even and then the formula (1) defines, as expected, an an element of ZZ.

We can now introduce the following contact index for the disks :

Definition 7 Let W be a disk, contained into W0. We call contact index of X
in W, the minimum of the contact index c(γ) among the generic curves γ ⊂ W

(as there exist generic curves in W, this index is finite and may even be equal
to 0). We will write c(X,W ) this contact index of X in W. A generic curve
γ in W, such that c(γ) = c(X,W ) will be called minimal curve in W (such a
minimal curve always exists!).

By definition, the number c(γ) = ci(γ)+ce(γ) has the same value c(X,W ) for
all the minimal curves in W. Using this remark and (1) we obtain the following :

Lemma 1 Let γ be a minimal curve in a smooth disk W. Then,

ci(γ) =
c(X,W )

2
+ i(X, 0)− 1 and ce(γ) =

c(X,W )

2
− i(X, 0) + 1. (2)
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The expressions (2) show that the numbers ci(γ), ce(γ) are the same for any
choice of minimal curve γ in W. We will see later that it is also true for the
arrangement of contact points along a minimal curve γ.

Notation 1 Let W be any disk in W0. As we have write c(X,W ) the number
of contact points of any minimal curve in W, Lemma 1 allows to introduce also
numbers ci(X,W ) and ce(X,W ) for the number of interior contact points and
exterior contact points on any minimal curve in W.

If W1 ⊂ W2 are two disks as in Definition 7, we have that c(X,W1) ≥ c(X,W2).
It follows that, if (Wn), with n ∈ IN, is a nested sequence of disks in W0, i.e.

such that Wn+1 ⊂ Wn for all n ∈ IN, the sequence of numbers
(
c(X,Wn)

)
is

increasing and has a limit in ĪN = IN∪{∞}. Call diam(W ) be the diameter of a

disc W. If (diam(Wn))→ 0 when n→∞, the limit of the sequence
(
c(X,Wn)

)
is clearly independent of the choice of the sequence of disks (Wn). This allows
the following definition :

Definition 8 The contact index c(X, 0) of the germ (X, 0) is the limit in ĪN =

IN ∪{∞} of the increasing sequence of numbers
(
c(X,Wn)

)
for any choice of a

nested sequence (Wn) of disks, whose sequence of diameters tends to zero. This
index is independent of the choice of the sequence (Wn) and depends just of the
vector field germ (X, 0).

It is easy to find germs (X, 0) (even smooth) such that c(X, 0) = ∞. But this
property is exceptional for smooth germs (in a sense made precise in Section
3). For this reason, we will be more interested in germs (X, 0) with a finite con-
tact index. The following proposition gives a characterization of this finiteness
property :

Proposition 1 Let us suppose that c(X, 0) ∈ IN (i.e. is finite). Then we can
find a representative X of the germ (X, 0) on a disk W0, such that c(X,W0) =

c(X, 0), and a sequence
(
Wn

)
of disks with the following properties :

(a) (Wn) is a nested sequence and (diam(Wn))→ 0 for n→∞.
(b) For each n, the boundary γn = ∂Wn is a minimal curve in W0, i.e. c(γn) =
c(X, 0).

Conversely, given any germ (X, 0), if there exists a nested sequence of smooth

disks
(
Wn

)
as above, with (diam(Wn)) → 0 for n → ∞, and such that each

boundary γn = ∂Wn is a minimal curve in W0, we have that c(X, 0) = c(X,W0)
and then c(X, 0) is finite.

Proof
Let us assume that c(X, 0) is finite and choose a representative vector field
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X on a disk W (where the origin is the unique singularity). Clearly, any finite
subset in IN contains its upper bound. As a consequence, there exists a disk
W0 ⊂ W, such that c(X,W0) = c(X, 0). Now, if W̃ is any smooth disk contained
into W0, by definition of the contact index c(X, 0), we have also that that
c(X, W̃ ) = c(X, 0). This remark allows a construction by induction of a sequence
(Wn) verifying the statements : if Wn is already constructed with diam(Wn) ≤
1
n
, we take any disk W̃n in the interior of Wn, such that diam(W̃n) ≤ 1

n+1
.

Let us consider a minimal curve γn+1 of W̃n. As c(γn+1) = c(X, W̃n) = c(X, 0)
(see above), the curve γn+1 is the boundary of a disk Wn+1 ⊂ Wn, such that
diam(Wn+1) ≤ 1

n+1
.

Conversely, let (Wn) be a sequence of disks as in the statement. As the
curves γn = ∂Wn are minimal curves in W0, they are à fortiori minimal curves
in Wn. Then, the sequence c(X,Wn) is stationary at the value c(X,W0) and, as
(diam(Wn))→ 0 for n→∞, the proper definition of the index c(X, 0) implies
directly that c(X, 0) = c(X,W0).

Passing to subsequences of curves, it is easy to adapt the proof of Proposition
1 in order to obtain the following useful sufficient condition for the finiteness of
c(X, 0) :

Proposition 2 Assume that there are a finite constant C > 0 and a sequence
of generic curves (γn), converging in the Hausdorff sense toward the origin and
such that c(γn) ≤ C for any n. Then c(X, 0) ≤ C.

Definition 9 When c(X, 0) is finite, a generic curve γ such that c(γ) = c(X, 0)
(as in Proposition 1) will be called : absolute minimal curve. A minimal curve
in a disk W is absolute as soon as the diameter of W is small enough. Apart
this condition, absolute minimal curves do not depend on the choice of a disk
W, the reason for what they are called absolute.

It follows from Proposition 1 that the number of interior and exterior contact
points is the same for any absolute minimal curve of a germ with a finite contact
index. This allows to introduce the following :
Notation 2 Let (X, 0) a vector field germ such that c(X, 0) is finite. There
exist integers ci(X, 0) and ce(X, 0) equal respectively to the number of interior
contact points and exterior contact points of any absolute minimal curve.

Remark 3 As c(γ) is an even number for any generic curve, so are the contact
indexes c(X,W ) and c(X, 0).
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2.2. Relations between phase portrait and minimal curves

In this subsection one will consider a generic curve γ, minimal in some disk
W ⊂ W0. One will prove some properties for the intersection of any orbit Γ
(inside W ) with γ. In order to prove these properties one will construct curves
in a way very similar to the classical trick that is recalled in the following lemma :

Lemma 2 Let Γ be an orbit of a 2-dimensional C1 vector field X. One assumes
that Γ is neither periodic or reduced to a singular point and that there exists a
transverse section Σ such that Γ∩Σ = {p, q}, with p 6= q. Let [p, q]Γ, respectively
[p, q]Σ, be the arc of Γ, respectively the arc of Σ between p and q. Then, one can
C0-approximate the C0-curve γ0 = [p, q]Γ ∪ [p, q]Σ by a C1-curve γ transverse to
X.

