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For materials assumed to be simple yield stress fluids the velocity of an object should continuously
increase from zero as the applied force increases from the critical value for incipient motion. We
carried out experiments of fall of a sphere in a typical, thixotropic, pasty material (a laponite
suspension). We either left a sphere falling in the fluid in different initial states of structure or
vibrated the fluid in a given state of structure at different frequencies. In each case three analogous
regimes appear either for increasing restructuring states of the fluid or decreasing frequencies: A
rapid fall at an almost constant rate; a slower fall at a progressively decreasing velocity; a slow fall
at a rapidly decreasing rate finally leading to apparent stoppage. These results show that the motion
of an object, due to gravity in a pasty material, is a more complex dynamical process than generally
assumed for simple yield stress fluids. A simple model using the basic features of the (thixotropic)
rheological behavior of these pasty materials makes it possible to explain these experimental trends.
The fall of an object in such a fluid thus appears to basically follow a bifurcation process: For a
sufficiently large force applied onto the object its rapid motion tends to sufficiently liquify the fluid
around it so that its subsequent motion is more rapid and so on until reaching a constant velocity;
on the contrary if the force applied onto the object is not sufficiently large the fluid around has
enough time to restructure, which slows down the motion and so on until the complete stoppage of
the object. © 2004 American Institute of Physics. [DOI: 10.1063/1.1640372]

1. INTRODUCTION

The motion of solid objects such as coarse particles
through concentrated suspensions, emulsions or foams is a
subject of practical importance since it for example condi-
tions sedimentation or migration in various industrial pro-
cesses involving such materials. For example, in order to
drive rock debris within drilling fluids it is necessary that
they do not settle through the flowing paste, sedimentation
during the preparation of concrete may lead to heterogene-
ities which may significantly weaken the final structure, or
the settling of cocoa or sugar particles during chocolate
preparation would give it a bad taste.

In a Newtonian liquid the steady velocity (V) of a sphere
(of radius R) falling through it under the action of gravity (g)
results from the balance between the drag force (6 wRnV)
and the apparent weight of the sphere in the fluid:

2 (p,—p)gR?
=2 b PR W
9 ]

where p, and p are, respectively, the solid and liquid densi-
ties. Here the apparent viscosity of the fluid, #, is a constant.
In shear-thinning liquids this parameter also depends on the
shear rate, y, so that the fall velocity is a more complex
function of the parameters but still differs from zero as soon
as ps——,ory'&O.1 For yield stress fluids the apparent viscosity
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tends to infinity as the shear rate tends to zero, so that the
velocity in (1) may be equal to zero even for a finite density
difference.

In practice it has been considered that the ability of pasty
materials to keep denser particles without settling originates
in their yield stress (7.), i.e., a critical stress which has to be
overcome for the material to flow. This property is generally
expressed with the help of a yielding criterion, such as the
von Mises one,2 which writes

\)“‘TII< T(:ziD:O, (2)

in which D is the strain rate tensor and T'j; the second invari-
ant of the deviator of the stress tensor T. In this context,
unlike simple liquids, a yield stress fluid initially at rest a
priori remains unperturbed beyond a finite distance from an
object moving through it. Indeed the additional stress in-
duced by the object motion decreases to zero away from the
object and thus the criterion (1) is fulfilled at a specific dis-
tance in each direction, which forms a surface S. In the ab-
sence of inertia effects it follows from the momentum bal-
ance over the fluid volume within S that the drag force on the
object moving in the direction of unit vector u may be writ-
ten

Fp= jS(T-n)-uds, 3)

in which n is the outer normal vector at any point on the
surface S. We deduce from dimensional considerations that
the drag force may be expressed as

© 2004 American Institute of Physics
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Fp=4mR*r f(S), 4)

in which f is an increasing, positive, dimensionless function
of the extent of § relatively to the surface of the sphere. We
obviously expect that, for a given sphere, the surface § in-
creases as the object velocity increases, so that the drag force
increases. On the contrary, when the velocity decreases to
zero, S should tend to a critical value S, from which we can
compute the drag force for incipient motion through a yield
stress fluid: F,=47R?7,f(S,). Within this frame the object
velocity should conversely decrease to zero as the force ex-
erted on it decreases to F,..

