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Abstract

This paper studies an equilibrium model between an insurance buyer and an insurance seller, where
both parties’ risk preferences are given by convex risk measures. The interaction is modeled through
a Stackelberg type game, where the insurance seller plays first by offering prices, in the form of safety
loadings. Then the insurance buyer chooses his optimal proportional insurance share and his optimal
prevention effort in order to minimize his risk measure. The loss distribution is given by a family of
stochastically ordered probability measures, indexed by the prevention effort. We give special attention to
the problems of self-insurance and self-protection. We prove that the formulated game admits a unique
equilibrium, that we can explicitly solve by further specifying the agents criteria and the loss distribution.
In self-insurance, we consider also an adverse selection setting, where the type of the insurance buyers is
given by his loss probability, and study the screening and shutdown contracts. Finally, we provide case
studies in which we explicitly apply our theoretical results.
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1 Introduction

The fact that rational agents undertake actions to lower their risk exposure is now standard in economic
analysis. Insurance buyers can try to reduce the size of the potential claims that they face (self-insurance) or
reduce the probability of a claim arrival (self-protection).
In the particular case of health insurance, the increased knowledge of individual health state, through con-
nected devices for instance, make the efforts of risk reduction easier. Insurers themselves start to incentivize
prevention efforts: the companies John Hancock or Aetna decided in 2018 to offer connected watches or
bracelets to their clients, in exchange for their commitment to a physical activity program, whose progress is
measured by the connected device.
The first systematic study of prevention effort, in the form of self-insurance or self-protection, was made in
the seminal paper of Erlich and Becker [16]. Their comparative statics analysis showed that the following two
conclusions hold true:
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(A) Market insurance and self-insurance are substitutes, in the sense that an increased insurance price
implies more prevention effort to reduce the losses size.

(B) Market insurance and self-protection can be complements, in the sense that a more expensive market
insurance entails less effort to reduce the probability of losses.

Since then, several papers tested the robustness of these results to various changes in the model (see the
paper [9] and the literature below for a short overview). The aim of this paper is to contribute to this line
of research in at least three aspects: first, we model the interaction between the insurance buyer and seller
as a game and we construct an equilibrium consisting of optimal prevention and insurance parameters for
the buyer and optimal price strategy for the seller. Second, as criteria for both market participants, we take
general coherent risk measures in the sense of [2]. And last, the impact of the prevention effort is modeled via
a family of stochastically ordered probability measures which are indexed by the prevention effort: this allows
to deal with self-insurance and self-protection as particular cases, and to give sufficient conditions so that the
conclusions (A) and (B) hold true. Let us now describe each of these aspects and the related assumptions.

Summary of the approach.

A Stackelberg game. The way that we formulate the problem is inspired by contract theory, and in
particular by the Principal–Agent problem. Indeed, we consider the insurance buyer as the Agent, whose
action is given by a vector (α, e), where α is the proportion of losses paid by the insurer and e is the effort
made by the Agent to reduce his risk. Throughout the paper, we will sometimes refer to the insurance
buyer as the Agent, and to the insurance seller as the Principal. The contract proposed by the Principal is
completely summarized in the price offered for the cover α, price which is given in the form of a safety loading
(equation (3.1)). The effort e will only impact the losses distribution, and not the losses outcome directly.
As a consequence, the choice α will be directly observable by the Principal, whereas the effort action e will
be unobservable. This unobservable action case is referred to as the moral hazard situation ([37],[24],[38]).
The problem that we consider is a one period model. Static Principal Agent problems involving moral hazard
are known to be difficult to solve (see Chapter 2 in [12] or the articles [38, 25] for a discussion on the relaxed
formulations of the problem), we are however able to completely solve the Agent’s problem in the particular
case that we deal with, thanks to the singular form of the optimal coverage α, which will be equal to either
0 or 1. Then, the remaining optimization in the variable e will be non convex, but still solvable by analyzing
the problem "locally" and then carefully pasting the solutions together (subsections 3.2 and 3.3).
As already noticed and discussed in [14], the corner type solution for the optimal coverage mainly comes from
the positive homogeneity of the criteria (see Definition 2.1) and the linearity of the insurance contract. The
linearity of the insurance contract is not a restrictive assumption: it corresponds to some contracts found
in practice, in particular in health insurance. It is also extremely common in reinsurance, where this type
of contract is referred to as "quota-share". Notice that our analysis readily extends to the relation between
an insurer (this time the Agent) and a reinsurer (the Principal), where the effort of the agent in that case
consists for instance in underwriting policy control, or in prevention campaigns for the clients.

Risk Measures. In standard contract theory literature (see [37, 24, 38, 39, 12, 10]), the formal optimization
problems consist in expected utility maximization. This is also the case in [16] and in most of the papers that
followed ([9]). In the present paper however, the criterion of both the Agent and the Principal will be given
by a law invariant coherent risk measure (see Definition 2.1). Risk measures are a popular risk assessment
tool, in particular because of the associated axiomatic analysis and its interpretation ([2, 21]). It is a common
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tool in insurance and reinsurance practice, since it appears in the european regulation texts: indeed, the
quantile function, also called Value-at-Risk, is the risk measure that europeans insurers and reinsurers have
to compute, according to the Solvency II rules. Notice that the quantile risk measure is not coherent (which
was one of the initial motivations of [2]), and it is quite often in practice compared to the Average Value-
at-Risk (AVaR), also called Tail Value-at-Risk, or Expected Shortfall (see [20] for the definitions, and the
differences between these measures). AVaR is one example of coherent risk measure, which is also a distortion
risk measure (see (2.1)).
The results obtained in this paper are valid if the risk measures used by the Agent and the Principal are law
invariant and coherent. This class of risk measures is more general than the class of distortion risk measures.
We give in Example 2.1 a class of law invariant coherent risk measures, which are not distortion risk measures.
Notice that if ρ is a coherent risk measure, then U(X) := −ρ(−X) defines a monetary utility function. Our
results can then be recast in terms of law invariant monetary utility functions, but we state them in the
language of risk measures, which is closer to actuarial practice. The general risk sharing problem has been
solved in [28], when economic agents are law invariant monetary utility maximizers, and in [35] in the case
of quasiconvex risk measures. As showed in [4] and [28], the resolution of the risk sharing problem in the
monetary case reduces to the inf-convolution of the given risk measures. In our case however, since the agent’s
effort is not observable by the Principal, we have to follow another approach, mainly the backward induction,
which consists in solving the Agent’s problem first and then solving the Principal’s problem knowing the
optimal responses of the Agent. This is doable here since, contrary to the setting in [4] and [28], we fix the
form of insurance contracts, which are linear. We refer the reader to [20, 17] for more details on risk measures
and insurance applications.

Controlling the distributions. Let us now discuss the type of loss distributions that we consider. In
the literature on the arbitrage between market insurance, self-insurance and self-protection, the losses distri-
butions are discrete, concentrated on two points: the insured suffers a loss L > 0 with probability p or no
loss with probability 1− p, where p ∈ (0, 1). In our setting (see Section 2 for more details), we will consider
a family of random variables (Xe)e∈(0,+∞), indexed by a prevention effort parameter e, and such that the
distributions of (Xe)e∈(0,+∞) forms a family of probability measures which is decreasing for the first order
stochastic dominance (denoted FSD for simplicity), in the sense that

e1 < e2 =⇒ E[f(Xe1)] > E[f(Xe2)], (1.1)

for every non-decreasing function f : R→ R. In other words, an increase of the effort lowers the dangerousness
of the loss, where the dangerousness is measured by the first order stochastic dominance. We will write
X ≤

(mon)
Y to say that X is dominated by Y for the FSD, also called the monotone order. We will use the

following property of the FSD (see Theorem 2.68 in [20])

X ≤
(mon)

Y ⇐⇒ qX(u) ≤ qY (u), ∀u ∈ (0, 1),

where qX denotes the tail quantile function associated to the distribution of X. Since we will use a family of
distributions, indexed by some prevention effort, we will assume that the effort impacts the tail quantile of the
loss distribution, in such a way that the marginal impact will be decreasing. Notice that in (1.1), we do not
make any convexity nor concavity assumption on f , this means that the situation in which the distributions
of (Xe)e∈(0,+∞) are decreasing for the monotone convex order is included in our analysis.
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Using this framework, we are able te deal with self-insurance and self-protection in a unified way. In particular,
we provide sufficient conditions for the statements (A) and (B) to hold true, as well as simple counter-examples
for (A) and (B).

We give several explicit examples of probability distributions, which are in line with standard actuarial
practice. We analyze in more details the case where, for every e, Xe has a distribution given by a mixing
between a Dirac mass at 0 and a Pareto distribution with some parameter k(e) depending of the effort. For
more details on standard actuarial assumptions, we refer the reader to [6].

Related Literature.

As already mentioned above, there is a large literature on self-insurance and self-protection, and the very brief
overview that we give here is by no means exhaustive. We refer the interested reader to [22], [15] (Chapter
9) and to the paper [9], which provides a survey on the economics of prevention.
Most of the literature focuses on the case where the loss distribution concentrates on just two points, 0 (no
loss) and some loss level L > 0. Some contributions already extended that simple framework: [26], [40], [29],
examine the effects of agents’ risk preferences on their optimal effort, for more general loss distributions, in
particular for distributions satisfying the so-called single-crossing property. This property is also used in the
paper [3], that provides sufficient conditions on the utility functions and on probability distributions, allowing
to obtain comparative statics results.
In the case where the agent is subject to both self-insurance and self-protection activities, [33] studied the
case where the loss distribution concentrates on N points, with N ≥ 2. The author showed that even if
the marginal reduction of a loss dominates the marginal increase of the effort’s cost, more risk averse agents
do not necessarily exert more effort: he provides a sufficient condition on the probability distribution for
this result to hold true, this condition is comparable to the one we obtain in subsection 5.2 for statement
(A) to hold true. [36] analyzes the interaction between self-protection activities, prudence and risk aversion,
under the assumption that a change in the level of self-protection is not mean preserving, but rather mean
utility preserving, for any utility function. [8] considers random vectors instead of one-dimensional random
variables. The marginal distributions are still bi-variate, and the effect of the dependence structure between
the marginals on prevention decisions is studied.
In all these papers, agents maximize their expected utility. Several authors studied the robustness of assertions
(A) and (B), or the relationship between risk aversion and prevention efforts, when agents use other criteria.
[30] considered the class of Rank Dependent Expected Utilities (RDEU), in which agents can distort the
probabilities, i.e. over or underweigh certain loss probabilities. In the language of risk measures, in the
RDEU framework, an agent facing a risk X minimizes the quantity ρ(u(X)) where ρ is a distortion risk
measure (see (2.1)) and u a non-decreasing and concave utility function. It is shown in [30] that more risk
averse agents exert more self-insurance effort. In [18], self-protection activities in a health insurance context
are studied, in a RDEU framework, with non concave distortions. When RDEU is considered in the particular
case of u(x) = x, we obtain the so-called Yaari’s Dual Theory (DT). [7] analyzed the interaction between
market insurance, self-insurance, and self-protection in the DT framework, and proved that the main results
of [16] carry over to that case. Let us mention the papers [32] and [5], that focus on the relation between risk
aversion and the Willingness to Pay (WTP) for general risk preferences (RDEU in the case of [5]).
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Main contributions.

