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Jérôme Morio

ONERA/DTIS
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ABSTRACT

The moment-independent sensitivity analysis technique introduced by E. Borgonovo has gained increasing
attention to characterize the uncertainty of complex systems and optimize their reliability. The estimation
of corresponding indices is a challenging task. This paper aims at presenting a new estimation scheme
valid for dependent model inputs. This scheme is build on the copula representation of indices and uses
maximum entropy methods to estimate this copula. Accuracy of the proposed method is evaluated through
numerical simulations and is compared to two competitive methods, namely an importance sampling based
approach and a second one which uses the Nataf transformation.

1 INTRODUCTION

Safety analysis of complex systems is a subject of current interest in various fields such as aerospace,
aeronautics, finance or nuclear domain. In this paper, we focus on the case where the system is represented by
an input-output model where the observation is expressed as a deterministic function of external parameters
assumed to be random. For this kind of model, a practical question is how to identify and rank inputs with
respect to their impact on the output. This study is known as the sensitivity analysis (SA) and presents two
main objectives: decrease the output uncertainty by reducing uncertainty of the most influential inputs,
and simplify the model by omitting contribution of least ones. The influence criterion depends on the
considered SA approach. There are various SA techniques in literature and essentially two families stand
out: local and global SA methods, see (Iooss and Lemaı̂tre 2015) and associated references for a review.
Local methods aim at studying the behavior of the output locally around a nominal value of inputs. In
contrast, global methods consider the whole variation range of inputs. Variance-based SA techniques (i.e.,
Sobol indices) (Sobol’ 1990) look at the contribution of inputs to the variance of the output. However, this
method focuses on the second-order moment of the output which may poorly reflect the entire variability
of the output distribution. To overcome this drawback, Borgonovo (2007) proposed an alternative approach
which takes the entire output distribution into account.
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However, estimating those indices is a challenging problem because they involve L1 norms of differences
of conditional and unconditional output probability density functions (PDFs). Borgonovo originally proposed
a PDF-based method involving a double loop Monte-Carlo estimation combined with a kernel estimation
procedure. This method is unfortunately not workable since too many calls to the model are needed.
In order to improve this scheme, a pseudo-double loop design involving a partition of the input space is
proposed in (Plischke et al. 2013). Liu and Homma (2009) proposes to express the δ -sensitivity indices with
respect to the unconditional and conditional output cumulative distributions functions (CDFs). However,
similarly as the PDF-based method, the CDF-based approach is a double-loop method and the density
estimation is replaced by the necessity to find the intersection points of unconditional and conditional
PDFs of the output which leads to additional computational time and approximation errors. Zhang et al.
(2014) describes a new method combining principle of fractional moment-based maximum entropy and
use of Nataf transformation which substantially improves computational burden. However, this technique
rests on various technical assumptions such as independence between inputs. To overcome this constraint,
Wei et al. (2013) introduces a single-loop Monte-Carlo simulation scheme which needs only one set of
samples for computing all the δ -sensitivity indices. Derennes et al. (2018) shows via simulation that this
method may be inaccurate and proposes a new estimation scheme which greatly improves accuracy of the
single-loop and combines importance sampling and kernel estimation procedures. Nevertheless, estimates
obtained with this last method may still be inaccurate, mostly due to the kernel approximation of the joint
density of the output and the considered input.

The present paper proposes a new estimation scheme. The starting point is the observation made by Wei
et al. (2014) that the moment independent indices can be expressed in terms of copula which paves the way
for a simple Monte-Carlo estimation. This approach needs an estimation of the copula which is performed
in this article by maximum entropy method using fractional moments constraints.

The rest of this article is organized as follows. Section 2 briefly reviews the δ -sensitivity measures.
Computational steps of the proposed scheme are described in Section 3.3. Some numerical examples are
considered in Section 4 in order to highlight the gain of accuracy of the proposed method in comparison
to the nonparametric importance sampling design (Derennes et al. 2018) and the method of (Zhang et al.
2014).

