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Selective Electroreduction of Glycerol to 1,2-
Propanediol on a Mixed Carbon-Black Activated Carbon 
Electrode and a Mixed Carbon Black-Diamond Electrode 

Ching Shya Lee,* ,a,b Mohamed Kheireddine Aroua, *,
c
,
d W an Ashri Wan Daud, a

Patrick Cognet,b Yolande Pérès,b and Mohammed A. Ajeel e 

1,2-propanediol was selectively produced by electroreduction of glycerol 
in a two-compartment reactor. Two new kinds of cathode electrodes 
were evaluated: (i) mixed carbon black-activated carbon electrodes and 
(ii) mixed carbon black-diamond electrodes. These electrodes were
compared with a conventional platinum electrode. With a reaction
temperature of 80 °C, an electric current of 2.0 A, and ambient pressure,
the mixed carbon black-activated carbon electrode demonstrated
excellent performance and successfully reduced glycerol to 1,2-
propanediol with a high selectivity of 86% and 74% glycerol conversion.
The selectivity of 1,2-propanediol on the mixed carbon black-diamond
electrode and the platinum electrode was 68% and 61%, respectively,
with 88% glycerol conversion on the mixed carbon black-diamond
electrode and 67% glycerol conversion on the platinum electrode. The
authors propose a possible reaction mechanism for the formation of 1,2-
PDO. 
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INTRODUCTION 

1,2-Propanediol (1,2-PDO) has a high commercial value of $117/kg (Sigma 
Aldrich). It is widely used to produce unsaturated polyester resins and antifreeze agent 
and is used in the cosmetics and food industries (Maris and Davis 2007). The global 
market of 1,2-PDO is driven by its major applications, particularly in the manufacture of 
unsaturated polyester resins. Its market price is expected to increase to $4.2 billion/kt by 
2019 (Future Market Insights 2016; Markets and Markets 2016). Generally, 1,2-PDO is 
commercially produced from propylene oxide with water via the hydroperoxide process 
or the chlorohydrin process (Yadav et al. 2012). Recently, bioglycerol, the byproduct 
obtained through the transesterification process of biodiesel production, has attracted 
substantial attention as a renewable feedstock for the synthesis of 1,2-PDO via the 
catalytic hydrogenolysis pathway. 

Previous studies demonstrated the effectiveness of varions catalyst systems in 
glycerol hydrogenolysis. These systems combine noble metals including Ru, Pd, Rh, and 
Pt with other transition metals such as Zn, Cr, and Cu with silica, zeolite, aluminium 



oxide, or activated carbon supports (Rode et al. 2010). Kusunoki et al. (2005) reported 
that an Ru/C catalyst converted 79% glycerol to 1,2-PDO with a selectivity of 82% under 
the reaction conditions of 120 °C and 4 MPa H2 pressure for 10 h in the presence of 
Amberlyst-15. However, Ru alone could effectively enhance the byproduct reaction by 
cracking glycerol into smaller compounds such as ethylene glycol, ethanol, methanol, and 
methane (Kusunoki et al. 2005). Maris et al. (2007) indicated that hydrogenolysis on Pt 
or bimetallic Pt/Ru supported by C resulted in high selectivity for lactate rather than 1,2-
PDO at high pH or in the presence of base (Maris and Davis 2007). In the catalytic 
process, reactions are usually conducted under high temperature and high pressure 
conditions. As such, the cost of production is high due to high energy usage. The reaction 
conditions, types of catalysts, glycerol conversion percentages, and selectivity for 1,2-
PDO are summarized in Table 1. 

Table 1. Summary of Glycerol Conversion, 1,2-PDO Yield, and Selectivity 
Obtained from the Catalytic Hydrogenolysis or Microbial Conversion of Glycerol 

Catalyst/ T PH2 Time 
Glycerol 1,2-PDO 

Bacterial Strain (°C) (bars) (h) 
Conversion 

y s Reference 
(%) (%) (%) 

Rho.02Cuo.4/Mgs.a 
180 2.0 10 91 - 98.7 (Xia et al. 2012)

Al1.9aOa.s7 
(Vasiliadou and 

Ru/SiO2 240 8.0 5 21.7 - 60.5 Lemonidou 
2011) 

Cuo 200 Ambient 
180 

100 60 
(Dieuzeide et al. 

a,a1min/mol 
-

2016) 
Cuo.4/Mga.2aAl1.,2 

210 
3.0 

10 95.1 92.2 (Xia et al. 2013) 
Oa.2a IN2l 

-

Cu/MgO 220 0.75 14 100 - 95.5
(Pandhare et al. 

