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Micromechanics of Unsaturated Granular Media

Xavier Chateau'; Pascal Moucheront?; and Olivier Pitois®

Abstract: The homogenization method is used to study the properties of the strength criterion of a granular material in the-dry, saturated,
and unsaturated situations. Adopting a periodic description of the granular material at the microscopié level, the main features of the
up-scaling technique are recalled. Then, a general definition of the strength criterion at the macroscopic scale is given in the framework
of yield design homogenization theory. This approach makes it possible to find again classical properties of the strength criterion as a
function of the properties of the granular material at the microscopic level. Furthermore, some experiments are presented in order to assess
the accuracy of the model used to describe the unsaturated granular medium at the microscopic level. ’
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Introduction

It is well known that the addition of liquid within a dry granular
medium, even in small quantity, can modify in a significant way
its behavior when compared to the dry state. Thus, whereas a dry
sand does not have any cohesion, it is enough to add a small
quantity of water to observe a tensile strength. This increase of
strength capacity is classically explained by the formation of lig-
uid bridges located at the contact between grains (Marshall and
Holmes 1988; Fredlund and Rahardjo 1993). It is this property
which allows us to build sand castle.

In this paper, the yield design homogenization method is used
to characterize the macroscopic yield strength properties of unsat-
urated granular media from the description of the physics and of
the morphology at the microscopic level.

To begin with, the main features of the method are presented
in the cases of dry and fully saturated granular material. Then, the
unsaturated situation is studied. Restricting ourselves to the situ-
ation where the porous space is filled by two fluids, it is shown
how the interface phenomena located at the boundaries between
volumic phases have to be taken into account in the up-scaling
approach. These results at hand, a definition of the strength crite-
rion of the unsaturated granular material is given. This definition
is successively applied to the situation where the wetting fluid
phase occupies a continuous domain containing bubbles of the
nonwetting fluid phase (high-saturation ratio) and to the situation
where the wetting fluid phase occupies separate domains located
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around the contact point (low-saturation ratio). In both cases, it is
shown that the determination of the macroscopic sttength crite-
rion simplifies to determine the macroscopic strength criterion for
the same granular material without surface tension effect, provid-
ing that the local strength criterion be replaced by the appropriate
one.

Of course, the validity of such an up-scaling approach relies
upon the relevancy of the description of the medium at the mi-
croscopic scale. To answer this question, some results from an
experimental approach to the behavior of a liquid bridge embed-
ded between two solid surfaces are briefly reported and, then,
compared to different theoretical approaches.

Dry Granular Materials

Whereas several works devoted to the behavior of dry granular
materials by means of up-scaling methods can be found in the
literature (Weber 1966; Christofferson et al. 1981; Cambou and
Sidoroff 1985; Hicher and Rahma 1994; Caillerie 1995; Zhuang
et al. 1995; Emeriault and Cambou 1996; Sab 1996; Cambou
et al. 2000), not so much attention seems to have been paid to the
determination of the strength capacity of this kind of material.
Furthermore, if a consensus has been drawn concerning the rela-
tion linking internal forces at the microscopic scale to the internal
forces at the macroscopic scale, the situation did not counter so
clear as regards the kinematical variables. In order to overcome
these difficulties, the main features of the homogenization method
suited to periodic dry granular material are now presented.

Homogenization for Periodic Dry Granular Materials

Consider a three-dimensional structure occupying a domain Q
made up of a periodic granular material. Let C denote a represen-
tative unit cell which may be regarded as the smallest represen-
tative volume of material. Thanks to the periodicity, it is always
possible to select as a representative cell a domain whose bound-
ary does not intersect any grain.

It is assumed that the contact between particles reduces to a
single geometrical point located at the boundary of each contact-
ing grain and that the force exerted by one grain to another can be
accurately described by a single vector force.




