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A positive integer A is called a congruent number if A is the area of a right-angled triangle with three rational sides. Equivalently, A is a congruent number if and only if the congruent number curve y 2 = x 3 -A 2 x has a rational point (x, y) ∈ Q 2 with y ̸ = 0. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.

Introduction

A positive integer A is called a congruent number if A is the area of a right-angled triangle with three rational sides. So, A is congruent if and only if there exists a rational Pythagorean tripel (a, b, c) (i.e., a, b, c ∈ Q, a 2 + b 2 = c 2 , and ab ̸ = 0), such that ab 2 = A. The sequence of integer congruent numbers starts with 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, . . . For example, A = 7 is a congruent number, witnessed by the rational Pythagorean triple ( 24

5 , 35 12 , 337 60 
) .

It is well-known that A is a congruent number if and only if the cubic curve

C A : y 2 = x 3 -A 2 x
has a rational point (x 0 , y 0 ) with y 0 ̸ = 0. The cubic curve C A is called a congruent number curve. This correspondence between rational points on congruent number curves and rational Pythagorean triples can be made explicit as follows: Let

C(Q) := {(x, y, A) ∈ Q × Q * × Z * : y 2 = x 3 -A 2 x},
where Q * := Q \ {0}, Z * := Z \ {0}, and

P (Q) := {(a, b, c, A) ∈ Q 3 × Z * : a 2 + b 2 = c 2 and ab = 2A}.
Then, it is easy to check that

ψ : P (Q) → C(Q) (a, b, c, A) → ( A(b + c) a , 2A 2 (b + c) a 2 , A ) (1.1)
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1. Introduction 16 1. Introduction is bijective and ψ -1 : C(Q) → P (Q) (x, y, A) → ( 2xA y , x 2 -A 2 y , x 2 + A 2 y , A ) . (1.2)
For positive integers A, a triple (a, b, c) of non-zero rational numbers is called a rational Pythagorean A-triple if a 2 + b 2 = c 2 and A = ab 2 . Notice that if (a, b, c) is a rational Pythagorean A-triple, then A is a congruent number and |a|, |b|, |c| are the lengths of the sides of a right-angled triangle with area A. Notice also that we allow a, b, c to be negative.

It is convenient to consider the curve C A in the projective plane RP 2 , where the curve is given by

C A : y 2 z = x 3 -A 2 xz 2 .
On the points of C A , one can define a commutative, binary, associative operation "+", where O, the neutral element of the operation, is the projective point (0, 1, 0) at infinity. More formally, if P and Q are two points on C A , then let P #Q be the third intersection point of the line through P and Q with the curve C A . If P = Q, the line through P and Q is replaced by the tangent in P . Then P + Q is defined by stipulating

P + Q := O#(P #Q),
where for a point R on C A , O#R is the point reflected across the x-axis. The following figure shows the congruent number curve C A for A = 5, together with two points P and Q and their sum P + Q.
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More formally, for two points P = (x 0 , y 0 ) and Q = (x 1 , y 1 ) on a congruent number curve C A , the point P + Q = (x 2 , y 2 ) is given by the following formulas:

• If x 0 ̸ = x 1 , then x 2 = λ 2 -x 0 -x 1 , y 2 = λ(x 0 -x 2 ) -y 0 ,
where λ := y 1 -y 0 x 1 -x 0 .

• If P = Q, i.e., x 0 = x 1 and y 0 = y 1 , then

x 2 = λ 2 -2x 0 , y 2 = 3x 0 λ -λ 3 -y 0 , (1.3)
where

λ := 3x 2 0 -A 2 2y 0 . (1.4)
Below we shall write 2 * P instead of P + P .

• If x 0 = x 1 and y 0 = -y 1 , then P + Q := O. In particular, (0, 0) + (0, 0) = (A, 0) + (A, 0) = (-A, 0) + (-A, 0) = O.