Proof
One chooses a flow box T, C1-diffeomorphic to a rectangle, having [p, q]Γ as

one X-tangent side and [p, p′], [q, q′], disjoints subintervals of Σ, as transverse
sides, with q′ between q and p on Σ. See Figure 4.

Let be σ ⊂ T the linear segment joining p and q′. This segment is transverse
to X. It is easy to smooth γ1 = σ ∪ [q′, p]Σ (where [q′, p]Σ ⊂ Σ) into a C1-curve
γ transverse to X. We can construct γ1, C0 close to γ0 and γ, C0 close to γ1, so
that γ is C0 close to γ0.

p

p′

q

q′

γ0

Σ

p

p′

q

q′

Flow box T

σ

Figure 4

A first result for minimal curves is the following :

Proposition 3 Let γ be a minimal curve of a disk W ⊂ W0, contained in the
interior of W. Let p be any contact point on γ and Γ the orbit through m in W.

Then, γ ∩ Γ = {p}.

Proof The proof for an exterior contact point is similar to the proof for interior
contact point. Then from now on, one will assume that m is an interior contact
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point. Let ϕ(t,m), for m ∈ W, be the flow of X. In contradiction with the
statement, let us suppose that there exists a time t0 6= 0, such that if q =
ϕ(t0, p) ∈ γ, we have that q 6= p. One will assume that the point q is a first
intersection of Γ with γ, i.e. that ϕ(]0, t0[, p) ∩ γ = ∅. Moreover, by taking a
C1-perturbation of γ near q, one can also assume that γ remains minimal and
is such that the intersection of γ with Γ is transverse at q.

Let [p, q]Γ = ϕ([0, t0], p) be the arc of orbit between p and q. Let us notice
that [p, q]Γ ⊂ W (γ). One and only one of the two arcs on γ with end points p and
q, arc that one will denote [p, q]γ, is such that [p, q]γ∪[p, q]Γ bounds a topological
disk B ⊂ W (γ), which does not contain the origin. One will denote by [p, q]Cγ
the complementary arc on γ. As the arcs [p, q]γ and [p, q]Γ are homotopic in
W \ {0}, relatively to their end points, the curve γ1 = [p, q]Cγ ∪ [p, q]Γ is also a
topological curve surrounding the origin (and contained into W (γ))

Let Γ+ be the half-orbit from p which contains the arc [p, q]Γ, and Γ− the
other half-orbit. One will distinguish two cases : the good case when Γ− starts
outside B and the bad case when Γ− starts inside B. See Figure 5

Good case Bad case

O O

Figure 5

γ

q

p

B

W p

q
B

W

γ

(a) One first considers the good case. The idea is that one can C0-
approximate the curve γ1 by a C1 generic curve γ2 contained in W, with at
least two contact points less than γ. But this fact will be in contradiction with
the minimality of γ, proving that this good case is impossible.
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Figure 6 : Elimination of contact points
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Let us construct the curve γ2. Taking ε > 0 arbitrarily small, one considers
a ε-thick C1 flow box T, containing the orbit arc [p, q]Γ. This flow box is a thin
rectangle [a, b, c, d] where the long sides [ac] and [bd] are tangent to the flow and
the arcs of orbit inside T are the segments parallel to these sides. The flow is
transverse to the short segments of length ε, parallel to the short sides [ab] and
[cd]. One chooses ε small enough such that T ⊂ W.

One supposes that the arc [p, q]Γ is contained in the arc of orbit in the middle
of T, with p in the interior of T, at a distance of order ε of the side [ab] and q on
[cd]. One chooses a point p′ in [p, q]Cγ , outside T and that the flow is transverse
to γ along the half-closed arc [p′, p[⊂ γ. See Figure 6.

One can now construct γ2 as a union of 3 arcs : the sub-arc I of [p, q]Cγ
between p′ and d ; a small arc J joining p′ and a, transverse to X and ε-near
γ; an arc K inside T, going in diagonal from a to d, transverse to the flow in
T. One can make this curve γ2 to be C1 and C0 close to γ1 by choosing ε small
enough. In particular, one can construct γ2 inside W.

If ε is small enough, the curve γ2 is surrounding the origin, as the curve γ1.
There is no contact point on the J ∪ K and the contact points on I are the
contact points of γ which belong to [p, q]Cγ \ {p}. As γ has at least 2 contact
points along the arc [p, q]γ (the point p and necessarily another contact point
between p and q), is follows that γ2 is a generic curve in W with at least 2
contact points less than γ, which is impossible by the minimality of γ.

(b) One considers now the bad case. Let us consider the half-orbit Γ−
starting inside B. One has the following alternative : Γ− is contained entirely
in B or Γ− leaves B at a first point q′ in the interior of [p, q]γ. One will consider
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the two terms of this alternative.

(1) One first supposes that Γ− ⊂ B. As Γ− \ {p} does not intersect ∂B, it has a
limit-set in the interior of B. By the Poincaré-Bendixson theory, this limit-set
must contain a singular point or is a periodic orbit, which must bound a disk in
B containing also a singular point. As B is free of singular point, none of these
two possibilities can occur.

(2) Let us suppose now that Γ− leaves B at a first point q′ in the interior of
[p, q]γ. As above, one can assume (after a slight perturbation of γ), that this
point is a transverse intersection of γ with Γ−. As the sub-arc between p and q′

inside [p, q]γ bounds in union with [p, q′]Γ a disk B′ contained into B, this arc is
the arc [p, q′]γ as defined above. But, as Γ+ is outside B and then outside B′,
the pair (p, q′) is of the good type. The impossibility follows from the part (a)
above.

It may happen that the contact property γ ∩ Γ = {p} which is obtained
in Proposition 3 corresponds to a contact between a minimal curve γ and a
periodic orbit Γ contained into W. This will imply a strong constraint on the
contact index, as it appears in the following result :

Lemma 3 Suppose that a smooth disk W ⊂ W0 contains a periodic orbit in its
interior. Then, c(X,W ) ≤ 2.