The current paper extends the problems of self-insurance and self-protection to the case of a Stackelberg
game between the insurance buyer and seller, under law invariant coherent risk measures, and in a situation
of moral hazard. We prove that the formulated game always admits an equilibrium that we characterize.
The focus lies on the impact of an increased price on optimal insurance demand and prevention effort. We
give emphasis to the fact that whether statements (A) and (B) hold true or not essentially depends on the
relative impact of the effort on the losses distribution through the risk measure and on the price (Assumptions
3.1 and 3.2).
The methodology described in this paper can be applied to a large class of insurance claim distributions. To
illustrate this, we analyze in detail the case of the Pareto distribution, which is standard in actuarial science
and we give some insight about the case of discrete distributions, which is standard in insurance economics.

Structure of the paper

Section 2 discusses the problem and our main assumptions. In Section 3, we completely solve the buyer
problem. Section 4 is dedicated to the seller problem and Section 5 illustrates the proposed methodology in
particular cases, where we specify the claim distribution family and the class of risk measures. Finally, we
show in the Appendix that the form of probability distribution that we consider can be used as a proxy for
the Compound Poisson distribution, which is common in actuarial models.

2 Model and Assumptions

Let (Ω,F,P) be a fixed probability space. For a given random variable X, FX denotes its survival function
defined by FX(x) := P(X > x) and qX denotes its tail quantile function, defined as the inverse of FX :

qX(u) := inf{x ∈ R | FX(x) ≤ u}.

We assume that the insured can make some effort, modeled by a parameter e ∈ R+, in order to reduce
its losses, or the probability to suffer losses. Our assumptions allow us to deal with self-insurance and self-
protection in a unified way, using stochastic orders. Let us introduce the probability distributions of insurance
claims in more details.

The losses distributions. Let (Xe)e∈[0,+∞) be a family of non-negative random variables, representing
losses, such that the distributions µe of Xe are decreasing for the FSD. In particular, this implies that
for each u ∈ (0, 1), the function e 7→ qXe(u) is non-increasing. To simplify the notations, we will write
Q(u, e) := qXe(u). We also assume that the marginal impact of the effort is non-decreasing.

Assumption 2.1. For every u ∈ (0, 1), e 7→ Q(u, e) is a convex function.

The objectives. We choose to model the interaction between the insurance buyer, that we will refer to as
IB, and the insurance seller, called IS, as a game in a sequential form: IS plays first by offering prices, then IB
plays second by choosing his optimal insurance cover and his optimal effort parameter. We assume that both
players minimize a law invariant coherent risk measure, whose definition is recalled below for completeness.

Definition 2.1. ρ : L1 → R is a law invariant coherent risk measure if

1. ρ is monotone, in the sense that X ≤ Y almost surely implies that ρ(X) ≤ ρ(Y ).
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2. ρ is cash-additive: ∀m ∈ R, ρ(X +m) = ρ(X) +m.

3. ρ is convex : For each X and Y in L1 and for all λ ∈ [0, 1], ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

4. ρ is positively homogeneous: ∀λ ∈ R+, ρ(λX) = λρ(X).

5. ρ is law-invariant: X d
= Y implies that ρ(X) = ρ(Y ), where d

= denotes equality in distribution.

If ρ satisfies conditions 1. to 4. in Definition 2.1, then it is called a coherent risk measure, as introduced in
[2]. For more details and properties of risk measures, we refer the reader to [20] (Chapter 4). An important
class of law-invariant coherent risk measures is given by the distortion risk measures, defined by

ρ(X) :=

∫ 1

0
qX(u)dψ(u), (2.1)

where ψ is a distortion function, i.e. a non-decreasing function from [0, 1] to [0, 1] such that ψ(0) = 0 and
ψ(1) = 1. If the probability space (Ω,F ,P) has no atoms, then one can prove that a risk measure of the form
(2.1) is convex if and only if the distortion function ψ is concave.

Example 2.1. Let us give an example of coherent risk measure which is not a distortion risk measure:

ρ(X) := E[X] + δE[(E[X]−X)p−]1/p, δ ∈ (0, 1), 1 < p < +∞,

satisfies all properties of Definition 2.1, and cannot be written in the form (2.1). We refer the reader to [28]
(Section 3.4) for more details on the so-called semi-deviation risk measure.

Lemma 2.1. Let ρ be a risk measure satisfying the properties 1,2,3 and 5 in Definition 2.1. If the distributions
of (Xe)e∈[0,+∞) satisfy Assumption 2.1, then the function e 7→ ρ(Xe) is convex.

Proof. Assume first that ρ takes the form given in (2.1), which we can write as

ρ(Xe) =

∫ 1

0
Q(u, e)dψ(u).

Since e 7→ Q(u, e) is convex, then e 7→
∫ 1

0 Q(u, e)dψ(u) is also convex. Now, if ρ is a general risk measure
satisfying 1,2,3 and 5 in Definition 2.1, by Theorem 4.62 and Corollary 4.78 in [19], we have the following
Legendre-Fenchel type representation:

ρ(Xe) = sup
ψ

{∫ 1

0
qXe(u)dψ(u)− γ(ψ)

}
, (2.2)

where the supremum is taken over all concave distortion functions ψ and where

γ(ψ) = sup
Y ∈Aρ

{∫ 1

0
qY (u)dψ(u)

}
, (2.3)

with Aρ := {Y ∈ L1| ρ(Y ) ≤ 0}. Notice that to be able to apply Corollary 4.78 in [20], we need a continuity
property of ρ (the so-called Fatou property), which is automatically satisfied by Theorem 2.1 in [27]. By
(2.2), the function e 7→ ρ(Xe) is a supremum of convex functionals, and hence it is also convex. 2

Remark 2.1. The previous Lemma entails that e 7→ ρ(Xe) is continuous. From representation (2.2), the
map e 7→ ρ(Xe) is also non-increasing and we have ρ(Xe) ≥ E[Xe] ≥ 0.

Remark 2.2. For the particular distortion function ψ(u) = u, the risk measure defined in (2.1) reduces to
ρ(X) = E(X). Then by Lemma 2.1, we have that e 7→ E(Xe) is a continuous, non-increasing and convex
function.
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The sequential game. As mentioned above, we model the interaction between IB and IS through a game,
where IS plays first and IB plays second. We solve this game using a backward induction argument.

We assume that IB has an initial wealth denoted ω0 and that he is facing a risk with loss Xe for which he
subscribes to a proportional insurance contract with IS. In this insurance program, he chooses his level of
insurance denoted α ∈ [0, 1] and he pays a premium denoted Π. The prevention effort e ∈ R+ made by IB
has a monetary cost c(e), where c is a non-decreasing and strictly convex function.1 We suppose that IB uses
a law-invariant and coherent risk measure ρ1. The goal of IB is to minimize the risk measure associated to
his total loss, which is given by:

L1(α, e) := ρ1((1− α)Xe + Π(αXe) + c(e)− ω0).

Using the positive homogeneity and cash-additivity properties of ρ, we obtain that IB’s objective function
simplifies to

L1(α, e) = (1− α)ρ1(Xe) + Π(αXe) + c(e)− ω0.

Therefore IB wants to solve the following optimization problem:

inf
(α,e)∈[0,1]×(0,∞)

L1(α, e). (2.4)

Remark 2.3. From this point forward, we consider the initial wealth ω0 to be equal to 0. This is without loss
of generality, by the cash-additivity of ρ1.

On the other hand, IS wants to find the best premium for the insurance coverage that IB is willing to accept.
We suppose that IS uses a law-invariant and coherent risk measure ρ2 and her goal is to minimize her risk
measure associated to her loss, given by

L2(Π) := ρ2(α?Xe? −Π(α?Xe?)),

where α? and e? are functions of the premium Π and correspond to the insurance demanded by IB and the
effort he performs under it. Therefore, IS solves the following optimization problem

inf
Π
L2(Π), (2.5)

where the set of premiums over which IS optimizes will be specified in the next section.

3 The insurance buyer’s optimization problem

3.1 Optimal insurance cover

We start the resolution of IB’s problem by studying his optimal insurance coverage. In the literature this
coverage is either equal to 0 or 1 (see [7], [34], [41], or see [14] for empirical results). In the following
Proposition, we give a sufficient condition on the pricing functional Π under which the optimal value for α is
either 0 or 1.

Proposition 3.1. Assume that Π is positively homogeneous

Π(λX) = λΠ(X), ∀λ ≥ 0,

then the optimal insurance coverage α? only takes the values 0 or 1.
1If c is merely convex, all our analysis holds true by choosing the smallest effort realizing the minimum when needed.
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Proof. By our assumptions, we get that the objective function L1 is linear in α, since

L1(α, e) = (1− α)ρ1(Xe) + αΠ(Xe) + c(e).

So the optimal insurance demand only depends on the sign of Π(Xe)− ρ1(Xe), and is given by

α?(e) =

{
1 if e ∈ I
0 if e ∈ N := Ic,

where I := {e ∈ R+| Π(Xe) ≤ ρ1(Xe)}. 2

In other words, the optimal coverage will be the full insurance coverage α? = 1 when the price asked by the
insurer is lower than the risk associated to the claims distribution, and it will be 0 otherwise.

In the actuarial science literature, various premium functionals are analyzed (see [31] or [13]). One standard
example is the safety loading:

Π(X) := (1 + θ)E[X], (3.1)

where θ is a non-negative parameter. In this case, I :=
{
e ∈ R+| 1 + θ ≤ ρ1(Xe)

E[Xe]

}
. For θ = 0, this is the

so-called pure premium principle.

Another example is the standard deviation principle:

Π(X) := E[X] + γσX ,

where σX denotes the standard deviation of X and γ is a non-negative parameter. In this case we have
I :=

{
e ∈ R+| γ ≤ ρ1(Xe)−E[Xe]

σXe

}
.

Remark 3.1. The safety loading and the standard deviation principles are two ways to compute premiums
that satisfy the positive homegeneity property given in Proposition 3.1. If this property is not satisfied, then
one can find an interior solution α∗ ∈ (0, 1) for the optimal insurance coverage. In the paper [14], the authors
avoid corner solutions in two ways: by considering a non linear contract with a deductible, or by introducing a
source of background risk. In our case, we could consider a premium functional Π which is not homogeneous,
and introduce interior solutions this way, even in the case of a single insurable source of risk. An example of
such functional Π is the variance principle Π(X) := E[X] + βV (X).