It is well known that, when appropriate, the periodical homog-
enization method defines the link between the microscopic and
macroscopic properties of the medium under consideration from
the response of the representative cell to .a mechanical loading
where the macroscopic stress tensor appears as a loading param-
eter (Auriault and Sanchez-Palencia 1977; Suquet 1982; de
Buhan 1986). More precisely, the boundary conditions over the
representative cell have to correspond to a loading mode depend-
ing linearly on the six (in three dimensions) independent compo-
nents of the Cauchy stress tensor 3 defined so that the macro-
scopic Cauchy stress tensor appears as the average over the
representative cell of the microscopic internal forces. Moreover,
the macroscopic kinematic parameters [the virtual strain rate in
the framework of yield design theory (Salengon 1990), orthe
strain tensor in the framework of deformable solid theory (Suquet
1982)] associated to the macroscopic internal force 3 are also
related to their microscopic counterpart by an avérage relation so
as to check the Hill lemma, which ensures the equality of the
power (or the work) of the internal forces in the kinematic vari-
ables whether this quantity is computed at the microscopic level
or the macroscopic level.

This definition suits easily to the discrete model considered
here as follows. ) E i

Consider the representative cell C made up of N ¢ grains la-
beled with suffixes k. The contact points are labeled by c. Here,
the set of the contact points consists of all the points located on
the inner side of the representative cell C and of all the contact
points located at the cell’s boundary. N, denotes the number of
points belonging to this set. At contact c, k{ and k5 denote, re-
spectively, the suffix of the grain contacting each other while F¢ is
the force exerted by grain number k5 on grain k¢ . This definition
does not hold for the contact located at the boundary of C. In this
case, F* is the force exerted by the outside on grain kS .

It is useful for the sequel to define for each grain belonging to
the representative unit cell C a “center” denoted by G (k
=1,N,). The geometric position of this center can be chosen
arbitrarily without needing to refer to a particular geometrical or
mechanical property.

First of all, a microscopic contact forces field F) oy N, is said
to be statically admissible (SA) with the symmetric stress tensor
3, if the contact forces take opposite values on opposite sides of
the elementary cell, if (EC)L‘:LNC comply with the equilibrium
requirement (force and moment) for each grain, and if 3 is linked
to the contact forces by the linear equation '

(VE® SA)

2=%(;1 X®F):%(; €C®EC) (1)

where ®=tensorial product; N,=number of contact points lo-
cated on the cell’s boundary f°=§k§—§ki if x° is located on the
inner side of C; and £°=)_(c—§ki if x. is located on the boundary
of C. The first equality of Eq. (1) corresponds to the classical
relation linking the average of a no-body force stress tensor com-
puted over a domain to the values of the surface traction forces
applied on the boundary of the domain which in the continuous
case follows from

(dive=0 in C)=|C|{c)

=f0'dﬂ= x®o-ndS )
c ac

where p=outward unit normal to C. Taking into account that sur-
face tractions reduce to forces applied on single points in the dry
granular situation yields the first equality (Drescher and de Josse-
lin de Jong 1972). The second equality is obtained by adding the
contribution of each grain to the averagéd stress

1 & N’; ,1 Ng N]; . el
= (2 xi®13;i)=—2 ( (x,i—zk)m:‘z)
&\ & &\ & 2
o §k®(2 Fk) - (3)
, |k=1 — c=1 R

where N =number of contact point for the grain number k and
F;=force applied to the grain number k at contact c. Using the
balance equation, for each grain allows to eliminate the last term
of Eq. (3). Then, the second equality of Eq. (1) is obtained from
Eq. (3) by using the fact that the forces applied to the grains
contacting one to the other are opposite together with the defini-
tion of the vector €° given above. Furthermore, it is easily shown
that for any statically admissible contact forces field, the whole
cell complies with the moment equilibrium requirement, which
implies the symmetry of the macroscopic Cauchy stress tensor 3
defined by relation (1). , ) ,

Simi}arly, a virtual velocity fields of the form §=D-1_(+ f,
where D is a symmetric second-order tensor and Visa periodic
velocity field is said to be kinematically admissible (KA) with D.
Because the statics of granular media is described here by a dis-
crete model, it is sufficient to consider velocity fields whose re- -
striction to each grain making up the elementary cell is a rigid
body motion. : : '

Then using the principle of virtual work for any contact force
fields statically admissible with 3, and for any velocity fields ki-
nematically admissible with D yields the Hill theorem suited to
dry granular materials

(VEC SA  with %

Eﬁ_l % iCT - Fe 4
Vi KA win B ~O(o|\ & ETE) @

where [#°]=u (X g 1)~ u(x‘eg xe) =velocity jump across the
contact interface at point x° and g*= geometrical domain occu-
pied by the grain number k. Some special attention must be paid
to the contact points located at the boundary of the unit céll when
computing Eq. (4).

