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Abstract
Extreme Multi-label Learning (XML) considers
large sets of items described by a number of la-
bels that can exceed one million. Tree-based
methods, which hierarchically partition the prob-
lem into small scale sub-problems, are particu-
larly promising in this context to reduce the learn-
ing/prediction complexity and to open the way
to parallelization. However, the current best ap-
proaches do not exploit tree randomization which
has shown its efficiency in random forests and
they resort to complex partitioning strategies. To
overcome these limits, we here introduce a new
random forest based algorithm with a very fast
partitioning approach called CRAFTML. Exper-
imental comparisons on nine datasets from the
XML literature show that it outperforms the other
tree-based approaches. Moreover with a paral-
lelized implementation reduced to five cores, it is
competitive with the best state-of-the-art methods
which run on one hundred-core machines.

1. Introduction
Multi-label classification has received a tremendous atten-
tion in the last decade and recently, stimulated by real-life
applications involving large datasets (e.g. image (Partalas
et al., 2015) and text (Deng et al., 2009) annotation and
product recommendation (McAuley et al., 2015)), it has
been extended to problems where the number of labels can
exceed one million (Agrawal et al., 2013). In this new con-
text, called eXtreme Multi-label Learning (XML), most of
the classical algorithms face scalability issues (Weston et al.,
2013) or performance degradation. In an attempt to over-
come these challenges, researchers have recently explored
three directions: (i) using optimization tricks such as pri-
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mal/dual conversion or sparsification (Yen et al., 2016) and
parallelization on supercomputers (Babbar & Schölkopf,
2017; Yen et al., 2017), (ii) reducing the data dimension-
ality for solving a smaller size problem with a classical
approach (Yu et al., 2014; Bhatia et al., 2015) or (iii) hier-
archically partitioning the initial problem into small scale
sub-problems (Jasinska et al., 2016; Jain et al., 2016). The
tree-based decomposition of the third approach has several
advantages. It can exploit a hierarchical structuration of the
problem either hidden in the mass of data or available for
users like the hierarchy of the Wikipedia Article Categories
(Partalas et al., 2015) or the ImageNet tags (Deng et al.,
2009). Moreover, by decomposing learning into subtasks,
it reduces the learning/prediction complexity and opens the
way to parallelization. Finally, its sequence of successive
decisions allows a great expressivity.

Motivated by those properties, we here present a novel
fast and accurate tree-based approach called CRAFTML
(Clustering-based RAndom Forest of predictive Trees for
extreme Multi-label Learning). Similarly to PFastReXML
(Jain et al., 2016) which is among the best tree-based ap-
proaches for XML, CRAFTML is a forest of decision trees
trained with the supervision of the labels where the splitting
conditions are based on all the features. But CRAFTML
has two major differences with PFastReXML: (i) it exploits
a random forest strategy which not only randomly reduces
both the feature and the label spaces to obtain diversity
but also replaces random selections with random projec-
tions to preserve more information; (ii) it uses a novel low-
complexity splitting strategy which avoids the resolution
of a multi-objective optimization problem at each node.
Numerical experiments on nine datasets from the XML
literature show that CRAFTML outperforms the existing
XML tree-based approaches with a lower training time and
a smaller memory size. Moreover, it has relevant advantages
over the most accurate methods today (DISMEC (Babbar
& Schölkopf, 2017) and PPDSparse (Yen et al., 2017)): its
model size is smaller and its training/prediction complexi-
ties are much lower. Experiments confirm that CRAFTML
remains competitive with these approaches which both run
on one hundred-core machines. In addition, with a paral-
lelized implementation on a five-core machine, the training
time of CRAFTML becomes lower than the training time
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of DISMEC for all datasets and close to that of PPDSparse
for the large dataset Amazon-670K with 490k instances and
670k labels. By taking advantage of the data sparsity and
the hash-based dimensionality reduction, and by implement-
ing a very fast partitioning strategy, CRAFTML leads to a
high scalability and a very good tradeoff between accuracy,
computing resources and execution speed.

The rest of the paper is organized as follows. Section 2
briefly recalls previous recent works in extreme multi-label
learning. Section 3 describes our new proposal CRAFTML.
Section 4 analyzes its temporal and spatial complexities and
discusses the choice of the hyperparameter values. Section
5 compares the performances of CRAFTML with the best
performers from the recent literature.

2. Related Works
Due to the increasing interest of multi-label classification
in the last decade, many algorithms have been proposed
(Tsoumakas & Katakis, 2006; Zhang & Zhou, 2014). Sev-
eral numerical experimentations have highlighted the perfor-
mances of the multi-label k-nearest neighbors (ML-kNN)
(Zhang & Zhou, 2007) and of the multi-label random forest
(RF-PCT) (Kocev et al., 2007). However, they cannot scale
up anymore with the new dimensionality orders (105 to
107) of the eXtreme Multi-label Learning. Three different
strategies are today developed to tackle the scaling issue:
optimization tricks and parallelization, dimensionality re-
duction and hierarchical decomposition.