Previous works (see, for example, the review of Chhabra
and Uhlherr®) in this field focused on the experimental mea-
surement of the incipient force or the fall velocity under
gravity, and the analytical computation or numerical simula-
tion of the flow characteristics around a sphere moving
through a yield stress fluid at rest, which in any case implies
to determine f(S,) or f(S). However, there still lacks a con-
sensus on the corresponding values. For example, for a
sphere, f(S.) was found between 0.8 and 3.5 depending on
authors.*~7 The different, recent, numerical simulations of
the flow field, which all assume that the fluid has a very high
viscosity at low shear rates instead of a perfect yielding
behavior,”® now provide a more complete, though numeri-
cal, solution of the problem under various conditions, but
these predictions have not been compared in detail with ex-
perimental data. Note that all the theoretical works, which
assume a simple yielding behavior, predict a particle velocity
progressively decreasing to zero as the applied force tends to
the critical value for incipient motion.

Although qualitatively in agreement with above expec-
tations, i.e., object motion only beyond a critical density or
volume, the experimental results presented in literature in
fact raise several questions. A first critical observation con-
cerns the very poor reproductibility of data for a settling
velocity smaller than 10 cm-s~ !0 Other authors'"!2 pointed
out that reproducible results could be obtained only after
releasing 4-10 spheres. A second critical observation is that
all data in literature®'%12=13 correspond to relatively large
settling velocities: The velocity to particle diameter ratio
(characteristic shear rate) is never below 1 s™' and is gener-
ally much larger. At last ultrasonic observations in bentonite
suspensions show velocity increase as the object gets deeper
in the fluid:'* The final velocity is five times the initial value.

Such problems do not occur in simple liquids: For ex-
ample, by increasing the fluid viscosity or decreasing the
solid-liquid density difference one obtains a continuous set
of fall velocities tending to zero. Relevant explanations for
the above problems cannot either be found in the viscoplastic
behavior of the fluids: As the solid density decreases or the
yield stress increases towards critical values the settling ve-
locity should reach any value down to zero with an analo-
gous reproducibility and without any significant time effects.
Above problems thus necessarily result from some uncon-
trolled time and flow-dependent mechanical properties of the
fluid, which suggests that the possible thixotropic behavior
of the pasty materials should also be taken into account for
predicting the characteristics of the slow fall of particles
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through them. Clearly in these regimes the Bingham or
Herschel-Bulkley are insufficient to describe flow proper-
ties, which suggests that viscoplastic fluids are also signifi-
cantly time-dependent at low velocities. This conclusion is in
agreement with experiments under simpler flow conditions'®
which showed that the flow of a layer of yield stress fluid
lying over an inclined plane is unstable: In contrast with the
predictions of the viscoplastic models it starts to flow
abruptly at a critical slope when inclining the plane and stops
flowing abruptly at another, smaller, critical slope. In this
frame the apparent viscosity should now be expressed as a
function not only of the shear rate but also on the current
state of structure, that we will simply describe here by a
single variable . A fundamental consequence is that the mo-
tion of an object in a paste is a time-dependent phenomenon.

The aim of this work is to study, both experimentally
and theoretically, the influence of thixotropic effects on the
motion of solid objects under the action of gravity in pasty
materials. In order to study these effects we chose a model,
transparent, thixotropic fluid (a laponite suspension), which
evolves over large characteristic times. In particular its ap-
parent yield stress significantly increases after large dura-
tions at rest. In the first part we present experimental results
concerning experiments of sphere fall in the fluid at rest un-
der different restructuring times. Three regimes of fall were
distinguished, apparently indicating either a negligible or
significant influence of fluid aging. Experiments with the
fluid at a fixed age but submitted to vibrations at different
frequencies lead to similar regime observations. In the sec-
ond part we propose a theoretical interpretation of these
trends taking into account fluid thixotropy. In this aim we use
a simple generic rheological model and propose a simplified
theoretical approach of the flow problem which provides ve-
locity vs time curves as a function of parameter values and
initial conditions, in qualitative agreement with the experi-
mental ones.

l. EXPERIMENTS
A. Materiais and procedures

We used a transparent colloidal suspension made by
mixing distilled water and Laponite, a synthetic clay (Lapo-
nite, Grade RD, Rockwood Additives Limited). The solid vol-
ume fraction was 1.1% and NaOH was added in the solution
so as to have a pH close to 10. The suspension (p=1017
kg-m™3) was mixed at a velocity of 2000 rpm during 8 hr,
then left at rest during seven days. Such a preparation en-
sured that significant irreversible aging did not occur within
the maximum duration of the experiments (a few hours).