Proof
Let Γ be a periodic orbit in the interior of W. Choose a C1 local transverse

section Σ to Γ and consider the C1 return map P (u) on it (u is a C1 coordinate
on Σ such that Γ ∩ Σ = {u = 0}). One has two possibilities :

(1) If P (u) ≡ u in a neighborhood of u = 0, one can find a generic curve γ′

which is C0-near γ, with just 2 contact points. One can see this in the following
way. One chooses a C1 diffeomorphism ψ(s, ρ) of the annulus Aδ = {(s, ρ) ∈
S1×]− δ, δ[} onto tubular neighborhood of Γ, sending each orbit of the smooth
vector field X0 = ∂

∂s
on an orbit of X. For any ε such that 0 < ε < δ, the curve

of Aδ given by ρ = ε sin s has two quadratic contact points with X0. Its image
by ψ is a C1 generic curve with two even contacts points with X. This implies
that c(X,W ) ≤ 2.

(2) If P (u) 6≡ u in a neighborhood of u = 0, one can find a u0 arbitrarily near
0 such that P (u0) 6= u0. In this case, using Lemma 2, one can C0 approximate
the piecewise curve γ1, union of the interval of Σ between u0 and P (u0), and
the arc or orbit between the same points, by a C1 curve γ2 transverse to X. In
this case one has that c(X,W ) = 0.

In order to state the next result, one needs some definitions
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Definition 10 Let γ be a generic curve in a disk W ⊂ W0. An arch attached
to γ in W is an arc of orbit A = [p, q]Γ ⊂ W cutting transversally γ into
two consecutive points p, q on the orbit (this means that [p, q]Γ ∩ γ = {p, q}).
Let [p, q]γ, called the base of the arch, the single arc of γ with end points p, q,
such that [p, q]Γ ∪ [p, q]γ is the boundary of a topological disk DA which does not
contain the origin.

The arch is interior if it is contained into W (γ) and exterior if not. One
will say that the arch is minimal if its base contains a unique contact point mA,
with a contact exterior at DA (i.e. an interior contact of γ for an exterior arch,
and an exterior contact of γ for an interior arch) and if DA \ {mA} is filled by
orbits joining a point between p and mA to a point between mA and q, on the
base [p, q]γ. See Figure 7.

General arch Minimal arch

Figure 7
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A
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q

p

q

mA

γ

γ

Remark 4 The foliation by the orbits in a minimal arch is C1 conjugate to the
foliation by the intersections of parabolas y = −x2 + α, for α ∈ [0, 1] with the
topological disk D = {0 ≤ y ≤ 1 − x2| − 1 ≤ x ≤ 1} ⊂ IR2, (with coordinates
(x, y) in IR2).

Proposition 4 Let γ be a minimal curve in a smooth disk W ⊂ W0. Then, any
arch attached to γ in W is a minimal arch.

Proof
One can limit the study to interior arches, the proof for exterior arches being

quite similar. Then let A = [p, q]Γ ⊂ W (γ) be an interior arch attached to γ,
with [p, q]γ and DA as in Definition 10.

First, I claim that there is no interior contact m to γ (also interior contact
to DA) on [p, q]γ. To see this, look for instance at a half-orbit Γ+ starting at m.
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This half-orbit cannot have a limit-set in DA, as this disk contains no singular
point of X (see the proof of the case (b-1) in the proof of Proposition 3) Then,
Γ+ must intersect [p, q]γ. at a point m′ 6= m. But, as γ is minimal in W, this is
forbidden by Proposition 3.

Next, I claim that there exists one and only one exterior contact point mA

to γ on [p, q]γ. In fact, if there exists ce exterior contact points and no interior
contact points on [p, q]γ, it is easy to see that the topological index of X along
∂DA is equal to i(X, ∂DA) = 1−ce

2
(for a reason of orientation, ce must be odd).

As there is no singular point of X inside DA, this index is zero, as a consequence
of the Hopf-Poincaré formula, and it follows that ce = 1.

Again, as DA does not contain singular points of X, it is a direct consequence
of the Poincaré-Bendixson theory that each orbit in DA \ {mA} links on [p, q]γ,
a point on the left of mA to a point on the right of mA. This means that the
arch A is a minimal one.

Proposition 5 Let γ be a minimal curve in a disk W ⊂ W0, contained in the
interior of W. Then, no orbit of X in the interior of W can cut γ into more
than two distinct points.

Proof
If c(γ) = 0, i.e. if X is transverse to γ, then each orbit Γ can cut γ at most

one time. Then, the result is trivial in this case. From now on we will assume
that c(γ) = c(X,W ) > 0.

Let us suppose that an orbit Γ cuts γ in three distinct points p, q, r. One
can always assume that these points are consecutive on Γ, and by a slight C1

perturbation of γ, one can also assume that the intersection of Γ with γ is
transverse at each of these points.

One considers the two arches A = [p, q]Γ and B = [q, r]Γ. One will assume
that A is exterior at γ and then, that B is interior (the other case is completely
similar). By Proposition 4, there exists a single contact point on [p, q]γ, which is
an interior contact point m1 and a single contact point on [q, r]γ, which is an ex-
terior contact point m2. Taking into account the different possible arrangements
for the bases, it appears that there are four possible cases which are represented
in Figure 8, where one has indicated the different possible positions of the disks
DA and DB. One considers now these different cases.
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(1) In the case 1, one has that [pq]γ ∩ [q, r]γ = {q}. This means that [p, r]γ =
[pq]γ ∪ [q, r]γ is a sub-arc of γ. Let [p, r]Cγ be the complementary sub-arc. One
considers the topological curve γ1 = [p, r]Cγ ∪ [p, q]Γ ∪ [q, r]Γ contained in the
interior of W. This curve is homotopic to γ and then surrounds the origin. In
similar way as in the proof of Proposition 3 for the good case, one can modify
γ1 in order to obtain a generic curve γ2, which is C0 near γ1 (and then it belongs
to the interior of W and surrounds the origin), and has two contact points less
than γ (the points m1 and m2). This contradicts the minimality of γ in W.

(2) In the case 2, one has that [p, q]γ ⊂ [q, r]γ. But, as m1 6= m2 (one is
exterior and the other one is interior), the base [q, r]γ contains two distinct
contact points. This is impossible by Proposition 4.

(3) In the case 3, one has that [q, r]γ ⊂ [p, q]γ. Then, the same proof as in
case 2 shows that this case is impossible.

(4) In the case 4, at the point r which belongs to [p, q]γ, the field X has the
same transverse orientation as at the point p. Then, the point r is between p and
m1 on the base [p, q]γ and the fieldX is transverse to γ all along the arc [p, r]γ. As
in Lemma 2, we can C0-approximate the piecewise C1-curve γ1 = [p, r]Γ∪ [p, r]γ,
which is in the interior of W and surrounds the origin by a C1-curve γ2 with
the same properties and which is transverse to X. But the existence of such
a curve means that c(X,W ) = 0, in contradiction with the assumption that
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c(X,W ) > 0 made in this part of the proof.