Remark 3.2. Notice that for Proposition 3.1 to hold true, we only need ρ1 to satisfy the properties 2 and 4
of cash-additivity and positive homogeneity of Definition 2.1.

Throughout the rest of the paper, we assume for simplicity that Π(X) = (1 + θ)E[X], with θ ≥ 0, but our
results can be generalized to other insurance pricing functionals. Recall that IB demands (full) insurance,
that is α?(e) = 1, if e ∈ I and IB demands no insurance, that is α?(e) = 0 if e ∈ N , where

I :=

{
e ∈ R+| 1 + θ ≤ ρ1(Xe)

E[Xe]

}
.

Let us define then the following function G and state our main assumption on it, that says how the effort
impacts the risk and the price of insurance (represented by the expectation, given the safety loading premium).

G(e) :=
ρ1(Xe)

E[Xe]
. (3.2)
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In this paper we assume the function G is monotonic, which gives two different cases that we study separately.
We first assume that G is non-increasing, which is a natural economic assumption, since it means that an
increased effort has a bigger impact on the risk than it has on the price: we analyze the self-insurance
problem under this assumption. Then, in subsection 3.3 we assume that G is non-decreasing: we prove that
this assumption is always satisfied in the self-protection case. In both cases, we will solve completely the
problem of IB and discuss the veracity of statements (A) and (B) mentioned in the Introduction.

3.2 Non-increasing G

As discussed in Section 2, suppose that the agent can exert an effort to reduce the risk that he is exposed
to. In this subsection, we assume that an increased effort has a bigger impact on the risk than it has on
the price. We will prove next that for any model satisfying Assumption 3.1 below, the statement (A) of the
Introduction holds true, i.e. less market insurance translates into more prevention effort.

Assumption 3.1. The function G defined in (3.2) is non-increasing, or equivalently

e1 ≤ e2 =⇒ ρ1(Xe2)

ρ1(Xe1)
≤ E[Xe2 ]

E[Xe1 ]
.

We already know that the functions e 7→ E[Xe] and e 7→ ρ(Xe) are non-increasing and convex. The assumption
above asserts that the effort impact is bigger on the risk measure ρ1 than it is on the expectation. This
assumption is satisfied in various models of self-insurance, which is the main example we have in mind,
although the analysis we develop and our results are more general.

Example 3.1. Consider the distribution of the loss random variable Xe given by

PXe := (1− p)δ{0} + pPYe , (3.3)

where 0 < p < 1, PYe denotes the distribution (controlled by IB) of a positive random variable, and δ{0}
is the Dirac mass at 0. As shown in Section 5.1, when the random variables Ye are Pareto distributed,
Assumption 3.1 is satisfied. We also mention the cases where the random variables Ye have a Fréchet, Weibull
or Log-Normal distribution, as other standard examples in which Assumption 3.1 is satisfied.

We proceed now to solve the problem (2.4) of IB, consisting in the minimization of the functional L1. For
fixed e, we already solved the problem of minimizing L1 in alpha. For fixed α, we know from Lemma 2.1 and
Remark 2.2 that

L1(α, e) = (1− α)ρ1(Xe) + (1 + θ)E[X] + c(e),

is convex, as the sum of three convex functions. Notice now that the function e 7→ L1(α?(e), e) is not convex,
so its minimization is not straightforward. However, we can take advantage of the fact that α? only takes the
values 0 and 1 to study L1(α?(e), e) separately on the sets N and I, on which it is a convex function, and
then compare the local minima on N and I to get a global minimum.

Define LN and LθI as follows, for e ∈ R+,

LN (e) := ρ(Xe) + c(e),

LθI(e) := (1 + θ)E[Xe] + c(e).

LN and LθI are convex and such that

L1(α?(e), e) =

{
LN (e), if e ∈ N ,
LθI(e), if e ∈ I.

(3.4)
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Lemma 3.1. There exists eθ ∈ R+ such that N and I are two intervals of the form

N = (eθ,+∞),

I = [0, eθ].

Proof. We already know from Lemma 2.1 that both functions e 7→ ρ1(Xe) and e 7→ E[Xe] are continuous.
Also, since Xe has finite expectation, G(e) = ρ1(Xe)

E[Xe]
is continuous and non-increasing. We can define its right

continuous inverse G−1(y) := inf{e ∈ R+| G(e) < y} and

eθ := G−1(1 + θ). (3.5)

Notice that G(eθ) = 1 + θ, since G is continuous. Then by definition, for every e ≤ eθ, G(e) ≥ 1 + θ, which
means that e ∈ I and for every e > eθ, G(e) < 1 + θ, which means that e ∈ N . 2

Let us now study the function LθI . It is a continuous and strictly convex function, that goes to +∞ as e tends
to +∞.2 So it has a unique minimizer on R+ that we denote eI(θ). The following Proposition identifies the
local minimizer of LθI on the set I.

Proposition 3.2. Suppose that e 7→ E[Xe] and e 7→ c(e) are differentiable. There exist constants θ0 < θI
such that

(a) θ ≤ θI =⇒ argmin
I

LθI = {eI(θ)}.

(b) θI < θ =⇒ argmin
I

LθI = {eθ}.

Moreover θ ≤ θ0 =⇒ eI(θ) = 0.

Proof. For simplicity, we will write E(e) := E[Xe]. Since the random variables (Xe)e∈R+ have finite
expectation, the function LθI is finite at e = 0. Its right hand derivative d

deL
θ
I(0) is well defined and

d

de
LθI(0) ≥ 0 ⇐⇒ θ ≤ − c′(0)

E′(0)
− 1 =: θ0. (3.6)

In that case, LθI is non-decreasing at 0, and by convexity it is non-decreasing everywhere, so its minimum is
attained at e = 0. Notice that for the constant θ0 to be well defined, we need that E′(0) 6= 0. If this is not
the case, then d

deL
θ
I(0) = c′(0) ≥ 0 and the function LθI is non-decreasing for any θ ∈ R.

We analyze now the case where θ > θ0. This entails that the function LθI is decreasing at 0. Therefore, the
minimizer eI(θ) of LθI on R+ is an interior point characterized by

1 + θ = − c′(eI(θ))

E′(eI(θ))
. (3.7)

Let us prove that θ 7→ eI(θ) is non-decreasing. Indeed, the function e 7→ c′(e) −1
E′(e) is non-decreasing, being

the product of two non-negative non-decreasing functions. Since 1 + θ is obviously increasing with θ, (3.7)
implies that eI(θ) is non-decreasing with θ.

2Since LθI(e) ≥ c(e), and c(e) being non-decreasing and strictly convex, we have lim
e→+∞

c(e) = +∞.
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Notice that since the function e 7→ ρ1(Xe)
E[Xe]

is non-increasing, θ 7→ eθ is non-increasing. Notice also that since
ρ1(Xe)
E[Xe]

≥ 1 for every e in R+, when θ = 0, I = R+ and eθ goes to +∞ when θ tends to 0. Thus the following
constant θI is well defined:

θI := inf{θ > 0| eθ ≤ eI(θ)}. (3.8)

Said otherwise, if θ is greater than θI , then the global minimizer eI(θ) lies outside of the set I, and if θ is
lower than θI , eI(θ) ∈ I. In particular, θ ≤ θI implies that the local minimizer of LθI on I is given by eI(θ).
On the other hand, when θ > θI , then the restriction of LθI on I is non-increasing, and its local minimizer is
given by the bound eθ. To conclude the proof, notice that θ0 < θI , since for eI(θ) to be greater than eθ (or
even to be greater than 0), the function LθI has to be decreasing at 0. 2

Let us now study the local minimizer of LN on the set N . The function LN (e) = ρ(Xe)+c(e) is non-negative,
strictly convex and coercive. Therefore it admits a unique minimizer on R+, that we denote eN .

Proposition 3.3. There exists a positive constant θN such that

(a) θ ≤ θN =⇒ argmin
N

LN = {eθ}.

(b) θ > θN =⇒ argmin
N

LN = {eN}.

Proof. We know that θ 7→ eθ is non-increasing. Define then3

θN := inf{θ ≥ 0| eθ < eN}. (3.9)

Then θ > θN implies that eN ∈ N . If θ ≤ θN , then LN is non-decreasing on N , and its minimizer is given
by the boundary point eθ. 2

There remains to determine the global minimum of the function e 7→ L1(α?(e), e) defined in (3.4). This can
be done by carefully analyzing the dynamics of eI(θ) and eθ as functions of θ: this is what we do in the proof
of the next result.

Theorem 3.1. Let e? := argmin
e

L1(α?(e), e) be the global minimum of the function e 7→ L1(α?(e), e). There

exists a positive constant θM such that

(a) θ ≤ θM =⇒ e? = eI(θ).

(b) θ > θM =⇒ e? = eN .

θM represents the maximum value of the safety loading such that the insurance buyer accepts to enter the
contract and pay the price given by (1 + θM )E[XeI(θM )]. For θ > θM , he chooses not to buy any insurance
and exerts the optimal effort eN .

To prove Theorem 3.1, we will need the following Lemma.

Lemma 3.2. There does not exist any θ ≥ 0 such that

eN < eI(θ) < eθ. (3.10)
3The fact that θN is finite is proved in Step 1 of the proof of Lemma 3.2 (see (3.11)).

11



Proof. Step 1: We first prove that there exists θ > 0 such that

eθ ≤ eN . (3.11)

By assumption, the expectation E[Xe] is finite for every e ≥ 0. This does not imply the finiteness of the risk
measure values ρ(Xe). Thus, if e 7→ ρ(Xe) is not finite everywhere, we define the minimal effort emin such
that the agent will never exert an effort less or equal to that value, in other words:

emin := inf{e > 0 | ρ(Xẽ) < +∞, ∀ẽ > e}. (3.12)

In particular, ρ(Xemin) = +∞ and ρ(Xe) < +∞ for each e > emin. If e 7→ ρ(Xe) is finite everywhere, we
define emin := 0. Let us show that emin ≤ eN . Indeed, if ρ(Xemin) = +∞, since eN is the global minimizer of
e 7→ ρ(Xe) + c(e), we have eN > emin. If emin = 0, the inequality is also satisfied since eN ≥ 0 by definition.
Since, also by definition, eθ converges to emin as θ goes to +∞, we obtain that for a large enough θ, the
inequality (3.11) is satisfied.