2016) 
Cu-Al Mixed 

220 7.0 24 74.3 58.6 78.9 
(Valencia et al. 

Oxides 2015) 

Cu/MgO 210 4.5 12 96.6 - 92.6
(Pandhare et al. 

2016) 
Ru-Cu 180 8.0 24 100 - 78.5 /Liu et al. 20121

CuO/MgO 180 3.0 20 72.0 - 97.6
(Yuan et al. 

2010) 
Pt I mpregnated 

230 4.2 15 85.4 - 64.0
(D'Hondt et al. 

Na Y zeolite 2008) 
Batch: 

34 84 
Cu-Cr(Ba) 220 5.2 

5 (Rode et al. 
Continuous: 2010) 

800 
65 >90

Cu/Ai,O, 205 2.0 23 88.7 - 94.3
(Wo!osiak-Hnat 

et al. 2013) 
T, reaction temnerature; P H2, hvdroaen nressure; Y, vield; S, selectivitv 

Electrolysis is an alternative pathway to overcome the shortcomings of current 
methods. This method is simple, robust, and can operate under ambient pressure and low 
reaction temperature. In previous studies, the electrochemical conversion of glycerol has 
been based on electro-oxidation. However, the study of the electroreduction of glycerol 
into 1,2-PDO has not been reported previously. Glycerol can be electro-oxidised into 



various hydroxyl acids such as glycolic acid, mesoxalic acid, and glyceric acid (Simôes et

al. 2010, 2011; Zhang et al. 2014). The selectivity of these products is dependent on the 
pH of the reaction medium and the type of electrode materials (Avramov-Ivié et al. 1991, 
1993; Roquet et al. 1994; Yildiz andKadirgan 1994). 

Activated carbon, which is commonly functionalized with polymer or 
incorporated with noble metals such as Pt, Pd, Rh, and Au, is broadly used as an 
electrode in electrochemical studies (Cardet al. 1990; Bambagioni et al. 2009; Kwon et

al. 2012). Activated carbon with a high specific surface area (1000 m2/g) can be produced 
from readily available biomass precursors such as coal, coke, saw dust, peat, wood char, 
seed hulls, and palm kernel shell (Omar et al. 2003; Kalderis et al. 2008; Foo and 
Hameed 2011; Elmouwahidi et al. 2012; Foo and Hameed 2013; He et al. 2013; Lee et

al. 2013). The large surface area and pore size of the carbon support can improve ion 
transport and electrolyte accessibility (Tang et al. 2013). 

Another material which is currently widely used in the electrochemical study is 
doped diamond electrode. In the study by Kraft (2007), doped diamond electrode was 
compared with platinum electrode in the region between oxygen and hydrogen evolution 
in 0.2 M H2SO4 by using cyclic voltammetry. The result obtained shows that doped 
diamond electrode has a wider potential window and high oxygen as well as hydrogen 
evolution overpotential (Kraft 2007). This striking feature distinguishes the doped 
diamond electrode from common electrode materials, such as Pt, Au, or mixed metal 
electrodes. The doped diamond electrode demonstrates high electrochemical stability 
under severe conditions (Panizza and Cerisola 2005; Alfaro et al. 2006). However, the 
surface area of doped diamond electrode is restricted by the size of chemical vapor 
deposition chamber. 

A carbon black diamond (CBD) composite electrode, which has no limitation on 
the shape and dimension, was investigated for the first time in our laboratory for 
electrochemical oxidation of organic pollutants, sùch as phenol and benzoquinone. The 
CBD electrode offered a wide potential window and inert surface. Its potential window 
decreased with increasing of carbon black (CB) percentage in the electrode. The 5% CB 
presented a similar potential window as the conventional boron doped diamond electrode 
(Ajeel et al. 2015c}. However, results reported that 20% CBD electrode achieved a high 
removal efficiency (96.5%) for benzoquinone (200 g/L) after 20 min of oxidation (Ajeel 
et al. 2015b). In addition, CBD electrode showed a high selectivity in phenol oxidation in 
comparison with the conventional Pt electrode, whereby fumaric acid was the only 
chemical compound observed after the electro-oxidation process (Ajeel et al. 2015c). 
Later, an activated carbon composite (ACC) electrode was prepared and used as anode 
electrode for 2-chlorophenol electro-oxidation. The performance of ACC was compared 
with CBD (20% CB). After 6 h of electro-oxidation, the degradation efficiencies of ACC 
and CBD on 2-chlorophenol were 82.5% and 96.0%, respectively. ACC offered higher 
surface area by fourfold compared to that of CBD, and it exhibited the same degradation 