2.3. Some topological results

As consequence of Propositions 4 and 5 I want to deduce now some global
properties for a germ (X, 0) of C1 vector field with an isolated singularity at
the origin. One will also assume that the origin is not accumulated by periodic
orbits.

One can represent the germ by a C1 vector field X on a disk W0, which
contains no singular point other that the origin nor periodic orbit. Moreover
one assumes that c(X,W0) > 0 : if a germ is isolated from periodic orbits and
such that c(X, 0) = 0, one will see in subsection 2.5 that it is a topological node.
Let γ be a minimal generic curve in W0. As c(X,W0) > 0), this curve contains
at least two contact points. I want to give properties of the orbits of X on the
disk W (γ). These results are comparable (up the formulation) to the results
obtained by Bendixson in the Part I of [B], but here the proofs are based on
the notion of minimal curves, which was not the case in [B]. I shall recall and
use the terminology introduced in [B].
Proposition 6 One considers a minimal curve in W0 for a field X as above.
Let L be an half-orbit of X through some point m of γ and assume that it is
contained into W (γ). Then the limit set of L is the origin.

Proof
Let us assume that L is a positive half-orbit by m ∈ Γ, i.e. defined for the

positive time. We want to prove that ω(L) = {0}. The proof for a negative
half-orbit is exactly the same, replacing X by −X, and will be omitted. Let
ϕ(t) the trajectory by m. The positive half-orbit L is image of the trajectory
for the positive times. As L is contained in the compact W (γ), the trajectory
is defined for all positive times in IR+ and its ω-set is contained into W (γ). It
follows from the Poincaré-Bendixson theory that this limit set is reduced to a
singular point (necessarily the origin) or must contain at least a regular point
(which may belong to a periodic orbit or a graphic).

Let us prove that this second case is impossible. If ω(L) contains a regular
point r, that we can assume to belong to the interior of W (γ), the trajectory
ϕ(t,m) accumulates on r for t→ +∞. It is easy to find a transverse section Σ
in a neighborhood of r, which is cut just in two points p, q by L, i.e. such that
L∩Σ = {p, q}. Using Lemma 2, one finds a curve γ′ which is transverse to X and
also contained into the interior of W (γ). This curve must surround the origin,
which is the unique singular point in W (γ). Moreover, as it is transverse to X,
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this curve is generic and such that c(γ′) = 0. But this value 0 is strictly less
than the value c(X,W (γ)) ≥ c(X,W0) > 0, which contradicts the assumption
made at the beginning of this subsection 2.3. As a consequence, one has that
ω(Γ) = {0}.

Corollary 1 Let γ be a minimal curve in W0 for a field X as above and Γ be the
orbit of X through some interior contact point m of γ. Then ω(Γ) = α(Γ) = {0}.

Proof It follows from Proposition 3 that each half-orbit through the interior
contact point m is contained into W (γ). Then one can apply Proposition 6 to
obtain the result.

An orbit Γ as in Corollary 1 bounds a piecewice C1 disk D(Γ), singular at
the origin : a pinched disk, in short. Each orbit Γ̃ inside D(Γ) has the same
limit property that Γ, i.e. ω(Γ̃) = α(Γ̃) = {0}. The proof is exactly the same
as in Proposition 6 and follows from non-existence of singular point of X in the
interior of D(Γ). Following Bendixson in [B], we define

Definition 11 (Bendixson) A closed nodal region is a pinched disk D(Γ)
bounded by an orbit Γ such that ω(Γ) = α(Γ) = {0}, filled by orbits with the
same limit property.

Elliptic sectors introduced in Introduction are simple examples of closed nodal
region. But the phase portrait inside a general closed nodal region may be much
more complicated than inside an elliptic sector. One can introduce an order in
the set of orbits contained into D(Γ), putting that Γ̃1 is less than Γ̃2 if and
only if Γ̃1 ⊂ D(Γ̃2). This order is total for an elliptic sector but is just partial
in general. As a consequence, the phase portrait inside a general closed nodal
region may be much more complicated than the 1-parameter family of orbits
that one finds inside an elliptic sector. See Figure 9 for an example.
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Figure 9 : Closed nodal region (following Bendixson)

Inside W (γ) one has ci(γ) disjoint closed nodal regions associated to the
ci(γ) interior contact points of γ. One also associates to each exterior contact
point of γ, a remarkable type of orbit pair, also introduced by Bendixson :

Definition 12 (Bendixson) Let (L,L′) be a pair of orbits such that ω(L) =
α(L′) = {0}, at the boundary of a sector S. This pair (L,L′) is said to cross
the origin (on the side of S) if one has the following. One considers a section
σ, topologically transverse to L and a section σ′, topologically transverse to L′,
these two sections pointing in the direction of S with a base point respectively
p0 on L and p′0 on L′. One assume each positive half-orbit Γ(p) through a point
p ∈ σ \ {p0} cuts σ′ \ {p′0} a first time at a point p′ = h(p), if σ is chosen
short enough. One assumes that this transition map h, which is continuous on
σ \ {p0}, can be extended by continuity at p0 by h(p0) = p′0, i.e. h(p)→ p′0 when
p→ p0 on σ \ {p0}.
Remark 5 If the Definition 12 is verified for a choice of sections σ, σ′, it is
also verified for any other choices. This is easily shown by using well-chosen
tubular neighborhoods.

If L and L′ are the sides of an hyperbolic sector S at the origin, as defined in
Introduction, it is clear that this pair of orbits is crossing the origin (on the side
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of S) . But, as it was noticed by Bendixson the converse is not always true.
It may exist pair of orbits crossing the origin which bound a sector containing
closed nodal regions, possibly in an infinite number. See Figure 10.

Figure 10 :Pair of orbits crossing the origin (following Bendixson)
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In order to state the next result we need the following definition :
Definition 13 Let m be an exterior contact point on the minimal curve γ.
Then, the maximal interval ]q−(m), q+(m)[ of m, is the open interval of γ, union
of the bases of all minimal arches associated to m (the notation is chosen such
that X has an inward direction at points of ]q−(m), q+(m)[ near q−(m), and the
converse near q+(m)).

Remark 6 As arch disks associated to two different exterior contact points of
γ are disjoint, it follows that maximal intervals associated to different exterior
contact points are also disjoint.