2 BORGONOVO’S MOMENT INDEPENDENT IMPORTANCE MEASURES

We consider throughout a general input-output model Y = M (X) where the output Y depends on a d-
dimensional real valued random variable X = (X1, . . . ,Xd) through a deterministic scalar function M :
Rd −→ R called “black box”. It is assumed throughout that for every i ∈ {1, . . . ,d}, the pair (Xi,Y ) is
absolutely continuous with respect to the Lebesgue measure with PDF fXi,Y . This implies in particular that
random variables Xi, Y and Y conditioned on Xi = xi for any i ∈ {1, . . . ,d} and xi ∈R are also absolutely
continuous with respect to the Lebesgue measure, and we will denote by fXi , fY and f Xi=xi

Y their respective
PDFs.

The moment independent SA method introduced by Borgonovo (2007) focuses on finding inputs that,
if fixed at their distribution ranges, will lead to the most significant modification of the entire output
distribution. This difference between conditional and unconditional model output densities f Xi=xi

Y and fY
is quantified by the shift s(xi) defined as their L1 distance which measures the area enclosed between their
representative curve:

s(xi) =
∥∥∥ fY − f Xi=xi

Y

∥∥∥
L1(R)

=
∫ ∣∣∣ fY (y)− f Xi=xi

Y (y)
∣∣∣dy . (1)

So as to consider the whole range of values the random variable Xi can take, the sensitivity of the output Y
with respect to input Xi is defined as the normalized expectation of the shift over Xi, i.e., the δ -sensitivity
measure is given by

δi :=
1
2
E [s(Xi)] . (2)
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Owing to its convenient advantages, this importance measure has recently attracted attention of practitioners.
Firstly, it is monotonic transformation invariant, meaning that δi equals to the δ -sensitivity measure of
the model Ỹ := ϕ ◦M (X) for any C1 diffeomorphism ϕ . Moreover, this SA technique is suitable for the
case of dependent inputs and no assumptions on the model are necessary, in particular the function M
may be nonlinear. Finally, this approach does not focus on a particular moment as the variance-based SA
methods that consider only the second-order moment which is not always sufficient to represent the entire
variability of the output distribution.

One can mention that the definition (2) can be generalized to a strict group of inputs XI = (Xi, i ∈ I)
with I ⊂ {1, . . . ,d} by

δI :=
1
2
E [s(XI)] with s(xI) =

∥∥∥ fY − f XI=xI
Y

∥∥∥
L1(R)

,

assuming that the pair (XI,Y ) is absolutely continuous. Throughout this paper, we restrict our attention to
the case of the first-order indices δi, but all our results can be generalized to the higher order indices.

3 PROPOSED APPROACH FOR ESTIMATING THE δi INDICES

The δ -sensitivity measure δi may be reinterpreted using copula framework (Wei et al. 2014):

δi =
1
2

∫ 1

0

∫ 1

0
|c(u,v)−1|dudv , (3)

where c is the PDF of the couple (FXi(Xi),FY (Y )). This representation suggests to estimate δi by classical
Monte-Carlo methods. Wei et al. (2014) raised the issue that “the main drawback of this method is that the
accuracy of the estimated delta indices depends on the precision of the copula density estimates”. However,
there are various methods available in literature for estimating nonparametric bivariate copula densities. In
(Wei et al. 2014), authors propose a Gaussian kernel estimator using a diffusion method provided in (Botev,
Grotowski, Kroese, et al. 2010), which may perform poorly when data are bounded. To prevent this bias
induced by the boundary, one may consider a local linear version of a bounded support kernel (Chen and
Huang 2007). Also, a thresholding estimation using wavelet method framework is proposed in (Autin et al.
2010). However, authors point out that this method may be inaccurate when the copula density presents
strong peaks at the corner. An alternative to using the kernel estimation for approximating nonparametric
bivariate copula densities is to use maximum entropy framework (AghaKouchak 2014), (Hao and Singh
2015), (Butucea et al. 2015), (Hao and Singh 2013).

3.1 Maximum Entropy estimation of the copula

Maximum entropy principle, introduced by Jaynes (1957), makes it possible to estimate the PDF fZ of
an n-dimensional real valued random variable Z by the PDF that somehow bears the largest uncertainty
given available information on Z. The measure of uncertainty of Z is defined by the Shannon entropy
(also called differential entropy) of the PDF fZ:

H( fZ) =−
∫
Rn

fZ(z) ln( fZ(z))dz. (4)

In addition, the information available on the sought density is of the form E [g(Z)] = b ∈Rm, where g
is a given mapping from Rn to Rm with m the number of constraints. For instance, one may know the first
two moments µ1 and µ2 and the support S of Z, corresponding to g(z) = (z,z2,1(z∈ S)) and b = (µ1,µ2,1).
Then, the Maximum Entropy (ME) estimator f̂Z of fZ is defined as a solution of the following optimization
problem {

f̂Z = argmax H( f )
s.t.