Step 2: Let us assume the existence of θ̃ ≥ 0 satisfying (3.10).
Since the function θ 7→ eI(θ) is non-decreasing and θ 7→ eθ is non-increasing, and by inequality (3.11), we
have the existence of θ larger than θ̃ such that

eN < eθ < eI(θ). (3.13)

By the definition (3.5) of eθ, we have

LN (e) ≥ LθI(e), ∀e ≤ eθ and

LN (e) < LθI(e), ∀e > eθ.

In particular, using (3.13), we get LN (eN ) ≥ LθI(eN ) and LN (eI(θ)) < LθI(eI(θ)), which is impossible since
eN and eI(θ) are the respective global minimizers of LN and LθI . This proves the claim of the Lemma. 2

Remark 3.3. The economic interpretation of the previous Lemma is quite natural: it says that for prices not
too high (safety loadings not too high), the agent cannot be fully insured and exert more effort than when he
has no insurance.

Proof. [of Theorem 3.1] On one hand, since ρ(Xe) ≥ E[Xe] for every e ≥ 0, eθ converges to G−1(1) = +∞
as θ approaches 0+. On the other hand, notice that eI(0) ≤ eN , since the reverse inequality is impossible by
Lemma 3.2. Recall the definition (3.9) of the constant θN . So the situation for θ small enough (θ ≤ θN ) is:

eI(θ) ≤ eN < eθ. (3.14)

Furthermore, by (3.11), there exists θ large enough (θ > θN ) such that

eI(θ) ≤ eθ ≤ eN . (3.15)

Notice that in the case where there exists θJ such that eI(θ) > eN for every θ ≥ θJ , then we have θN ≤ θJ ,
since the reverse inequality would imply the existence of θ such that eN < eI(θ) < eθ, which is not possible
by Lemma 3.2. So the inequalities (3.14) and (3.15) are the only possible dynamics for these effort levels, as
functions of θ.

In the case where θ ≤ θN , both eI(θ) and eN belong to the set I, so the global minimizer of L1 is given by
eI(θ).
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When θ > θN , we need to compare LθI(eI(θ)) and LN (eN ). Let us prove that θ 7→ LθI(eI(θ)) is non-decreasing.
To this end, let 0 < θ1 < θ2, the fact that eI(θ1) is the global minimizer of Lθ1I gives (recall the notation
E(e) := E[Xe]):

Lθ1I (eI(θ1)) = (1 + θ1)E(eI(θ1)) + c(eI(θ1)) ≤ (1 + θ1)E(eI(θ2)) + c(eI(θ2))

≤ (1 + θ2)E(eI(θ2)) + c(eI(θ2)) = Lθ2I (eI(θ2)).

Thus we can define θM by

θM := inf{θ ≥ 0| LθI(eI(θ)) ≥ LN (eN )}.

Then the conclusions of the Theorem hold true by definition. 2

To conclude this section, let us state the following Corollary of Theorem 3.1, which says that in self-insurance
statement (A) from the Introduction is always true. An increase in the premium leads to an increase in
the effort, as long as the price is attractive for IB. This holds because by Lemma 3.2, the situation where
eN < eI(θ) < eθ cannot happen.

Corollary 3.1. The optimal effort e?(θ) is a non-decreasing function of θ.

Notice that the optimal effort e?(θ) is not a continuous function of θ: it has a jump at the point θ = θM , and
this function becomes constant (equal to eN ) after θM .

3.3 Self-Protection

In the previous subsection, we made the Assumption 3.1 stating that the impact of an increased effort is
bigger on the risk measure than it is on the expectation. This assumption implies that the conclusion (A) of
the seminal paper of Ehrlich and Becker [16] is satisfied. We study now the remaining case where the function
G is non-decreasing, and prove that in that case, conclusion (B) always holds true. This will be the case for
any model of self-protection, in the form (3.16) described below.

Assumption 3.2. The function G defined in (3.2) is non-decreasing, or equivalently

e1 ≤ e2 =⇒ ρ1(Xe2)

ρ1(Xe1)
≥ E[Xe2 ]

E[Xe1 ]
.

An example of such a situation, is the one in which the insurance buyer controls his loss probability by
exerting an effort e on it. More precisely, let the probability distribution Pe of the random variable Xe take
the following form

Pe := (1− p(e))δ{0} + p(e)PY , (3.16)

where e 7→ p(e) is a decreasing function, PY denotes the distribution of a positive random variable Y , and
δ{0} is the Dirac mass at 0. In other words, the loss random variable Xe is strictly positive with probability
p(e), in which case its value is given by Y , and takes the value 0 with probability 1− p(e).

Lemma 3.3. Assume that the loss distribution has the form (3.16) and ρ1 is a law invariant and coherent
risk measure. Then Assumption 3.2 is satisfied.
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Proof. Let us first suppose that ρ1 is a distortion risk measure in the form of (2.1), with a concave distortion
ψ. We get then:

ρ1(Xe) =

∫ 1

0
q̄Xe(u)dψ(u),

=

∫ p(e)

0
q̄Y

(
u

p(e)

)
dψ(u),

= p(e)

∫ 1

0
q̄Y (v) dψ(p(e)v) dv.

Since E[Xe] = p(e)E[Y ], we have

ρ1(Xe)

E[Xe]
=

∫ 1
0 q̄Y (v) dψ(p(e)v) dv

E[Y ]
.

The concavity of ψ implies that the function e 7→ ρ1(Xe)
E[Xe]

is non-decreasing, which in turn implies that
Assumption 3.2 is satisfied. In the case where ρ1 is a general law invariant coherent risk measure, using the
representation (2.2) and the same computations as above, we get:

ρ1(Xe)

E[Xe]
=

sup
ψ

{∫ 1
0 q̄Y (v) dψ(p(e)v) dv − γ(ψ)

}
E[Y ]

,

where the supremum is taken over all concave distortion functions ψ, and where γ(ψ) is defined in (2.3).
Since for any fixed concave ψ, e 7→

∫ 1
0 q̄Y (v) dψ(p(e)v) dv is non-decreasing, we can conclude that e 7→ ρ1(Xe)

E[Xe]

is also non-decreasing. 2

This result says that when only the loss probability is controlled, then the impact of the effort is bigger on
the price (the expectation) than it is on the risk. As it will become clear from the next results, this implies
that there are situations in which an increase in the insurance price leads to less effort to reduce the loss
probability, that is the well known conclusion (B) of [16].

Remark 3.4. Given the particular form (3.16) of probability distributions corresponding to self-protection,
Assumption 2.1, which ensures that e 7→ ρ1(Xe) is convex, says in this setting that e 7→ qY ( u

p(e)), 0 ≤ u ≤ p(e),
is convex. This is the case, for example, if u 7→ qY (u) and e 7→ p(e) are both concave.

In the case of distortion risk measures, we can provide a sufficient condition for the convexity of e 7→ ρ1(Xe),
which is independent of the distribution of the random variable Y . This is the purpose of the next Lemma.

Lemma 3.4. Assume that ρ1 is a distortion risk measure (see (2.1)) with a distortion function ψ such that
e 7→ ψ [p(e)] is convex. Then both functions e 7→ ρ1(Xe) and e 7→ E[Xe] are convex.

Proof. To prove the convexity of e 7→ ρ1(Xe), we write

ρ1(Xe) =

∫ +∞

0
ψ (P(Xe > x)) dx =

∫ +∞

0
ψ [p(e)PY ((x,+∞))] dx,

which is convex, since by the assumption of the Lemma, e 7→ ψ [p(e)PY ((x,+∞))] is convex for any x ≥ 0.
The particular case ψ(x) = x gives that e 7→ E[Xe] is convex. 2
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Remark 3.5. A standard assumption in insurance economics is that e 7→ p(e) is convex (see [9] for instance),
which means that an increased effort leads to a decrease in the loss probability p(e), with a decreasing marginal
impact of the effort. In particular, this implies that the objective probabilities P(Xe > x) = p(e)PY ((x,+∞))

are also decreasing and convex. The assumption in the previous Lemma entails that the subjective probabilities
ψ(P(Xe > x)) are also decreasing in a convex way. Notice that the assumption that ψ ◦ p is convex is also
needed in [7]. In Subsection 5.1.2, we provide classes of distortion functions and of maps e 7→ p(e) satisfying
the assumption of the previous Lemma.

We proceed now to solve the problem of IB. By Lemma 3.3, the sets N and I take the form

N :=

{
e ∈ (0,+∞) such that (1 + θ) >

ρ1(Xe)

E[Xe]

}
= (0, eθ), (3.17)

I :=

{
e ∈ (0,+∞) such that (1 + θ) ≤ ρ1(Xe)

E[Xe]

}
= (eθ,+∞). (3.18)

where eθ := inf{e ∈ R+ | ρ1(Xe)
E[Xe]

≥ 1 + θ}.

We know that for all e < +∞, E[Xe] = p(e)E[Y ] 6= 0 (since Y is positive a.s.) and from Remarks 2.1 and
2.2 (or from Lemma 3.4), we know that the functions e 7→ ρ1(Xe) and e 7→ E[Xe] are continuous. We have
that e 7→ ρ1(Xe)

E[Xe]
is continuous hence eθ is the solution to the equation ρ1(Xe)

E[Xe]
= 1 + θ. So eθ is defined as the

generalized inverse of e 7→ ρ1(Xe)
E[Xe]

− 1, which is non-decreasing, therefore eθ is a non-decreasing function of θ.

We proceed now with a similar analysis to the one developed in Section 3.2, based on finding the minima
of the functions LN and LθI on their respective domains and compare them properly. Recall that LN (e) =

ρ(Xe) + c(e) and LθI(e) = (1 + θ)E[Xe] + c(e).

On the set N

Since LN is convex, non-negative and coercive, it admits an unique minimizer on R+ that we denote eN .
Since the random variables (Xe)e∈R+ have finite risk measure, the function LN is finite at e = 0, the right
hand derivative ∂+

e LN (0) is well defined and we can suppose without loss of generality that it is non-positive.

Proposition 3.4. There exists a positive constant θN such that

(a) θ ≤ θN =⇒ argminLN = {eθ},

(b) θ > θN =⇒ argminLN = {eN}.

Proof. We define θN := inf{θ ≥ 0 | eθ > eN}. Since θ 7→ eθ is a non-decreasing function, from the definition
of θN , θ > θN implies that eN ∈ N therefore eN is the local minimizer of LN on N . If θ ≤ θN then LN is
decreasing on N which means that its minimizer is given by the boundary point eθ. 2

θ0 θN

e? = eθ e? = eN

Figure 1: Local minimizer of LN on the set N , as a function of θ.
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On the set I

Since LθI is a convex, coercive function it admits an unique minimizer on R+ that we call eI(θ). We will
denote it eI when no confusion can arise. The same argument as in the proof of Proposition 3.2 gives that eI
is a non-decreasing function of θ. Different from the previous section, in this setting there is no obvious way
to compare eI and eθ with respect to the values of θ because both efforts are non-decreasing functions of θ.