The first possibility, which is also the simplest one, is to con-
sider that the virtual velocity of a contact point located on the
boundary of the cell is equal to the virtual velocity of the particle
belonging to the grain k§. The second possibility is to consider
the contact points located at the boundary as the contact points
located on the inner side of the unit representative cell and then to
distinguish two particles located at the contact point X., one be-
longing to the grain number k¢, the second one belonging to the
grain located apart from the cell. In that case, one has to consider
discontinuities of the virtual velocity fields for all the contact
points. Finally, according to the periodicity properties of the prob-
lem, it is also possible to consider virtual velocity fields such as
velocity discontinuities can occur only for half of the points lo-
cated on the cell boundary, these points being selected in order to
prevent that two of themcorrespond by periodicity. The reasons
why the last choice appears to us as the best can be easily ex-
plained. Indeed, even if Eq. (4) applies for any choice of the
velocity provided that it complies with the kinematic requirement,
it is obvious that when one has to use Hill’s lemma in order to
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‘ perform an up-scaling approach, taking into account or not veloc-
ity jumps at the boundary contact points can produce different
results. On one side, it is clear that considering continuous veloc-
ity fields across the boundary contact points does not allow us to
take into account the behavior of these points in the up-scaling
approach. On the other side, it seems inadequate to consider ve-
locity jumps for all the points located on the boundary since this
amounts to counting twice each of the boundary contact points
and then to overweight these points in the average process. Fi-
nally, it is clear that taking into account just half of the cell’s

boundary contact points allows us to incorporate in the homog-

enization method the behavior associated with these points while
avoiding to overweight their contribution.

One can summarize the reasoning which has just been pre-
sented by saying that in spite of the fact that they occupy a vol-
ume of no measure, contacts between grains are material elements
which strongly influence the behavior of the medium. Thus, a
good representative cell should include both the grains and the
contact points necessary to reconstruct the whole periodic struc-
ture.

Whereas the relationship (1) between microscopic and macro-
scopic is now classical (Weber 1966; Caillerie - 1995; Cambou
et al. 2000), the situation is not so clear for the relationship be-
tween the kinematic variables, especially in the random case (Sab
1996; Cambou et al. 2000). Here, one takes advantage of the
periodicity property to define the macroscopic rate strain tensor
from the average strain tensor of the elementary cell. This avoids
the classical difficulties encountered when one tries to generalize
the classical average relation well suited to the continuum media
(Cambou et al. 2000). In our opinion, the simplest way to proceed
for random materials is to use a Hashin-like boundary condition
in order to define the mechanical loading over the representative
elementary volume (Bourada-Benyamina 1999). Different solu-
tions were proposed to define this relationship (Sab 1996; Cam-
bou et al. 2000). It can be noted that in most of these works, an
extension of the microscopic strain definition from the contact
point velocity jump to the whole domain occupied by the repre-
sentative elementary volume is used.

Strength Criterion for Dry Granular Material

According to the yield design homogenization theory (de Buhan
1986), the determination of the macroscopic strength criterion of
the above-described dry granular material amounts to solving a
yield design boundary problem defined over the representative
elementary cell. More precisely, introducing for each contact
point x, belonging to C the convex domain G™(x,) characterizing
the strength capacities of the contact interface, one may define the
macroscopic strength domain, denoted by G, as the set of macro-
scopic stress tensor X, such that there exists a force field
(E)c=1n, statically admissible with 3, and compatible with the

microscopic strength condition

(F°) SA with 3
VCI_;'C e Gint(xc) (5)

The definition (5) does not take into account the strength capaci-
ties of the grain matter. This implies that it is assumed that the
constituent material of the grains is infinitely resistant. As a mat-
ter of fact it is not possible to take into account the strength
capacities of the grain because of the singularity of the grain’s
stress tensor at the contact points (Bourada-Benyamina 1999).