• Finally, we define O + P := P and P + O := P for any point P , in particular,

O + O = O.
With the operation "+", (C A , +) is an abelian group with neutral element O. Let C A (Q) be the set of rational points on C A together with O. It is easy to see that

( C A (Q), + )
. is a subgroup of (C A , +). Moreover, it is well known that the group

( C A (Q), +
) is finitely generated. One can readily check that the three points (0, 0) and (±A, 0) are the only points on C A of order 2, and one easily finds other points of finite order on C A . But do we find also rational points of finite order on C A ? This question is answered by the following Theorem 1. If A is a congruent number and (x 0 , y 0 ) is a rational point on C A with y 0 ̸ = 0, then the order of (x 0 , y 0 ) is infinite. In particular, if there exists one rational Pythagorean A-triple, then there exist infinitely many such triples.

The usual proofs of Theorem 1 are quite involved. For example, Koblitz [Kob93, Ch. I, § 9, Prop. 17] gives a proof using Dirichlet's theorem on primes in an arithmetic progression, and in Chahal [Cha06, Thm. 3], a proof is given using the Lutz-Nagell theorem, which states that rational points of finite order are integral. However, both results, Dirichlet's theorem and the Lutz-Nagell theorem, are quite deep results, and the aim of this article is to provide a simple proof of Theorem 1 which relies on an elementary theorem of Fermat.

A Theorem of Fermat

In [Fer1670], Fermat gives an algorithm to construct different right-angled triangles with three rational sides having the same area (see also Hungerbühler [Hun96]). Moreover, Fermat claims that his algorithm yields infinitely many distinct such right-angled triangles. However, he did not provide a proof for this claim. In this section, we first present Fermat's algorithm and then we show that this algorithm delivers infinitely many pairwise distinct rational right-angled triangles of the same area.

Fermat's Algorithm 2. Assume that A is a congruent number, and that (a 0 , b 0 , c 0 ) is a rational Pythagorean A-triple, i.e., A = a 0 b 0 2 . Then

a 1 := 4c 2 0 a 0 b 0 2c 0 (a 2 0 -b 2 0 ) , b 1 := c 4 0 -4a 2 0 b 2 0 2c 0 (a 2 0 -b 2 0 ) , c 1 := c 4 0 + 4a 2 0 b 2 0 2c 0 (a 2 0 -b 2 0 ) , (2.5) is also a rational Pythagorean A-triple. Moreover, a 0 b 0 = a 1 b 1 , i.e., if (a 0 , b 0 , c 0 , A) ∈ P (Q), then (a 1 , b 1 , c 1 , A) ∈ P (Q).
Proof. Let m := c 2 0 , let n := 2a 0 b 0 , and let

X := 2mn, Y := m 2 -n 2 , Z := m 2 + n 2 , in other words, X = 4c 2 0 a 0 b 0 , Y = c 4 0 -4a 2 0 b 2 0 , Z = c 4 0 + 4a 2 0 b 2 0 . Then obviously, X 2 + Y 2 = Z 2 , and since a 0 , b 0 , c 0 ∈ Q, ( |X|, |Y |, |Z|
) is a rational Pythagorean triple, where the area of the corresponding right-angled triangle is

à = XY 2 = 2a 0 b 0 c 2 0 (c 4 0 -4a 2 0 b 2 0 ) . Since a 2 0 + b 2 0 = c 2 0 , we get c 4 0 = (a 2 0 + b 2 0 ) 2 = a 4 0 + 2a 2 0 b 2 0 + b 4 0 and therefore c 4 0 -4a 2 0 b 2 0 = a 4 0 -2a 2 0 b 2 0 + b 4 0 = (a 2 0 -b 2 0 ) 2 > 0.
So, for

a 1 = X 2c 0 (a 2 0 -b 2 0 ) , b 1 = Y 2c 0 (a 2 0 -b 2 0 ) , c 1 = Z 2c 0 (a 2 0 -b 2 0 )
, 

