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a b s t r a c t 

We study numerically the pair trajectories of rigid circular particles in a two dimensional inertialess simple shear flow of a (Binghamian) yield stress fluid. We use 

a Lagrange multiplier based fictitious domain method, following Glowinski et al. [26, 28, 29], for solving the problem. Contacts between the particles at a finite 

interparticle distance interpreted as a roughness are taken into account with the da Cunha and Hinch [12] model. Another model, introduced by Glowinski et al. 

[27], is shown to provide similar results in the limit of infinite contact stiffness. Due to the nonlinear behavior of the suspending fluid, it is found that the trajectories 

of the particles depend on the shear rate, the relevant dimensionless parameter being here the Bingham number, which compares plastic forces to viscous forces. In 

absence of interparticle contacts, fore-aft symmetry is observed in all cases; however, the particles are found to come closer to each other as the Bingham number is 

increased: the plastic behavior of the suspending fluid decreases the range of hydrodynamic interactions. As contacts are introduced, fore-aft asymmetry is observed. 

Plastic effects are found to enhance surface roughness effects: contacts between particles occur for smaller surface roughness at large Bn . Moreover, the magnitude of 

the asymmetry is increased as the Bingham number is increased. These observations may explain why the microstructure of suspensions of particles in a yield stress 

fluid is shear-rate-dependent [45] leading to a complex nonlinear macroscopic behavior. 
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. Introduction 

Suspensions of non-Brownian and noncolloidal hard spheres are rel-
vant model systems to help understanding the behavior of complex
olydisperse suspensions found in the industry (fresh concrete...) and in
eophysics (debris-flows...) [1,11,20,25,36,40,55] . 

Substantial progress in the understanding of the behavior of such ma-
erials can thus be made by studying the impact of adding noncolloidal
articles to a yield stress fluid of known properties [8,13,39,45,57] .
rom a more fundamental point of view, these systems, viewed as rigid
nclusions in a nonlinear material, may provide crucial tests for mi-
romechanical approaches developed to describe the behavior of sus-
ensions and composite materials. 

A key element in the understanding and modeling of the macroscopic
ehavior of suspensions is the hydrodynamic interaction between par-
icles and its impact on the suspensions’ microstructure [1,7] . Many in-
ormation can readily be obtained by studying a seemingly simple prob-
em involving interactions between a single pair of particles, that is, the
tudy of the relative trajectories of two particles in a simple shear flow.

The case of particles in an inertialess Newtonian fluid has been stud-
ed in much detail [30,43] . For perfectly smooth particles, two families
f trajectories exist. At close interparticle distance, particles are found to
rbit around each other; otherwise, they cross each other by following
 symmetric trajectory in the frame centered on their neighbor, which
omes from the linearity of the Stokes equation and the symmetries of
he problem. Such symmetry is not observed experimentally for non-
erfectly smooth particles [49] . This has been attributed to the finite
∗ corresponding author. 
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oughness of the particles, which introduces a cut-off in the hydrody-
amic interaction between the particles, which now makes the problem
onlinear. Consequently, the fore-aft symmetry is broken. It is finally
ound that the modeling of the trajectories based on the experimentally
easured roughness allows to describe accurately experimental results

6] . At the scale of suspensions, this induces asymmetric pair distribu-
ions functions (pdfs) and nonzero normal stress differences [43] . Again,
hen the experimentally measured roughness is taken into account to
odel the hydrodynamic interactions between pairs of particles, very

ood agreement is found between the experimentally measured and nu-
erically computed pdfs [5] . 

The study of particles in Newtonian fluids has been extended to iner-
ial flows [30,31,38] . In this last case, the fore-aft symmetry is also found
o be broken, due to the nonlinear convective acceleration; the magni-
ude of the asymmetry then depends on the Reynolds number. This has
een found to be accompanied with the vanishing of closed particle tra-
ectories [38] , and to the emergence of new forms of trajectories. All
hese features are predicted to impact the rheological behavior of iner-
ial suspensions, and to lead to observable Reynolds number dependent
heological properties [31] . 

