
HAL Id: hal-01983194
https://hal.science/hal-01983194

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Computational Fluid Dynamics on 3D Point Set Surfaces
Hassan Bouchiba, Simon Santoso, Jean-Emmanuel Deschaud, Luisa

Rocha-Da-Silva, François Goulette, Thierry Coupez

To cite this version:
Hassan Bouchiba, Simon Santoso, Jean-Emmanuel Deschaud, Luisa Rocha-Da-Silva, François
Goulette, et al.. Computational Fluid Dynamics on 3D Point Set Surfaces. Journal of Computa-
tional Physics, 2020, 7, �10.1016/j.jcpx.2020.100069�. �hal-01983194�

https://hal.science/hal-01983194
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Computational Fluid Dynamics on 3D Point Set Surfaces

Hassan Bouchibaa, Simon Santosob, Jean-Emmanuel Deschauda, Luisa Rocha-Da-Silvab, François
Goulettea, Thierry Coupezb

aMINES ParisTech, PSL Research University, Centre for robotics, Paris, France
bEcole Centrale Nantes, High Performance Computing Institute, Nantes, France

Abstract

Computational fluid dynamics (CFD) in many cases requires designing 3D models manually, which is a
tedious task that requires specific skills. In this paper, we present a novel method for performing CFD
directly on scanned 3D point clouds. The proposed method builds an anisotropic volumetric tetrahedral
mesh adapted around a point-sampled surface, without an explicit surface reconstruction step. The surface is
represented by a new extended implicit moving least squares (EIMLS) scalar representation that extends the
definition of the function to the entire computational domain, which makes it possible for use in immersed
boundary flow simulations. The workflow we present allows us to compute flows around point-sampled
geometries automatically. It also gives a better control of the precision around the surface with a limited
number of computational nodes, which is a critical issue in CFD.

Keywords: point clouds, point set surfaces, unstructured grids, adaptive anisotropic meshing, finite
elements, incompressible flows

1. Introduction

1.1. General framework
In many cases, numerical simulation of physical phenomena such as external aerodynamics, acoustics

wave propagation, or heat transfer, requires a 3D model of the object. In a typical conception framework
usually, the CAD model of the object exists and thus, can be used for the numerical simulation. However,
when it comes to studying existing objects, such as for air ventilation assessment or retro-engineering the
object should be manually modeled, and 3D modeling is a time-consuming task that requires high skills.

For the past 30 years, 3D scanning techniques have been growing. In particular, for urban environments
mobile mapping [1] enables fast and accurate acquisition with vehicles driven at regular speed in traffic.
These techniques are an interesting alternative to manual modeling as they produce accurate high-resolution
models. Unfortunately, 3D scanning techniques never directly yield a watertight and manifold surface mesh
of the scanned object or scene. Instead, they generate a noisy and unevenly spaced set of points sampled
on the object’s surface, which is called a point cloud. Although it can be very dense, it does not hold
any topological or connectivity information which makes it impossible to use as is, in typical numerical
simulation frameworks. In addition, these models are usually massive as today’s scanners produce up to one
million points per second.

The main goal of this article is to propose a novel method for bringing point clouds directly into numerical
simulation frameworks to automate the manual 3D modeling step, and then open up a new field of simulation
cases on real-life complex objects and scenes. Although we believe that the proposed method can be
generalized to a wide range of applications, we will only focus on finite element incompressible unsteady
flow simulation. Throughout the rest of the article, we will refer to it by the more general acronym CFD,
for computational fluid dynamics.

Figure 1 illustrates different ways to simulate flows around an existing object. As written above the first
alternative is manual or semi-automatic CAD modeling from the point cloud. Examples of this approach
are given in Section 2. It is user involving and the CAD model is not as detailed as the original scan as

Preprint submitted to Elsevier December 22, 2018

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2590055220300214
Manuscript_70afa938fa5da9ddb2df2c057758415c

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2590055220300214

Figure 1: Different workflows for simulating flows around real-life objects. Dashed arrows represent manual steps, and plain
arrows represent automatic or semi-automatic steps. Black arrows outline the classic workflows. The proposed method is
depicted with the red arrows. It involves less user interaction as the simulation grid is directly computed from the original
point cloud.

CAD is built upon simple 3D primitives or defined in a parametric space. This makes this alternative suited
only for structured environments, such as buildings.

As depicted in Figure 1, another alternative to traditional and tedious CAD modeling is building an
explicit surface mesh from a dense point cloud, and then building a body-fitted mesh upon it. Although
many efforts have been made in the computational geometry community to make a surface mesh from a
point cloud [2, 3, 4], we believe that bringing points more directly in the simulation is a more promising
method for the following reasons:

• An explicit surface mesh is a choice for the surface representation. Once it is built, we make a strong
assumption about the topology of the object. Whereas the point cloud is the closest data from the
measurement as it is the direct output of the scan process. In addition, for complex objects, such as
outdoor scenes, surface reconstruction methods fail to reconstruct an explicit and coherent mesh.

• Traditional body-fitted CFD grids have very specific requirements for the size and shape of the cells
on the boundary of the object. If such a mesh is built upon a surface mesh, these requirements must
be inferred in the surface mesh building process, too, which is possible when the mesh comes from a
CAD model but much harder when the mesh is built from a point cloud.

• Surface reconstruction methods applied to complex geometries produce over-detailed models with
millions of triangles, which is not in line with the current computational power available for CFD.
Although making different levels of detail of a mesh is possible, point clouds intrinsically carry multi-
resolution information.

Our contribution is to present a method for simulating flows around 3D point clouds. This contribution
is a new step toward automated numerical simulation. To the authors’ knowledge, this work is the first of
its kind.

This contribution relies on two points. The first one is that the only explicit representation used for the
surface geometry is a 3D point cloud. As depicted in Figure 1, using only the points involves less work for
the final user and fewer intermediate steps while making the most of the geometric precision that a dense
point cloud can provide.

The second point is a novel implicit surface representation called EIMLS, for extended implicit moving
least squares, to define an implicit surface from a point cloud. Unlike state-of-the-art implicit representations,

2

Figure 2: Slice of the Stanford Bunny used as a 2D dataset in this article. The slice contains 557 2D points with normals. The
normals have been computed in 3D and then projected in 2D. See Section 3 for more details on the 3D dataset and related
preprocessing.

Figure 3: Overview of our workflow. (a) Point cloud with oriented normals. (b) Implicit scalar function computed by the
EIMLS. Its iso-zero level set is depicted in red. (c) Anisotropic mesh adapted around the surface sampled by the point cloud.
(d) Flow computed with the implicit boundary and finite element method.

this new representation allows to define the implicit function far from the surface, which is not usually needed
for explicit surface reconstruction but is of great importance for immersed boundary simulation.

1.2. The proposed method
Figure 2 shows the 2D dataset we use to illustrate the proposed method. It has been obtained by slicing

the well-known Stanford Bunny 3D point cloud model. This dataset contains 2D points with unit 2D normal
vector. Although the model is 2D, we show in Section 4 that the model is representative of a real-world
dataset.