The following result associates a pair of orbits crossing the origin at each exterior
contact point :
Proposition 7 Let m be an exterior contact point and ]q−(m), q+(m)[ its max-
imal interval. Let L− be the positive half-orbit by q−(m) and L+ be the negative
half-orbit by q+(m). Then ω(L−) = α(L+) = {0}. Let S be the sector with sides
L−, L+ and containing the arches associated to m. Then, the pair (L−, L+) is
crossing the origin (on the side of S).

Proof

(1) If a point q ∈ γ is an end point of an arch associated to an exterior contact
m′, it is the same for points in a whole neighborhood of q in γ. It follows that
q−(m), q+(m) cannot be end points of an arch associated to m, by maximality,
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and cannot be end points of an arch associated to an exterior contact point
m′ 6= m, because in this case there would exist an arch associated to two distinct
exterior contact points m and m′, that is not possible. As a consequence, the
positive half-orbit L− through q−(m) and the negative half-orbit L+ through
q+(m) are contained into W (γ). It follows from Proposition 6 that ω(L−) =
α(L+) = {0}. Let be S the sector with sides L−, L+, containing the arches
associated to m.

(2) Using notations of Definition 12, we take p0 = q−(m) and p′0 = q+(m). We
take sections σ = [p0, q0[ and σ′ = [p′0, q

′
0[ for points q0 ∈]p0,m[⊂]p0, p

′
0[ and

q′0 ∈]p′0,m[⊂]p′0, p0[, such that q0, q
′
0 are the two end points of a same arch. The

transition map h is defined by the condition that, for any p ∈]p0, q0], h(p) is the
second end point of the arch starting at p. The map h is an homeomorphism
from ]p0, q0] onto ]p′0, q

′
0], reversing the orientation. The continuous extension at

p0 follows from the following observation : if p′ is any point in ]p′0, q
′
0[, then h

sends the interval ]p0, h
−1(p′)[ onto the interval ]p′0, p

′[. It follows that the pair
(L−, L+) is crossing the origin on the side of S

Remark 7 Using Proposition 5 and the minimality of γ, it is easy to prove that
if ]q−(m), q+(m)[ is the maximal interval of an exterior contact point m on γ,
then q−(m) 6= q+(m).

The half-orbits which enter into W (γ), starting at points of γ outside the maxi-
mal intervals of the exterior contact points, cannot return on γ. Then, they are
contained into W (γ) and it follows of Proposition 6 that their limit set is the
origin. They belong to parabolic sectors (possibly reduced to a single orbit).

As a consequence we obtain that the disk W (γ) is the finite union of ci(γ)
closed nodal regions, ce(γ) sector associated to pair of orbits crossing the origin
and c(γ) parabolic sectors (possibly reduced to a single orbit located between two
sectors associated to pairs of orbits crossing the origin).

2.4. Phase portrait inside a minimal annulus

Definition 14 Let W be a smooth disk in W0. A minimal annulus A in W is
an annulus whose boundary is the union of two minimal curves γ1, γ2 in W such
that γ2 is contained into the interior of W (γ1). The curve γ1 is the exterior side
and the curve γ2 is the interior side of the boundary ∂A.

Proposition 8 Let A be a minimal annulus with boundary γ1 ∪ γ2 where γ1 is
the exterior boundary side and γ2 the interior one, as defined above. We assume
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that A contains no periodic orbit.
Then, each interior contact of γ1 is on a minimal arch with base on γ2 and

each exterior contact of γ2 is on a minimal arch with base on γ1. The arch-disks
associated with these arches are contained in A and are 2 by 2 disjoints. All
the contact points of γ1 and γ2 belong to the union of these arch-disks. In the
complement of the arch-disks the orbits are arcs transverse to ∂A, between a
point on γ1 and a point on γ2. See Figure 11.

γ1

γ2

Figure 11 :A minimal annulus

Proof
Let us consider any interior contact point m on γ1. Two half-orbits Γ+ and

Γ− are starting from m, and enter into A. One want to prove that each of them
has a first intersection with γ2, which is transverse. The proof is the same
for the two half-orbits, then we will just consider Γ+, image of the trajectory
ϕ(t,m) for t ≥ 0. As there exists no singular point nor periodic orbit inside A,
ϕ(t,m) cannot remain into the interior of A for all t > 0. Then, there exists a
first t0 > 0 such that p(m) = ϕ(t0,m) ∈ ∂A.

Let us suppose first that p(m) ∈ γ1. It could happen that p(m) = m. But
this would mean that the orbit by m in A is periodic, which is excluded by
hypothesis. On the other side, as γ1 is minimal in W, the fact that p(m) 6= m
is excluded by Proposition 3.

It follows that p(m) ∈ γ2. It could happens that p(m) is an exterior contact
point on γ2. In this case Γ+ coincide with one of the two half-orbits starting from
p(m) before entering into A. Let Γ′+ the other half-orbit starting from p(m). By
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the same argument as above, we conclude that Γ′+ must reach γ1 at a point
q(m). If q(m) = m, we have again that the orbit through m is a periodic orbit
inside A, which is excluded by hypothesis. If q(m) 6= m, this means that the
orbit of m in A return on γ1 at a point distinct from m, which is excluded by
Proposition 3. The only possibility is that Γ+ reaches γ2 at a transverse point.

Then, there is an arch in A attached to γ2, passing through the interior
contact point m ∈ γ1. Its base ]p, q[⊂ γ2 contains a unique contact point of
γ2, which is an interior contact and the arch is minimal, as it follows from
Proposition 4. As the arch and its base belong to A, its arch-disk also belongs
to A.

The same proof can be repeated for each interior contact point of γ1 and
for each exterior contact point of γ2. We obtain ci(X,W ) arches attached to γ2

and ce(X,W ) arches attached to γ1. All these arches are minimal, with arch-
disks in A and 2 by 2 disjoint precisely because they are minimal. Moreover,
the 2c(X,W ) contact points located on ∂A are contained in the union of the
arch-disks (half of them on the arches and half of them on the bases of the
arches).

Consider now any point m ∈ γ1 and outside the arch-disks. The vector field
X is transverse to γ1 at m (no contact points is outside the union of arch-disks),
and the same argument as above shows that the orbit by m is an arc joining m
to a point p ∈ γ2 where X is transverse to γ2. Moreover, this arc lies outside
the union of arch-disks.

The result stated in Proposition 8 is trivial if X is smooth and if we consider
a smooth minimal curve γ with quadratic contact points and another smooth
curve γ′, sufficiently C2 close to γ and disjoint from it. The interest of the
Proposition is that it is valid in class C1, for any pair of minimal curves in W.

Remark 8 As follows from Lemma 3, a sufficient condition in order to have
no periodic orbit in A, is that c(X,W ) ≥ 3.