Global minimum

We recall that on N we have ρ1(Xe) < (1 + θ)E[Xe] and on I we have the reverse inequality. Therefore we
can distinguish six possible cases concerning the order of eI , eN and eθ depending on the value of θ

(a) eθ ≤ eI ≤ eN ,

(b) eI ≤ eθ ≤ eN ,

(c) eN ≤ eI ≤ eθ,

(d) eI ≤ eN ≤ eθ,

(e) eθ ≤ eN ≤ eI ,

(f) eN ≤ eθ ≤ eI .

In the next Proposition, we prove that case (b) is not possible and we solve case (a).

Proposition 3.5. If eI ≤ eN and eθ ≤ eN then eθ ≤ eI and the global minimum of L1 is eI .

Proof. Let us prove this Proposition by contradiction. Suppose eI < eθ, since eI is the minimum of the
convex function hence LθI is non-decreasing on [eθ,+∞) so ∂+

e L
θ
I(eθ) > 0. Moreover from the definition of

the sets N and I we have that ∂+
e LN (eθ) > ∂+

e L
θ
I(eθ) > 0 and ∂−e LN (eθ) < ∂−e L

θ
I(eθ). Since LN is convex

in eN this means that eN < eθ.

We proved that if eI ≤ eN and eθ ≤ eN then eθ ≤ eI so eI and eN belong to the set I. Moreover we know for
all e ∈ I, LθI(e) < LN (e) therefore LθI(eI) < LN (eN ). This means that eI is the global minimum of L1. 2

Remark 3.6. The last argument of this proof let us conclude also for the case (e). Indeed, in this case eN
and eI belong to the set I therefore the same argument applies and eI will be the global minimum of L1.

The cases (c) and (d) are adressed in the Proposition that follows.

Proposition 3.6. If eN ≤ eθ and eI ≤ eθ then the global minimum of L1 is eN .

Proof. If eN ≤ eθ and eI ≤ eθ, then eN and eI both belong to the set N . Moreover, for all e ∈ N we have
LθI(e) > LN (e), which implies LθI(eI) > LN (eI) ≥ LN (eN ), since eN is the global minimum of LN . So we
can conclude that eN is the global minimum of L1. 2

The Theorem that follows addresses the last case (f).

Theorem 3.2. There exists a positive constant θM such that

(i) If eN ≤ eθ ≤ eI and θ ≤ θM , the global minimum of L1 is eI .

(ii) If eN ≤ eθ ≤ eI and θ > θM , the global minimum of L1 is eN .

Moreover we have the following inequality
θN ≤ θM ,

where θN is defined in Proposition 3.4.
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Proof. Notice that for all effort e, the objective function LθI as a function of θ is non-decreasing. Indeed,

θ1 < θ2 ⇐⇒ (1 + θ1)E[Xe] + c(e) < (1 + θ2)E[Xe] + c(e)⇐⇒ Lθ1I (e) < Lθ2I (e) ∀e. (3.19)

In particular for e = eI(θ), LθI(eI(θ)) is non-decreasing with θ.

Since LN (eN ) is independent of θ and since in the absence of loading factor it is better to have full insurance
coverage than no coverage, that is LθI(eI(0)) < LN (eN ), we define θM := sup{θ ≥ 0 | LθI(eI(θ)) ≤ LN (eN )}.
By the definition of θM , (i) and (ii) hold true.

Let us prove that θM ≥ θN by contradiction. Suppose that θN > θM and let θ be such that θN > θ > θM .
By the definition of these two constants we have that eθ ≤ eN and LθI(eI) > LN (eN ). This is not possible,
since the global optimality of eI and the point eN belonging to I imply LθI(eI) ≤ LθI(eN ) ≤ LN (eN ). 2

We can summarize the results of this section by the graphics that follows

θ0 θN θM

α? = 1 α? = 1 α? = 0

e? = eI e? = eI e? = eN

Figure 2: Optimal effort with full insurance coverage depending on the value of θ: comparisons.

θ0 θM

e? = eI e? = eN

Figure 3: Optimal effort with full insurance coverage depending on the value of θ: final results.

Let us conclude this Section with the following Corollary stating that statement (B) holds true in the case of
self-protection. The behavior of the optimal effort e?(θ) is very similar to the one described in [30] and [7].

Corollary 3.2. The map θ 7→ e?(θ) is non-decreasing for θ ≤ θM . It becomes constant, equal to eN , for
θ > θM . It has a jump at θ = θM equal to eN − eI(θM ). The cases (c), (e) and (f) described above imply that
this jump can be negative, from which we deduce that statement (B) holds true.

4 The insurance seller’s optimization problem

We now move to the problem of IS, which consists into finding the best premium for the insurance coverage
that IB is willing to accept. Recall that IS uses a law-invariant and coherent risk measure ρ2 and her goal is
to solve problem (2.5). Since we are considering safety loading premiums, the problem of IS reduces to

minimize
θ∈R+

α?(θ)
(
ρ2(Xe?(θ))− (1 + θ)E[Xe?(θ)]

)
.

Remark 4.1. In a standard Principal–Agent relationship, it is assumed that the agent accepts only contracts
for which his utility (loss) is greater (less) than some reservation value R0, representing the utility (loss) he
can guarantee under some outside option. However, this feature is endogenous in our model, since IB is free
to choose α? = 0 when the contract does not seem convenient for him.
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4.1 Solving the problem of IS

In this section we describe the general methodology to solve the problem of IS. This analysis applies to both
the self–insurance and self–protection type of IB, described in subsections 3.2 and 3.3.

We know that under Assumption 3.1 or 3.2, there exists a positive constant θM such that α?(θ) = 1θ∈[0,θM ].
Given the form of the objective function of IS, her problem is reduced to a minimization over a compact set.

minimize
θ∈[0,θM ]

ρ2(XeI(θ))− (1 + θ)E[XeI(θ)]. (4.1)

Therefore, we have by continuity the existence of an optimal loading factor θ? which minimizes the risk
measure of the loss of IS. Moreover, if the functions involved are smooth enough (which is the case in most
of the models studied in the literature), we can characterize θ? as the solution to the following system(

∂

∂e
ρ2(XeI(θ))− (1 + θ)

∂

∂e
E[XeI(θ)]

)
∂eI(θ)

∂θ
= E[XeI(θ)]− λ,

λ(θ − θM ) = 0,

where λ ≥ 0 is a KKT multiplier associated to the constraint θ ≤ θM .

Not much more can be said about IS’s problem, without specifying a particular model. In Section 5.1, as an
application, we solve explicitely the problem of IS in the Pareto case.

4.2 Adverse Selection

As an extension of the problem of IS, suppose now a situation in which there are two types of IB in the
population. Let us assume directly that the losses have the form (3.3), and the difference between the types
of IB is the probability p of having a loss.

More precisely, let pb > pg and let us refer to the two types of IB as the good type and the bad type. Then
the distribution of the losses for IB of good and bad type are respectively

P ge := (1− pg)δ{0} + pgPYe ,

P be := (1− pb)δ{0} + pbPYe .

We assume the type of a particular IB is private information. When asking for insurance, IS does not know
what is the type of IB but only the distribution of types in the population: with probability πg, the IB that
she is interacting with is of good type and with probability πb, he is of bad type.

In this setting, we will consider two different problems that may be of interest for IS, the shutdown problem
and the screening problem. As explained for instance in [11, 23], the difference between these two problems
lies on whether IS wants to sign contracts with the IB of bad type, so they are defined by different optimization
programs.

Shutdown problem

In the shutdown problem, IS wants to provide insurance only to the good type of IB, because of the low risk
probability pg of suffering a loss compared to pb. In other words, IS wants to exclude the bad type of IB and
sign a contract only with IB of good type. IS chooses then a premium that will be rejected by IB of bad type
and will only be accepted by IB of good type.
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Given any loading factor θ ≥ 0, denote by (α?g(θ), e
?
g(θ)) and (α?b(θ), e

?
b(θ)) the optimal level of insurance and

effort chosen by IB of good and bad type respectively. The shutdown problem is given as follows

minimize
θ≥0

ρ2(Xe?g(θ))− (1 + θ)E[Xe?g(θ)]

s.t. α?b(θ) = 0,

α?g(θ) = 1.

In Section 5.1, we approach the shutdown problem of IS in the Pareto case.

Screening problem

In the screening problem, IS is willing to contract both types of IB and differentiate them by designing
simultaneously two premiums, one for each type. Since IB’s type is private and he could claim being of
any type, IS will design a menu of premiums satisfying the so–called truth–revealing property, that is to say,
providing incentives to IB for choosing the contract made for his respective type.

Denote by Lg1 and Lb1 respectively the risk measures associated to the total loss of IB of type good and bad.
The screening problem faced by IS is given as follows

inf
θg ,θb≥0

π`

(
ρ2(Xe?g(θg))− (1 + θg)E[Xe?g(θg)]

)
+ πh

(
ρ2(Xe?b (θb))− (1 + θb)E[Xe?b (θb)]

)
, (4.2)

such that

{
Lg1(α?g(θg), e

?
g(θg)) ≤ L

g
1(α?g(θb), e

?
g(θb)),

Lb1(α?b(θb), e
?
b(θb)) ≤ Lb1(α?b(θg), e

?
b(θg)),

(4.3)

and such that

{
α?g(θg) = 1,

α?b(θb) = 1.
(4.4)

Constraint (4.3) states that whatever the type of IB is, he does not have any incentive to lie and take the
premium designed for the other type, since the loss when doing so is greater than the one obtained when
revealing the truth. Constraint (4.4) makes sure that the premiums are sufficiently attractive to both types
of IB in the population.

In Section 5.1, we solve explicitly the screening problem of IS in the Pareto case.

5 Case studies

5.1 The Pareto Case

In the following case study, we consider that the distribution of the loss random variable Xe is given by

PXe = (1− p)δ{0} + pPYe ,

where 0 < p < 1, δ{0} is the Dirac mass at 0 and PYe denotes the distribution of a Pareto random variable of
parameter x̂ > 0 and k > 0. The Pareto distribution is often used in standard actuarial models (estimation
of risk premiums or quotation in non-proportional reinsurance for example).