. rate as the CBD electrode (Ajeel et al. 2015a). Moreover, the price of activated carbon 
and diamond materials are lower than that of noble metal catalysts (Pt, Pd, Rh, and Au). 
The cost of each material per gram is displayed in Table 2 (Sigma Aldrich). Due to their 
high selectivity and cost effectiveness advantages, two environmentally friendly, low­
cost carbon-based electrodes (mixed carbon black-activated carbon electrodes (CBAC) 
and mixed carbon black-diamond (CBD) electrodes) are proposed in the present study. 



Table 2. Common Materials Used for Catalyst Preparation 

Tvne of Material CAS Number % Puritv Price (USD $/q) 
Platinum* 7440-06-4 99 2015.00 

Palladium* 7440-05-3 99 1260.00 
Rhodium* 7440-16-6 99 506.00 

Gold* 7440-57-5 99 347.00 
Diamond* 7782-40-3 97 97.20 

Activated Carbon** 7440-44-0 99 0.11 
*in nanopowder form
**in oowder form

In this work, 20% CBAC and 20% CBD were prepared and used as the cathode 
electrode for electrochemical conversion of glycerol. The electrochemical conversion was 
carried out in a two-compartment electrochemical cell to avoid the mixed oxidation­
reduction process that occurs in a single-compartment electrochemical cell (Saila et al. 

2015). Hence, enhanced selectivity to 1,2-PDO was expected. The glycerol conversion 
and product selectivity were compared with those obtained using the conventional Pt 
electrode. A potential reaction mechanism is proposed. 

EXPERIMENTAL 

Electrode Preparation 
A CBAC electrode (with a geometrical surface area of 14 cm2) was prepared by 

mixing 80 wt.% activated carbon powder (AC) (99.5% purity with an average particle 
size of 100 µm and a 950 m2/g specific surface area) (Sigma Aldrich, Germany) and 20 
wt.% carbon black nanopowder (CB) (99% purity with an average particle size of 13 nm 
and a 550 m2/g specific surface area) (Alfa-chemicals, United Kingdom) to a total weight 
of3.0 g. The CBD electrode (with a geometrical surface area of 14 cm2) was prepared by 
blending 20 wt.% CB nanopowder and 80 wt.% nanodiamond powder (98.3% purity with 
an average particle size of 3 nm to 10 nm and a 200 m2/g to 400 m2/g specific surface 
area) (Sigma Aldrich). CB nanopowder was added during the electrode preparation to 
increase the conductivity of the electrode (Ajeel et al. 2015c). The ratio of each 
composition used in the electrode preparation was described in an earlier study on the 
electro-degradation of 2-chlorophenol. Ajeel (et al. 2015a) reported that the AC and 
diamond electrodes with 20 wt.% CB nanopowder had a removal efficiency of 2-
chlorophenol as high as 83% and 96%, respectively. Therefore, a similar electrode was 
prepared and used as a cathode electrode in this study. 

The pre-mixed powder was added into a mixture containing 20% v/v of 
polytetrafluoroethylene and 80% v/v of 1,3-propanediol to obtain a powder-to-liquid ratio 
of 1 :2. The slurry was pressed neatly and oven dried in accordance with the following 
heating temperature program: 100 °C for 2 h, 180 °C for 1 h, 250 °C for 1 h, and 350 °C 
for 30 min to allow complete sintering of the powder and increase electrode hardness 
(Ajeel et al. 2015a). 

Scanning Electron Microscopy (SEM) 
The morphology of the CBAC and CBD electrodes were studied by scanning 

electron microscopy using a Hitachi SU-8000 instrument (Tokyo, Japan) equipped with 



an energy dispersive X-ray (EDX) analyser. The element content in the electrode was 
determined by EDX. 