Optimization Tricks and Parallelization (PDSparse
(Yen et al., 2016), PPDSparse (Yen et al., 2017), DISMEC
(Babbar & Schölkopf, 2017)). PDSparse resorts to a sparse
linear model regularized with an elastic net to minimize
the ranking loss measure. It cleverly exploits a primal-dual
conversion of the optimization problem and the sparsity to
scale-up to XML data. It has been recently extended to
a parallel model called PPDSparse. DISMEC is based on
a regularized one-vs-rest large margin linear model. By
exploiting the independence between the submodels asso-
ciated to each label, computations are accelerated with a
parallelization of the training stage. And the memory con-
sumption is reduced with a parameter thresholding which
leads to a sparse model.

Dimensionality Reduction (WSABIE (Weston et al.,
2011), LEML (Yu et al., 2014), SLEEC (Bhatia et al., 2015),
AnnexML (Tagami, 2017)). Generally speaking, dimen-
sionality reduction offers a synthetized representation of
the data with a lower number of variables (features, labels,
or both). LEML and WSABIE were among the first di-
mensionality reduction approaches applied to XML. They
create a low-rank reduced version of the data, but they miss

the information brought by the long tail distribution of the
labels, and the performances of the classifiers are debased
(Bhatia et al., 2015). To overcome this difficulty, SLEEC
and AnnexML train a set of local low-rank embeddings on a
partition of the feature space to cover a global high-rank em-
bedding of good quality. In SLEEC, the partition is deduced
from an unsupervised clustering of the items. In AnnexML,
the partition aims at gathering in a same class items which
share tail labels. Only AnnexML and SLEEC are retained in
our numerical experiments as they significantly outperform
WSABIE and LEML.

Tree-based Methods (LPSR (Weston et al., 2013),
FastXML (Prabhu & Varma, 2014), its extension PFas-
tReXML (Jain et al., 2016), PLT (Jasinska et al., 2016)).
Roughly speaking, the tree-based methods transform the
initial large-scale problem into a series of small-scale sub-
problems by hierarchically partitioning the instance set or
the label set. These different subsets are associated to the
nodes of a tree. The initial whole set associated to the root
is partitioned into a fixed number k of subsets which are
themselves associated to k child nodes of the root. The
decomposition process is repeated until a stop condition
is checked on the subsets. In each node, two optimization
problems are raised: (i) computing a partition for a given
criterion, and (ii) defining a condition or building a classi-
fier on the feature space to decide to which subset(s) of the
partition an instance is assigned. In the prediction phase,
the input instance follows a path from the root to a leaf
(instance tree) or several leaves (label tree) determined by
the successive local decisions. For a label tree, the labels
associated to the reached leaves are those predicted with a
non-zero probability. For an instance tree, the prediction is
given by a local classifier trained on the leaf instances.

Two pioneering approaches RF-PCT and HOMER
(Tsoumakas et al., 2008) presented in the last decade have
highlighted the interest of the tree-based strategy for multi-
label learning. In the XML literature, three recent tree-based
approaches have been proposed: LPSR and FastXML re-
spectively based on a single k-ary instance tree and a forest
of binary instance trees, and PLT based on a label tree (Ben-
gio et al., 2010; Deng et al., 2011). The partitioning criterion
of LPSR aims at regrouping in a same subset the instances
which share common features and labels. And the assig-
nation of an instance to a subset depends on its proximity
to the subset feature centroid. The partitioning criterion of
FastXML is a nDCG-based label ranking loss which tends
to regroup instances with common labels. And instances
are assigned to one of the k = 2 subsets with a sparse split-
ting hyperplane on the feature space. FastXML has been
very recently extended to a new version refered to as PFas-
tReXML in order to better take into account the tail labels.
PLT recursively builds label subsets which regroup labels
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that occur in the same instances and stops its decomposition
when the subsets contain a single label. A multi-label clas-
sifier is trained to estimate the probabilities of following the
different root-to-leaf paths in the tree conditionally to the
input instance features. Path ending on leaves associated to
relevant labels are expected to have a high probability.