For tractability purposes, we choose to define

Π(Xe) = (1 + θ)E[Xe], c(e) =
e2

2
, ψ1(u) = ur1 , r1 ∈ (0, 1), ψ2(u) = ur2 , r2 ∈ (0, 1).
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5.1.1 Self-insurance

To study self-insurance in this context, we suppose that IB’s effort to reduce the size of the loss expresses
itself in the control of the parameter e 7→ k(e). We assume this function to be non-decreasing, concave and
such that k(0) = 1. We then have the following

P[Xe > x] = p

(
x̂

x

)k(e)

, ∀x > x̂, E[Xe] =
px̂k(e)

k(e)− 1
, q̄Xe(u) =

{
x̂
( p
u

)1/k(e)
, if u ∈ [0, p],

0, if p < u ≤ 1.

Notice that since k is a concave function, the quantile function q̄Xe is convex. We can calculate the risk
measure ρ1(Xe) which is given by Equation (2.1)

ρ1(Xe) = r1x̂

∫ p

0
ur1−1−1/k(e)p1/k(e)du =

{
r1pr1 x̂k(e)
r1k(e)−1 , if k(e) > 1

r1
,

+∞, otherwise.

Therefore, IB’s problem is

inf
(α,e)∈[0,1]×(0,∞)

{
(1− α)

pr1r1x̂k(e)

r1k(e)− 1
+ α(1 + θ)

px̂k(e)

k(e)− 1
+
e2

2

}
. (5.1)

Remark 5.1. The explicit value of ρ1(Xe) given above entails that IB will never choose an effort below the
level k−1( 1

r1
). This also implies that k(e) > 1

r1
> 1.

Moreover we can compute the value of the function G defined by Equation (3.2)

G(e) =
ρ1(Xe)

E[Xe]
=
r1p

r1−1(k(e)− 1)

r1k(e)− 1
,

so G is decreasing and we can apply all the results of Subsection 3.2 to this case.

To solve problem (5.1), we start by characterizing the main constants introduced in Section 3. The point eθ
is given by

eθ = k−1

(
1 + θ − pr1−1r1

r1(1 + θ − pr1−1)

)
, (5.2)

and the corresponding sets N and I

N =

{
e ∈ R+| (1 + θ) >

pr1−1r1(k(e)− 1)

(r1k(e)− 1)

}
= (eθ,+∞) ,

I =

{
e ∈ R+| (1 + θ) ≤ pr1−1r1(k(e)− 1)

(r1k(e)− 1)

}
= [0, eθ].

As the global minimum of LN , the point eN is characterized by the optimality condition

eN =
pr1r1x̂k

′
(eN )

(r1k(eN )− 1)2
,

which shows that eN is a non-decreasing function of the risk probability p.

As the global minimum of LθI , eI(θ) is characterized by the equation L′I(eI(θ)) = 0 which rewrites as

eI(θ) =
(1 + θ)x̂pk

′
(eI(θ))

(k(eI(θ))− 1)2
. (5.3)

We observe then that eI is non-decreasing with p and with θ.

Finally, we have from Theorem 3.1 the existence of a constant θM that defines the global minimum of the
objective function L1. The point θM is the solution to the equation LθMI (eI(θM )) = LN (eN ) and we have
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• If θ ≤ θM then the solution to (5.1) is (α?, e?) = (1, eI(θ)).

• If θ > θM then the solution to (5.1) is (α?, e?) = (0, eN ).

Concerning the problem of IS, we can calculate the distortion risk measure ρ2(Xe)

ρ2(Xe) = r2x̂

∫ p

0
ur2−1−1/k(e)p1/k(e)du =

{
pr2r2x̂k(e)
r2k(e)−1 , if k(e) > 1

r2
,

+∞, otherwise.

Therefore, problem (4.1) writes

inf
θ∈ΘM

{
pr2r2x̂k(eI(θ))

r2k(eI(θ))− 1
− (1 + θ)

px̂k(eI(θ))

k(eI(θ))− 1

}
, (5.4)

where ΘM := {θ ∈ [0, θM ] : k(eI(θ)) >
1
r2
}. In the Pareto case, IS’s problem is easier to solve than in the

general case, because its objective function turns out to be monotone. In fact, we provide now the solution
to the problem of IS, which is given by the maximum premium IB is willing to pay.

Theorem 5.1. The solution to problem (5.4) is θ? = θM .

Proof. We prove that the objective function of IS is non-increasing, from which the conclusion of the Lemma
follows. Write it as the sum of two functions of θ for which we study the monotonicity:

L2(θ) := f1(θ)− f2(θ), (5.5)

with
f1 :=

pr2r2x̂k(eI(θ))

r2k(eI(θ))− 1
, f2 := (1 + θ)

px̂k(eI(θ))

k(eI(θ))− 1
.

Recall that eI(θ) is increasing in θ and then so is k(eI(θ)). Notice that f1 is a non-increasing function as

∂f1

∂θ
= −

pr2 x̂r2k
′
(eI(θ))e

′
I(θ)

(r2k(eI(θ))− 1)2
< 0.

We now study the derivative of f2. Rewrite the characterization of eI(θ) as follows

eI(θ)(k(eI(θ))− 1)2

px̂k′(eI(θ))
− (1 + θ) = 0. (5.6)

Consider the following function

F (θ, e) :=
e(k(e)− 1)2

px̂k′(e)
− (1 + θ).

By the Implicit Function Theorem, we have

∂eI(θ)

∂θ
=
−∂F (θ, eI(θ))/∂θ

∂F (θ, eI(θ))/∂e
.

Remark that

∂F (θ, e)

∂e
=

((k(e)− 1)2 + 2ek′(e)(k(e)− 1))k
′
(e)px̂− px̂k′′(e)e(k(e)− 1)2

(px̂k′(e))2
,

=
(k(e)− 1)2

px̂k′(e)
+

2ek
′
(e)(k(e)− 1)

px̂k′(e)
− k

′′
(e)e

k′(e)

(k(e)− 1)2

px̂k′(e)
.
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In the next few lines, we will write eI instead of eI(θ) for simplicity of notation. By rewriting Equation (5.6),
we notice that

(k(eI)− 1)2

px̂k′(eI)
=

(1 + θ)

eI
,

therefore

∂F (θ, eI)

∂e
=

1 + θ

eI

(
1 +

2eIk
′
(eI)

k(eI)− 1
− k

′′
(eI)eI
k′(eI)

)
,

and
∂F (θ, eI)

∂θ
= −1.

This leads to

∂eI
∂θ

=
eI

1 + θ

 1

1 + 2eIk
′ (eI)

k(eI)−1 −
k′′ (eI)eI
k′ (eI)

 .

Since

1 +
2eIk

′
(eI)

k(eI)− 1
− k

′′
(eI)eI
k′(eI)

> 1,
eI

1 + θ
> 0,

we obtain the following inequality
∂eI
∂θ

<
eI

1 + θ
. (5.7)

By differentiating f2 and from inequality (5.7) we have

∂f2

∂θ
= px̂

(k(eI(θ))− 1)k(eI(θ))− (1 + θ)k
′
(eI(θ))e

′
I(θ)

(k(eI(θ))− 1)2

>
px̂

(k(eI(θ))− 1)2
((k(eI(θ))− 1)k(eI(θ))− k

′
(eI(θ))eI(θ)). (5.8)

To conclude, define the following function

h(x) := (k(x)− 1)k(x)− xk′(x),

its derivative h′(x) = 2k′(x)[k(x)−1]−xk′′(x) is positive since k is non-decreasing, concave and bounded from
below by 1 (see Remark 5.1). This entails that h(x) > h(0) = 0, for any x > 0. Therefore from Inequality
(5.8), f2 is non-decreasing in θ.

From Equation (5.5), this leads to L2 being a non-increasing function of θ. In conclusion the optimal insurance
price is the upper bound of the interval where we minimize this function, that is to say θ? = θM . 2

Adverse selection

Recall from Subsection 4.2, the shutdown problem of IS

minimize
θ≥0

ρ2(Xe?g(θ))− (1 + θ)E[Xe?g(θ)]

s.t. α?b(θ) = 0,

α?g(θ) = 1.
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IS needs to optimize over the prices θ such that θ ≤ θM (pg) and θ > θM (pb) where θM (pg) is the optimal
insurance price for the IB of good type and θM (pb) is the optimal insurance price for IB of bad type.

Recall that θM is characterized by LθMI (eI(θM )) = LN (eN ). From the dependances of eI(θ) and eN on p,
we can notice that the higher the probability of risk is for an IB the more he is willing to pay to insure this
risk, this leads to θM (pg) ≤ θM (pb). Therefore IS cannot choose a price θ respecting the constraints of the
shut-down contract which means that such contract does not exist in our context.

Recall also the screening problem of IS

inf
θg ,θb≥0

π`

(
ρ2(Xe?g(θg))− (1 + θg)E[Xe?g(θg)]

)
+ πh

(
ρ2(Xe?b (θb))− (1 + θb)E[Xe?b (θb)]

)
, (5.9)

such that

{
Lg1(α?g(θg), e

?
g(θg)) ≤ L

g
1(α?g(θb), e

?
g(θb)),

Lb1(α?b(θb), e
?
b(θb)) ≤ Lb1(α?b(θg), e

?
b(θg)),

(5.10)

and such that

{
α?g(θg) = 1,

α?b(θb) = 1.
(5.11)

From Equation (5.11), IS chooses a price θg such that θg ≤ θM (pg) and a price θb such that θb ≤ θM (pb).
From Equation (5.10), IS needs to select the prices such that θg ≤ θb and θb ≤ θg. Therefore the only way in
which IS can contract both types of IB is by offering the same price to them θg = θb.

One can observe that adverse selection problems in our context of linear contracts, and coherent risk measures
are rather degenerate. The insurance seller cannot use the standard tools to deal with adverse selection: she
cannot offer a menu of contracts since the optimal insurance coverage is either 0 or 1, she cannot exclude the
bad type of agent since shut-down contracts do not exist, and she cannot use differentiated pricing since the
constraints in the screening problem imply that the price is unique.

5.1.2 Self-protection

To study self-protection, we suppose that IB’s effort reduces the probability of loss e 7→ p(e) which we assume
non-increasing and convex. We then have the following

P[Xe > x] = p(e)

(
x̂

x

)k
, ∀x > x̂, E[Xe] =

x̂k

k − 1
p(e), q̄Xe(u) =

 x̂
(
p(e)
u

)1/k
, if u ∈ [0, p(e)],

0, if p(e) < u ≤ 1.

We can notice that since p is a convex function, the quantile function q̄Xe is also a convex function of e. From
Equation (2.1) the risk measure ρ1(Xe) is

ρ1(Xe) = r1x̂

∫ p(e)

0
ur1−1−1/kp1/kdu =

{
r1p(e)r1 x̂k
r1k−1 , if k > 1

r1
,

+∞, otherwise.