Measurement of Active Surface Area 

The active surface areas of CBAC and CBD electrodes (with geometrical surface 
areas of 0.45 cm2) were measured by chronoamperometry analysis in 0.005 M 
ferrocyanide solution (K4Fe(CN)6)(::C: 99.95% purity) (Sigma Aldrich) containing 0.1 M 
KH2PO4 (purity ::0: 99%) (Sigma Aldrich). The test was performed with an Autolab 
Potentiostat from Metrohm (Mode! PGSTATI0I, Switzerland). The active surface areas 
of the CBAC and CBD electrodes were obtained using the Cottrell equation (Ajeel et al. 

2015a), 

nFAD 1f2c
J= 

0 

n;1/2t1/2 

(1) 

where 1 is the current (A), n is the number of electrons, A is the active surface area of the 
electrode (cm2), D is the diffusion coefficient (6.20 x 10-6 cm2/s), Co is the bulk
concentration ofK4Fe(CN)6 (mol/cm3), Fis the Faraday constant 96487 (C/mol), and t is 
the time (s). 

Electrochemical Reduction Behavior 

The electroreduction of glycerol was carried out in a two-compartment reactor 
separated by a cation exchange membrane (Nafion-117, Fuel Cell Store, United States), 
as shown in Fig. 1. Each compartment was filled with 0.25 L of 0.30 M glycerol solution. 
Next, 24.0 g of Amberlyst-15 and 10.0 g of Na2SO4 were dispersed into the entire 
glycerol solutions. Amberlyst-15 was used as an acid catalyst in this study. The strong 
sulfonic acid group in Amberlyst-15 allows it to serve as an excellent catalyst during the 
electrolysis performance. The application of Amberlyst-15 in the electrochemical 
conversion of glycerol was previously studied by the author and was found that the 
presence of Amberlyst-15 can enhanced the glycerol conversion, product selectivity and 
yield. 

Pt (geometrical surface area of 22 cm2) was used as the anode electrode. Three 
types of cathode materials were studied: Pt (geometrical surface area of 33.0 cm2), CBAC 
(geometrical surface area of 14.1 cm2), and CBD (geometrical surface area of 14.1 cm2). 
A constant current (2.0 A) was supplied to the system, and the reaction temperature was 
controlled at 80 °C for 8 h. 
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Fig. 1. Electrochemical set-up 
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The products were separated aud characterized by gas chromatography-mass 
spectroscopy (GC-MS) (Agilent Mode! 7890, United State) with au attached ZB-Wax 
column (30 m x 0.25 mm x 0.25 µm). High purity helium (> 99.99%) was used as the 
carrier gas at a constant flow of 2.0 mL min-1. The initial oven temperature was set to 45 
�C, maintained for 5 min, aud then increased at a rate of 10 °C min-1 to reach the final 
temperature of240 °C, which was maintained for 5 min. The injection volume was 1 µL. 
The results were compared with the chemical standards aud MS library (ChemStation 
software) (Agilent). The glycerol conversion aud selectivity were calculated by Eqs. 2 
and 3, respectively. 

( ) 
Amaunt of 9lycora! can1'ertod (in male C) 

Glycoral can1'ersian % · = x 100 % 
Total amaunt of 9/yceral in reactant (in male C) 

(2) 

. . Amaunt of prad.uct (in mal• C) 
Praduct soloct,v,ty (%) = 

S 
f 

!! d (· . C) . 1. "d h 
x 100 % 

um a a pro ucts ,n male <n ,quo p as-• 

(3) 

RESUL TS AND DISCUSSION 

CBAC and CBD Electrode Characterization 

Scanning electron microscopy was used to investigate the morphologies of the 
CBAC aud CBD electrodes. Scaus were performed at high magnification (50000x) with 
image resolutions of 1.00 µm. The SEM image for the CBAC electrode in Fig. 2a shows 
that CBAC exhibited high porosity with average pore sizes ranging from 90 mn to 170 
nm. The detectable pore sizes for the CBD electrode were smaller ( around 14 nm to 22 



nm) (Fig. 2b) and lower than those of the CBAC electrode. The mesoporous and macro­
porous structure in both electrodes can help to hold or trap the reaction intermediate, thus 
enhancing the product selectivity (Qi et al. 2014; Zhang et al. 2014). 