These approaches have obtained competitive results in nu-
merical experiments. But we believe that there is still room
for improvement by exploring two directions: using very
fast partitioning strategies and exploiting tree feature/label
randomization. Indeed, to build the tree nodes, the current
XML approaches resort to complex optimization processes
which can be replaced with simpler operations with lower
complexities. Moreover, tree diversity, implemented with
random feature selection, contributed to the success of ran-
dom forests (Breiman, 2001) and RF-PCT in multi-label
learning. In the XML literature, this has been tested with
feature random selection in the MLRF approach (Agrawal
et al., 2013) but the obtained predictive performances are
limited compared to FastXML for one main reason: its par-
titioning strategy (Prabhu & Varma, 2014). A projection is
able to preserve more information than a selection for a same
ratio of compression and a joint random projection of fea-
tures and labels is more promising to deal with the extreme
number of labels. To address these shortcomings, we have
introduced a novel tree-based approach called CRAFTML.

3. CRAFTML
In the following, we consider a training set of n instances,
each described by a vector x ∈ Rdx of dx features and a
vector y ∈ {0, 1}dy of dy labels. The feature (resp. label)
matrix X (resp. Y ) of the set is the n× dx (resp. n× dy)
matrix where each row corresponds to the feature (resp.
label) vector of an instance.

3.1. The Method Main Steps

CRAFTML computes a forest F of mF k-ary instance trees
whose construction follows the common scheme of the in-
stance tree-based methods (see Algorithm 1) recalled in
Section 2. The stop condition of the recursive partitioning
of a tree is classical: (i) the cardinality of the node’s instance
subset is lower than a given threshold nleaf , (ii) all the in-
stances have the same features, or (iii) all the instances have
the same labels. Once a tree has been trained, its leaves
store the average label vector of their associated instances.
Similarly to FastXML the nodes partitioning objective of
CRAFTML is to regroup instances with common labels in
a same subset but its computation is very different. Our
goal was to develop a strategy driven by two constraints:
partition computation must be based on randomly projected
instances to ensure diversity and must perform low complex-
ity operations for scalability. Therefore, the node training

Algorithm 1 trainTree
Input: Training set with a feature matrix X and a label
matrix Y .
Initialize node v
v.isLeaf←testStopCondition(X,Y )
if v.isLeaf = false then

v.classif← trainNodeClassifier(X,Y )
(Xchildi

, Ychildi
)i=0,..,k−1 ← split(v.classif, X, Y )

for i from 0 to k − 1 do
v.childi ←trainTree(Xchildi , Ychildi)

end for
else

v.ŷ ←computeMeanLabelVector(Y )
end if
Output: node v

Algorithm 2 trainNodeClassifier
Input: feature matrix (Xv) and label matrix (Yv) of the
instance set of the node v.
Xs, Ys ← sampleRows(Xv, Yv, ns)
X ′s ← XsPx # random feature projection
Y ′s ← YsPy # random label projection
c← k-means(Y ′s , k) # c ∈ {0, ..., k − 1}min(nv,ns)

for i from 0 to k − 1 do
(classif)i,. ← computeCentroid({(X ′s)j,.|cj = i})

end for
Output: Classifier classif (∈ Rk×d′

x ).

c is a vector where the j th component cj denotes the cluster
index of the j th instance associated to (X ′

s)j,. and (Y ′
s )j,..

stage in CRAFTML is decomposed into three consecutive
steps (see Algorithm 2):

1. a random projection into lower dimensional spaces of
the label and feature vectors of the node’s instances.

2. a k-means based partitioning of the instances into k
temporary subsets from their projected labels.

3. The training of a simple multi-class classifier to assign
each instance to its relevant temporary subset (i.e. clus-
ter index computed at step 2) from its feature vector.
The instances are partitioned into k final subsets (child
nodes) by the classifier (”split” in Algorithm 1).

In the prediction phase, for each tree, the input instance
follows a root-to-leaf path determined by the successive
decisions of the classifier and the provided prediction is the
average label vector stored in the leaf reached. The forest
aggregates the tree predictions with the average operator.

Let us specify that contrary to classical random forests
which use bootstraps, each tree of CRAFTML is trained
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on the full initial dataset. In XML, instance samples can
miss a large number of labels and we want each tree to con-
sider every label. The main similarities and differences be-
tween CRAFTML and the other state-of-the-art tree-based
approaches are summarized in Table 1.

Table 1. Comparison of the characteristics of the tree-based meth-
ods. *depends on the memory size, **random feature selection.

Label trees Instance Trees
H

O
M

E
R

PL
T

R
F-

PC
T

L
PS

R

Fa
st

X
M

L

C
R

A
FT

M
L

Adapted for XML No Yes No Yes Yes Yes
Feature random projections No Yes* Yes** No No Yes
Label random projections No No No No No Yes

Several trees No No Yes No Yes Yes
Binary trees No No Yes No Yes No

Partitioning condition is defined Yes Yes No Yes Yes Yeson multiple features

3.2. Node Training in Detail

We here detail the three steps of the instance partitioning
process in each node v of a tree T of a forest F .