A particularly important case from a practical point of view is
that when dry friction and unilateral contact characterize the

S eGe3(F°) such as
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strength capacities of the contact interface. Then G™{(x°) writes

G™(x°)={F, such as |T.|-N, tan =0} ©

where N.=F,.-n, and T,=F,—N_ n-n=outward unit normal to
grain k§ at point X, and ¢ denotes the friction angle. As the set of
the statically admissible forces with any value of 3, is a vector
space and the set of all admissible forces is a cone with apex the
naught vector, it is obvious that the macroscopic strength criterion
defined by Eq. (5) as to the intersection of this two sets, is also a
cone with apex the origin in the space of the symmetric second-
order tensor. o

., From a practical point of view, it is possible to qaléulate the set
G for a given geometry of the elementary cell directly from the
definition (5) by means of a double projection algorithm
(Bourada-Benyamina 1999) or by means of a more classical non-
linear optimization procedure.

Fully Saturated Granular Material

‘We now examine the situation of the fully saturated granular ma-
terial whose porous space is filled with a pressurized fluid. As for
the dry case, the main features of periodic homogenization are
recalled before the results are applied to define the macroscopic
strength criterion of such media.

Homogenization for Periodic Saturated Granular Media

As it is classical in the framework of homogenization methods
applied to determine macroscopic properties connected with the
microscopic behavior of the solid matrix, the pressure p is re-
garded as uniform at the scale of the representative elementary
cell (Auriault and Sanchez-Palencia 1977). First of all, it must be
observed that, thanks to the fact that contact interfaces between
grains were supposed to reduce to single points, the whole force
and the whole moment exerted by the uniform pressure p on each
grain is naught. Then, performing exactly the same kind of rea-
soning as for the dry situation, a microscopic internal force field
((F9) .= Jvc,p) is said to be statically admissible if the contact
forces take opposite values on opposite sides of the elementary
cell and if (E°).=;»_ comply with the equilibrium requirement
(force and moment) for each grain.

Then, the value of the macroscopic stress tensor ¥, associated
to the contact forces and to pressure p statically admissible is the
average of the internal forces over the geometric domain C. Per-
forming exactly the same kind of reasoning that for the dry case
yields

N,

1 4
2=—(2 ¢oF° | -pd )
IC, c=1

where & denotes the second-order identity tensor.

Strength Criterion for Saturated Granular Material

Then, the definition of the macroscopic strength criterion suited to
the saturated case writes

F°),p] SA with ¥
3 eG(p)=3(F°) such as [5;1__;): g]Gim(,_‘cht ®)

As in the dry situation, the determination of the macroscopic
strength criterion of a periodic saturated granular material reduces




to solving a discrete yield design boundary-value problem defined
over the grains of the representative elementary cell.

Assuming that the microscopic strength criterion is affected
neither by the presence of fluid nor by the value of the pressure p,
it is easily shown from definition (8) that :

[2€6(0)]=[VpeR,2-pdeG(p)] )]

Property (9) ensures that the macroscopic strength condition re-
lates solely to the effective stress 2+ p8 (the “+ sign comes
from the fact that the convention of positive traction stress is
used) and then can be identified from both dry or saturated ex-
periments.

- If the microscopic strength condmon depends upon the nature
of the fluid saturing the porous space, but is unaffected by the
value of p, the effective stress principle remains valid but the
identification of the strength set G(0) has to be done for each fluid
saturating the porous space. The results presented here for the
saturated case have been initially provided in (de Buhan and

Dormieux 1996). ~

Unsaturated Granular Material
We now examine the case of a granular material which porous
space if filled by two immiscible fluids, namely, a liquid and a
gas. It is then necessary to take into account the capillary effects.

Statics of Unsaturated Granular Media

The representative elementary cell {) is now made up of the
grains, a liquid phase and a gaseous phase which, respectively,
occupy the domain Q= U g, Q° and Q8- ©*® denotes the inter-
face between the o and B phases. Of course, the shape of this
interface has to comply with the periodicity property. At the mi-
croscopic scale, the internal forces are described by the fluid pres-
sure p® (a=<,g) in the fluid phases and the contact forces be-
tween grains. The capillary effects introduce internal forces of the
membrane type located in the interfaces between phases. The lat-
ter are represented by a tensor field of surface tension y*B8, in
the surface ®*P, where 07 denotes the unit tensor to the tangent
plane to surface w and y"‘B the surface tension in the af interface,
with (aB)=(s€), (sg), and (£g).