∫
g(z) f (z)dz = b and f ∈ L1(S,R+).

(5)
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It is well known that (5) is a convex optimization problem that may be reformulated by using Lagrange
Multipliers, see for instance (Boyd and Vandenberghe 2004) or (Kapur and Kesavan 1992). Indeed, strong
duality holds, so that a feasible point of the maximum entropy problem (5) is the distribution

x 7→ c0(Λ
∗)1S(z)e−〈Λ

∗,g(z)〉 ,

where c0(Λ
∗) is a normalization constant and where Λ∗ is a feasible solution of the dual optimization

problem (here and elsewhere, 〈·, ·〉 denotes the inner product)

Λ
∗ = Argmin

Λ∈Rm
〈Λ,b〉+ log

∫
e−〈Λ,g(z)〉dz . (6)

3.2 Choice of constraints

As a density of the pair (FXi(Xi),FY (Y )), the density copula c appearing in (3) may be estimated by an
ME estimator. Let us denote marginals of the copula by Ui := FXi(Xi) and V := FY (Y ). In (AghaKouchak
2014), (Hao and Singh 2015) and (Hao and Singh 2013), it is proposed to consider the support S = [0,1]2

and constraints associated to the mapping

g(u,v) = (u,u2, . . . ,um,v,v2, . . . ,vm,uv). (7)

This corresponds to specifying the first m integer moments of the marginals Ui and V and also the moment
of UiV . In the present paper, we consider constraints associated to the mapping

g(u,v) = (uαk vαl ,k, l = 1, . . . ,m) (8)

where α1 < · · ·< αm: this corresponds to a collection of m2 fractional moments of the product UiY . The
reason for considering fractional moments rests on a numerical study of (Zhang and Pandey 2013) showing
that they may provide better estimates than integer moments.

In the following, we will denote by µk,l the expectation of Uαk
i V αl so that constraints in (5) will read∫

g(z) f (z)dz = (µk,l). Since the law of a positive real valued random variable is uniquely characterized
by an infinite sequence of fractional moments (see for instance (Lin 1992)), we may think that as m
increases, the ME estimator should converge to the true distribution. In dimension one this was proved
in (Novi Inverardi and Tagliani 2003). It is reasonable to think that it should continue to hold in higher
dimension although, to our knowledge, no proof is available. This expected result provides the (informal)
justification of our method.

In our framework, the distribution of UiV is unknown and so its fractional moments µk,l also. The
constraints {µk,l} thus need to be estimated, which will be done by Monte-Carlo methods from a sample
{(Uk,V k)}N

k=1. This leads to constraints of the form
∫

g(z) f (z)dz = (µ̂k,l), see below for more details
and (Dudı́k et al. 2004) for relaxed optimization problems in this case of estimated constraints.

Note that in contrast to (7), we do not impose constraints on marginals Ui and V . At first sight, it is
tempting to add the constraint

∫
uαk f (u,v)dudv = 1/(αk +1) since Ui is uniformly distributed. However,

we found numerically that fixing marginal constraints to theoretical values provides less accurate estimates
showing high variability. We believe that this is due to an incompatibility with the empirical distribution
1
N ∑

N
k=1 δUk

i
which is not uniformly distributed. This further suggests to add an estimated constraint∫

uαk f (u,v)dudv = µ̂k =
1
N ∑k Uk

i but we found that this does not improve accuracy of the final estimator.
With this choice of estimated constraints, the dual problem (6) corresponds to minimization of the

following function:

Γ(Λ) =
m

∑
k=1

m

∑
l=1

λk,l µ̂k,l + log

(∫ 1

0

∫ 1

0
exp

(
−

m

∑
k=1

m

∑
l=1

λk,luαk vαl

)
dudv

)
, Λ = (λk,l) ∈Rm2

. (9)

Then Γ is strictly convex on the set of feasible points and so admits a unique minimizer Λ∗ which can
been found using standard convex optimization techniques (Boyd and Vandenberghe 2004).
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3.3 Implementation steps of the proposed estimation scheme

We can now present our estimation scheme of the δ -sensitivity measure δi:

Step 1. Generate (X1, . . . ,XN) i.i.d. with common distribution X, and then obtain N observations of the
model by Y n = M (Xn) = M (Xn

1 , . . . ,X
n
d ) for n = 1, . . . ,N.