Step 1: Random Projection of the Instances of v The
feature and label vectors x and y of each instance of v
are projected into a space with a lower dimensionality:
x′ = xPx and y′ = yPy where Px (resp Py) is a ran-
dom projection matrix of Rdx×d′

x (resp. Rdy×d′
y ) and d′x

(resp. d′y) is the dimension of the reduced feature (resp.
label) space. The projection matrices are different from one
tree to another. To optimize memory, the coefficients of the
projection matrices are not stored but generated with a seed
when needed. We have tested two random projections: a
projection generated from a standard Gaussian distribution
and a sparse orthogonal projection hereafter referred to as
the hashing trick (Weinberger et al., 2009) which has only
one non-zero parameter with a value of −1 or +1 on each
row. Comparisons have led us to favor the hashing trick.
It led to slightly better performances. Moreover, through
the sparsity of its projection, it is much faster, and as the
resulting projected vector has at the most as many non-zero
elements as the original one, other components of the forest
can be accelerated. In addition, we have explored the impact
of the diversity of the projection matrices between the nodes
of a same tree T . We have considered four combinations:
SxSy, SxDy, DxSy and DxDy where Sx (resp. Sy) is the
case where the feature (resp. label) projections are the Same
in each node of T and Dx (resp. Dy) is the case where the
feature (resp. label) projections are Different from one node
to another. Comparisons presented in Section 4.2 have led
us to favor SxSy.

Step 2: Instance Partitioning into k Temporary Subsets
Let Ys be the label matrix of a sample drawn without re-

placement of size at most ns of the instance set associated
to v. The sample is partitioned with a spherical k-means
(Loyd’s algorithm) applied on YsPy. The cosine metric
of the spherical k-means is fast to compute and is well-
adapted to sparse data. The cluster centroids are initialized
with the k-means++ strategy (Arthur & Vassilvitskii, 2007)
which improves cluster stability and algorithm performances
against a random initialization.

Step 3: Assigning a Subset from the Projected Features
The multi-class classifier is very simple: in each temporary
subset, we compute the centroid of the instance projected
feature vectors. In the prediction phase, the classifier assigns
the subset whose centroid is the closest to the input instance
projected feature vector. We have also tested a one-vs-rest
linear model but the resulting forest was less accurate and
much slower. Two metrics (cosine and classical Euclidean)
have been compared too and, for similar reasons as in the
k-means, the cosine is better.

4. Algorithm Analysis and Parameter Setting
In this section, we provide bounds for the time and memory
complexities of CRAFTML. Then, we analyze the impact
of the hyperparameters which govern its performances, and
we recommend a parameter setting adapted to XML data.

4.1. Time and Memory Complexities

In the following, we denote by sx (resp. sy) the average
number of non-zero elements in the feature (resp. label)
vectors of the instances. In practice, thanks to the hashing
trick, the projected feature and label vectors have less than
respectively sx and sy non-zero elements on average. For a
node v of a tree T , nv denotes the number of instances of
the subset associated to v. The number i of iterations of the
spherical k-means is fixed a priori.

Lemma 1. For a node v of a tree T , the time complexity
Cv is bounded by O

(
nv ×C

)
where C = k× (i× sy + sx)

is the complexity per instance.

Proof. The time complexity of a node v is the sum of the
complexities of the spherical k-means initialized with a k-
means++, of the training of the multi-class classifier and
of its predictions on the instances of the subset associated
to v. The k-means algorithm is applied on the projected
labels and its complexity is bounded by the sum of the
complexity O(i × nv × sy × k) of the Loyd’s algorithm
and the complexity O(nv × sy × k) of the k-means++. The
classifier training is based on the computation of the feature
centroid for each cluster which leads to a total complexity
O(nv × sx). For its predictions, the classifier computes the
cosine distance to the k centroids for each instance, which
requires O(nv × k × sx) operations.
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In practice, the complexity of the node training is lower
than the bound given in Lemma 1. Indeed, the k-means
and the classifier training are applied on a sample of the
node instance set with a size equal to min(nv, ns) ≤ nv . In
addition, in our experiments, CRAFTML already reaches its
best performances with only i = 2 iterations in the k-means.

Let us now consider a strictly k-ary tree T and denote by lT
its number of leaves, by mT = lT−1

k−1 its number of nodes

and by nT =
∑

v∈T nv

mT
the average number of instances in

its nodes.

Proposition 1. If the tree T is balanced, its training time
complexity CT is bounded by O

(
logk(

n
nleaf

) × n × C
)
.

Otherwise, CT is equal to O
(
lT−1
k−1 × nT × C

)
.