Corollary 2 Consider two disjoint minimal curves in a smooth disk W ⊂ W0.
Then, the arrangement of contact points in the same for the two curves.

Proof
The two minimal curves are the components γ1, γ2 of a minimal annulus,

as above. If c(X,W ) ≤ 2, the result is obviously true (even if the annulus
between the two curves contains a periodic orbit). Then one can assume that
that c(X,W ) ≥ 3, and then that there exists no periodic orbit in W, and in
particular between γ1 and γ2. Then, one can apply the Proposition 8.

Let p1, . . . , pk with k = ci(X,W ) be the interior contact points on γ1 and
q′1, . . . , q

′
l with l = ce(X,W ) be the exterior contact points on γ2. At each pi is

25



associated the base Ii ⊂ γ2 of the arch through pi. In the same way, at each q′j
is associated the base Jj ⊂ γj of the arch through q′j. The Ii are 2 by 2 disjoints
and each Ii contains a unique contact point of γ2, which is the interior point
p′i. In the same way, the Jj are 2 by 2 disjoints and each Jj contains a unique
contact point of γ1, which is the exterior point qj.

Now, as the arch-disks are 2 by 2 disjoint, it is clear that the arrangement of
{p1, . . . , pk, q1, . . . , ql} is the same as the arrangement of {p1, . . . , pk, J1, . . . , Jl},
which is the same as the arrangement of {I1, . . . , Ik, q

′
1, . . . , q

′
l}, which is the

same as the arrangement of {p′1, . . . , p′k,′1 , . . . , q′l}. See Figure 12.

p′i

pi

Ii

q′j

qjJj

Figure 12

2.5. Vector field germs of class C1 with finite contact index

In this part we suppose that (X, 0) is a C1 germ at the origin, isolated from
the periodic orbits and such that c(X, 0) ∈ IN (i.e. is finite).

The following theorem describes the phase portrait of (X, 0) :

Theorem 2 Let (X, 0) a C1 germ of vector field at the origin of IR2, isolated
from periodic orbits and with a finite index c(X, 0). Let X a representative of
(X, 0) on a disk W0 such that c(X,W0) = c(X, 0), and γ an absolute minimal
curve in W0, as above. Then, on W (γ), the vector field X is a topological
node or admits a sectoral decomposition, as defined in Definition 3. There
are ci(X, 0) elliptic sectors, ce(X, 0) hyperbolic sectors, which are separated by
c(X, 0) parabolic sectors (some of them may be reduced to a single orbit).

Proof
The general idea of the proof will be to associate to γ a sequence of other

absolute minimal orbits (γn) in the interior of W (γ), two by two disjoint, with
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diameter tending to zero, as in Propostion 1. One begins by the simpler case
c(X, 0) = 0.

(1) Case c(X, 0) = 0. In this case the vector field X is transverse to the
minimal curves γ and γn. Assume that the vector field is pointing inside along
γ (for the converse, one just replaces X by −X). As there exists no periodic
orbit in the annulus bounded by γ and γn, the positive half-orbit Γ(m) starting
at a point m ∈ γ arrives to a point mn on γn When n → +∞, one has that
mn → 0 ∈ IR2. Then, one has that ω(Γ(m)) = {0} (to be precise, one has to use
that the segment of orbit between mn and mn+1 is contained into the annulus
between γn and γn+1 for any n). As the result is true for any m ∈ γ, one has
that X is a topological node on W (γ).

(2) Case c(X, 0) > 0. One will start with the general results of Subsection
2.3, taking into account the existence of the sequence (γn) and considering the
interior contact points on γ. and next the exterior contact points.

(a) Interior contact points. Let m be any interior contact point on γ. It follows
from Corollary 1 that the orbit Γ passing through m bounds a closed nodal
region D(Γ) in W (γ). recall that this means that any orbit Γ̃ in D(Γ) verifies
that ω(Γ̃) = α(Γ̃) = {0}. One wants to prove that D(Γ) is in fact an elliptic
sector, i.e. that if Γ̃1, Γ̃2 are two orbits in D(Γ), then Γ̃1 ⊂ D(Γ̃2) or Γ̃2 ⊂ D(Γ̃1).

One first notices that there exists a number n0 such that if n ≥ n0, n the
curve γn intersects Γ̃1 and Γ̃2, each at two tranverse points ( if Mi > 0 is the
maximum of the distance between a point on Γ̃i and the origin it suffices to take
n0 such that diam(W (γn0)) < Inf(M1,M2)). One takes any n ≥ n0 and let An
be the annulus between γ and γn. One uses now Proposition 8 : there exists a
minimal arch passing through m and containing the two arches αn1 = Γ̃1 ∩ An
and αn2 = Γ̃2 ∩ An. Let [qn1,−, q

n
1,+] and [qn2,−, q

n
2,+] be the bases on γn of these

two arches. One knows that one of them is included in the other and using
again Proposition 8 for the annulus between any pair of curves γn one sees
that this order of inclusion is independent of n. To fix the ideas, let us assume
that [qn1,−, q

n
1,+] ⊂ [qn2,−, q

n
2,+]. This implies that Γ̃1 ∩ An ⊂ D(Γ̃2) ∩ An for any

n ≥ n0. Taking the limit for n→ +∞ one obtains the result : Γ̃1 ⊂ D(Γ̃2). To
conclude, inside W (γ) one has ci(X, 0) elliptic sectors, which are 2 by 2 distinct,
associated to the ci(X, 0) interior contact points on γ.
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(b) Exterior contact points. Let m be any exterior contact point. Using Propo-
sition 7, one can associate to m a sector S containing all arches associated to
m, with sides a pair (L−, L+) of orbits crossing the origin on the side of S.
Moreover L− and L+ cut γ respectively at the end points q−(m) and q+(m),
where ]q−(m), q+(m)[ is the maximal interval associated to m. Choose now any
ε > 0 and a number n such that diam(W (γn)) < ε. From now on, ε and n are
maintained fixed.

Put qn−(m) = L− ∩ γn and qn+(m) = L+ ∩ γn. For a point p ∈]q−(m),m[⊂
]q−(m), q+(m)[ one calls A(p) the arch starting at the point p and ending at
h(p), the second end point of A(p). If ε is small enough, the arch A(p) cuts γn
at two successive points pn and qn. It follows the fact that (L−, L+) is crossing
the origin and directly from the proof of Proposition 7 that h(p)→ q+(m) when
p→ q−(m).