Thus, to be statically admissible, the microscopic stress field
has to comply with the momentum balance equation dive=0. In
particular, this implies that p® and p? are uniform in Q¢ and ¢,
respectively. The equilibrium requirement for grains has now to
be reconsidered in order to incorporate the interface effects. Tak-
ing the capillary effects into account, the classical condition of
continuity of the stress vector at the interfaces »** is replaced by
the following conditions:

o n=—pn—y(3r, b (Vxew™)(a=g,) (10)

where n denotes the outer unit normal vector to g* and b=tensor
of curvature. STw:b thus represents the mean curvature of ®°®.

The corresponding condition at the interface w?¢ is classically
referred to as Laplace law

(Vxew®) %8, :b=pf—pt=—p (1

The momentum equation with no body force for each grain
writes now

B

NL’

Fi+F"=0 and D, xAF{+MY=0  (12)
[

M '\27:‘

=1

Il
_

<

It is recalled that Ny denotes the number of contact points for
grain number k and Fj is the contact force applied onto grain
number k at point x;- ;" (respectively, My") is the sum of all the
forces (respectively, the moment) exerted by the interfaces onto
the con51dered grain. :

L E j o~ (Y8 b)pdS+ f YooY ds
a={g Jw, . dwy

M= > f o " EA(P+ Y8 tb)ndS+ f e XAV ds
a={£,g 5 dwy
' (13)

with 0i =dg* N, 0¥=0g*Nw*¢ and dot=wi N,

The last term of Egs.(13) corresponds to the force exerted by
the liquid-gas interface onto the grain number & along the triple-
line 30054 =03 Nwif v denotes the inward unit normal to %
tangent to weg along 0*%¢. As no line tension is taken into ac-
count in this work, the value of the wetting angle 0, which is the
angle between, respectively, the liquid-gas and the solid-liquid
tangent plan along the triple line, is defined by the classical Young
relation

v¥8 cos @ +yst=rys8 ey

Homogenization for Periodic Unsaturated Granular
Material

It is now possible to generalize the definition given above in order
to incorporate the capillary effects into the average relationship
linking microscopic internal forces to macroscopic ones.-Consid-
ering a representative elementary cell of unsaturated granular ma-
terial, the microscopic internal forces ((F¢),.—; NP ,pe) are said
to be statically admissible with the macroscopic stress tensor 3, if
p® and p® are two uniform pressure fields complying with
Laplace law (11), if the contact forces (F€).—; w, comply with the
momentum balance Eq. (12) and take opposite values on opposite
sides of the elementary cell and if the microscopic and macro-
scopic internal forces are linked together by the linear relation

=l-[2 CQF°
N, . :
2 (fse§k®p‘9dS+L Segik®v€gyds) '
- Wi ©r

+

€

lgyfgadeSJ +ntpcd—ped (15)

where X, =local coordinates system attached to the grain number
k defined by X,=x—,. It is recalled that {, is the “center” of
grain k used to defined the contact vectors £,.

The generalized average relation (15) is derived from-the av-
erage relation valid in the continuous case (Chateau and
Dormieux 1995). Denoting by & the stress tensor in the grains,
the average relation writes for the unsaturated granular material
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16)

Observing that the material system made up of one grain, its
solid-liquid interface and its solid-gas interface is at rest with no
body force, it is possible to compute its contribution to the mac-
Toscopic stress tensor as a function of the surface traction applied
on its boundary by means of relation (2). Then, performing ex-
actly the same calculations as for dry case yields Eq. (15).