Therefore, IB’s problem is

inf
(α,e)∈[0,1]×(0,∞)

{
(1− α)

r1x̂k

r1k − 1
p(e)r1 + α(1 + θ)

x̂k

k − 1
p(e) +

e2

2

}
. (5.12)

We can also compute the value of the function G from Equation (3.2)

G(e) =
ρ1(Xe)

E[Xe]
=
r1(k − 1)

r1k − 1
p(e)r1−1,
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which is a increasing function of e since p is non-increasing and r1 < 1. Therefore we can apply the results of
Subsection 3.3. In this setting, eθ is defined by

eθ = p−1

((
(1 + θ)(r1k − 1)

r1(k − 1)

)1/(r1−1)
)
, (5.13)

which is an increasing function of θ and the sets N and I are defined as follows

N =

{
e ∈ (0,+∞) such that (1 + θ) >

ρ1(Xe)

E[Xe]

}
= (0, eθ),

I =

{
e ∈ (0,+∞) such that (1 + θ) <

ρ1(Xe)

E[Xe]

}
= (eθ,+∞).

We have

LN (e) =
r1x̂k

r1k − 1
p(e)r1 +

e2

2
, LθI(e) =

(1 + θ)x̂k

k − 1
p(e) +

e2

2
.

If the map u 7→ q̄Y (u) is convex and if 2
p ≥

p
′′

(p′ )2
, then Assumption 2.1 is satisfied, and by Theorem 2.1, LN is

a convex function of e. Alternatively, since the expression for LN is more explicit here, we can give another
condition: LN is convex if and only if e 7→ p(e)r1 is convex, which is the case if p

′′

(p′ )2
≥ 1−r1

p . An example of

function satisfying this last condition is given by p(e) = 1
a+e , with a > 1.

Let us now study the minimum of the function LN . Its first derivative is given by:

L
′
N (e) = e+

r2
1x̂k

r1k − 1
p
′
(e)p(e)r1−1.

Since

L
′
N (0) =

r2
1x̂k

r1k − 1
p
′
(0)p(0)r1−1 < 0, and lim

e→+∞
L
′
N (e) = +∞,

the global minimum eN of the function LN is thus the solution to

eN = − r2
1x̂k

r1k − 1
p
′
(eN )p(eN )r1−1.

The global minimum of LI is characterized by

eI(θ) = −(1 + θ)x̂k

k − 1
p
′
(eI(θ)). (5.14)

This equation allows us to conclude that eI(θ) is an increasing function of θ. We have from Theorem 3.2 the
existence of a constant θM that defines the global minimum of the objective function L1. The point θM is
the solution to the equation LθMI (eI(θM )) = LN (eN ) and we have

• If θ < θM then the solution to (5.12) is (α?, e?) = (1, eI(θ)).

• If θ ≥ θM then the solution to (5.12) is (α?, e?) = (0, eN ).

To study IS’s problem in the self-protection case, we will make the following assumption:

Assumption 5.1.

p(e) =
1

a+ e
, a > 1.

24



The distortion risk measure is given by

ρ2(Xe) = r2x̂

∫ p(e)

0
ur2−1−1/kp(e)1/kdu =

{
p(e)r2r2x̂k
r2k−1 , if k > 1

r2
,

+∞, otherwise.

From Section 3 we know that the equilibrium for IB’s problem in the self-protection case is (α?, e?) = (1, eI(θ)),
therefore, IS’s problem is as follows

inf
θ∈[0,θM ]

{
r2x̂kp(eI(θ))

r2

r2k − 1
− (1 + θ)

x̂kp(eI(θ))

k − 1

}
. (5.15)

Given Assumption 5.1, the characterization (5.14) of eI(θ) now writes

eI(θ) = c
1 + θ

(a+ eI(θ))2
,

with c := x̂ k
k−1 > 0. After some cumbersome, but easy calculations (see Appendix B), we get:

eI(θ) = t1(θ) + t2(θ)− 2a

3
, (5.16)

where

t1(θ) :=

[
1

2

(
c(1 + θ) +

2

27
a3 −

√
4

27
c(1 + θ)a3 + c2(1 + θ)2

)]1/3

and

t2(θ) :=

[
1

2

(
c(1 + θ) +

2

27
a3 +

√
4

27
c(1 + θ)a3 + c2(1 + θ)2

)]1/3

In this setting of self-protection, the solution to the problem of IS is also to charge the maximum premium
θM that IB is willing to pay. We have then the following result, whose proof is postponed to Appendix C.

Theorem 5.2. Under Assumption 5.1, the solution to problem (5.15) is θ? = θM .

5.2 Discrete distributions

As already mentioned in the Introduction, most of the literature on self-insurance and self-protection con-
centrates on the case of discrete distributions, with only two possible loss values. We show in this subsection
that our results also apply to the case of discrete distributions, with an arbitrary number of possible losses.
We prove that, contrary to the Bernoulli case, more conditions are needed for statements (A) and (B) to
hold true. When these conditions are not satisfied, this gives simple counter-examples to the standard results
obtained in the Bernoulli case.

Let {pi, i = 0, . . . , n− 1} be positive numbers such that
n−1∑
i=0

pi = 1, and let 0 < x1 < · · · < xn−1 be positive

numbers. We consider a discrete loss with n ∈ N values, given by

X :=

{
xi with probability pi, i ∈ [1, n− 1]

0 with probability p0.

To simplify the calculations, we suppose here that the risk measure ρ1 is a distortion risk measure, whose
definition is given in Section 2, Equation (2.1)

ρ1(X) :=

∫ 1

0
q̄X(u)dψ(u) =

∫ +∞

0
ψ (P[X > u]) du.
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Self-insurance: the discrete case.

To study Self-Insurance in this case, we now suppose that the agent exerts an effort e, that has an impact
on every possible loss value xi, which will be denoted xi(e) and the loss X will be denoted Xe. Then we can
write

ρ1(Xe) =

∫ x1(e)

0
ψ

(
n−1∑
i=1

pi

)
du+

∫ x2(e)

x1(e)
ψ

(
n−1∑
i=2

pi

)
du+ ...+

∫ xn−1(e)

xn−2(e)
ψ (pn−1) du,

=

(
ψ

(
n−1∑
i=1

pi

)
− ψ

(
n−1∑
i=2

pi

))
x1(e) + ...+ ψ(pn−1)xn−1(e),

=
n−1∑
j=1

ψ
n−1∑
i=j

pi

− ψ
 n−1∑
i=j+1

pi

xj(e), with pn := 0.

To simplify the formulas, we will denote

κj := ψ

n−1∑
k=j

pk

− ψ
 n−1∑
k=j+1

pk

 ≥ 0, ∀j = 1, . . . , n. (5.17)

Moreover we have

E[Xe] =

n−1∑
j=1

pjxj(e).

Hence the function G defined in Lemma 3.1 is given by

G(e) =
ρ1(Xe)

E[Xe]
=

n−1∑
j=1

κjxj(e)

n−1∑
j=1

pjxj(e)

. (5.18)

Assumption 5.2. We suppose that for all j and for all i > j, the function e 7→ xj(e)
xi(e)

is a non-decreasing
function (recall that xj(e) < xi(e)).

This assumption means that the marginal impact of the effort is higher on small losses than it is on catastrophic
losses.

We need to study the monotony of G to determine the optimal prevention effort of self-insurance.

G
′
(e) =

1(
n−1∑
j=1

pjxj(e)

)2

n−1∑
j=1

κjx
′
j(e)

n−1∑
j=1

pjxj(e)−
n−1∑
j=1

κjxj(e)
n−1∑
j=1

pjx
′
j(e)

 ,

=
1(

n−1∑
j=1

pjxj(e)

)2

n−1∑
i,j=1

κjpi

(
xi(e)x

′
j(e)− x

′
i(e)xj(e)

)
,

=
1(

n−1∑
j=1

pjxj(e)

)2

∑
i 6=j

κjpiai,j ,
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where aj,i := xi(e)x
′
j(e)− x

′
i(e)xj(e), which implies that aj,i = −ai,j . We have that

G
′
(e) =

1(
n−1∑
j=1

pjxj(e)

)2

∑
i>j

κjpiai,j −
∑
i<j

κjpiaj,i

 =
1(

n−1∑
j=1

pjxj(e)

)2

∑
i>j

(κjpi − κipj)ai,j .

Thus, the sign of the derivative G′(e) depends on the sign of κjpi− κipj for all i > j. Let us prove that for a
concave distortion function, for all i > j, we have the inequality κjpi−κipj ≤ 0. First we recall the following
standard result.

Lemma 5.1. If f is a concave function on an interval I, for all points x, y, z in I such that x < y < z we
have

f(z)− f(y)

z − y
≤ f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x
. (5.19)

Proposition 5.1. For all i > j, κjpi − κipj ≤ 0.

Proof. Proving that κjpi − κipj ≤ 0 is equivalent to proving that κj
pj
− κi

pi
≤ 0.

From Equation (5.21) for all i > j

κj
pj
− κi
pi

=
1

pj

ψ
n−1∑
k=j

pk

− ψ
 n−1∑
k=j+1

pk

− 1

pi

(
ψ

(
n−1∑
k=i+1

pk

)
− ψ

(
n−1∑
k=i

pk

))
.

Applying Lemma 5.1 to ψ and with

x :=
n−1∑
k=i+1

pk, y :=
n−1∑
k=j+1

pk and z :=
n−1∑
k=j

pk,

we obtain

κj
pj
− κi
pi
≤ 1

i∑
k=j

pk

ψ
n−1∑
k=j

pk

− ψ( n−1∑
k=i+1

pk

)− 1

pi

(
ψ

(
n−1∑
k=i+1

pk

)
− ψ

(
n−1∑
k=i

pk

))
.

Applying again Lemma 5.1 to ψ and with

x :=

n−1∑
k=i+1

pk, y :=

n−1∑
k=i

pk and z :=

n−1∑
k=j

pk,

we get

κj
pj
− κi
pi
≤ 1

pi

(
ψ

(
n−1∑
k=i

pk

)
− ψ

(
n−1∑
k=i+1

pk

))
− 1

pi

(
ψ

(
n−1∑
k=i+1

pk

)
− ψ

(
n−1∑
k=i

pk

))
= 0,

which ends the proof. 2

In conclusion, from Assumption 5.2 and Proposition 5.1 we can conclude that G′(e) ≤ 0, therefore G is a
non-increasing function of e and statement (A) holds true.
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Self-protection: the discrete case.