The proposed method is depicted in Figure 3. First, a d-dimensional (d = 2 or 3) point set with normals
(a) is used to compute a signed scalar function (b) that represents implicitly the surface of the model sampled
by the point cloud. In Section 3, we discuss how a 3D point cloud can be acquired and preprocessed to get
rid of some artifacts and to obtain normals. Then in Section 4 we introduce the proposed EIMLS method
for computing the implicit scalar function from the point cloud. An immersed anisotropic unstructured
grid (c) can then be built and adapted around the surface of the model which is the zero level set of the
implicit function. In Section 5, we show how to perform anisotropic mesh adaptation on point-sampled
geometry. The mesh is then used as space discretization for an immersed boundary transient incompressible
Navier-Stokes finite element solver to simulate the behavior of a flow around the surface of the object (d).
Then, during the simulation, the mesh is refined around both the surface and the flow thanks to a posteriori
error metric. The implicit scalar function is recomputed only at each remeshing step at the nodes of the
grid. Then its interpolation over the mesh is used during the flow computation steps. Numerical results for
real-world datasets are presented in Section 6.

2. Related work

Our work is at the crossroads of multiple scientific domains: immersed boundary computational fluid
dynamics, geometry processing and anisotropic mesh adaptation. Thus, it is hard to produce a comprehen-
sive overview of the related work to the proposed method. A more detailed overview of related work is given
in each specific part of this article.

3

First, we can compare the proposed work to the idea of using points as primitives for numerical simulation.
This idea has been extensively used in the context of animation. [5] give a general overview of point-based
animation. In this context, [6] introduced the famous position-based dynamics (PBD) that replaced the
traditional force-based simulation framework with a position-based one. Acting directly on positions lets
the simulation be more stable in the context of real-time simulation. This original work has been extensively
used in the physics-based animation community. More recently [7] proposed a unified solver for rigid and
deformable bodies, cloths, and fluids with impressive real-time results. Although these methods are point-
based, they remain far from the proposed work as the points are used here as support for the simulation
and not to define its boundary.

Finally, the closest idea to the proposed method is performing numerical simulation on real-world data.
This idea has been exploited in the context of gaming and user interaction. [8, 9] demonstrated an interactive
simulation of rigid bodies interacting with a scene live scanned by a commodity depth sensor. The interesting
part of this work is that no explicit representation of the scene is stored internally as it is represented as
a signed scalar function that is updated in real time. However, as the original points are not kept, the
maximum resolution of the 3D model is fixed by the regular grid used to store the points. The underlying
surface representation used is the one introduced by [10]. A more detailed comparison with the proposed
surface representation is given in Section 4.

In the context of culture heritage preservation, [11, 12] proposed a semi-automatic method based on
commodity CAD software to build a building information modeling (BIM) model from 3D laser scanned
historical buildings. They then used the reconstructed CAD model to perform finite element analysis (FEA).
Although their method can handle massive datasets, it is not fully automatic and requires specific skills with
CAD software. [13] proposed an interesting semi-automatic workflow to perform FEA on point clouds. They
cut their 3D model into 2D point cloud slices that are manually cleaned and processed. The slices are then
stacked in 3D to produce a voxelized 3D model which is used for FEA simulation. However, the voxelization
procedure is limited as the maximum resolution of the model is fixed by the voxel size, which is sufficient
for global structural behavior simulation but not sufficient for fine fluid simulations near the surface.

Recent work in the domain of medical simulation have proven the ability to simulate mechanical behavior
or fluid flows on organs from CT scans. [14] presented an automatic method for generating FEA models
from CT scans to study abdominal aortic aneurysms. More recently, [15] presented a mesh-based method
for simulating blood flow during the heart cycles. Large eddy simulation (LES) is used on a deformable
mesh that has been registered to dynamic CT scans. By simulating the heart behavior based on real CT
scans, the simulation is patient-specific which opens up many interesting applications. Nevertheless, this
method is based on an explicit mesh that is not well suited for CFD on complex geometries. [16] also
presented a patient-specific hemodynamics (dynamics of blood flows) simulation from CT scans, but instead
of using an explicit surface mesh as the input for the simulation, they used an immersed boundary flow
solver and represented the heart with a level set computed from the CT scans. This approach is the closest
to the method proposed in this paper, but the level set computation was made easier as the input data was
structured and volumetric whereas the input data we propose to study in this article is unstructured and
sampled on surfaces.

3. Point cloud acquisition and processing

3.1. Datasets
Three-dimensional scanning techniques can be used to make 3D models from real-life objects. Today,

these techniques are widely used for industrial and consumer applications. The 3D measurement can be
performed thanks to various physical phenomena: Contact scanners use the resistive force of a surface, laser
scanners use the Lambertian reflectivity of a surface to measure the time of flight of a laser beam shot
hundreds of thousands times per second, and CT scans and other related volumetric scanners can produce
3D slices of an object. In this work, we focus on surface 3D scanning techniques. [17] present the same
adaptive finite element simulation framework on volumetric data.

To illustrate our work, we chose three different point cloud datasets depicted in Figure 4:

4

Figure 4: The three 3D datasets used in this article. (a) Scan of an object: bunny dataset. (b) Terrestrial Laser Scan of a
meeting room: room dataset. (c) Mobile Mapping Scan: street dataset. (b) and (c) are colored by the lidar remittance which
is not used in the proposed method.

(a) bunny: Introduced in the previous sections of this article, this dataset has been acquired by the
Stanford University Computer Graphics Laboratory in 1993-4. The model has been scanned thanks
to a Cyberware 3030 MS scanner from a clay statue. This well-known dataset is made up of 10 range
images registered thanks to a modified ICP algorithm [18]. It is 15 cm tall and has 362,270 points.
Behind its apparent geometric simplicity, this model has several artifacts as outliers and holes in its
bottom part (see Section 4 for more details). Its surface also presents interesting sharp details.

(b) room: Saint Jacques is a meeting room in the main building of Mines ParisTech school in Paris. It
is 7 m by 10 m by 4 m wide, has 13 million points, and has ancient brick walls and a dome ceiling. It
has been acquired thanks to a Faro Focus X130 3D Terrestrial Laser Scanner (TLS). Five scans have
been acquired in various positions in the room. The center table that can be seen in the photo has
been manually removed from the scan for convenience, as it has not been totally scanned. The mean
local accuracy of each scan is 2 mm, but the scan contains many outliers, mainly due to scanner beams
hitting sharp corners.

(c) street: The Madame street is located in the 6th district in Paris. It is a publicly available dataset
for point cloud segmentation and classification [19]. The dataset has been acquired with the L3D2
prototype of the CAOR robotics laboratory at Mines ParisTech school. It is a Mobile Mapping System
(MMS) [1] equipped with an INS/GPS localization system and a Velodyne HDL32E lidar. This latter
has an accuracy of 2 cm, and its 32 laser beams, mounted on a 10 Hz spinning head, produce up to
700,000 points per second. An MMS is designed to acquire urban 3D data with a high productivity
rate, as the vehicle moves at normal speed in traffic. The scan used here is a 30 m portion of the whole
dataset composed of 2 million points. It is the most challenging dataset as MMS produces more noisy
point clouds (5 cm mean error) due to cumulated errors on the localization sensors and the lidar. As
can be seen in Figure 4, the dataset has also a lot of hidden parts.

These datasets are chosen to cover a wide range of 3D scanning techniques. This decision is also motivated
by specific CFD applications, trying to cover a broad range of industrial uses. Each simulation test case is
described in Section 6.