Strength Criterion for Unsaturated Granular Material

The relation linking the statics of unsaturated granular material at
the microscopic level to a macroscopic continuous model being
now established, one has to perform exactly the same reasoning
as for the dry case in order to define the macroscopic strength
condition from the microscopic description of the unsaturated
granular material. More precisely, the macroscopic strength crite-
rion is defined by

E € g(Peng)ﬁa(Ec)F1,NC,P€,Pg)

((Ec)c=l,NE,Pe>Pg) SA Wlth 2
VxF.eG,

Two different situations are now examined: the first one cor-
responding to the high-saturation ratio while the second one cor-
responds to low-saturation ratio. Let us recall that the saturation
ratio is defined as the ratio of the volume filled by liquid to the
volume of the porous space. In both situations, it is assumed that
the liquid phase wets the solid.

such as

17

High-Saturation Ratio

Consider the case where the gas phase occupies small domains
surrounded by the liquid phase. In this situation the solid-gas
interface reduces to single points located on the boundary of the
grains or to the empty set. Then, for each grain belonging to the
representative elementary cell, the liquid-phase domain surrounds
the domain g* occupied by the grain so that oS A —ag and
905t =0, Then, using Eq. (2) with o'=p°8 and C=g*, Eq. (15)
now writes
N,
=57 |Cl (2 €”®Fc+f 4"’gST‘”dS) +(n*+nt)pc3—p2d
(18)

Furthermore, it is well known that a gas domain embedded in a
liquid domain, the whole being at rest, occupies a spherical do-
main according to the Laplace equation. Then, using the same
kind of reasoning that the one used in order to compute Eq. (7)
yields the relation

Legy‘fgades= f X® rndS=|Q8|pcs (19)

where 1 denotes the outward unit normal to the gas domain.
Then, introducing Eq. (19) in Eq. (18) together with the rela-
tion p°=p&—p* implies that

N,
1 <
2=—(Z €RF | —pts (20)
ICI c=1

which is the same relation as for the fully saturated case. Hence,
it follows that the macroscopic strength criterion for the fully
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saturated situation applies for the high-saturation case providing
that the liquids are the same in both situations. Furthermore, the
results obtained concerning the effective stress formulation for the
macroscopic strength criterion according to the properties of the
strength capacities at the contact points remain valid.

Low-Saturation Ratio

It assumed in the sequel that the liquid phase is distributed in
disjointed mesniscii located around the contact point or between
close grains as for the experiments reported above. For the sake
of simplicity, it is also assumed that the granular medinm is made

“up of spherical grains of same radius.

Then, it is useful to introduce the capillary force R; exerted by
the liquid meniscus located around the contact ¢ on the grain k

R.= xe(pg_pf)g dS+f :egyegy ds @1
’.Okc

amkc

One will note that, as long as the effects of gravity can be ne-
glected, the force R is equal to the force measured in the experi-
ments reported above.

In order to compute the value of the macroscopic stress tensor
3, associated with a statically admissible microscopic internal
force field, consider now the material system made up of one
grain, of the solid-gas interface which is located at its boundary
and of halves of the capillary meniscii located around the contact
points belonging to the considered grain. As this material system
complies with a no-body force equilibrium requirement, its con-

_tribution to the macroscopic stress tensor ¥ writes

2, Eo(Fi+R) —v,p%s @2)
c=1

where v, denotes the volume of the material system associated
with grain k.

Then, performing the same computation that for the general
unsaturated case yields the link between microscopic and macro-
scopic internal forces suited to the particular case considered here

1 < )
= > £®(F+R)—ptd (23)
Cl c=1

where R°=capillary force exerted by the liquid meniscus located
around the contact ¢ on the grain number k7 .

It follows at once that the macroscopic strength criterion
writes:

g(Pe’Pg) = gcap—-pg8 (24)

where G ,,=macroscopic strength criterion of the same granular
material in the dry situation which local strength criterion is de-
fined by the set G¢,,=G°+R°.

Then, if the local strength criterion is affected neither by the
nature of the fluid nor by the value of the fluid pressure, Eq. (24)
means that adding meniscii of liquid within a dry granular mate-
rial increases its macroscopic strength capacities as if the grains
were stuck together with a normal compressive force equal to
|R¢|. This result, which proves to be quite natural, is justified
within a complete theoretical background.