This implies that there exists a δ = δ(ε) > 0 such that if dist(p, q−(m)) < δ
(for a given distance on γ) then the distance between the arc [p, pn]A(p) on A(p)
and the arc [q−(m), qn−(m)]L− on L− is smallest than ε and the same for the
distance between the arc [h(p), qn]A(p) on A(p) and the arc [q+(m), qn+(m)]L+ on
L+. As the distance from A(p)∩W (γn) to the origin is less than ε (by the choice
of n), we have that the distance from A(p) to L∪L′ is less than ε. As conclusion,
the arches A(p) fill up the sector S and then this sector is an hyperbolic one.
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One has already observed at the end of Part 2.3 that the complement set
in W (γ) of the union of the ci(X, 0) elliptic sectors and the ce(X, 0) hyperbolic
sectors, that we have found above, is filled up by parabolic sectors (some of
then possibly reduced to a single orbit). This finished the proof in the case
c(X, 0) > 0.

If a germ of vector field is a topological node or admits a sectoral decompo-
sition, then the origin is an isolated singularity which cannot be accumulated
by periodic orbits and it is rather easy to construct curves, at arbitrarily small
distance of the origin, which are generic with a number of contact points equal
to the number of elliptic sectors plus the number of hyperbolic sectors, i.e. the
number index c(X, 0) is finite. This means that Theorem 2 admits a reverse. As
the numbers of elliptic and hyperbolic sectors are equal respectively to ci(X, 0)
and ce(X, 0) we obtain as consequence of Theorem 2, of the above observation
and of formula (1), a formula given in [B] for the index i(X, 0) :

Corollary 3 Let (X, 0) be a C1 germ of vector field which is a topological node
or admits a sectorial decomposition with E(X, 0) elliptic sectors and H(X, 0)
hyperbolic sectors. Then the index of (X, 0) at the origin is given by :

i(X, 0) =
E(X, 0)−H(X, 0)

2
+ 1 (3)

Remark 9 Mind that the convention is different in [B] and the index given by
Bendixson has an opposite value that the one given here in (3).
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One can associate to a sectoral decomposition, its arrangement of elliptic and
hyperbolic sectors and also take into account that some parabolic sectors may
be reduced to a single orbit. This is coded by a sequence of c(X, 0) symbols
taken in the set {E,H} (for the elliptic and hyperbolic sectors), interlinked by a
sequence of c(X, 0) symbols in the set {P, S} : P for true parabolic and S for a
single orbit between two hyperbolic sectors. By this way one obtains a sequence
of 4k symbols defined up a circular permutation, as an example the sequence
(E,P,E, P,H, S,H, P ) for the sectoral decomposition in Figure 2. One can
associate the trivial sequence (P ) to a topological node. It is rather trivial that
two sectoral decompositions which are topologically equivalent (i.e., with the
same phase portrait) have the same associated sequence. The reverse is true,
but the proof, which can be founded in [D], is not so easy.

One can use this sequence in order to obtain an estimation of the number
of different phase portraits in terms of c(X, 0). It is also easy to obtain an
estimation for the topological index i(X, 0) :

Proposition 9 Let (X, 0) be a germ of C1 vector field as in Theorem 2. Then,
we have that −c(X, 0)/2 + 1 ≤ i(X, 0) ≤ c(X, 0)/2 + 1 and that the number of
different phase portraits is less than 22c(X,0).

Proof
To obtain the estimation on i(X, 0) we have just to notice −c(X, 0) ≤

ci(X, 0)− ce(X, 0) ≤ c(X, 0), and then that

−c(X, 0)/2 + 1 ≤ i(X, 0) ≤ c(X, 0)/2 + 1

To count the different possible phase portraits, we have just to count the
number of sequences associated above to sectoral decompositions. The number
of possible arrangements of ci(X, 0) elliptic sectors among ce(X, 0) hyperbolic
sectors is less than 2c(X,0). The number of occurrences of a single orbit in place
of a true parabolic sector is also surely less than 2c(X,0). Then the number of
distinct phase portraits is bounded by 22c(X,0).

3. Differentiable germs with an isolated singularity

In the Part II of [B], Bendixson considers what he calls “holomorphic vector
fields” germs at the origin of IR2, whose components have no common factor
at {0}. Clearly, he wants to speak of real analytic germs with an algebraically
isolated singularity at the origin. But it appears that Bendixson did not used
the analyticity, nor the fact that the origin is algebraically isolated. In fact,
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his arguments simply use that the germ is sufficiently differentiable, with a non
zero jet at the origin and has the origin as a (topologically) isolated singularity.
For this reason, in this Section I shall consider germs with a finite class of
differentiability and a non zero finite jet at the origin.

3.1. A sufficient condition for the finiteness of c(X, 0)

For an integer k ≥ 1, we consider a C2k+3 vector field germ (X, 0), represented
by a C2k+3 vector field X on a disk W0, neighborhood of the origin. We assume
that this vector field can be written :{

ẋ = Pk(x, y) + o(||(x, y)||k)
ẏ = Qk(x, y) + o(||(x, y)||k), (4)

where Pk, Qk are homogeneous polynomials of degree k, such that at least one
of the two is non-zero ((X, 0) has a zero (k − 1)-jet but a non-zero k-jet). The
remainders are functions of class C2k+3.

The main result of this Section is the following one :

Theorem 3 For an integer k ≥ 1, let (X, 0) be a C2k+3 germ of vector field, such
that the origin is an isolated singularity. Assume moreover that jk−1X(0) = 0,
but that jkX(0) 6= 0, as expressed in (4). Then c(X, 0) ≤ 2(k + 1)

Proof
For this proof one will use some ideas introduced by of Bendixson in [B], for

another aim that is recalled in 3.2. The germ is represented by a vector field X
on W0, as above.

(1) Ones first assumes that the polynomial R(x, y) = xPk(x, y) + yQk(x, y) is
not zero. One considers the circles γρ given by γρ(θ) = (ρ cos θ, ρ sin θ), which
are contained into W0 for ρ small enough. Along these circles one chooses the
orthogonal vector field N(θ) = cos(θ) ∂

∂x
+ sin(θ) ∂

∂y
. Taking into account the

homogeneity of Pk, Qk, the function nρ(θ) =< X(γρ(θ)), N(θ) > is given by :

nρ(θ) = ρk+1
(
R(cos(θ), sin(θ)) + ρh(θ, ρ)

)
, (5)

where the function h(θ, ρ) is of class Ck+1 (this function is obtained through
the division of a remainder of class C2k+3 in (θ, ρ) by the function ρk+2). The
trigonometrical polynomial R(cos(θ), sin(θ)) is non-zero and homogeneous of
degree k + 1. Then, it has 2(k + 1) zeros counted with their multiplicity. As
the function θ → R(cos(θ), sin(θ)) + ρh(θ, ρ) converges in the Ck+1-topology
towards R(cos(θ), sin(θ)) when ρ → 0, we have that the function nρ(θ) has
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also less than 2(k + 1) zeros (counted with their multiplicity) for 0 < ρ < ρ0,
where ρ0 > 0 is small enough. For any ρ, such that 0 < ρ < ρ0, it is easy
to approximate in the Ck+1-topology, the curve γρ by a curve with 2(k + 1)
quadratic (and then even) contact points. Then, such a curve is generic with
less than 2(k+1) (even) contact points. By this way we can construct a sequence
(γn) of generic curves, converging toward the origin in the Hausdorff sense and
such that c(γn) ≤ 2(k+1). It follows from Proposition 2, that c(X, 0) ≤ 2(k+1).