3.2. Point cloud preprocessing
In Section 4, we present the EIMLS implicit scalar function computed from point clouds. To do so, the

point cloud must be preprocessed to remove the outliers, be subsampled, and compute surface normals. We

5

Notations 1 Definition
d dimension of space
N ⊂ N set of point indices
P = {(pi, ni), i ∈ N} oriented point cloud: points and normals
pi ∈ Rd d-dimensional position of the i-th point
ni ∈ Sd−1 unit normal of the i-th point (lying on the unit sphere)
SP underlying smooth surface sampled by P
α : Rd → R implicit function that represents SP

Table 1: Notations and definitions for Section 4

present these preprocessing steps on the three datasets. More details on why these specific preprocessing
steps are needed are given in Section 4.

Outliers removal
Real-world point clouds always contain outlier points due to laser echo misinterpreted by the scanner

software. An easy approach for removing these outliers is to compute the local density on each point and
suppress points with too low density. The density can be computed from various ways. For the MMS
dataset, we chose to compute the distance to the third closest point and to use a 30 cm threshold.

The TLS scan features more challenging structured noise due to the laser hitting sharp corners and
producing a ghost trailing set of points in the laser shooting axis. To get rid of these points, we compute
the angle between the point normal and the direction between the point and the scanner center. The points
seen with a grazing angle (typically 2◦) are removed.

Subsampling
The TLS and MMS scans present anisotropy due to the difference between the angular resolutions of

the sensor in its various directions. For example, the Velodyne HDL32E has a vertical angle resolution (the
angle between each consecutive laser beam) of 1.33◦ and a horizontal resolution of 0.1◦. This anisotropy
should be taken into account in the later used algorithms by, for exampl, using Hough accumulators [20] for
normals computing. We use a simpler approach by subsampling the room and street datasets on a space
criterion. To do so, we built an octree data structure [21] with a fixed leaf size criterion. In practice, we
used 2 cm.

Normals computing
[2] introduced a simple method for computing normals over a point cloud. The normal is defined as the

eigenvector associated with the smallest eigenvalue of the covariance matrix of each point neighborhood.
This simple formulation with a neighborhood of 100 points gives sufficient results for the three datasets. For
the orientation of the normals we used the scanner origin information. Nonetheless, computing normals for
a point cloud can be a challenging problem, and more refined methods can produce better results for more
complex geometries [20, 22].

4. Implicit surface definition

In this section, we show, given an oriented point set P, how to design a scalar function α : Rd → R
that defines implicitly the underlying smooth surface SP sampled by the point cloud. Near the surface,
the implicit function should behave as a distance function to SP . The reader can refer to Table 1 for the
notations used in this section.

After we present related work on surface reconstruction (subsection 4.1), we present a new implicit
surface representation suitable for defining the boundary conditions of an immersed boundary numerical
simulation (subsection 4.2). In particular, we describe the constraints related to this specific application
framework.

6

4.1. Related work
A surface is a (d− 1) manifold of Rd; it can be represented in many ways. We usually differentiate the

explicit representations from the implicit ones. Explicit representations describe a surface with a discrete
set. For instance, in 3D a surface can be described with a set of triangles to form a triangle mesh, or a set
of points to form a point cloud. Implicit representations describe a surface indirectly, for example, with the
level set of a scalar function or the fixed point of a projection operator.

Passing from a point cloud to any other surface representation is called surface reconstruction. It is an
important research topic in computer graphics and computational geometry. For an exhaustive and recent
study, the reader can refer to [23].

Explicit surface reconstruction. There exist methods for building a surface mesh directly from a point cloud.
These methods are usually called explicit methods. The ball-pivoting algorithm (BPA) [24] interpolates the
points by rolling a virtual ball between them. Each time the ball touches three points, a new triangle is
created. This method and its variants are heuristic-based and fail when the local curvature is higher than
the ball radius. Another kind of methods are those based on Voronoï diagrams, such as the crust [25] and
the power crust algorithm [3]. They are essentially based on the property that the surface mesh is a subset
of the dual of the Voronoï diagram of the point cloud. The main advantage of these methods is that they
provide good theoretical guarantees on the method itself and on the output mesh quality. A good overview
of Voronoï-based surface reconstruction methods is given by [26].

Usually, explicit methods are interpolatory: They try to link all the points to produce a surface mesh.
They are then not resilient to massive and noisy point clouds, and thus, not compatible with real-life complex
point clouds. As prior mentioned, we believe that building a surface mesh from a point cloud is making
a strong assumption on the topological and geometric properties of the surface, and then only replaces an
explicit representation by another. Therefore, we find it more convenient to build an implicit representation
based directly on the point cloud instead.

Implicit surface reconstruction. Implicit methods build an indirect representation of a surface. Literature
on implicit surface reconstruction abounds. Curless and Levoy introduced a method for building a truncated
signed distance function (TSDF) from range measurements [10]. Each depth frame is used to carve a regular
grid, labeling not only the space near the measured surface but also all the visited space along the ray between
the measurement and the sensor, thus providing important additional topological information. This method
has recently received renewed interest. KinectFusion [8] uses this method to register in real time depth
images from a low-cost depth camera and build a surface from it. Kazdhan et al. [4, 27] recently showed
that the surface reconstruction problem can be formulated as a Poisson equation. They solve it thanks to
a finite element solver on an octree grid. Poisson reconstruction is based on the use of oriented normals.
Orienting normals can be difficult; therefore, other methods focus on using unoriented normals. Alliez et al.
[28] showed that surface reconstruction from unoriented normals can be expressed as a generalized eigenvalue
problem. Mullen et al. [29] tackled the problem differently by first computing a robust unsigned distance
field and then statistically signing it.

Explicit surface reconstruction from implicit representation. Nonetheless, care must be taken in the proposed
classification of surface reconstruction methods, as their output is usually a surface mesh, although the
underlying method is implicit. The mesh is built only in the final step, for example, for visualization
purposes. There exists methods for generating a surface mesh from the level set of an implicit scalar
function. Lorensen and Cline first introduced the marching cubes algorithm [30] that extracts a triangle
mesh from the level set of a scalar function sampled on a regular grid. Treece et al. [31] extended this
method to better handle ambiguities on the reconstructed surface of the original method by sampling the
function on a tetrahedral grid. [32] introduced a variant of the original method to extract a mesh from an
octree: dual marching cubes. This method produces a mesh with adaptive-sized triangle patches to limit
the over-subdivision of the surface produced by the original method.

7

Figure 5: Main artifacts that can be found in point clouds illustrated on a 2D model. (a) Noise. (b) Missing data. (c)
Non-uniform sampling. (d) Outliers.

Implicit surface reconstruction by moving least squares. These implicit methods are global which means that
the implicit scalar function is computed on a discrete grid (regular, octree, or unstructured), and the entire
point set is used in the process. There exists also another set of methods that are qualified as local: The
implicit function is defined on any point of the d-dimensional space, and its computation involves only on a
small subset of the whole point cloud.

Among these, methods based on moving least squares (MLS) provide a good theoretical background
at small computational cost. The original work of Hoppe et al. [2] is the first local implicit signed scalar
function definition from an oriented point cloud. However, the first MLS surface definition is derived from
the original work of Levin [33]. He introduced a projection operator computed in two steps: First, given a
query point q ∈ Rd, a plane is fitted on a neighborhood of q in the point cloud. A higher-order polynomial
function is then fitted locally, and q is projected on the approximated surface. The surface is then defined as
the stationary points of this projection operator. [34] then used this definition to render surfaces. Surfaces
defined by a local projection operator are usually referred to as point set surfaces (PSS).