Now, let us focus on the study of Self-Protection: we assume here that the effort only impacts the loss
probabilities, which we denote pi(e) for all i = 0, . . . , n− 1. Using the same calculations as above, we get

G(e) :=
ρ1(Xe)

E[Xe]
=

n−1∑
j=1

κj(e)xj

n−1∑
j=1

pj(e)xj

, (5.20)

with

κj(e) := ψ

n−1∑
k=j

pk(e)

− ψ
 n−1∑
k=j+1

pk(e)

 ≥ 0, ∀j = 1, . . . , n. (5.21)

As usual, we further assume that for each i = 0, . . . , n− 1, pi is a decreasing and convex function of e. The
first derivative of G writes

G
′
(e) =

1(
n−1∑
j=1

pj(e)xj

)2

n−1∑
j=1

κ
′
j(e)xj

n−1∑
i=1

pi(e)xi −
n−1∑
j=1

κj(e)xj

n−1∑
i=1

p
′
i(e)xi

 ,

=
1(

n−1∑
j=1

pj(e)xj

)2

n−1∑
i,j=1

xjxi(κ
′
j(e)pi(e)− p

′
i(e)κj(e)).

The monotonicity of the function G depends on the sign of (κ
′
j(e)pi(e) − p

′
i(e)κj(e)) for all i, j. It is thus

possible in this context to give rather strong conditions for G to be monotonic and therefore for conclusions
(A) or (B) to hold true. For instance, if for all i, j ∈ {1, ..., n − 1} e 7→ κj(e)

pi(e)
is a non-decreasing function,

we can conclude that G′(e) > 0 therefore G is a non-decreasing function of e and statement (B) holds true.
This last assumption means that the effort impact is bigger on the distorted probabilities than it is on the
probabilities themselves, whatever the risk level (small or catastrophic losses).

Appendices

A Approximation of the compound Poisson distribution

In subsection 3.3, as in Section 5, the distribution of the loss random variable X (we temporarily skip the
subscript e for simplicity) is given by

PX := (1− p)δ{0} + pPY , (A.1)

where 0 < p < 1, PY denotes the distribution of a positive random variable Y , and δ{0} is the Dirac mass at
0. Let λ > 0 be a real parameter and P be a probability measure on R+. A random variable X̃ which has
the compound Poisson distribution P(λ, P ) takes the form

X̃ =
N∑
j=1

Zj ,
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where (Zj)j≥1 is a sequence of independent and identically distributed (i.i.d.) random variables with dis-
tribution P and N is a Poisson random variable with parameter λ, independent of the sequence (Zj)j≥1.
This model is commonly referred to as the frequency-severity model: the random variable N represents the
frequency, i.e. the number of claims in a given time interval (typically one year), and P is the claim severity
distribution. Most practical insurance and reinsurance models are given in the form of a compound Poisson
distribution ([1]).
In this section of the Appendix, we show that the distribution PX is close to the distribution P(λ, P ), for the
Kolmogorov distance, with λ = − log(1 − p) and P = PY . The approximation is good in the regime where
p is close to 0, which is the case for various practical insurance claims, as natural catastrophes, third party
liability, or certain health insurance market segments (see [1], Chapters 2 and 3 and the references therein).
The Kolmogorov distance between the probability distributions of the variables X and X̃ is defined by

dKOL(X, X̃) = sup
x∈R

∣∣∣P(X > x)− P(X̃ > x)
∣∣∣ .

By computing the characteristic functions, it is not hard to show that both Xp and X̃p converge in distribution
to δ{0} when p goes to 0. The following Lemma shows how close the distributions of X and X̃ are with respect
to the Kolmogorov distance by providing an explicit upper bound. We write Xp and X̃p to emphasize the
dependence of these variables on the parameter p.

Lemma A.1. We have

dKOL(Xp, X̃p) ≤ 2 {p+ (1− p) log(1− p)} .

The right hand side of the above inequality is approximately equal to 10−4 for p = 1%, and to 10−6 when p =

0.1%. Figure 4 below shows the error bound function of the previous Lemma, together with an approximation
of the Kolmogorov distance between X̃p and Xp, in the case where Xp has a distribution given by (A.1), where
PY is the Pareto law with scale parameter x̂ = 20 and shape parameter k = 5 (see Section 5.1 for details on the
Pareto distribution). As mentioned above, the approximation of X̃p by Xp is good for relatively small values
of p: Figure 4 provides the distance and error values for p varying between 0.1% and 10%. We subdivided the
interval [0.1%, 10%] with a uniform step equal to 0.001, and for each value of p, the cumulative distribution
function of X̃p has been approximated by the empirical CDF constructed from a set of 10×106 simulations of
the compound Poisson distribution. This explains the variations in the black curve, coming from the variance
of the simulations.
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Figure 5 below shows both CDFs of Xp and X̃p in the case of the Pareto distribution described above, for
p = 1.98%, i.e. λ = −log(1 − p) = 2%. The jump at 0 of the CDF represents the mass at 0, which is high
here (1 − p being close to 1). Since the scale parameter x̂ = 20 of the Pareto distribution is also a minimal
value, one can observe that the CDFs below are constant in the interval (0, 20).
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Proof. [of Lemma A.1] On the one hand, by conditioning on N , we get for x ≥ 0,

P(X̃p > x) =
+∞∑
n=0

P

 N∑
j=1

Zj > x|N = n

P(N = n)

= λ exp(−λ)P(Z1 > x) +
+∞∑
n=2

P

 N∑
j=1

Zj > x|N = n

 exp(−λ)
λn

n!
.

On the other hand, still for x ≥ 0,

P(Xp > x) = pP(Y > x) = (1− exp(−λ))P(Z1 > x),

which implies that

∣∣∣P(Xp > x)− P(X̃p > x)
∣∣∣ ≤ |λ exp(−λ) + exp(−λ)− 1|+

+∞∑
n=2

P

 N∑
j=1

Zj > x|N = n

 exp(−λ)
λn

n!
,

and, since both Xp and X̃p are a.s. non-negative,

dKOL(Xp, X̃p) ≤ |λ exp(−λ) + exp(−λ)− 1|+ P(N ≥ 2) = 2P(N ≥ 2)

= 2(p+ (1− p) log(1− p)).

2

Remark A.1. If N does not follow the Poisson distribution, then one can still use the same type of approx-
imation as above and prove, using the exact same arguments that

dKOL(Xp, X̃p) ≤ 2P(N ≥ 2),

where p = 1− P(N = 0).

B Computations for self-protection in the Pareto case

In this section, we explicitly compute the value of eI(θ). Under Assumption 5.1,

p(e) =
1

a+ e
with a > 1.

From the characterization (5.14) of eI(θ), we have

eI(θ) = −(1 + θ)x̂k

k − 1
p
′
(eI(θ)) =

(1 + θ)x̂k

k − 1

1

(a+ eI(θ))2
=

c(1 + θ)

(a+ eI(θ))2
, (B.1)

where c = x̂k
k−1 > 0. By rewriting Equation (B.1), we obtain the following equality

eI(θ)(a+ eI(θ))
2 − c(1 + θ) = 0.

We define the following polynomial function of third degree with coefficients in R

P (X) = X3 + 2aX2 + a2X − c(1 + θ).
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We can write P as
P (X) = Q

(
X +

2a

3

)
,

where Q(X) = X3 − a3

3 X − c(1 + θ) − 2a3

27 . Therefore to find to solutions of P we need to determine the
solutions of Q.

Let X = x+ y, we have

Q(X) = x3 + y3 +

(
3xy − a3

3

)
(x+ y)− c(1 + θ)− 2a3

27
,

where x3 and y3 are roots of the following polynomial function

R(T ) = T 2 −
(
c(1 + θ) +

2a3

27

)
T +

a6

272
.

We denote ∆ the discriminant of R:

D := 27∆ = 4a6 + 27(c(1 + θ))2 − 32a3c(1 + θ)− 4a6 + 36a3c(1 + θ) = c(1 + θ)(27c(1 + θ) + 4a3) > 0.

Therefore R has two distinct solutions in R given by

u :=
1

2

(
c(1 + θ) +

2a3

27
−
√

4

27
c(1 + θ)a3 + (c(1 + θ))2

)
,

v :=
1

2

(
c(1 + θ) +

2a3

27
+

√
4

27
c(1 + θ)a3 + (c(1 + θ))2

)
.

Q has one solution in R given by u1/3 + v1/3. Therefore the solution eI(θ) ∈ R of P (eI(θ)) = 0 is given by

eI(θ) = t1(θ) + t2(θ)− 2a

3
,

where t1(θ) = u1/3 and t2(θ) = v1/3.

C Proof of Theorem 5.2

We can rewrite (5.15) as

inf
θ∈[0,θM ]

{
c2

1

(t1(θ) + t2(θ) + a
3 )r2

− c 1 + θ

t1(θ) + t2(θ) + a
3

}
,

where c2 := r2x̂k
r2k−1 > 0. We already know that θ 7→ eI(θ) is non decreasing, this implies that θ 7→

1
(t1(θ)+t2(θ)+a

3
)r2 is non increasing. The conclusion of the Theorem will follow from the fact that the function

m given by

m(θ) :=
1 + θ

t1(θ) + t2(θ) + a
3

,

is an increasing function. By computing the derivative of m, we see that it is increasing if and only if

t1(θ) + t2(θ) +
a

3
> (1 + θ)(t′1(θ) + t′2(θ)) = (1 + θ)

d

d θ
eI(θ). (C.1)
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To compute d
d θeI(θ), notice that the characterization (5.14) of eI(θ) can be written as F (θ, eI(θ)) = 0 with

F (θ, e) := 1
ce(a+ e)2 − (1 + θ). Using the Implicit Function Theorem we get

d

d θ
eI(θ) =

c

3eI(θ)2 + 4aeI(θ) + a2
=

c

3(eI(θ) + a)(eI(θ) + a
3 )

=
c

3
(
t1(θ) + t2(θ) + a

3

) (
t1(θ) + t2(θ)− a

3

) .
After noticing that

(
t1(θ) + t2(θ)− a

3

)
> eI(θ) ≥ 0, we obtain that (C.1) is equivalent to

3
(
t1(θ) + t2(θ) +

a

3

)2 (
t1(θ) + t2(θ)− a

3

)
> (1 + θ)c

⇐⇒ 3(x+ y)3 + a(x+ y)2 − a2

3
(x+ y)− a3

32
− c(1 + θ) > 0

⇐⇒ 2(x+ y)3 + a(x+ y)2 −
(a

3

)3
+Q(x+ y) > 0,

where for simplicity, we write x = t1(θ), y = t2(θ) and where Q(X) := X3 − a2

3 X − c(1 + θ)− 2
(
a
3

)3. Recall
(see Appendix B) that Q(x+ y) = 0, which implies that 2(x+ y)3 = 2

3a
2(x+ y) + 2c(1 + θ) + 4

(
a
3

)3. From
these observations, we get that the last inequality above is equivalent to

2

3
a2(x+ y) + 2c(1 + θ) + 3

(a
3

)3
+ a(x+ y)2 > 0,

which is satisfied since all the terms are positive. This ends the proof. 2
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