we have a 2 1 + b 2 1 = c 2 1 and a 1 b 1 2 = XY 2 • 4c 2 0 (a 2 0 -b 2 0 ) 2 = 2a 0 b 0 c 2 0 (c 4 0 -4a 2 0 b 2 0 ) 4c 2 0 (a 2 0 -b 2 0 ) 2 = 2a 0 b 0 c 2 0 (a 2 0 -b 2 0 ) 2 4c 2 0 (a 2 0 -b 2 0 ) 2 = a 0 b 0 2 . Theorem 3. Assume that A is a congruent number, that (a 0 , b 0 , c 0 ) is a rational Pythagorean A- triple,
a 2 n b 2 n = 4A 2 . (2.6) Furthermore, since a 2 n + b 2 n = c 2 n , we have (a 2 n + b 2 n ) 2 = a 4 n + 2a 2 n b 2 n + b 4 n = a 4 n + 8A 2 + b 4 n = c 4 n ,
and consequently we get

c 4 n -16A 2 = a 4 n -8A 2 + b 4 n = a 4 n -2a 2 n b 2 n + b 4 n = (a 2 n -b 2 n ) 2 > 0. Therefore, √ (a 2 n -b 2 n ) 2 = |a 2 n -b 2 n | = √ c 4 n -16A 2
, and with (2.5) and (2.6) we finally have

|c n+1 | = c 4 n + 16A 2 2c n √ c 4 n -16A 2
. Now, assume that c n = u v where u and v are in lowest terms. We consider the following two cases: u is odd : First, we write v = 2 k • ṽ, where k ≥ 0 and ṽ is odd. In particular,

c n = u 2 k •ṽ . Since c n+1 is rational, √ c 4 n -16A 2 ∈ Q. So, √ c 4 n -16A 2 = √ u 4 -16A 2 v 4 v 4 = ũ v 2
for a positive odd integer ũ. Then

|c n+1 | = u 4 +16A 2 v 4 v 4 2uũ v 3 = ū 2uũv = ū 2uũ2 k ṽ = ū 2 k+1 uũṽ = u ′ 2 k+1 • v ′
where ū, u ′ , v ′ are odd integers and gcd(u ′ , v ′ ) = 1. This shows that

c n = u 2 k • ṽ ⇒ |c n+1 | = u ′ 2 k+1 • v ′
where u, ṽ, u ′ , v ′ are odd.

u is even: First, we write u = 2 k • ũ, where k ≥ 1 and ũ is odd. In particular, c n = 2 k •ũ v , where v is odd. Similarly, A = 2 l • Ã, where l ≥ 0 and à is odd. Then

c 4 n ± 16A 2 = 2 4k • ũ4 ± 2 4+2l Ã2 v 4 v 4 ,
where both numbers are of the form 2 2m ū v 4 , where ū is odd and 4 ≤ 2m ≤ 4k, i.e., 2 ≤ m ≤ 2k. Therefore,

|c n+1 | = 2 2m u 0 • v 3 2 • 2 k ũ • v 4 • 2 m u 1 = 2 m-k-1 • u ′ v ′ ,
where u 0 , u 1 , u ′ , v ′ are odd. Since m < 2k + 1, we have m -k -1 < k, and therefore we obtain

c n = 2 k • ũ v ⇒ |c n+1 | = 2 k ′ • u ′ v ′
where ũ, v, u ′ , v ′ are odd and 0 ≤ k ′ < k.