(2) Assume now that R(x, y) is the zero polynomial. It follows from the poly-
nomial identity xPk(x, y) ≡ yQk(x, y) that there exists a non-zero homogen-
uous polynomial Sk−1 of degree k − 1 such that Pk(x, y) = −ySk−1(x, y) and
Qk(x, y) = xSk−1(x, y). Taking fixed constants a > 0 and b > 0, with a 6= b, one
replaces the circles used in case (1) by the ellipses γρ(θ) = (aρ cos(θ), bρ sin(θ)).
Along γρ, one takes the orthogonal field to γρ : N(θ) = b cos(θ) ∂

∂x
+ a sin(θ) ∂

∂y
.

Putting c = cos(θ) and s = sin(θ), the function nρ(θ) is now given by :

nρ(θ) = ρk+1
(
bcPk(c, s) + asQk(c, s) + ρh(θ, ρ)

))
which reduces to :

nρ(θ) = ρk+1
(
(a− b)csSk−1(c, s) + ρh(θ, ρ)

)
(6)

As the trigonomical polynomial (a−b)csSk−1(c, s) is non-zero and homogeneous
of degree k + 1, one can finish the proof as in case (1).

Remark 10 In the proof of Theorem 3, one obtains the existence of a sequence
γn of generic curves with a contact index bounded by C = 2(k + 1), converg-
ing toward the origin. For n → ∞, their shape tends to be circular. But the
curves γn are not absolute minimal curves and Proposition 2 gives no informa-
tion about the asymptotic shape of absolute minimal curves converging toward
the origin. This asymptotic shape could be obtained using the desingularization
theory of [D], in case of a smooth vector field verifying a  Lojasiewicz condi-
tion. In this case, absolute minimal curves converging toward the origin can
be obtained as direct images through the desingularization mapping, of curves
converging toward the critical locus of the desingularization. For instance, for
a smooth germ 1

4
y ∂
∂x
− 1

2
x3 ∂

∂y
+ · · · , with the origin as an algebraically isolated

singularity, a ρ-family of absolute minimal curves is given by {ax4 + by2 = ρ2},
for a 6= b and ρ → 0. They are associated to the desingularization mapping
(x̄, ȳ, u) ∈ S1 × IR+ → (ux̄, u2ȳ) ∈ IR2.

3.2. Some results of Bendixson

Let Γ be an orbit image of ϕ(t), trajectory of a vector field X, which tends
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toward 0 ∈ IR2 for t→ +∞ (if the limit is for t→ −∞ we can make the same
considerations, changing X by −X). To study the limit, one can work in polar
coordinates (r, θ) where the flow is given by ϕ(t) = (r(t), θ(t)). To say that ϕ(t)
tends to 0 ∈ IR2 is just to say that r(t)→ 0. depending on the behavior of θ(t)
we have different type of trajectory :

Definition 15 We consider that t→ +∞. If θ(t)→ θ0 ∈ S1 the orbit γ is said
an (attracting) characteristic orbit. If θ(t)→ +∞ or −∞ (in the universal cov-
ering of S1) the orbit is said an (attracting) spiral in the direct or the clock-ward
direction. If all points of a neighborhood of the origin the orbits are attracting
spirals the field germ is said to be an attracting focus (spiraling in the direct or
clock-ward direction). If the orbits by all the points of neighborhood of the origin
are attracting characteristic orbits (with perhaps different angle limits) the field
germ is said to be an attracting node.

We have the repulsing notions (repulsing spiral, charasteristic orbit, focus,
node) by changing X in −X.

Remark 11 A characteristic orbit is an orbit with a limit tangent {θ = θ0}.
This terminology was not used by Bendixson in [B] but was used by Dumortier
in [D]. In fact, for Bendixson, characteristic curve is synonymous of orbit.

The behavior of an orbit which tends toward the origin may be much wilder
than the behaviors described in Definition 15. But, we can found in [B] a result
which can be restated for differentiable fields as follows :

Proposition 10 For an integer k ≥ 1, we consider a germ of C2k+3 vector field
at the origin with a non-zero k-jet as in (4) and such that the origin is isolated.
If ϕ(t) is a trajectory tending toward the origin when t tends toward +∞ or
toward −∞, then the corresponding orbit is a spiral or a charasteristic orbit.

In order to obtain this result, Bendixson proved, that for an orbit tending
toward the origin, the angular component θ(t) must have a limit, finite or in-
finite. For proving this, he used for the tangential component −yP + xQ the
ideas that I have adapted to the radial component in the proof of Theorem 3
above. Also, as I have mentioned above, Bendixson supposed that the vector
field is analytic and that the origin is algebraically isolated, but the assumptions
made in Proposition 10 are sufficient. Another result of [B] can be restated as
follows :
Proposition 11 Consider a germ of differentiable vector field as in Proposition
10. If there is at least one characteristic orbit , then every other orbit tending
toward the origin (for positive or negative times) is also a characteristic orbit.
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3.3. Proof of the Main Theorem

The proof is a direct consequence of the previous results. Applying Theorem
3 we have that c(X, 0) ≤ 2(k+ 1). As the origin is supposed to be isolated from
periodic orbits, we can also apply Theorem 2 : the germ (X, 0) is a topological
node or admits a sectoral decomposition with less than 2(k + 1) sectors. It
follows from Propositions 10 and 11 that a topological node for a differentiable
germ with non-zero jet, as in the statement of Theorem 1, is a focus or a node
and that, in the case of a non trivial sectoral decomposition, each orbit tending
toward the origin is a characteristic orbit.

To estimate the index i(X, 0) and the number of different phase portraits, we
can apply Proposition 9. As c(X, 0) ≤ 2(k+ 1), we obtain that −k ≤ i(X, 0) ≤
k + 2 and that the number of different phase portraits is less than 24(k+1).
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