Shen et al. [35] introduced a MLS-based definition of an implicit function to estimate a surface from a
polygon soup (i.e., a surface mesh without connectivity). Kolluri [36] then applied this definition to point
clouds. He also proved some theoretical properties of the method. This implicit definition is usually referred
to as implicit moving least squares (IMLS).

PSS and IMLS formulations have intrinsic limitations when the input point cloud quality is poor. Fleish-
man et al. [37] first used robust statistics to recover a piecewise smooth surface from a modified projection
operator. Öztirelli et al. [38] also used robust statistics to provide a robust definition of IMLS called RIMLS.
These methods help better recover sharp features in noisy point clouds. Guennebaud and Gross [39] ex-
tended the projection and the implicit definitions with the algebraic point set surfaces (APSS) algorithm.
They fit algebraic spheres to better handle low-sampled and sharp point clouds.

In addition, all these methods include an averaging process that is resilient to noise in the point cloud.

4.2. Designing an implicit scalar function
In this subsection, we explain the reasoning that led us to define our new extended implicit surface

representation: EIMLS. This reasoning is twofold. First, studying the constraints imposed by dealing with
real-world point clouds and those imposed by the rest of our pipeline, we show that the best-suited state-
of-the-art surface representation is IMLS. Then, after presenting it, we show why it needs to be extended to
be used in our application framework.

8

4.2.1. Design constraints
Real-life point cloud artifacts. We represent the usual artifacts [23] that can be found on real-life point clouds
on the 2D dataset in Figure 5: noise, holes, non-uniform sampling, and outliers. We already dealt with
outliers in Section 3 by removing them with appropriate preprocessing. Thus, the proposed implicit surface
representation should deal with the three first ones. They represent the data-related design constraints.

Signed or unsigned?. Another question that we should address is which kind of implicit representation we
want to define the surface. We saw that an implicit surface can be defined from a point cloud by either a
projection operator or a scalar function. Projection operators usually involve iterative local optimization
which is more computationally intensive than computing a simple scalar function. Therefore, we prefer the
scalar function.

We then wonder whether the scalar function must be signed or unsigned. If it is signed, the surface
can be retrieved from the scalar function by extracting a level set (typically the iso-zero). Unsigned scalar
functions are easier to build, as they do not need the normals to be oriented. Unsigned scalar functions
involve local minimum research to extract the surface. However, it should be noted that the flow solver does
not need the implicit function to be signed to enforce the boundary conditions.

Nonetheless, signed implicit functions have a major benefit compared to unsigned ones: Signed functions
present additional topological information about the interior and the exterior of the surface. This additional
property usually allows to close holes in the point cloud models, addressing the problem of missing data.
In addition, this interior/exterior information can later be used in the numerical simulation framework to
specify physical properties on the object. Thus, although unsigned scalar functions are easier to build, we
need a signed one.

Global or local?. Should the implicit function be computed once on a predefined grid (global method) or
at execution time (local method)? Global methods are more robust to point cloud artifacts but are more
computationally intensive and less versatile than local methods. Local methods need only a neighborhood
of the point cloud to be computed at a given point of the space. They are then better suited to an adaptive
meshing context as we use in the proposed framework, as the grid is constantly modified at each iteration
of the simulation.

4.2.2. Implicit moving least squares (IMLS)
In this paragraph, we present the IMLS surface representation. We also show why it needs to be extended

to meet the requirements of the proposed framework. All the used notations are gathered in Table 1.
IMLS have been introduced by Kolluri [36]. He gave an implicit closed form to express the MLS projection

operator:

αIMLS(x) =
∑
i∈N wi(x)(x− pi).ni∑

i∈N wi(x) (1)

A point pi and its normal ni define a local tangent plane to the surface. The term (x − pi).ni is the
signed distance from x to this plane. Equation 1 can then be interpreted as a weighted sum of the signed
distances to the tangent planes to SP at each pi.

wi is the weighting function associated with the point i. The weighting function can be derived from a
generic weighting function:

wi(x) = φ

(
‖pi − x‖
hi(x)

)
(2)

hi is a space parameter, and it is usually chosen to be constant for each point. If the sampling is close
to uniform over the whole point cloud, it can be chosen constant for all the points and from the order of
magnitude of the sensor noise hi = h. If the point cloud is sparse, the space parameter can be chosen from
the order of magnitude of the local density of P.

The choice of the generic weighting function φ can yield different behaviors of the underlying surface.
Here are some examples:

9

Figure 6: Comparison between IMLS with Gaussian weight (left) and EIMLS (right). The upper row is computed with h0 =
0.0015, and the lower row is computed with h0 = 0.0001. The IMLS formulation is not defined over the whole computational
domain (white parts of the figure) whereas EIMLS is.

10

• Gaussian weight: This is the classical weight used by [36]

φ(x) = e−
x2
2 (3)

With a Gaussian weight, the surface is approximated by smoothing out the noise. As it is not compactly
supported, the surface is, in theory, well defined in the whole domain of study. We will see later why
we cannot rely on this assumption.

• Compactly supported weight: As in [39], the weights can be defined from a compactly supported
polynomial function:

φ(x) =
{

(1− x2)4 if x < 1
0 otherwise (4)

This weight is compactly supported so the IMLS implicit function is defined only on the union of the
open balls of radius hi and centered on each point. This definition domain is not guaranteed to cover
the whole domain of study.

• Interpolatory weight: The weighting function can also be chosen to interpolate the points if it is
chosen with a singularity on zero, as for example:

φ(x) = 1
x2

For real-world point clouds, an interpolatory surface is not desirable as it would over-fit the noise.

In the following, we consider only the Gaussian weighting function (given by Equation 3). It is theoret-
ically defined for all x ∈ R+, and thus, αIMLS should be defined in the whole space Rd, but in practice, it
is defined only until it falls below the numerical precision.

Let 10−γ be a numeric limit. We have:

φ(x) < 10−γ ⇒ x >
√

2γ log(10) = lγ (5)

This means that the Gaussian weight is, in fact, compactly supported, which means that for a query
point sufficiently far from the point cloud, all the weights wi(q) are null, and thus, αIMLS is not defined. We
can see in the left of Figure 6 that the definition domain for IMLS computed with the base Gaussian weight
expression (a) does not cover the whole domain of study and (b) does not produce a watertight surface for
low values of h.

This is an issue for our workflow because the implicit function must be defined over the whole domain to
drive both the mesh adaptation and the flow solver. In addition, for flow simulation, the domain is generally
several times larger than the object extension. Thus, the implicit scalar function must be defined far from
the surface. For all these reasons, the classical IMLS formulation is not suited to this problem and must be
extended. In the following, we present our novel EIMLS extended formulation.

4.2.3. Extended implicit moving least squares (EIMLS)
We first introduce the k nearest neighbor operator on a point cloud.