Proof. If T is a balanced tree, the jth level Tj of T has kj

nodes and for each node v ∈ Tj , nv = n
kj . From Lemma 1,

the complexity of the jth level is therefore O
(

n
kj ×kj ×C

)
which is independent of j. Due to the stop condition, the
number of levels is bounded by O(logk(

n
nleaf

)). Finally
the product of a level complexity with the number of levels
gives the complexity CT for the tree.

If T is an unbalanced tree, the training complexity of T
which is the sum of the complexities of its nodes equals to
O
(∑

v∈T nv ×C
)
. Substituting

∑
v∈T nv by mT × nT in

the last formula ends the proof.

With the ratio C
k−1 =

k×(i×sy+sx)
k−1 , the contribution of k

in the time complexity vanishes for the unbalanced tree.
Furthermore, this time depends on the number of leaves lT
and the average number of instance in the nodes nT . In
practice, lT is between n

nleaf
for the best case and n for the

worst case. In our experiments we have observed on the
XML datasets that, when fixing nleaf = 10 and k = 2, we
obtain lT = n

2.83±0.41 and nT = 24.32± 2.61.

We can note that by exploiting the data sparsity (sx and
sy) the time complexity is independent of the projection
dimensions d′x and d′y. In XML datasets where instances
are very sparse, sx and sy are much smaller than dx and
dy. In addition, the complexity of the random projection
which is negligible compared to the other operations is not
considered here. For instance, in a tree T , the complexity
of the fastest combination SxSy chosen in our experiments
is equal to O

(
n × (sx + sy) × Cgen

)
where Cgen is the

complexity of generating a coefficient of the projection
matrices1. It is also important to stress that, in practice, the
bound CT is above reality due to the instance sampling in
each node v which reduces the complexities of the spherical
k-means and of the classifier training.

1In our experiments, the coefficients are generated with Mur-
murHash3 (Appleby, 2008) which is among the fastest hash func-
tion and which produces good quality random distributions.

Proposition 2. The memory complexity of a tree T is
bounded by O

(
n× sy +mT × k × d′x

)
.

Proof. Each leaf of T stores the mean label vector of its
associated instances. In the best case all the n

lT
instances

have the same labels and the vector contains sy non-zero
elements on average. In the worst case the n

lT
instances

have different labels and the vector approximately contains
sy×n
lT

non-zero elements on average. Consequently, the
memory required for the leaves is bounded by O

(
lT× sy×n

lT

)
.

Each node of T stores a multi-class classifier represented by
the k feature vectors of the centroids of dimension d′x; the
required memory is mT × k × d′x.

In practice, the bound determined in Proposition 2 is signif-
icantly greater than the required memory for two reasons.
Firstly, the instances regrouped in a same leaf with the clus-
tering share many common labels and the worst case does
not occur. Secondly, the centroids stored in the nodes are
sparse especially for nodes distant from the root because
they are computed on a small subset of similar vectors.

4.2. Performance Analysis

In this section, we explore the respective effect of five hy-
perparameters (d′x, d′y, mF , nleaf , ns) on the predictive
performances of CRAFTML for five real world datasets
from the XML repository2: four common datasets from the
multi-label learning literature (Bibtex, Mediamill, Delicious,
EURLex-4K) with a maximum of 5000 features and 3993
labels and a large one (Wiki10-31K) with 101938 features
and 30938 labels (see Table 2 for details). The quality of
the results is measured with the precision at 1 (P@1), 3
(P@3) and 5 (P@5) which are defined in the repository and
classically used in XML numerical experiments. To avoid
test set overfitting here, we restrict ourselves to the training
part of the datasets: a validation set with twenty percent of
the instances is used for evaluation.

Impact of the Projection Figures 1 and 2 show the im-
pact of the projection dimensions and of the diversity strate-
gies on the performances of CRAFTML with mF = 50.
Performances significantly increase with d′x, less with d′y
and both evolutions reach a plateau which varies with the
dataset characteristics. When the two dimensions d′x and d′y
are large enough (> 500), the effect of the random projec-
tions is substancial (comparison with vs without projection
in Figure 1). Moreover, in this case the four combinations
of presence/absence of node diversity SxSy, SxDy, DxSy
and DxDy lead to close behaviors (Figure 2).