Fig. 2. SEM images of (a) CBAC and (b) CBD electrodes 

The elements present in the electrodes were determined using SEM-EDX, and the 
spectra for the CBAC and CBD electrodes are shown in Fig. 3a and Fig. 3b, respectively. 
The CBAC electrode contained three elements, namely carbon (C), fluorine (F), and 
oxygen (0). Carbon was the major element in the CBAC electrode, with a nominal value 
of 75 wt.%. Fluorine and O could be the elements from the binder and solvent 
(polytetrafluoroethylene and 1,3-propanediol) used in the electrode preparation with 
corresponding values of 21 wt.% and 4% wt.%, respectively. The CBD electrode 
contained the same elements, namely C (92 wt.%), F (6 wt.%), and O (1 wt.%). 
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Fig. 3. SEM-EDX spectrum for (a) CBAC and (b) CBD electrodes 

Cathodic Reduction Behavior of Glycerol on the CBAC and CBD Electrodes 
Prior to the electrochemical study, the electroreduction behavior of glycerol was 

examined on the CBAC and CBD electrodes by CV analysis in the presence of 
Amberlyst-15. Blank: CVs without glycerol were prepared on the CBAC and CBD 
electrodes. Scanning was performed from + 0.05 V to -1.80 V at a scan rate of 0.2 V s-1

.

Figure 4 shows the cyclic voltammogram of the CBAC and CBD electrodes. Compared 
with the CV s in the absence of glycerol, no obvious cathodic peaks were observed on 
either electrode in the presence of glycerol. These results might have been due to the lack 
of direct electron transfer with glycerol on the CBAC and CBD electrodes during the 
electroreduction process. The electroreduction of glycerol might have occurred indirectly 



(Ajeel et al. 2015a). Despite the absence of reduction peaks for glycerol on the CBAC 
and CBD electrodes, the cathodic current slightly increased for the glycerol solution, 
showing that electroreduction on the CBAC and CBD electrodes was favourable in the 
presence of glycerol. 
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Fig. 4. CV of CBAC and CBD electrodes in blank solution and aqueous solution of glycerol in the 
presences of Amberlyst-15 with a scan range !rom+ 0.05 to - 1.80 V and a scan rate of 0.2 Vis 

Electroreduction of Glycerol to 1,2-PDO 
The electroreduction of glycerol was performed in the presence of Amberlyst-15, 

at a temperature of 80 °C, and an electric current of 2.0 A over the CBAC and CBD 
electrodes. The results were then compared with those of the Pt electrode, as shown in 
Fig. 5. Glycerol was converted to 67%, 74%, and 88% on the Pt, CBAC, and CBD 
cathodes, respectively. The first-order kinetic models for the reaction over the Pt, CBAC, 
and CBD electrodes are shown in Fig. 6. In agreement with Kongjao et al. (2011), the 
electrolysis on the Pt electrode only fit the first-order kinetic mode! well at 2 h. The rate 
constants on the Pt, CBAC, and CBD electrodes were 0.191 h-1, 0.165 h-1

, and 0.197 h-1
,

respectively. 
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According to the GC-MS chromatogram in Fig. 7, 1,2-PDO, acetol, and 
diethylene glycol (DEG) were found in ail samples. In the presence of H+ ions supplied
by Amberlyst-15, glycerol was first dehydrated into acetol (Ishiyama et al. 2013). In the 
catalytic hydrogenolysis pathway, acetol was further reduced to 1,2-PDO (Chaminand et

al. 2004; Huang et al. 2009). This phenomenon could explain the absence of reduction 
peaks in the CV analysis as the glycerol underwent indirect electroreduction. During 
electrolysis, the reduction compound 1,2-PDO was produced through the electroreduction 
of the intermediate (acetol) instead of the direct reduction of glycerol. Ethylene glycol 
was produced via C-C bond cleavage during the reduction process (Nakagawa and 
Tomishige 2011). Diethylene glycol is formed by the coupling ofethylene glycols. 
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Fig. 6. First-order kinetic model of the electroreduction of glycerol in the presence of Amberlyst-
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Fig. 8. Proposed reaction mechanism for the electroreduction of glycerol 

Although DEG was obtained as a side product in this study, it is also a valuable 
glycerol derivative. Compared with the price of crude glycol, the market value for DEG 
is significantly higher at $ 134/kg (Sigma Aldrich). The reaction mechanism is proposed 
in Fig. 8. 