Definition 4.1. The k nearest neighbor (KNN) operator on the point cloud
Given x ∈ Rd and k a positive integer, the set of indices of the k closest points to x in P is noted:

πP(k, x) ∈ Pk(N) (6)

In the special case k = 1, πP(1, x) defines the nearest neighbor (NN) projection operator on P. For ease
of notation, it is noted:

πP(x) ∈ N (7)

11

We propose the following extended expression for the space parameter:

hE(x) = max
(
‖pπP (x) − x‖

lγ
, h0

)
(8)

where h0 is the classical constant space parameter that can be chosen from the order of magnitude of the
point cloud noise. EIMLS can then be computed with Equations 1, 2, 3 and 8. Thanks to this definition,
we ensure that a least one weight wi does not fall below the numeric precision threshold: the one associated
with πP(x); the closest point to x in the point cloud.

We can see on the right of Figure 6 that EIMLS yields the same results as IMLS where it is defined.
We can also notice that (b) EIMLS is well defined over the whole domain of study and (d) EIMLS is much
more robust to small values of h providing a definition extended to the whole domain. One can notice that
the value far from the surface is not necessarily exact but it is not an issue for the rest of our workflow as
we need only precision near the surface. This point is clarified in Section 5.

4.3. Implementation
Neighbor computations. If we use Equation 1 with a non-compactly supported weight, we should sum the
contributions of all the points of P. This is not coherent with the previous claim that IMLS is a local
surface representation. However, as a decreasing weight is numerically null when it falls below the numerical
precision, it is common to perform the following approximation. Instead of summing over N , we only sum
over a πP(k, x):

α̂EIMLS(x) =
∑
i∈πP (k,x) w(x)(x− pi).ni∑

i∈πP (k,x) w(x) (9)

This way, the representation is only local as it relies only on neighborhood computation. Though, care
must be taken when choosing the k parameter: Too small values produce erroneous results, and too large
values are computationally expensive. It also depends on the local sampling pattern on the point cloud;
for an anisotropic sampled point cloud (as it can arise when the scanner sampling is not uniform in all
directions), a combination between a radius search and a KNN search can generate better results. We get
rid of these problems with the uniform sub-sampling pass operated on the point clouds. In practice, a value
of 80 neighbors worked well for all the datasets.

To speed-up the nearest neighbor computation, we use a KD-tree-based search [40]. The complexity is
then log(|N |) instead of |N | for the naïve algorithm. We use the fast implementation provided by the widely
used FLANN library [41].

Memory concerns. Memory is not an important problem for today’s computers when computing EIMLS.
However, in our case, it is supposed to run in a massively parallel context. Then the memory of each process
is independent from the others even if they are physically present on the same computational node. This
means that the entire point cloud should be loaded by each process. In our case, this is not an issue as
the clouds we use have a relatively small memory footprint. For larger point clouds, we can use a more
compact representation based on octree compression [42] or on more efficient sparse voxel directed acyclic
graphs (DAG) [43]. In addition, to avoid loading the whole point cloud, an out-of-core loading algorithm can
be used in conjunction with loading only the needed parts of the dataset, and thus,s reduce the program’s
memory use.

5. Anisotropic mesh adaptation on point-sampled surfaces

In this section, we present the mesh adaptation step of the proposed method (step (c) in Figure 3). This
step is used to create a volumetric and anisotropic unstructured tetrahedral grid, which is adapted around
the implicit surface computed by EIMLS directly on a point cloud. The anisotropic adaptation is performed
to minimize an a posteriori error metric [44]. The notations used in this section are shown in Table 2.

12

Notations Definition
d dimension of space
Ω computational domain
N ⊂ N set of node indices
X = {Xi, i ∈ N} ⊂ Rd set of nodes
Xij = Xj −Xi ∈ Rd edge vector between two connected nodes i and j
Γ(i) ⊂ N set of nodes connected to node i
Gi reconstruction gradient operator at node i
Mi unit mesh metric at node i

Table 2: Notations and definitions for Section 5

5.1. Related work
We use an immersed boundary finite element Navier-Stokes flow solver to compute the flow around the

point-sampled geometry. As explained by [45], the immersed boundary method has been introduced by [46].
This method allows the simulation to be performed on a grid that fills the entire simulation domain instead
of only the flow part of the domain, in the classic body-fitted mesh paradigm. It then suppresses all the
complex geometry-specific problems in the mesh construction. This method has been initially developed
to run on Cartesian grids, but more recently, it has been applied to anisotropic unstructured grids. An
anisotropic unstructured grid provides better numerical accuracy for the same computational nodes budget
but requires a more sophisticated meshing algorithm.

We use a local optimization meshing algorithm [47, 48]. As it is based only on local mesh modifications
of an existing mesh, it can be used for both meshing and remeshing and is massively parallel [49]. Compared
to traditional meshing algorithms, this algorithm is much less computationally intensive for remeshing as
the mesh is not rebuilt from scratch. This way, the mesh can be adapted around both the geometry of the
immersed boundary and the flow itself between each iteration of the transient flow solver.

5.2. Truncated signed distance function (TSDF) for mesh adaptation
Let Ω be the simulation domain and ωP the sub-domain of Ω delimited by the point-sampled boundary

SP = δωP . The EIMLS defined in the previous section approximates the signed distance function to the
surface. Let D(x,SP) be the unsigned distance function to SP . The EIMLS implicit function verifies near
the surface:

αEIMLS(x) ≈
{
−D(x,SP) if x ∈ ωP
D(x,SP) else (10)

If SP is a smooth surface, αEIMLS is then differentiable almost everywhere, and ‖∇αEIMLS‖ = 1. In
the following, we consider a P 1 mesh approximation of the αEIMLS function. The interpolation error along
each edge of the mesh is then of order 2. For this reason, we introduce a strong variation of the second
derivative of the implicit function near the surface by using an auxiliary hyperbolic tangent function, as
described in [50]:

fε(x) = ε · tanh
(x
ε

)
(11)

As shown in Figure 7, fε is designed to keep a derivative equal to 1 around x = 0 for any value of ε. Its
second derivative is sharper for small values of ε. Applying it to αEIMLS yields a smooth truncated signed
distance function:

αε(x) = fε (αEIMLS(x)) (12)

We can see the effect of ε on αε(x) for various values of ε in the last row of images in Figure 10. This
figure also shows the effect of ε on the mesh adaptation algorithm which is discussed later.

13

Figure 7: (a) fε function. (b) Its second derivative for various values of ε. (red) ε = 0.1. (green) ε = 0.2. (blue) ε = 0.3.

As we use only a truncated signed distance function, numerical accuracy is not needed far from the
surface. This is why EIMLS is well suited for this problem as it may not be numerically exact far from the
surface if we compare it to the true signed distance to the surface, but it is sufficient as it is correct near
the surface and keeps the sign coherence.

5.3. A posteriori interpolation error estimation
[44] introduced an a posteriori error estimate based on the length distribution tensor and edge-based

error analysis. [48] then extended this work to constrain the overall node number in the resulting adapted
mesh. The reader can refer to these works for detailed demonstrations of the presented results.