Then the fluid was mixed again during 30 min and put
into a cylindrical vessel with a depth of 21 cm and an inner
diameter of 3.9 cm. This vessel had graduations every 1 cm.
There the fluid was left at rest a given time during which it
could restructure so that its apparent viscosity increased.
Then an iron sphere (R=1.5mm; p,=7780kg-m™>) was
put with pliers and withdrawn in the fluid just beneath the
free surface and close to the central axis of the vessel. When
it was put carefully the sphere fell down vertically in the
fluid. Then we recorded the time whenever the sphere came
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FIG. 1. Fall of a sphere in a laponite suspension (globally) at rest in differ-
ent initial states of structure (time of rest after mixing): velocity as a func-
tion of the distance from the initial position of the sphere. For a time of rest
of 45 min the sphere did not move at all over several hours.

in front of each graduation. Obviously the relative uncer-
tainty on our measurements was larger for higher fall veloci-
ties but this does not affect our analysis since the velocity
remains almost constant for rapid drops. The particle Rey-
nolds number was always smaller than 4- 1073, which indi-
cates that the flow around the sphere was laminar.

We also carried out similar experiments by vertically
vibrating the fluid. In this aim the vessel was fixed and
shaken vertically over a horizontal, vibrating plate (Vibrator
V403) controlled by a digital sine controller (DSC-4) and a
power amplifier PA10OE (Ling Dynamics System). With this
setup the amplitude and the frequency of vibrations could be
monitored separately by a piezo-electric accelerometer posi-
tioned onto the vibrator. The results presented here were ob-
tained with one amplitude only (1 mm) and different fre-
quencies. These experiments were carried out with the
laponite suspension after two different times following its
preparation and with a Newtonian liquid (a commercial
honey).

B. Results
1. Fall through the fluid at rest

The results for the sphere fall in the liquid at rest after
different times of rest before the test are presented in Fig. 1.
Three regimes appear:

(a) For sufficiently short times of rest the sphere falls at an
apparently constant, large velocity so that it rapidly
reaches the vessel bottom;

(b) for long times of rest the sphere either apparently does
not move at all or starts to move but its velocity rapidly
decreases so that it finally stops moving somewhere in
the fluid before reaching the vessel bottom;

(¢) for intermediate times of rest the sphere falls at an
intermediate velocity which continuously decreases.

These results were reproducible to within 10% on average
velocity and the main source of uncertainty comes from the
control of the initial state of the fluid.
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FIG. 2. Fall of a sphere in a vibrated laponite suspension at rest for different
frequencies: Velocity as a function of the distance from the initial position of
the sphere for the fluid after 45 min (a) and 60 min (b) of rest.

2. Fall in a vibrated fluid

For the vibration tests we first observed that the fall of
the sphere in a Newtonian liquid (commercial honey) occurs
at the same, apparently constant velocity with and without
vibrations at any frequency.

With the laponite suspension the results of vibration tests
at different imposed frequencies appeared to be similar to
those for the fluid at rest under different initial restructuring
times: The three regimes (a)—(c) are obtained, respectively,
for high, low and intermediate frequencies (cf. Fig. 2).

C. Discussion

Our results first suggest a possible explanation for the
experimental problems mentioned in literature: the reproduc-
ibility of velocity measurements at low rates of fall is poor
certainly because it may significantly depends on the fluid
preparation and the position at which it is recorded in the
fluid.

Our experiments also show that there is a strong effect of
thixotropy on the fall characteristics. At this stage we can
nevertheless suggest a simple, qualitative explanation for
that. For a fluid initially sufficiently liquid (for a short time
of rest) the sphere falls rapidly and the fluid has not enough
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time to restructure during this fall, so that the fall velocity
remains almost constant. For a fluid having initially a large
viscosity (for larger times of rest) the sphere velocity is small
and its slow displacement leaves to the fluid enough time for
significantly further restructure. This leads to a viscosity in-
crease which in turn decreases the fall velocity and so on.
Such a process may obviously lead to the complete stoppage
of the sphere. In this context the intermediate regime, in
which the velocity continuously decreases, does not find a
simple explanation yet.