2http://manikvarma.org/downloads/XC/
XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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Impact of the Number of Trees The contribution of the
nodes to the forest memory complexity given by Propo-
sition 2 linearly depends on the product mF × d′x. This
raises a question: are the best performances obtained with
a few trees with a large dimension d′x or with a large set
of trees with a small dimension? Intuitively several trees
are required to benefit from the aggregation effect but the
dimension must be reasonable to preserve the accuracy of
each tree. Figure 3 confirms this intuition. It shows that the
optimum is reached for a correct balance between mF and
d′x whose value varies with the dataset.
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Impact of the Tree Depth The tree depth is controlled
by the stop condition and especially by the minimal number
of instances per leaf nleaf . For each tree a large nleaf is

required to avoid overfitting the training data (left chart on
Figure 4), but for a forest, a limited set of instances per
leaf creates more diversity between the trees (right chart on
Figure 4). This phenomenon has already been described in
the random forest literature (Breiman, 2001).
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Figure 4. Performances of a tree (mF = 1) and a fifty tree forest
(mF = 50) for 4 different values of nleaf . The performances for
the single tree are averaged on 30 runs.

Impact of the Sample Size in the Spherical k-means
For the dataset with the largest number of instance n =
1.7M (WikiLSHTC-325K) the performances improve with
the sample size until they reach a plateau for ns = 20000.
The impacts on P@1, on P@3 and on P@5 are almost
identical.

4.3. Parameter Setting

Experiments have shown that CRAFTML requires a dozen
deep trees and large dimensions (d′x > 5000 and d′y >
5000) for the projected spaces. To limit size effects in the
experimental comparisons, the chosen number of trees and
stop condition are the same as for FastXML: mF = 50 and
nleaf = 10 (Prabhu & Varma, 2014). As shown in Section
4.1, the label projection dimension d′y does not impact the
time and memory complexities and it has consequently been
fixed to an arbitrary high value: d′y = min(dy, 10000).
The feature projection dimension d′x has also no effect
on time and a very limited one on memory in practice.
CRAFTML reaches the plateau of performances for each
dataset for a sample size ns = 20000 and a dimension
d′x = min(dx, 10000). And its measured model size is low
(Table 3). Moreover, for the chosen values of mF , nleaf ,
d′x and d′y , CRAFTML obtains close performances with the
four variations SxSy, SxDy, DxSy and DxDy. We use SxSy
which is the fastest combination.

5. Experimental Comparisons
In this section we compare CRAFTML with the nine
best methods of the state-of-the-art in extreme multi-label
learning presented in Section 2: four tree-based meth-
ods (FastXML, PFastReXML, LPSR, PLT) and five oth-
ers with a distinction between those adapted to single-core
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Table 2. Comparison between CRAFTML and the state-of-the-art methods on the test set of classical eXtreme Multi-label datasets. The
label dimension dy , the feature dimension dx, the number of instances of the training set n and the number of instances in the test set
ntest are explicited. The best result among tree-based methods is in bold font. The best result among all methods is underlined.

Tree-based Other

CRAFTML

PFast
ReX

ML

FasT
XML

LPSR
PLT

SLEEC

AnnexML

PDSpars
e

DISMEC

PPDSpars
e

Mediamill P@1 85.86 83.98 84.22 83.57 87.82 - 83.64 84.83 84.42
dx = 120, dy = 101 P@3 69.01 67.37 67.33 65.78 - 73.45 - 66.13 67.17 67.26

n = 30993, ntest = 12914 P@5 54.65 53.02 53.04 49.97 - 59.17 - 50.90 52.80 52.78
Bibtex P@1 65.15 63.46 63.42 62.11 - 65.08 - 62.36 63.69 63.69

dx = 1836, dy = 159 P@3 39.83 39.22 39.23 36.65 - 39.64 - 36.50 38.80 39.43
n = 4880, ntest = 2515 P@5 28.99 29.14 28.86 26.53 - 28.87 - 26.50 28.30 28.67

Delicious P@1 70.26 67.13 69.61 65.01 - 67.59 - - - -
dx = 500, dy = 983 P@3 63.98 62.33 64.12 58.96 - 61.38 - - - -

n = 12920, ntest = 3185 P@5 59.00 58.62 59.27 53.49 - 56.56 - - - -
EURLex-4K P@1 78.81 75.45 71.36 76.37 - 79.26 - 75.90 82.40 74.61

dx = 5000, dy = 3993 P@3 65.21 62.70 59.90 63.36 - 64.30 - 61.16 68.50 59.56
n = 15539, ntest = 3809 P@5 53.71 52.51 50.39 52.03 - 52.33 - 50.83 57.70 48.43

Wiki10-31K P@1 85.19 83.57 83.03 72.72 84.34 85.88 86.50 - 85.20 -
dx = 101938, dy = 30938 P@3 73.17 68.61 67.47 58.51 72.34 72.98 74.28 - 74.60 -
n = 14146, ntest = 6616 P@5 63.27 59.10 57.76 49.50 62.72 62.70 64.19 - 65.90 -