Let u ∈ C2(Ω) a scalar field known at the mesh nodes X = {Xi ∈ Rd, i ∈ N}. We note: U i = u(Xi) and
U ij = U j − U i. [44] show that the gradient interpolation operator Gi is defined by:

Gi =

 ∑
j∈Γ(i)

Xij ⊗Xij

−1 ∑
j∈Γ(i)

U ijXij (13)

This operator can then be used to define eij the approximation interpolation error along each edge:

eij = |Gij .Xij | (14)

Given a mesh, we can construct a unit metric field {Mi}i∈N that represents the statistical edge distri-
bution at each node:

Mi = |Γ(i)|
d

 ∑
j∈Γ(i)

Xij ⊗Xij

−1

(15)

This metric field is a representation of the mesh local elements shape and size. Conversely, from a mesh
metric field, we can build a mesh whose elements conform to the local shape and size defined by the metric
field. We use this last observation to define a new metric field M̃i from a stretching transformation applied
to all edges of the mesh. Let’s then suppose that all edges are stretched by a stretching coefficient sij ∈ R+:{

X̃ij = sijXij

ẽij = s2
ijeij

(16)

We then define nij as the number of created edges along each edge {i, j}:

nij = s−1
ij =

√
eij
ẽij

(17)

14

Figure 8: Adapted mesh metric computation workflow. (top row) Starting with an isotropic mesh. (bottom row) Starting with
an already adapted mesh. See subsection 5.4 for more details.

We then suppose that the new edge error is constant over the whole mesh ẽij = e. This way, the error
is balanced such that the over-detailed regions are coarsened, and the under-detailed ones are refined in
an anisotropic fashion. However, the problem is still ill posed as this error also depends on the resulting
number of nodes. We then suppose also that the overall number of nodes is constant and equal to N .

[48] show that the number of nodes created per node i is given by:

ni(e) = e−d/2 det


 ∑
j∈Γ(i)

Xij

‖Xij‖
⊗ Xij

‖Xij‖

−1 ∑
j∈Γ(i)

√
eij

Xij

‖Xij‖
⊗ Xij

‖Xij‖




︸ ︷︷ ︸
ni(1)

(18)

Thus, the total number of nodes in the resulting mesh is given by:

N = e−d/2
∑
i

ni(1) (19)

Then we can express the overall error e in function of N :

e =
(∑

i ni(1)
N

)2/d
(20)

The new metric corresponding to a balanced error over the whole domain is given by:

M̃i(e) = 1
e

|Γ(i)|
d

 ∑
j∈Γ(i)

1
eij

Xij ⊗Xij

−1

(21)

5.4. Anisotropic mesh adaptation on point-sampled surface
Figure 8 shows the metric construction steps described in the previous subsection. The upper row

corresponds to a uniform grid and the lower to an already adapted mesh. The same truncated EIMLS
scalar function is sampled over the two meshes with h0 = 0.003 and ε = 0.005. The unit mesh metric Mi is
represented in the second row with ellipsoids centered on each node. Each ellipsoid is the set of points at

15

Figure 9: Illustration of the ability of the proposed method to capture iteratively a surface. The zero level set of the implicit
function interpolated on the mesh is depicted in green. The scale in the right lower corner gives the value of the truncated
EIMLS function (h0 = 0.003 and ε = 0.002). (a) Initial isotropic mesh. (b) After 10 remeshing iterations. (c) After 15
remeshing iterations. (d) After 30 remeshing iterations.

a distance (with respect to the node metric) less than or equal to 1 from the node. Each ellipsoid is shown
at 50% scale for better visual understanding. This representation shows clearly that the unit metric field
describes the shape and size of the mesh elements. The third column depicts the reconstruction gradient
operator Gi. Its variation perpendicular to the surface is steeper over the uniform mesh than over the
adapted mesh. The number of created nodes per edge nij (drawn in the fourth column) is then high along
this direction over the uniform mesh, whereas it is almost constant near the surface for the adapted mesh.
The resulting metric M̃i, represented in the fifth column, is then anisotropic near the surface for the uniform
mesh. The resulting mesh (after a subsequent remeshing step) would effectively be coarsened far from the
surface and refined anisotropically near the surface. The resulting metric for the adapted mesh is very similar
to the initial mesh unit metric Mi which means that the mesh is already well adapted over the domain.

6. Results

In this section, we demonstrate the ability of the proposed method to compute flows around point-
sampled geometries. First, we show results for the mesh adaptation around the surface. We then present
external aerodynamics simulations on the 2D dataset and the three 3D datasets described in Figure 4.
All the results have been produced with the ICI-lib code developed at the High Performance Computing
Institute (ICI). The code implements an anisotropic unstructured mesher by local optimization and a Navier
Stokes transient finite element immersed boundary flow solver [51].

6.1. Mesh adaptation: geometry reconstruction
We first demonstrate the ability of our method to capture an implicit surface defined on a point cloud.

Capturing the surface well is a critical issue as it defines how well the geometric details are represented and
thus, how well the flow solver is able to handle these details.

2D iterative adaptive anisotropic meshing. Figure 9 shows how the proposed method captures iteratively 2D
point-sampled geometry with a constant number of nodes. The initial mesh is isotropic, and the interpolation
error is big near the surface due to the truncated signed implicit function. The meshing algorithm is
then performed iteratively switching between metric computation and remeshing. The implicit function is
evaluated at the mesh nodes only once per iteration. The metric is also computed once per iteration. During
an iteration, when new nodes are created the implicit function and the metric are interpolated at the new
node location.

Influence of ε. The ε parameter introduced in the previous section determines how steep the gradient
variation is near the surface. We illustrate in 2D in Figure 10 the influence of this parameter. Large values
of ε (a) compared to the object scale produce a constant and isotropic metric field computed from the edge
error on the derivative of the gradient of the scalar function interpolated on the mesh. The mesh is then

16

Figure 10: Influence of the ε parameter of the hyperbolic tangent function. (top row) Implicit EIMLS function sampled on the
mesh nodes and interpolated over the mesh. (central row) New metric defined with the edge distribution tensor and per-edge
error. (bottom row) Mesh adapted conform to the new metric. The metric is represented here with ellipsoids centered on the
mesh nodes. For each node, the ellipsoids contain all the points at a distance of 0.5 with respect to the metric.

17

Figure 11: Mesh adaptation around the 3D implicit function defined from a point cloud. (a) Initial point cloud: Stanford
Bunny (362,270 points). (b) Zero level extracted from the implicit EIMLS function interpolated on the final adapted mesh.
(c) Slice of the adapted mesh. (d) Slice of the implicit function.

less adapted than for smaller values of ε (b) and (c). In addition, for smaller values of ε (c) near the surface,
the metric is anisotropic, and more elongated in the tangent direction from the surface.

3D adaptive anisotropic meshing. Figure 11 depicts the results of the proposed method for mesh adaptation
on 3D point-sampled surfaces. The extracted iso-surface from the interpolated implicit function on the mesh
is identical to the original point-sampled model. All the details on the surface are well preserved, and the
holes in the model are filled.

6.2. Flow simulation: test cases
In this subsection, we show various examples of flow simulation performed with the proposed method on

complex point-sampled geometries.

6.2.1. Dynamic multi-criteria mesh adaptation
Figure 12 shows a multi-criteria mesh adaptation in 2D. The mesh is adapted around the surface and

the flow. This is performed at the same time and requires no a priori knowledge of the flow behavior. The
mesh adaptation used here gives better control on the computational nodes on the domain. For example,
in some parts of the domain where the flow velocity is slow, the mesher puts fewer computational nodes
because out there numerical precision on the geometry is less important than in other parts of the domain.
However, the underlying geometric precision is still high because it is carried by the detailed point cloud.