Step 2 - Estimation of the constraints. Consider m real numbers α1 < · · · < αm and then approximate
moments {µk,l = E[U

αk
i V αl ]}m

k,l=1 by Monte-Carlo:

µk,l ≈ µ̂k,l =
1
N

N

∑
n=1

(FXi(X
n
i ))

αk (F̂Y (Y n))αl , k, l = 1, . . . ,m,

where F̂Y is the empirical CDF of the output CDF FY .
Step 3 - Computation of Lagrange multipliers. Using interior-point algorithm, find the minimizer
Λ̂∗ = (λ̂ ∗k,l) of the following function:

Γ̂(Λ) =
m

∑
k=1

m

∑
l=1

λk,l µ̂k,l + log

(∫ 1

0

∫ 1

0
exp

(
−

m

∑
k=1

m

∑
l=1

λk,luαk vαl

)
dudv

)
, Λ = (λk,l) ∈Rm2

. (10)

Step 4. Generate {(Uk
1 ,U

k
2 )}N′

k=1
i.i.d.∼ U([0,1]2) and estimate δi by:

δ̂
ME
i =

1
2N′

N′

∑
k=1

∣∣ĉm(Uk
1 ,U

k
2 )−1

∣∣ (11)

where

ĉm(u,v) = 1[0,1]2(u,v)c0(Λ̂
∗)exp

(
−

m

∑
k=1

m

∑
l=1

λ̂
∗
k,lu

αk vαl

)
, (12)

is the estimation of c obtained by solving (5), with c0(Λ̂
∗) the normalization constant.

It has to be noted that only N evaluations of the black-box function M are needed for computing all
the δ -sensitivity indices. In addition, the parameter N′ of Step 4. can be chosen as large as desired without
computational cost. Finally, as mentioned above this method does not assume independent inputs.

4 NUMERICAL EXAMPLES

In this section, several numerical examples are considered in order to illustrate advantages of the proposed
estimation scheme. Comparisons are drawn with estimates obtained with the nonparametric importance
sampling approach (Derennes et al. 2018) and the approach of (Zhang et al. 2014). The first method
greatly improves accuracy of the single-loop design introduced in (Wei et al. 2013). The second method
is very competitive since it necessitates only very few calls to model. For instance, Zhang et al. (2014)
obtain accurate estimates on a Gaussian linear model with only 25 evaluations of the output function M .

4.1 Nonparametric importance sampling approach of (Derennes et al. 2018)

The main idea behind the first method is to rewrite the δ -sensitivity measure in the following way:

δi =
1
2
‖ fXi fY − fXi,Y‖L1(R2) .
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Then, δi can be estimated by the importance sampling estimator

δ̂
IS
i =

1
2N′

N′

∑
k=1

∣∣ fXi(U
k
1 ) f̂Y (Uk

2 )− f̂Xi,Y (Uk)
∣∣

h(Uk)
, with Uk = (Uk

1 ,U
k
2 )

i.i.d.∼ h ,

where h is the sampling distribution chosen by the user and where f̂Y and f̂Xi,Y are the Gaussian kernel
estimators of the output PDF fY and the joint PDF fXi,Y . In all our numerical studies, numerical values for
this method are taken from (Derennes et al. 2018).

4.2 Approach of (Zhang et al. 2014) via Nataf transformation

In the second method, the joint PDF fXi,Y is estimated using the Nataf transformation. The Nataf trans-
formation of (Xi,Y ) is defined by Ri = (ri(Xi),ry(Y )) =

(
Φ−1(FXi(Xi),Φ

−1(FY (Y ))
)

where Φ denotes the
CDF of the standard Gaussian distribution N(0,1). By construction, the marginals rXi and rY follow the
standard Gaussian distribution N(0,1) but without additional hypotheses, Ri is not in general a Gaussian
vector. In (Zhang et al. 2014) the following assumptions are enforced:

(A0) Inputs Xi are independent;
(A1) The following relation is verified:

fXi,Y (x,y) = fXi(x) fY (y)
φ2(ri(x),ry(y))

φ(ri(x))φ(ry(y))
,

where φ and φ2 are respective PDFs of distributions N(0,1) and N2(0R2 ,ρ0,i) where ρ0,i is the correlation
matrix of the couple (ri(Xi),ry(Y ));

(A2) The model M is well approximated using cut-HDMR expansion (Zhang and Pandey 2013).