Furthermore, it is still possible to use the methods developed
in order to solve the yield design problem for the dry granular
material to determine the strength criterion in this case.
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Fig. 1. Experimental liquid bridge apparatus

Liquid .Bridge between Two Moving Solid Surfaces

As it does not yet exist, general agreement about one should
report capillary effects in a mechanical approach (Biarez et al.
1989; ‘Chateau and Dormieux 1995), some simple experimental
results are now presented in order to clarify the situation. Further-
more, the results of these experiments are compared to the theo-
retical predictions obtained by means of the model used to de-
scribe the unsaturated granular material at the microscopic scale
in the up-scaling approach. On one hand, different relations en-
abling to estimate the capillary force R® of Egs. (22) and (23) are
proposed.- Besides, the relevancy of the model used to describe
the unsaturated granular medium at the microscopic scale is
checked, and there, the validity of the up-scaling approach per-
formed in this paper.

Let us now briefly describe the experimental device. An appa-
ratus dedicated to liquid bridge force measurements has been con-
structed. Within the experiments reported here, an amount of lig-
uid is injected between two smooth ruby spheres of radius R
=4 mm (see Fig. 1). The upper sphere i$ bolted under the beam
of a high-stiffness precision laboratory scale, so that the force F cap
exerted by the liquid bridge on the upper sphere can be measured.
The gap between the spheres D, as well as the separation velocity,
can be adjusted by means of a motor-driven differential microme-
ter screw. ‘A displacement sensor allow us to obtain the curve
Feop=J (D) with an accuracy of 10 pN for the force and 0.25 pm
for the separation distance. Images of the contact region before
and after the formation of the meniscus allow the determination
of the bridge volume with a precision of about 5%. The whole
equipment is inserted in a large thermostated cell. Further and
complementary details concerning the experimental procedure
performed in order to obtain the results presented below, can be
found in (Pitois 1999; Pitois et al. 2000).

Thanks to the symmetry of the solid surfaces, the liquid occu-
pies an axisymmetric domain that can be defined only by its radial
profile. The vertical force exerted by the liquid meniscus on the
upper sphere is the sum of the vertical component of surface
tensjon forces acting along the wetted perimeter (three-phase con-
tact line) and the pressure force exerted by the liquid over the
wetted area.

Fop=p°mR*sin> ¢+ 2Ry sin ¢ sin(6 + ) (25)

where y=liquid-air interface surface tension; 6=solid-liquid con-
tact angle ¢=filling angle defined on the higher sphere; and p¢
=ps—p? is the capillary pressure defined as the pressure jump
across the liquid-air interface.

It can be noticed that the term of surface tension forces is
always attractive whereas the second depends on the mean curva-
ture of the interface. It can be shown that contribution of the first
one can be neglected in some cases (small amounts of liquid for
example) but in some other cases its omission leads to repulsive
instead of attractive interaction. In contrast with other approaches
(Biarez et al. 1989) the two contributions are taken into account
in the sequel.

First of all, one is more particularly interested in the measure-
ment of the evolution of the force when the distance between
solid surfaces increases or decreases at a rather slow constant
speed so that the effects of viscosity are negligible compared to
the static capillary forces and this for various values of the vol-
ume of liquid (PDMS oil here). For this situation, the difference
in hydrostatic pressure across the liquid-air interface is related to
the Jocal mean curvature and to the surface tension by the Laplace
equation.

The results of two tests are represented on Fig. 2 for a small
volume of liquid (V/R3*=0.017) and on Fig. 3 for a large volume
of liquid (V/R*=0.117).
~ For both cases, the attractive capillary force is a decreasing
function of the sphere separation distance until the bridge breaks.

The values given by three different theoretical approaches,
namely, the exact approach, the toroidal approximation, and the
cylindrical approximation, are plotted on the graph.

The results for the exact approach are obtained through the
numerical resolution of the Laplace equation completed by the
boundary conditions provided by the solid-liquid angle along the
triple-line where the liquid-profile interface intersects the two
spheres (Pitois et al. 2000). With this numerical solution at hand,
it is possible to compuite F cap and the volume of the liquid domain
binding the two spheres as a function of the filling angle, the
surface tensibn, the liquid weight, and the distance between
spheres.

To avoid the use of a numerical method to compute the capil-
lary force, it is possible to approximate the radial profile bounding
the liquid domain by a circle. This defines the toroidal approxi-
mation. By using such an approximation, it is clear that gravity
effect cannot be taken into account. As the tore surface is not a
constant-curvature surface, several ways exist in order to calcu-
late the force of interaction F' cap» depending upon the profile’s
point chosen to evaluate it. It can be shown (Pitois et al. 2000)
that, referring to the exact method, the best results are obtained by
evaluating the force at the gorge of the interface profile. Then a
closed-form expression for the force yields. The liquid-domain
volume can be easily computed too.