6.2.2. 2D and 3D flow simulation
Figure 13 is another example of simulation on a 2D point cloud. Figure 13(a) illustrates how big the

computational domain is compared to the object. The test section is 7 m × 2 m, whereas the model is only
20 cm tall. The EIMLS surface representation guarantees that the implicit function is well defined over the
whole domain. Figure 13 also shows the Von Karman vortex street produced by the model. This observed
phenomenon is coherent with the flow Reynold number of 200.

Figure 14 is an example of external aerodynamics on a hand-scanned object. The bunny point cloud
is put on a 1 m/s flow. The test section is 5 m long, and its cross section is 1 m × 1 m. The viscosity
is chosen to reach a Reynolds number of 2000. This value is coherent with the observed turbulent flow.
We can observe flow recirculation near the bunny ears. The simulation has been performed with 1,000,000
computational nodes in parallel on 100 cores. We used a time-step of 0.0001 s, and it took 3 hours. This
type of simulation can be extended to industrial objects, for example, for retro-engineering purposes.

Figure 15 is an example of a ventilation simulation performed on the room dataset, acquired with a
terrestrial laser scanner. The fluid is blown from a 20 cm square inlet in the room ceiling. The room has
two transverse walls at one third of its length. These walls seem to partition the flow in two. This kind
of simulation could be used, for example, to evaluate various ventilation solutions for an existing room or

18

Figure 12: (left) The flow around the 2D point cloud. Air is blown from a small inlet on the left of the domain at 5 m/s. The
flow splits in two when it reaches the surface. (right) The mesh adapted around the surface of the obstacle. (1) This is a portion
of space where the flow is calm and then geometric accuracy is not needed, so the mesher puts fewer computational nodes
here. (2) In contrast, here the mesh resolution is very high because it is adapted around the surface and around high-gradient
regions of the flow.

Figure 13: Flow simulation for the 2D slice of the bunny dataset. (a) Computational domain. (b) and (c) Velocity field at
different time-steps of the transient simulation.

19

Figure 14: Streamlines around the bunny dataset.

Figure 15: Room dataset. (a) Iso-surface extracted from the EIMLS function sampled on the adapted mesh. (b) Cut of the
iso-surface showing the details inside the room. (c) Cut of the adapted mesh. (d) Simulation ventilation in the ceiling of the
room.

20

Figure 16: Street dataset. (a) Iso-surface adapted around a gate in the street. (b) Cut of the adapted mesh. (c) streamlines
near the gate. (d) Velocity field of the flow.

21

building, based on a highly detailed 3D scan. This could also open up applications in studying the ventilation
properties of cultural heritage buildings.

Figure 16 is an example of an air ventilation assessment simulation performed at the scale of a mobile 3D
laser scanned street. This is relatively new as usually these simulations are performed at the neighborhood
or city scale. Simulating air flow at the street level can be used to simulate with a very fine grain of detail
the effect of natural disasters or pollution, for example.

7. Conclusion

We introduced a new method for simulating flows around 3D point clouds acquired from real-world 3D
scans. We demonstrated the ability of the proposed method to capture complex phenomena on various
detailed 2D and 3D datasets. We showed the method’s ability to use only implicit representation to describe
the surface: No explicit mesh reconstruction from the point cloud is needed which reduces the amount of
user-interaction and provides the ability to dynamically adapt the mesh during the simulation while keeping
all the underlying geometric precision. We also introduced a new EIMLS formulation to define an implicit
surface from a point cloud. We demonstrated that this method was able to overcome traditional local implicit
surface definitions problems, and well represents complex geometries. Finally, with the development of 3D
scanning devices we believe that the proposed method will give the possibility to easily simulate flow on
real-life objects opening up both new industrial and research applications.

Acknowledgment
The authors thank Stanford Computer Graphics Laboratory for the Stanford Bunny 3D scan.
This work was performed by using HPC resources of the Centrale Nantes Supercomputing Centre on the

cluster Liger, granted by the High Performance Computing Institute (ICI).

References

[1] F. Goulette, F. Nashashibi, I. Abuhadrous, S. Ammoun, C. Laurgeau, An integrated on-board laser range sensing system
for on-the-way city and road modelling, International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 34 (A).

[2] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface Reconstruction from Unorganized Points, in:
Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’92, ACM,
New York, NY, USA, 1992, pp. 71–78. doi:10.1145/133994.134011.

[3] N. Amenta, S. Choi, R. K. Kolluri, The power crust, in: Proceedings of the sixth ACM symposium on Solid modeling and
applications, ACM, 2001, pp. 249–266.

[4] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in: Proceedings of the fourth Eurographics symposium
on Geometry processing, Vol. 7, 2006.

[5] M. Gross, H. Pfister, Point-based graphics, Morgan Kaufmann, 2011.
[6] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff, Position Based Dynamics, J. Vis. Comun. Image Represent. 18 (2)

(2007) 109–118. doi:10.1016/j.jvcir.2007.01.005.
[7] M. Macklin, M. Müller, N. Chentanez, T.-Y. Kim, Unified Particle Physics for Real-time Applications, ACM Trans. Graph.

33 (4) (2014) 153:1–153:12. doi:10.1145/2601097.2601152.
[8] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, A. Fitzgibbon,

KinectFusion: Real-time Dense Surface Mapping and Tracking, in: Proceedings of the 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, ISMAR ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp.
127–136. doi:10.1109/ISMAR.2011.6092378.

[9] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,
others, KinectFusion: real-time 3d reconstruction and interaction using a moving depth camera, in: Proceedings of the
24th annual ACM symposium on User interface software and technology, ACM, 2011, pp. 559–568.

[10] B. Curless, M. Levoy, A volumetric method for building complex models from range images, in: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, ACM, 1996, pp. 303–312.

[11] D. Oreni, R. Brumana, F. Banfi, L. Bertola, L. Barazzetti, B. Cuca, M. Previtali, F. Roncoroni, Beyond Crude 3d
Models: From Point Clouds to Historical Building Information Modeling via NURBS, in: Digital Heritage. Progress in
Cultural Heritage: Documentation, Preservation, and Protection, Springer, Cham, 2014, pp. 166–175. doi:10.1007/
978-3-319-13695-0_16.

22

[12] L. Barazzetti, F. Banfi, R. Brumana, G. Gusmeroli, D. Oreni, M. Previtali, F. Roncoroni, G. Schiantarelli, Bim from Laser
Clouds and Finite Element Analysis: Combining Structural Analysis and Geometric Complexity, ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 5 (2015) 345–350. doi:10.5194/
isprsarchives-XL-5-W4-345-2015.

[13] G. Castellazzi, A. M. D’Altri, G. Bitelli, I. Selvaggi, A. Lambertini, From Laser Scanning to Finite Element Analysis of
Complex Buildings by Using a Semi-Automatic Procedure, Sensors 15 (8) (2015) 18360–18380. doi:10.3390/s150818360.

[14] A. K. Venkatasubramaniam, M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, P. T. McCollum,
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-ruptured Abdominal
Aortic Aneurysms, European Journal of Vascular and Endovascular Surgery 28 (2) (2004) 168–176. doi:10.1016/j.ejvs.
2004.03.029.