Concerning the motion in the vibrated fluid it is first
necessary to explain the sphere fall beyond a critical fre-
quency whereas this sphere does not move at all before. We
may first suspect a kind of (macroscopic) liquefaction of the
whole fluid due to these vibrations, leading to a decrease of
its viscosity. However, as long as its free surface remains
horizontal, the fluid globally moves in mass and flows as a
result of the sphere motion relatively to it. As a consequence
there is no reason for which it should destructure as a direct
effect of vibrations only. Another possibility is a liquefaction
at the scale of the particles because of inertia effects due to
vibrations. However, because of the very small size of these
clay particles (disk-like particles of about 30 nm diameter
and 1 nm thickness) it is easy to see that the corresponding
inertia terms are several orders of magnitude lower than the
viscous terms induced by some characteristic motion of a
clay particle relatively to the interstitial liquid (water): The
Stokes number is extremely small.'® Tt results that the clay
particles in general follow any motion in mass of the liquid
imposed by the vibrations of the fluid, and thus no destruc-
turing can be expected in such a way. Finally it seems to
remain only one possible explanation: There is a complex
interaction between the sphere motion and the fluid state at a
macroscopic scale; the fluid flow that the sphere causes
around it has an influence on its subsequent motion leading
to a dynamical process with various possible evolutions. We
suspect that this process has some similarity with that occur-
ring for the sphere fall in the fluid at rest after different
restructuring times. In the following we attempt to quantify
these processes in order to understand more completely the
different regimes by taking into account the basic mechanical
processes playing a role and in particular the fluid behavior.

lit. THEORY
A. Rheological model

In literature various models have been proposed in the
aim of describing thixotropy'7"? but they have a common
basic structure: an apparent viscosity depending on the shear
rate and the structure parameter [ %(¥,A)], and a kinetic
equation giving the time evolutions of A, with the following,
rather generic, shape:

dn .

—=F(\) =GN, 5)
in which F and G are two material functions. The first term
of the right hand-side of (5) expresses the rate of restructur-
ing of N while the second term expresses the destructuring
rate which is proportional to the rate of shear. The form of
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the apparent viscosity is more or less complex depending on
authors but here we will use a very simple expression, only
dependent of the material state

n=10(1+N\"), (6)

in which 74 and r(>1) are two constant parameters. For the
kinetic equation we will use an extremely simple form of the
type (5), by taking F=1/6 and G=a\, where 6 and o are
material parameters, which gives

— = ——qY\. )

Although this is one of the simplest representations of a
thixotropic rheological behavior this model already appears
capable to predict critical qualitative observations such as the
viscosity bifurcation of various pasty materials under creep
tests:1>?*?° When a constant stress is applied their viscosity
either evolves towards a given, low value or to infinity de-
pending on the relative value of this stress and a critical
value. This phenomenon was confirmed by MRI
observations®®?” or by direct observations in the case of
transparent laponite suspensions28 showing that these mate-
rials can flow in steady state only at a shear rate beyond a
critical, finite value, associated to the critical stress; in the
regions where the stress is smaller than the critical stress the
shear rate progressively tends to zero. The practical conse-
quence is a shear localization with a discontinuity in shear
rate at the interface between two different regions. Finally
the quantitative predictions of models (6) and (7) under
various steady or transient conditions for a bentonite suspen-
sion were successfully compared with the local flow proper-
ties (as measured by MRI) [N. Roussel, R. Le Roy, and P.
Coussot (submitted)].

B. Fall of an object in a thixotropic fluid

With this model, the velocity of a sphere through the
fluid in a homogeneous state \ is simply deduced from the
expression (1)

2 (p,—p)gR®
o
9 o

Wy

AN
(L+A") (1_}_)\").

(8)
The parameter Wo=2(p,— p)gR*19 7, expresses a reference
fall velocity of the sphere as a result of its apparent weight
through a completely destructured fluid (A=0). In fact this
approach is valid only at the very first time of motion when
the fluid can be considered in a homogeneous state. Indeed
then the fluid close to the sphere destructures while the fluid
far from it tends to restructure, thus leading to a heteroge-
neous, time-dependent distribution of . The complete solu-
tion of this problem would require a two-dimensional (2D)-
numerical approach taking into account boundary and initial
conditions, and from which the different flow regimes might
not be easily distinguished. Here we only review simplified,
analytical approaches intending to provide a qualitative de-
scription and understanding of major trends.