Both cases together show that whenever

c n = 2 k • u v , where k ∈ Z and u, v are odd, then |c n+1 | = 2 k ′ • u ′ v ′ , where u ′ , v ′ are odd and k ′ < k. So, for any distinct non-negative integers n and n ′ , |c n | ̸ = |c n+1 |.
The proof of Theorem 3 gives us the following reformulation of Fermat's Algorithm: Corollary 4. Assume that A is a congruent number, and that (a 0 , b 0 , c 0 ) is a rational Pythagorean A-triple, i.e., A = a 0 b 0 2 . Then

a 1 = 4Ac 0 √ c 4 0 -16A 2 , b 1 = √ c 4 0 -16A 2 2c 0 , c 1 = c 4 0 + 16A 2 2c 0 √ c 4 0 -16A 2
, is also a rational Pythagorean A-triple.

Proof. Notice that c 4 0 -4a 2 0 b 2 0 = c 4 0 -16A 2 and recall that |a 2 0 -b 2 0 | = √ c 4 0 -16A 2 .

Doubling points with Fermat's Algorithm

Before we prove Theorem 1 (i.e., that congruent number curves do not contain rational points of finite order), we first prove that Fermat's Algorithm 2 is essentially doubling points on congruent number curves.

Lemma 5. Let A be a congruent number, let (a 0 , b 0 , c 0 ) be a rational Pythagorean A-triple, and let (a 1 , b 1 , c 1 ) be the rational Pythagorean A-triple obtained by Fermat's Algorithm from (a 0 , b 0 , c 0 ). Furthermore, let (x 0 , y 0 ) and (x 1 , y 1 ) be the rational points on the curve C A which correspond to (a 0 , b 0 , c 0 ) and (a 1 , b 1 , c 1 ), respectively. Then we have 2 * (x 0 , y 0 ) = (x 1 , -y 1 ).

Proof. Let (a 0 , b 0 , c 0 ) be a rational Pythagorean A-triple. Then, according to (2.5), the rational Pythagorean A-triple (a 1 , b 1 , c 1 ) which we obtain by Fermat's Algorithm is given by .

  and for positive integers n, let (a n , b n , c n ) be the rational Pythagorean A-triple we obtain by Fermat's Algorithm from (a n-1 , b n-1 , c n-1 ). Then for any distinct non-negative integers n, n ′ , we have |c n | ̸ = |c n ′ |.

Proof. Let n be an arbitrary but fixed non-negative integer. Since A = anbn 2 , we have 2A = |a n b n |, and consequently

A Theorem of Fermat

A Theorem of Fermat

Let still (a 0 , b 0 , c 0 ) be a rational Pythagorean A-triple. Then, again by (1.1), the corresponding rational point (x 0 , y 0 ) on C A is given by

Now, as we have seen in (1.3) and (1.4), the coordinates of the point (x ′ 1 , y ′ 1 ) := 2 * (x 0 , y 0 ) are given by

Hence,

i.e., x 1 = x ′ 1 and y 1 = -y ′ 1 , as claimed.

With Lemma 5, we are now able to prove Theorem 1, which states that for a congruent number A, the curve C A : y 2 = x 3 -A 2 x does not have rational points of finite order other than (0, 0) and (±A, 0).

Proof of Theorem 1.

Assume that A is a congruent number, let (x 0 , y 0 ) be a rational point on C A which y 0 ̸ = 0, and let (a 0 , b 0 , c 0 ) be the rational Pythagorean A-triple which corresponds to (x 0 , y 0 ) by (1.2). Furthermore, for positive integers n, let (a n , b n , c n ) be the rational Pythagorean A-triple we obtain by Fermat's Algorithm from (a n-1 , b n-1 , c n-1 ), and let (x n , y n ) be the rational point on C A which corresponds to the rational Pythagorean A-triple (a n , b n , c n ) by (1.1).

By the proof of Lemma 5 we know that the x-coordinate of 2 * (x n , y n ) is equal to c 2 n 4 , and by Theorem 3 we have that for any distinct non-negative integers n, n ′ , |c n | ̸ = |c n ′ |. Hence, for all distinct non-negative integers n, n ′ we have (x n , y n ) ̸ = (x n ′ , y n ′ ), which shows that the order of (x 0 , y 0 ) is infinite.