In the limit of small liquid volumes and small gaps and assum-
ing a cylindrical liquid volume (flat profile), a simple closed-form
expression (cylindrical expression) can be obtained (Pitois et al.
2000)

=27TRycos | 1— ———r (26)
2V

wRD?

cap

1+

Comparisons of experimental results with theoretical methods are
presented in Figs. 2 and 3 for two liquid bridge volumes. With
respect to approximate expressions, it can be noticed that good
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Fig. 2. Experimental and theoretical results for a small volume of
liquid (V/R®*=0.001) SRS

accordance is obtained for the small liquid volume, partly due to
the fact that gravity is not taken into account. Besides, although
the cylindrical approximation overestimates exact calculations
and experimental results, it has been shown elsewhere (Pitois
et al. 2000) that expression (26) provides a reasonable approxi-
mation for estimating the average force. For the exact method, the
small discrepancies of the numerical evaluation can perhaps stem
from some inaccuracies in the volume measurement of the liquid
bridge. One has to note that the theoretical results are directly
computed from the measured volume and liquid-solid contact
angle and that no attempt to fit the parameters has been done.

It can be seen that for the two cases, the maximum force is
reached when the separation distance is naught.

From a practical point of view, it must be noted that Eq. (26) is
sufficiently accurate to be used in order to evaluate the force as a
function of the meniscus volume and of the liquid-solid contact
angle. Nevertheless, putting D=0 in Eq. (26) yields an expres-
sion of the maximum force which is not dependent upon the
volume of the liquid bridge which is clearly an inexact result.

1 T T T T
K \ ' —— Numerical
0.8 ©  Experimental
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S o6t
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N L
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0.2 +
0 b
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Fig. 3. Experimental and theoretical results for a small volume of
liquid (V/R3=0.017)
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Conclusion

The yield design homogenization method provides a general
framework to study the properties of the macroscopic strength
criterion from the knowledge of the materials and of the morphol-
ogy of the media at the microscopic scale.

First of all it has been recalled how to incorporate in this
framework an appropriate discrete model to describe the statics of
dry granular material. This approach makes it possible to justify
that the macroscopic strength criterion of a granular material
made up of grains in unilateral contact with dry friction is a cone
whose apex is the origin in the space of symmetric stress tensor.
The fully saturated case was studied according to the classical
approach developed in the framework of saturated porous media
and the validity of the Therzaghi effective stress concept to ex-
press the strength condition of saturated granular media is as-
sessed.

For the unsaturated situation, experimental results concerning
the behavior of a liquid bridge strained between two spheres are
given and compared with theoretical predictions. It follows from
this comparison that both the pressure and the surface tension
must be taken into account in order to accurately compute the
force exerted by a liquid meniscus on a grain. Then, the yield
design homogenization method is applied to the granular material
whose porous space is filled by two fluid phases. In particular, it
is shown that the determination of the strength criterion reduces
to solving a yield design boundary-value problem defined over
the grains occupying the representative cell. Two different mor-
phologies of the fluid phases are studied. When the gas phase
(which is also the nonwetting one) occupies small domains sur-
rounded by the liquid phase, the strength capacities are described
by the same criterion as the fully saturated granular material. The
liquid phase may also be distributed in separate meniscii linking
two grains. In this case, the determination of the strength criterion
reduces to determine the strength criterion for a dry granular ma-
terial provided that the local strength criterion has been modified.

As these two morphologies correspond, respectively, to the
high-saturation ratio and to the low-saturation ratio, the middle
situation, when both the liquid and the gas phases occupy con-
tinuous domain remain to be studied. It must be noticed that the
main difficulty that remains to be overcomed to perform the com-
plete analysis is the resolution of Laplace equation to determine
the shape of the liquid-gas interface for the middle saturation
ratio. Nevertheless, for a 2D granular material, these results allow
us to determine the strength criterion for all value of the satura-
tion ratio because the case where both fluid phases are continuous
does not exist (Urso et al. 1999).
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