In this frame a very simple approach consists in assum-
ing that the sphere “sees” at each time around it a fluid the
state of which evolves as if it were at rest. Thus here we
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simply take into account the restructuring but leave apart the
destructuring resulting directly from the sphere motion. Un-
der this assumption it follows from (8) and (7) in which we
assume y=0 that

V=Wo(1+(\o+t/0)") 1, )

where )\ is the state of the material at r=0. Equation (9)
shows that the velocity of a falling object should progres-
sively decrease in time. Our MRI experiments with laponite
and bentonite suspensions (unpublished results) show that
the values of n that can be found by fitting the above rheo-
logical model to steady-state data are very close to 1. Note
that this assumption is relevant because we only take into
account the restructuring process but otherwise n must be
strictly different from 1 for the observed trends (rheology
and sphere fall) to be explained by the theory. Using here this
specific value and the initial condition x(¢=0)=0 we can
find by integrating (9) the expression for the velocity as a
function of the distance x covered by the object from the
initial time

Wo X

V= W exp| — WOH)' (10)
Equation (10) predicts that the velocity does not differ
strongly from Wy /(1 +X) over the distance W 6/2, then the
velocity decreases to almost 1/10 of its initial value at the
distance 2 Wy 6 and finally progressively tends to zero. This
model thus predicts an apparent stoppage if the length of
observation is sufficiently large, but this stoppage is much
slower than in our experiments. However, the strongest dis-
agreement between this model and our tests is that it predicts
a master curve [exp(—x/Wy0)] for the velocity scaled by its
initial value as a function of the distance.

A further approach consists in considering also the fluid
destructuring due to the flow induced by the motion of the
object. For a Newtonian fluid we know that the disturbance
due to the sphere extends to a considerable distance r from
the sphere since the fluid velocity approaches zero at large
distances as r~'.?’ The corresponding second invariant of
the strain rate tensor more rapidly decreases as 2. For a
shear-thinning fluid, i.e., with a viscosity decreasing with this
second invariant (equivalent to the shear rate in simple
shear), the velocity will decrease much more rapidly so that
in general a small volume (say few times the sphere volume)
around the sphere should be affected by the sphere motion.
For a fluid following the constitutive equations (6) and (7)
this effect is amplified since the viscosity in the regions close
to the particle tends to decrease as a result of particle motion,
while the viscosity in the farther regions tend to increase due
to restructuring under low rates of flow. Thus for a thixotro-
pic fluid the volume significantly affected by sphere motion
should generally be restricted to a volume of fluid of the
order of that of the sphere.

Consequently we assume that, at a given time, only a
limited cylindrical volume of fluid around the sphere is af-
fected by its motion. We can expect some variations of the
length of this cylinder as the particle velocity varies but as a
first approximation we will neglect them. More precisely at a
given time ¢ we assume that the fluid is only affected by the
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FIG. 3. Schematic representation of the different regions (see text) of fluid
during the motion of a sphere through a thixotropic paste: The central region
is a cylinder in which the fluid flows at some time while the rest of the fluid
remains undisturbed.

sphere motion in a cylinder portion of length H around the
sphere situated at a mean distance x(¢) from a reference
point (cf. Fig. 3). Now we can follow the change of the
average value of the instantaneous state in this cylinder when
the sphere moves of a distance dx in a time dt, from the
material derivative of (\)=1/Q fg\dv:

D A 1
E()\>=<—é)7> +-6fs7\U’l’ldS, (11)

in which £} and § are, respectively, the volume and surface of
the cylinder portion, u the velocity of the fluid relatively to S
and n the outer unit normal vector. In order to compute (11)
we will make several assumptions:

(i) The flow to which the fluid is submitted on average
within ) induces an effect on \ equivalent to that
induced by a simple shear at a shear rate y~V/e,
where e is a characteristic thickness of shear which
only depends on cylinder characteristics; if in addition
we take into account (7) this leads to consider that
(N at)y=1/0—a¥{\).

(i)  On average there is no net vertical or radial fluid flow;
thus the flux through the moving volume ) only re-
sults from the entrance of a fraction of yet undisturbed
fluid from downstream in the cylinder portion [from
(7) the state of this fluid writes N\y+1¢/ 6] and from the
exit of a fraction of disturbed fluid in the average state

N
Under these conditions, Eq. (11) now writes
d\ _ 1 N 1 . t o 1 5
T VA L e T L A (12)
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in which we dropped the average signs around A. The com-
plete set of equations describing the sphere motion is com-
posed of (12) and (8) along with initial conditions.