WikiLSHTC-325K P@1 56.57 56.05 49.75 27.44 45.67 54.83 63.36 60.70 64.40 64.13
dx = 1617899, dy = 325056 P@3 34.73 36.79 33.10 16.23 29.13 33.42 40.66 39.62 42.50 42.10
n = 1778351, ntest = 587084 P@5 25.03 27.09 24.45 11.77 21.95 23.85 29.79 29.20 31.50 31.14

Delicious-200K P@1 47.87 41.72 43.07 18.59 45.37 47.85 46.66 37.69 45.50 45.05
dx = 782585, dy = 205443 P@3 41.28 37.83 38.66 15.43 38.94 42.21 40.79 30.16 38.70 38.34
n = 196606, ntest = 100095 P@5 38.01 35.58 36.19 14.07 35.88 39.43 37.64 27.01 35.50 34.9

Amazon-670K P@1 37.35 39.46 36.99 28.65 36.65 35.05 42.08 - 44.70 43.04
dx = 135909, dy = 670091 P@3 33.31 35.81 33.28 24.88 32.12 31.25 36.65 - 39.70 38.24
n = 490449, ntest = 153025 P@5 30.62 33.05 30.53 22.37 28.85 28.56 32.76 - 36.10 34.94

AmazonCat-13K P@1 92.78 91.75 93.11 - 91.47 90.53 93.55 87.43 93.40 92.72
dx = 203882, dy = 13330 P@3 78.48 77.97 78.20 - 75.84 76.33 78.38 70.48 79.10 78.14

n = 1186239, ntest = 306782 P@5 63.58 63.68 63.41 - 61.02 61.52 63.32 56.70 64.10 63.41

machines (SLEEC, AnnexML, PDSparse) and those es-
pecially designed for parallel implementations (DISMEC,
PPDSparse). The numerical experiments are carried on nine
XML datasets from different application domains: Bibtex,
Mediamill, Delicious, EURLex-4K, Wiki10-31K, Delicious-
200K, AmazonCat-13K, WikiLSHTC-325K, Amazon-
670K. The instance, feature and label cardinalities are re-
ported in the first column of Table 2 and additional details
are available in the XML repository. Results considered
for the comparisons are extracted from the last published
results 3. The hyperparameters chosen for CRAFTML are
those described in the previous section. Table 2 presents the
results of the predictive performances and Table 3 the time
consumption and the model size.

5.1. Comparison with Tree-based Methods

CRAFTML outperforms the best tree-based methods in
most cases. For the datasets WikiLSHTC-325K and
Amazon-670K, the domination of PFastreXML may be
partly explained by the fact that it is trained with label
propensities that are computed with additional external in-
formation (label hierarchy of Wikipedia and Amazon) (Jain

3from the XML repository for PFastReXML, FastXML, LPSR-
NB, SLEEC, and DISMEC, from (Jasinska et al., 2016) for PLT,
from (Yen et al., 2017) for PDSparse, PPDSparse and the remain-
ing results of DISMEC, and from (Tagami, 2017) for AnnexML

et al., 2016). Comparisons of computing times are sensitive
as the approaches have been developed with different lan-
guages (Java for CRAFTML) and times have been measured
on different machines. Nevertheless Table 3 confirms that
CRAFTML is very competitive. Compared with the other
tree-based methods its observed training time is lower on
average and its model size is smaller. These measures are
consistent with the theoretical results: due to the sampling
strategy and the dimensionality reduction resulting from the
random projections, the training time and memory complex-
ities of CRAFTML are the lowest ones. Its predictive time
is higher than the others but its complexity is equivalent.

5.2. Comparison with other Single-core
Implementations (SLEEC, PDSparse, AnnexML)

The performances of CRAFTML are better than those of PD-
Sparse except for WikiLSHTC-325K. They are substantially
equivalent to those of SLEEC but there is a slight domina-
tion of CRAFTML on the four largest datasets. Moreover,
CRAFTML is faster than SLEEC and than PDSparse ex-
cept for the dataset AmazonCat-13K. The specificities of
this dataset -i.e. a small number of labels and a large num-
ber of instances- favor PDSparse. The CRAFTML model
size is lower than that of SLEEC -except for WikiLSHTC-
325K-, but it is greater than that of PDSparse: 1.2 times for
EURLex-4K, 1.98 times for WikiLSHTC-325K, 93 times
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Table 3. Training time, prediction time and model sizes of the compared algorithms on large datasets. Values for FastXML, PFastReXML,
SLEEC, PDSparse, DISMEC and PPDSparse are extracted from (Yen et al., 2017) and the same conditions (RAM, CPU) are fixed for our
measurements. For CRAFTML’s forest, the training time in parenthesis is measured on a five-core parallelization.