Actually, the Assumption (A1) is quite strong as it is equivalent to assuming that Ri is a Gaussian
vector with correlation matrix ρ0,i. It is also equivalent to approximating the copula density of (Xi,Y ) by

c(u,v)≈ φ2(Φ
−1(u),Φ−1(v))

φ(Φ−1(u))φ(Φ−1(v))
. (13)

Their estimator is then defined as

δ̂
Nataf
i =

1
2N′

N′

∑
k=1

∣∣∣∣∣φ(rk
i )φ(r

k
y)

φ2(rk
i ,rk

y)
−1

∣∣∣∣∣ , where (rk
i ,r

k
y)

i.i.d.∼ N2(0, ρ̂0,i) ,

where ρ̂0,i is an approximation of ρ0,i. In (Zhang et al. 2014), the matrix ρ0,i is estimated from resolution of
a nonlinear equation which connects ρ0,i with the correlation matrix of (Xi,Y ) and from maximum entropy
estimation of the output PDF fY associated to moment constraints approximated using the assumption
(A2). For further details on implementation steps of these methods, we refer the reader to the associated
references.

In the first example that we will consider, Assumptions (A0), (A1) and (A2) will be satisfied and this
scheme yields very good results. However, we find that performance of this method deteriorates in our
second and third examples where these assumptions are violated, whereas performance of our estimation
scheme remains the same.

In the subsequent numerical studies, this method only makes very few calls to the model. This is
due to the fact that the assumption (A2) allows to reduce computation of moment constraints used for the
estimation of the output PDF to the deterministic numerical evaluation of one-dimensional integrals. Note
finally that in this approach, the number of calls to the model is not tunable since it is automatically fixed
by the numerical procedure used in the estimation of ρ0,i. This is the reason why this method will be
compared with the other two, but with a different simulation budget.
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Table 1: Estimates of the δi indices of the example 1.

Input Theoretical δ̂ IS
1 δ̂ Nataf

1 δ̂ ME
1

value δ1 Mean cv RD Mean cv RD Mean cv RD

X1 0.1846 0.4016 0.1017 1.1757 0.1946 0.0032 0.0541 0.1864 0.0277 0.0096

4.3 Performance evaluation

An indicator of efficiency of an estimator δ̃i of the importance measure δi is the coefficient of variation
(cv)

cv(δ̃i) =

√
Var(δ̃i)

E
(

δ̃i

) .

For each estimator δ̃i of the importance measure δi, we approximate its mean and its standard deviation
using Monte-Carlo methods. Considering M estimates (δ̃ 1

i , . . . , δ̃
M
i ), we compute the respective estimators

of the mean and the standard deviation:

δ̄i =
1
M

M

∑
k=1

δ̃
k
i and σ̄

δ̃i
:=

√
1

M−1

M

∑
k=1

(δ̃ k
i − δ̄i)2.

When unconditional and conditional output distributions are known, theoretical values of importance
measures are available using numerical integration. In this case, the relative difference (RD)

δ̄i−δi

δi
,

may be computed in order to appreciate the error of the estimator δ̃i.

4.4 Example 1: a toy case

In this section, the following toy case model output is considered

Y1 =
4

∏
i=1

Xi ,

where the d = 4 inputs Xi are i.i.d. with common distribution the lognormal distribution L(0,1). By
symmetry each input has the same influence on the output Y . Thus, we only look at the importance measure
δ1 of the first input X1. In the current model, unconditional and conditional output distributions are known
and given by

Y1 ∼ L(0,4) ; (Y1|X1 = x)∼ L(ln(x),3) ,

and theoretical value of δ1 is available by performing numerical integration.
The three considered methods are applied on this model output. Respective budgets and computation

times for computing δ1 are N = 5,000 and 10s for δ̂ IS
1 , N = 21 and 62s for δ̂ Nataf