It is first interesting to analyze the problem in the case
where the time variations of the state of the undisturbed ma-
terial in the cylinder can be neglected, ie., Ng+1t/0=~Ag.
Here Eq. (12) may be expressed in the simplified, dimension-
less form:

dn (A= (1+B)N)

ﬁZl—*—W-———i——i-_)\"—w—:f()\)’ (13)

in which 7=1¢/6 (dimensionless time), W=W,H/#, and B
=aH/e. Note that W and 8 are two parameters independent
of \, Ny, and t. The minimum of f for positive values of A is
reached for a particular value A, >Ng. If f(A)>0, f(M)
remains positive and tends to 1 when A—c0, which means
that \ increases and tends towards infinity; the viscosity thus
also tends towards infinity and the sphere eventually appar-
ently stops moving. If f(A.)<<0, f(\) has two roots, A and
As(Np<\). In that case the sphere would evolve either to-
wards steady state motion if Ag<<\,, or towards apparent
stoppage otherwise. Since we can check that Ag<<A <A,
this is always the former situation which prevails.

Finally, for a given initial state Ag, there are only two
possible cases depending on the relative values of W and
W, defined by fwc()\c)-——O (W, is in fact solely a function

of Ay and material parameters):

(iy W<W,, the sphere progressively stops, its velocity
scaling as ™" at large times, like in the initial simple
approach; in that case the restructuring of the fluid is
the dominant process;

(i) W>W,, the sphere evolves towards a steady motion
at a velocity larger than a finite, critical value, i.e.,
V.=W./(1+\}); in that case the destructuring due
to flow balances the restructuring.

The variations of the velocity as a function of the dimension-
less distance covered (X =x/H) for different values of W of
a given system are represented in Fig. 4. The bifurcation
above described clearly appears. Conversely if we fix the
value of W but start with a material under different (increas-
ing) initial values of the state A, all happens qualitatively as
if we were decreasing the value of W, and effectively the
corresponding curves (cf. Fig. 5) show a similar bifurcation.
Note that we choose two different representations in these
two figures: In Fig. 4 we used a linear scale for the distance
in which we looked at the aspect of the bifurcation for small
variations of W at this particular scale; in Fig. 5 we used a
logarithmic scale which makes it possible to observe the
complete bifurcation from the first instants (where the fluid
viscosity, and thus the velocity, is solely a function of Aq) to
long times.

What happens now if we take into account the time
variations of the state of the undisturbed material in the cyl-
inder, i.e., we no longer neglect the term /8 in (12)? The key
parameter is the dimensionless fluid length d*=d/V0,
where d is the length of observation of sphere fall through
the fluid. If initially we are in case (ii} and d* is small, we
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FIG. 4. Predictions of the model (see text) for the motion of a sphere
through a thixotropic paste under the action of a force of different levels
(from top to bottom: W=0.60; 0.59; 0.58; 0.575; 0.57; 0.568; 0.565; 0.56;
0.55), with the following parameters: B=1, n=1.02, and Ay=10.

remain in this case and might simply observe a very slight
decrease of the velocity in time. For intermediate d* we may
observe some significant decrease of the velocity in time and
for large d* we reach the case (i) before the end of the fall
within our experimental conditions and finally the sphere
will stop moving. If we are initially in case (i) the restruc-
turing of the undisturbed material will simply foster the
sphere stoppage. Finally the complete model predicts three
regimes of motion: A rapid fall at an almost constant veloc-
ity, a slower fall at a decreasing velocity and a rapid velocity
decrease until complete stoppage. These regimes are in
agreement with our experimental observations.

C. Fall of an object in a vibrated thixotropic fluid

Let us now consider the same problem but with the fluid
now submitted to vibrations at a frequency N and with an
amplitude x,. The exact solution of the fiow problem is
again rather complex but we will assume that the sphere falls
through the fluid now undergoing a new pressure distri-
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FIG. 5. Predictions of the model for the motion of a sphere through a
thixotropic paste in different initial states (from top to bottom: A\y=1; 5; §;
8.5; 10; 20; 100) under the action of a constant force, with the following
parameters: S=1, n=1.02, and W=0.57.
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bution resulting solely from vibrations. As long as the fluid
remains static (motion “in mass”) in the vibrated vessel the
motion equations show that the pressure field for the vibrated
fluid is simply equal to the hydrostatic distribution (p,
+ pgx, where p,, is the atmospheric pressure) for the fluid at
rest plus a term due to vibrations:

p(2wN)%xox sin(2wNt). (14)

The motion of the sphere in this fluid is now simply dictated
by Eq. (8) in which the liquid density must be replaced by an
apparent density p*, defined as

p*=p(1+Q sin(27Nt)) (15)

in which Q=(27N)2xy/g. Under these conditions the vi-
brations simply tend to periodically decrease and increase
the apparent liquid density, so that the new parameter W*
=W(p*) will oscillate around its mean value W resulting
from the gravity alone.