[15] C. Chnafa, S. Mendez, F. Nicoud, Elucidating the turbulence nature of the intracardiac flow: from medical images to
multi-cycle Large Eddy Simulations, arXiv:1310.3199 [physics]ArXiv: 1310.3199.

[16] V. Mihalef, R. I. Ionasec, P. Sharma, B. Georgescu, I. Voigt, M. Suehling, D. Comaniciu, Patient-specific modelling of
whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images, Interface Focus 1 (3)
(2011) 286–296. doi:10.1098/rsfs.2010.0036.

[17] J.-X. Zhao, T. Coupez, E. Decencière, D. Jeulin, D. Cárdenas-Peña, L. Silva, Direct multiphase mesh generation from
3d images using anisotropic mesh adaptation and a redistancing equation, Computer Methods in Applied Mechanics and
Engineering 309 (2016) 288–306. doi:10.1016/j.cma.2016.06.009.

[18] G. Turk, M. Levoy, Zippered Polygon Meshes from Range Images, in: Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’94, ACM, New York, NY, USA, 1994, pp. 311–318. doi:
10.1145/192161.192241.

[19] A. Serna, B. Marcotegui, F. Goulette, J.-E. Deschaud, Paris-rue-Madame database: a 3d mobile laser scanner dataset
for benchmarking urban detection, segmentation and classification methods, in: 4th International Conference on Pattern
Recognition, Applications and Methods ICPRAM 2014, 2014.

[20] A. Boulch, R. Marlet, Fast and Robust Normal Estimation for Point Clouds with Sharp Features, Computer Graphics
Forum 31 (5) (2012) 1765–1774. doi:10.1111/j.1467-8659.2012.03181.x.

[21] J. Elseberg, D. Borrmann, A. Nüchter, One billion points in the cloud – an octree for efficient processing of 3d laser scans,
ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76–88. doi:10.1016/j.isprsjprs.2012.10.004.

[22] A. Boulch, R. Marlet, Deep learning for robust normal estimation in unstructured point clouds, in: Computer Graphics
Forum, Vol. 35, 2016, pp. 281–290.

[23] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, C. Silva, State of the art in surface reconstruction
from point clouds, in: EUROGRAPHICS star reports, Vol. 1, 2014, pp. 161–185.

[24] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, The ball-pivoting algorithm for surface reconstruction,
IEEE transactions on visualization and computer graphics 5 (4) (1999) 349–359.

[25] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering, Discrete & Computational Geometry 22 (4) (1999)
481–504.

[26] F. Cazals, J. Giesen, Delaunay triangulation based surface reconstruction, in: Effective computational geometry for curves
and surfaces, Springer, 2006, pp. 231–276.

[27] M. Kazhdan, H. Hoppe, Screened poisson surface reconstruction, ACM Transactions on Graphics (TOG) 32 (3) (2013)
29.

[28] P. Alliez, D. Cohen-Steiner, Y. Tong, M. Desbrun, Voronoi-based Variational Reconstruction of Unoriented Point Sets,
in: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 2007, pp. 39–48.

[29] P. Mullen, F. De Goes, M. Desbrun, D. Cohen-Steiner, P. Alliez, Signing the Unsigned: Robust Surface Reconstruction
from Raw Pointsets, Computer Graphics Forum 29 (5) (2010) 1733–1741. doi:10.1111/j.1467-8659.2010.01782.x.

[30] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, in: ACM siggraph
computer graphics, Vol. 21, ACM, 1987, pp. 163–169.

[31] G. M. Treece, R. W. Prager, A. H. Gee, Regularised Marching Tetrahedra: Improved Iso-Surface Extraction, Computers
and Graphics 23 (1998) 583–598.

[32] S. Schaefer, J. Warren, Dual marching cubes: Primal contouring of dual grids, in: Computer Graphics and Applications,
2004. PG 2004. Proceedings. 12th Pacific Conference on, IEEE, 2004, pp. 70–76.

[33] D. Levin, Mesh-independent surface interpolation, in: Geometric modeling for scientific visualization, Springer, 2004, pp.
37–49.

[34] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva, Computing and rendering point set surfaces, IEEE
Transactions on visualization and computer graphics 9 (1) (2003) 3–15.

[35] C. Shen, J. F. O’Brien, J. R. Shewchuk, Interpolating and approximating implicit surfaces from polygon soup, in: ACM
Siggraph 2005 Courses, ACM, 2005, p. 204.

[36] R. Kolluri, Provably Good Moving Least Squares, in: ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, ACM, New York,
NY, USA, 2005. doi:10.1145/1198555.1198652.

[37] S. Fleishman, D. Cohen-Or, C. T. Silva, Robust Moving Least-squares Fitting with Sharp Features, in: ACM SIGGRAPH
2005 Papers, SIGGRAPH ’05, ACM, New York, NY, USA, 2005, pp. 544–552. doi:10.1145/1186822.1073227.

[38] A. C. Öztireli, G. Guennebaud, M. Gross, Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression,
Computer Graphics Forum 28 (2) (2009) 493–501. doi:10.1111/j.1467-8659.2009.01388.x.

[39] G. Guennebaud, M. Gross, Algebraic Point Set Surfaces, in: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, ACM, New
York, NY, USA, 2007. doi:10.1145/1275808.1276406.

23

[40] A. W. Moore, An Intoductory Tutorial on Kd-Trees, 1991.
[41] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration., VISAPP (1) 2 (331-

340) (2009) 2.
[42] S. Rusinkiewicz, M. Levoy, QSplat: A Multiresolution Point Rendering System for Large Meshes, in: Proceedings of the

27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000, pp. 343–352. doi:10.1145/344779.344940.

[43] V. Kämpe, E. Sintorn, U. Assarsson, High Resolution Sparse Voxel DAGs, ACM Trans. Graph. 32 (4) (2013) 101:1–101:13.
doi:10.1145/2461912.2462024.

[44] T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing,
Journal of Computational Physics 230 (7) (2011) 2391–2405.

[45] R. Mittal, G. Iaccarino, Immersed Boundary Methods, Annual Review of Fluid Mechanics 37 (1) (2005) 239–261. doi:
10.1146/annurev.fluid.37.061903.175743.

[46] C. S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph.D.
thesis, Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University (1972).

[47] T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale, Revue européenne des éléments finis
9 (4) (2000) 403–423.

[48] T. Coupez, G. Jannoun, J. Veysset, E. Hachem, Edge-based anisotropic mesh adaptation for CFD applications, in:
Proceedings of the 21st International Meshing Roundtable, Springer, 2013, pp. 567–583.

[49] T. Coupez, H. Digonnet, R. Ducloux, Parallel meshing and remeshing, Applied Mathematical Modelling 25 (2) (2000)
153–175. doi:10.1016/S0307-904X(00)00045-7.

[50] T. Coupez, L. Silva, E. Hachem, Implicit Boundary and Adaptive Anisotropic Meshing, in: S. Perotto, L. Formaggia
(Eds.), New Challenges in Grid Generation and Adaptivity for Scientific Computing, no. 5 in SEMA SIMAI Springer
Series, Springer International Publishing, 2015, pp. 1–18. doi:10.1007/978-3-319-06053-8_1.

[51] T. Coupez, E. Hachem, Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive
anisotropic meshing, Computer Methods in Applied Mechanics and Engineering 267 (2013) 65–85. doi:10.1016/j.cma.
2013.08.004.

24