1 and N = 5,000 and 8s
for δ̂ ME

1 . Results are gathered in Table 1.
From Table 1, one can see that all considered methods converge since estimates are obtained with a

coefficient of variation lower than 10%. Estimates of δ̂ IS
1 show non satisfactory precision with relative

differences greater than 100%. This inaccuracy is caused by the kernel estimation step, probably due to
involvement of the lognormal distribution which is heavy-tailed (Derennes et al. 2018). On the other hand,
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(a) Representation of the theoretical copula c of
(X1,Y1).
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(b) Representation of the ME estimator copula ĉm
obtained by setting parameters N = 104 and αk ∈
{ 2k
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3
k=1 (m = 3).
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(c) Representation of the Gaussian kernel estimator ob-
tained with a sample of size N = 104.
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(d) Representation of the approximated density of
(U1,V ) defined by Eq.(13) (this figure is obtained
assuming that the output distribution is known).

Figure 1. Display of the copula of (X1,Y1) and its estimates.

estimates of δ̂ Nataf
1 present a very low variability and a good precision with relative difference around 5%,

which is all the more impressive as only 21 calls to the model are done. Estimates of δ̂ ME
1 are very close

to the theoretical value of δ1 with a relative difference around 1% and obtained with a relative standard
deviation of the order of 2%. Then, accuracy of estimates is improved with a factor 5 by adopting the
approach exposed in the present paper. In addition, it can be seen on Figure 1(b) that the copula of (X1,Y1)
(see Figure 1(a)) is well approximated by the ME-based estimator ĉm in comparison to the Gaussian kernel
estimator (see Figure 1(c)).

In the present example, inputs are independent and it can be seen that the output model is equal to its
cut-HDMR approximation. Furthermore, one can see that the true density copula of (X1,Y1) (Fig 1(a)) is
close to the approximation defined by Eq.(13) (see Figure 1(d)) which seems to show that the assumption
(A1) is licit. Thus, the proposed method presents an higher accuracy than the Nataf transformation based
method on this use case for which all the assumptions (A0), (A1) and (A2) are verified. However, this must
be put into perspective by the fact that the budget of the Nataf transformation based method is drastically
lower than the budget of our approach in this use case.
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4.5 Example 2: a risk assessment model

In this part we consider the probabilistic risk assessment model introduced in (Iman 1987). Here, the
probability of the top event is written as

Y2 = X1X3X5 +X1X3X6 +X1X4X5 +X1X4X6 +X2X3X4

+X2X3X5 +X2X4X5 +X2X5X6 +X2X4X7 +X2X6X7 ,

where all inputs Xi are independent random variables following lognormal distributions, and theirs parameters
(mean and standard deviation) are listed in Table 2.

The three considered methods are applied on this model output. Respective budgets and computation
times are N = 5,000 and 41s for the δ̂ IS

i ’s, N = 36 and 140s for the δ̂ Nataf
i ’s and N = 5,000 and 56s for

the δ̂ ME
i ’s. Results are gathered in Table 3.

Table 2. Distribution of input variables of the example 2.

Input Distribution Mean of ln(Xi) Variance of ln(Xi)

X1 Lognormal 0.6044 0.1776
X2 Lognormal 1.0098 0.1776
X3 Lognormal -6.9965 0.1776
X4 Lognormal -6.3034 0.1776
X5 Lognormal -5.6103 0.1776
X6 Lognormal -5.3871 0.1776
X7 Lognormal -5.89792 0.1776

From Table 3, one can see that the three considered methods converge since estimates are obtained
with a coefficient of variation lower than 10%. In addition, coefficients of variation obtained with the
Nataf transformation based method are very low, which is due to the deterministic evaluation of constraints
used in the maximum entropy estimation of the output PDF. All the considered methods lead to the same
importance ranking, mainly X2 > X6 > X5 > X4 > X7 > X1 > X3. Nevertheless, one can point out that the
importance sampling based approach and the proposed one provide approximately the same estimates than
those provided by the PDF double loop method (Liu and Homma 2009). In comparison, estimates of
(δ̂ Nataf

i ) show noticeable differences.

4.6 Example 3: a Gaussian linear model

In this subsection we assume that the expression of the model output is defined in the following way:

Y3 = AX ,

where A = [1.7 1.8 1.9 2] and where the input X follows the Gaussian distribution N(0,Σ) where the
covariance matrix Σ = (Σi j) is defined as follows:

Σ =


1 1/2 1/3 1/4

1/2 1 1/2 1/3
1/3 1/2 1 1/2
1/4 1/3 1/2 1

 .