The consequence for a Newtonian fluid is that the fall
velocity should oscillate around an average value corre-
sponding to the velocity in the absence of vibration. Thus if
N~! is much larger than the time scale at which the velocity
is measured one should record a constant velocity equal to
that obtained in the fluid at rest. This is in agreement with
our observations with the Newtonian liquid.

Let us now examine the consequences of these apparent
density fluctuations for a thixotropic fluid. We will only con-
sider one situation, that for which the characteristic duration
of the fall is much larger than N™!, so that the regime of fall
is the result of a great number of oscillations. We also as-
sume that the initial state is such that the sphere apparently
set in the fluid very rapidly, i.e., after being put in the fluid it
slightly moved then stopped. With the oscillations imposed
to the fluid the parameter W* will alternatively take values
smaller than W for which the sphere has no particular reason
to move and values larger than W for which it might move.
Under these conditions we deduce that the influence of the
vibrations is rather simple and may lead to different regimes,
which directly derive from those found for the fluid at rest in
different initial states:

(1) For a sufficiently small value of ), the large values of
W* remain insufficient for the sphere to move; it re-
mains at the same position;

(2) for a larger value of (), the large values of W* are suf-
ficient for the sphere to move significantly but insuffi-
cient to overcome the subsequent restructuring of the
fluid so that the sphere will appear to stop at a certain
distance, similarly to regime (i);

(3) for a sufficiently large value of (), the large values of
W* are sufficient for the sphere to reach an almost con-
stant, finite velocity as in regime (ii).

For the same reasons as above there might also exist some
intermediate regime between (2) and (3) as between (i) and
(ii) for which the sphere will move at a finite but signifi-
cantly decreasing velocity over the distance of observation.
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Thus we again find a scheme in qualitative agreement with
our experimental observations.

IV. CONCLUSION

We have shown that the fall of an object in a typical,
thixotropic, pasty material is more complex than usually as-
sumed. Depending on the initial state of the material and the
apparent weight to drag force ratio the object may fall under
different regimes. In any case the fall is time-dependent and
in somes cases the object can even stop moving far from the
vessel bottom after a significant motion. A simple model ex-
pressing the basic concepts of the rheological behavior of
these pasty materials makes it possible to explain all the
experimental trends in a static fluid in different states or in
given fluid submitted to vibrations at different frequencies.

Since it has been shown'>?* that pasty materials have
generally a thixotropic behavior which may be qualitatively
well represented by a model of type (6) and (7) our results
concerning the fall velocity may be extrapolated to other
pasty materials. Since for most of them the major restructur-
ing process is rapid it is likely that mainly the two regimes
(i) and (ii) may be observed in practice. This seems in agree-
ment with existing literature data which mainly show signifi-
cant velocity levels or no motion at all. This also seems in
agreement with our common experience of the fall of objects
in pastes: Indeed we can hardly imagine a slow and continu-
ous motion of an object submitted to gravity through a mud
or a foam. This finally shows that the motion of an object in
a pasty material is a complex dynamical process which in
particular, unlike a simple yield stress, governs its incipient
motion or stoppage conditions.

A question naturally arises from this: what is the sense of
the determination of the yield stress from usual observations
of incipient motion in literature? Since in general it is con-
sidered that the object moves when its terminal velocity
(close to the vessel bottom) is finite and reproducible it is
likely that this corresponds to regime (ii). It thus effectively
provides some information concerning the apparent viscosity
for an almost steady, relative solid—fluid motion, but at rela-
tively large velocities.

It nevertheless appears that the sphere fall through a
paste can become a much richer test than considered until
now, under the condition that the initial state of the material
be well controlled and the sphere motion followed in detail:
It will provide information concerning the thixotropic char-
acteristics of the fluid. In this context it is worth noting that
the vibration of the fluid is equivalent to increasing the ap-
parent weight of the sphere so that this is a means to pre-
cisely and easily vary the apparent sphere density. It remains
that the quantitative correspondence between the fluid char-
acteristics thus determined and its exact rheological behavior
is a difficult task which remains to be done.
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