In the initial stage of the reaction, 1,2-PDO was not detected in any specimen. 
After 1 h, 2 h, and 3 h of electrolysis, 1,2-PDO was observed in small amounts on the 
CBAC, Pt, and CBD electrodes, respectively. The highest product selectivity for 1,2-
PDO (86%) was obtained on the CBAC electrode with 74% glycerol conversion after 8 h. 
Acetol and DEG were also obtained in the reaction mixture with a total selectivity of 
14%. Based on the product selectivity graph in Fig. 9, the reduction performances on the 
Pt and CBD electrodes were slightly lower compared with the CBAC electrode. The 1,2-
PDO selectivity of61% (on Pt) and 68% (on CBD) were obtained after 8 h ofreaction 
time. SEM analysis demonstrated that the surface of the CBAC electrode had high 
porosity with larger pore sizes than the CBD electrode. This result indicated that the 
CBAC electrode had higher active surface areas and larger pore sizes than those of the 
CBD and Pt electrodes. The diffusion limit of the substrates can be reduced when the 
pores size increase, thus improving ion transport during electrolysis and increasing the 
product selectivity as well as glycerol conversion (McMorn et al. 1999). 
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Fig. 9. Selectivity for 1,2-PDO from the electroreduction of glycerol in the presence of Amberlyst-
15 over Pt, CBAC, and CBD electrodes at 80 °C and 2.0 A electric current 

The chronoamperometry analysis revealed that the CBAC and CBD electrodes 
with the same geometrical surface area of 14 cm2 had active surface areas of 227 cm2 and 
88 cm2, respectively. The Pt electrode (geometrical surface area of 33 cm2) had an active 
surface area of only 43 cm2

• The high active surface area of the CBAC electrode 
improved the electrocatalytic activity by increasing electrolyte accessibility and 
improving ion transportation (Tang et al. 2013). Table 3 summarizes the product 
selectivity and glycerol conversion on the Pt, CBAC, and CBD electrodes. 

Table 3. Electroreduction of Glycerol over Pt, CBAC, and CBD Electrodes; 
Selectivity for 1,2-PDO, Acetol, and Diethylene Glycol after 8 h Electrolysis Time 

Electrode Amberlyst- I V T 
Glycerol 

Selectivity (% in mole C) 
Conversion 

A C 
15 (g) (A) (V) ("C) % k (h·1) 12-PDO Acetol DEG 

Pt Pt 24.0 2.0 23 80 67 0.191 (2h) 61 24 15 
Pt CBAC 24.0 2.0 24 80 74 0.165 86 3 11 
Pt CBD 24.0 2.0 23 80 88 0.197 68 17 15 
Note: A, Anode; C, cathode; /, current; T, temoerature; V, ootential 

Research Outlook 

Based on results obtained in prior studies (Table 1 ), this study led to a comparable 
or better selectivity for 1,2-PDO under milder reaction conditions. Electrolysis was 
performed at ambient pressure and a reaction temperature of 80 °C. Moreover, peak 
selectivity for 1,2-PDO was achieved after 8 h of electrolysis time. Shortening the 
reaction time can reduce the contact time of glycerol with the electrocatalyst, thereby 
stopping the production of unfavorable byproducts. When glycerol reacts under high 
reaction temperature and pressure for many hours, the glycerol C-C bond breaks, which 
leads to further formation of small unwanted compounds such as ethylene glycol (Rode et

al. 2010). This study also showed that fewer compounds were formed during electrolysis 
than during the fermentation process. 

In addition, the price of the electrode materials must be inexpensive to compete 
effectively with the current available catalyst and electrocatalyst. Based on the costs 



shown in Table 2, the CBAC and CBD electrodes are relatively cheap compared with 
noble metal catalysts (Pt, Pd, Rh, and Ru). Furthermore, AC can be easily obtained from 
biomass feedstocks such as saw dust, seed hulls, and palm kemel shell. In Malaysia, palm 
kemel shell is the main source for AC because it is one of the most prominent agricultural 
wastes obtained from the oil palm industry (Abdullah et al. 201 !). 

CONCLUSIONS 

1. In this study, the direct electroreduction of glycerol was examined. Glycerol was
successfully reduced to 1,2-PDO on the two new cathode materials of CBAC and
CBD.

2. The highest 1,2-PDO selectivity of 86% was obtained after 8 h ofreaction time with
a maximum glycerol conversion of74% occurring on the CBAC electrode.

3. On the CBD electrode, the glycerol conversion percentage was 88% with a 1,2-PDO
selectivity of 68%.

4. Acetol and DEG were also obtained, but in very low product selectivity.

5. These findings successfully provided a new approach for glycerol electroreduction
studies.
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