Classical results on Gaussian vectors enable to determine unconditional and conditional output distri-
butions:

Y3 ∼ N(0,AΣAT ) and Y3|Xi = xi ∼ N
(
mi,σ

2
i
)
,
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Table 3. Estimates of indices of the example 2.

Input δ̂ IS
i δ̂ Nataf

i δ̂ ME
i

Mean STD (10−3) cv Mean STD (10−3) cv Mean STD (10−3) cv

X1 0.0828 5.2 0.0628 0.0570 0.0677 0.0012 0.0730 5.9 0.0806
X2 0.2237 5.3 0.0237 0.1866 0.5943 0.0032 0.2328 4.9 0.0209
X3 0.0647 4.6 0.0711 0.0379 0.0527 0.0014 0.0486 5.1 0.1050
X4 0.1137 5.3 0.0466 0.0893 0.1269 0.0014 0.1122 6.1 0.0548
X5 0.1532 6.3 0.0411 0.1302 0.2413 0.0019 0.1580 5.9 0.0377
X6 0.1751 5.6 0.0320 0.1482 0.2840 0.0019 0.1809 5.6 0.0312
X7 0.0855 5.1 0.0596 0.0665 0.0912 0.0014 0.0776 5.5 0.0713

Table 4. Estimates of indices of the example 3.

Input Theoretical δ̂ IS
i δ̂ Nataf

i δ̂ ME
i

value δi Mean cv RD Mean cv RD Mean cv RD

X1 0.2857 0.2707 0.0218 -0.0526 0.1654 0.0026 -0.4209 0.2840 0.0174 -0.0058
X2 0.3620 0.3444 0.0157 -0.0486 0.1777 0.0028 -0.5090 0.3538 0.0138 -0.0225
X3 0.3792 0.3607 0.0157 -0.0487 0.1906 0.0037 -0.4973 0.3688 0.0121 -0.0274
X4 0.3176 0.3010 0.0199 -0.0522 0.2042 0.0058 -0.3571 0.3141 0.0180 -0.0110

where the mean mi and the variance σ2
i are given by:

mi = Aixi +A−iCiΣ
−1
ii xi and σ

2
i = A−i(Σ−i−CiCT

i Σ
−1
ii )AT

−i ,

where A−i is the vector A private of its i-th component Ai, Σ−i is the matrix Σ private of its i-th row and
column and Ci is the column vector [Σi j] j 6=i. Thus, theoretical values of indices are known and can be
computed using numerical integration.

We compare those reference values with the estimates obtained with M = 100 runs of the three considered
methods. Results are displayed in Table 4. Respective budgets and computation times for computing all
the δ indices are N = 5,000 and 54s for the δ̂ IS

i ’s, N = 21 and 65s for the δ̂ Nataf
i ’s and N = 5,000 and 57s

for the δ̂ ME
i ’s.

The importance sampling based method and the proposed one provide the good ranking, mainly
X3 > X2 > X4 > X1. Furthermore, relative differences of proposed estimates are slightly lower than those
of the importance sampling estimates (δ IS

i )1≤i≤4. In contrast, correlation between inputs implies that the
estimates obtained with the Nataf transformation show notable inaccuracies with relative differences around
50% and do not respect the true importance ranking.

5 CONCLUSION

This paper presents an estimation scheme for evaluating the δ -sensitivity importance measures which
combines the expression of the δ -sensitivity indices in term of copula (Wei et al. 2014) and maximum
entropy theory. Several numerical examples are performed in order to illustrate the accuracy and the
robustness of the method in comparison to the nonparametric importance sampling approach (Derennes
et al. 2018) and the method of reference (Zhang et al. 2014) combining maximum entropy theory and Nataf
transformation. The method of (Zhang et al. 2014) is very competitive since it necessitates very few calls
to the model output. However, it is valid only under some strong assumptions on the model output, like
the independence of the inputs and particular models, which are not necessary with the proposed method.
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For further investigations, it may be interesting to enhance the choice of constraints by optimizing the
sequence α1, . . . ,αm while minimizing the parameter m. This may increase computational burden but may
be negligible when the black box function M is expensive.

ACKNOWLEDGMENTS

The first author is currently enrolled in a PhD program, funded by Université Toulouse III. His financial
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