Machine 1 core 100 cores
Language Java C++ C++
Algorithm CRAFTML CRAFTML FastXML PFastReXML SLEEC PDSparse DISMEC PPDSparseForest Tree (Forest/50)

EURLex-4K Train (s) 196 (47.75) 3.92 315.9 324.4 4543.4 773.2 76.07 9.95
Test (ms) 5.39 0.1078 3.65 5.43 3.67 0.73 2.26 1.5

Model size (Mb) 30 0.6 384 455 121 25 15 9.5
WikiLSHTC-325K Train (s) 18508 (5092) 370.16 19160 20070 39000 94343 271407 353

Test (ms) 7.67 0.1534 1.02 1.47 4.85 3.89 65 290
Model size (Gb) 1.06 0.021 14 16 0.635 0.534 8.1 4.9

Delicious-200K Train (s) 4754 (1174) 95.08 8832.46 8807.51 4838.7 5137.4 38814 2869
Test (ms) 8.6 0.172 1.28 7.4 2.685 0.432 311.4 275

Model size (Gb) 0.346 0.007 1.3 20 2.1 0.004 18 9.4
Amazon-670K Train (s) 5653 (1487) 113.06 5624 6559 20904 - 174135 921.9

Test (ms) 5.02 0.1004 1.41 1.98 6.94 - 148 20
Model size (Gb) 0.494 0.010 4.0 6.3 6.6 - 8.1 5.3

AmazonCat-13K Train (s) 10606 (2876) 212.12 11535 13985 119840 2789 11828 122.8
Test (ms) 5.12 0.1024 1.21 1.34 13.36 0.87 0.2 1.82

Model size (Gb) 0.659 0.013 9.7 11 12 0.015 2.1 0.347

for Delicious-200K and 45 times for Amazon-13K. With a
threshold applied on its parameter after training, the final
PDSparse model size is very low, but PDSparse requires a
large amount of memory during training; e.g. it cannot be
trained on the dataset Amazon-670K with 100Gb of mem-
ory (Yen et al., 2017). The comparison with AnnexML
is more sensitive as its training time and model size are
not published for a single-core implementation. The pub-
lished performances show that CRAFTML is close to An-
nexML except for Amazon-670K and WikiLSHTC-325K.
But for the latter, the training time of AnnexML (4 hours)
only mentioned for a 24-core implementation suggests that
CRAFTML is faster (1.5 hour on a 5-core machine).

5.3. Comparison with Parallel Implementations
(DISMEC, PPDSparse)

The results of the linear models DISMEC and PPDSparse
reported in Tables 2 and 3 have been obtained on a one
hundred-core machine. Let us recall that the DISMEC
model has been specifically designed for parallelization and
is inapplicable on a single-core machine. When comparing
performances of these two approaches with those obtained
by CRAFTML on a single-core machine the conclusions are
mixed and depend on the dataset. The datasets WikiLSHTC-
325K and Amazon-670K seem to favor the two linear model
based approaches over every tree-based methods. For most
datasets, the size of CRAFTML model is lower than that
of DISMEC and PPDSparse. Surprisingly, the prediction
time of CRAFTML obtained on a single-core machine is
often lower than those of DISMEC and PPDSparse. Its
training time is also lower than that of DISMEC for the
large datasets and similar for the smallest ones but higher
than that of PPDSparse. In addition, we have measured
the time gains of CRAFTML with a five-core machine. In

this case, the training time of CRAFTML is lower than that
of DISMEC for all the datasets and that of PPDSparse for
Delicious-200K, and it becomes close to the training time
of PPDSparse for Amazon-670K. Consequently, even with
five cores only, CRAFTML is competitive with the best
parallelized approaches. Most importantly, its acceleration
factor of about four between a single-core and a five-core
implementation and its lower training/prediction time com-
plexity allows us to hope to be as fast or even faster than
PPDSparse on a comparable supercomputer.

6. Conclusion
Our new XML multi-label learning method CRAFTML
outperforms the other tree-based methods with a single
core computer and it is competitive with the state-of-the-art
PPDSparse even with a restricted parallel implementation.
Contrary to most of the current XML methods, CRAFTML
does not rely on a complex optimization scheme. It com-
bines simple and fast learning blocks (e.g. k-mean clus-
tering, basic multi-class classifier) which leaves room for
extensions to reach performances required by current soci-
etal and technical challenges (Kambatla et al., 2014). With
the growing dimensionality of data, machine learning in-
creasingly resorts to supercomputers. But this access is far
from being available everywhere today and its cost will set
limits in the future. Consequently, cheap and scalable ma-
chine learning algorithms are required to favor the democra-
tization of the numerous real-world applications which still
rely on standard computation. However, cloud computing
(Hashem et al., 2015) and the increasing development of
supercomputers (Dean et al., 2018) also need methods that
fully exploit the available computation resources by being,
in particular, easily parallelizable.
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