Particles in non-Newtonian fluids have been much less studied,
lthough the case of particles suspended in viscoelastic fluids have re-
eived a lot of attention recently, in particular because of the tendency
f particles to form chains under flow [15] . Since yield stress fluids
re used in the industry to stabilize the particles against gravity, the
edimentation problem has been the subject of most studies on particles
uspended in yield stress fluids [4,22,46,53] , with a focus on a single
article and on the onset of flow. The rheological properties of model
 2018 
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uspensions have also been studied recently experimentally
13,39,45] and theoretically [3,8] . The method used by Chateau
t al. [8] , valid for any generalized Newtonian behavior, consists,
rst, in assuming that the overall properties of the suspension can
e accurately estimated from an average estimate ̄̇𝛾 local of the local
hear rate over the suspending fluid domain, second, in using one
f the material properties determined experimentally to estimate
he value of ̄̇𝛾 local , and finally, in using this last value to predict the
ther properties. Estimates of the suspension apparent viscosity have
hen been obtained by linearizing the suspending fluid behavior at
ach prescribed macroscopic shear rate and computing its effective
iscosity at the average local shear rate ̄̇𝛾 local . A major result is then
he interdependence of the evolutions of all rheological properties with
he particle volume fraction: it seems that all rheological properties
an be predicted as soon as one of them is known. This has first been
alidated experimentally on isotropic suspensions by Mahaut et al.
39] . However, some discrepancy between the rheological properties
volutions observed at low and high shear rates was reported by
varlez et al. [45] for sheared suspensions. This discrepancy was
ttributed to the emergence of a shear-rate-dependent microstructure
or the suspensions, as observed experimentally; it was indeed pointed
ut that the interdependence between rheological properties at low
nd high shear rate is obtained theoretically only under the assump-
ion that the microstructure is shear-rate-independent. The observed
hear-rate-dependent microstructure can have a large impact on the
heological behavior; e.g., it was found that the stress at flow onset is
trongly dependent on shear history. 

To better understand the origin of a shear-rate-dependent mi-
rostructure in yield stress fluids, we study numerically the hydrody-
amic interaction of two particles in an inertialess simple shear flow of a
Binghamian) yield stress fluid in two dimensions (2D). Pair trajectories
re computed by solving a Lagrange multiplier based fictitious domain
ethod, following Glowinski et al. [26 , 28 , 29] . Contacts between the
articles at a finite interparticle distance interpreted as a roughness are
aken into account with the da Cunha and Hinch [12] model. Another
odel, introduced by Glowinski et al. [27] , is shown to provide similar

esults in the limit of infinite contact stiffness. 
In Section 2 , we first present precisely the studied problem. The nu-

erical method used to solve the problem is then described in detail in
ection 3 . The results are finally shown and discussed in Section 4 before
onclusions. 

. Mathematical model 

We study the interaction of two neutrally buoyant and equal-sized
ircular particles in ℝ 

2 suspended in an incompressible Bingham fluid
ndergoing a simple shear flow of shear rate �̇�. In the simulations, we
pproximate this problem by solving the equations in a box with bound-
ry conditions chosen to ensure that the average shear rate is �̇�. It is then
xpected that, for large boxes, this might provide a good approximation
f the solution for an infinite domain. 

A sketch of the two-dimensional problem that we solve is shown in
ig. 1 : two particles of radius a , denoted by P 1 ( t ) and P 2 ( t ), are placed
ymmetrically in a rectangular box, Ω, of size L ×W . The collective par-
icle region at a certain time t is denoted by 𝑃 ( 𝑡 ) = 𝑃 1 ( 𝑡 ) ∪ 𝑃 2 ( 𝑡 ) . External
oundaries are denoted by Γ = 𝜕Ω = 

⋃4 
𝑖 =1 Γ𝑖 and the boundary of the i th

article by 𝜕P i ( t ). The origin of the coordinate system is located at the
enter of the domain; x is the flow direction and y is the velocity gradient
irection. On the upper and lower boundaries, equal and opposite ve-
ocities, ± 𝑼 W 

= ± ̇𝛾𝑊 ∕2 , are prescribed. Periodic boundary conditions
re prescribed on the left and right boundaries. We refer to the initial
erpendicular distance between the line of motion and the x -axis as the

nitial offset and denote it by 𝑦 −∞ (e.g., it corresponds to the far upstream
 -coordinate of P 1 ( t ), as 𝑥 → −∞). Changing the value of the parameter
 allows to tune the strength of hydrodynamic interaction between
−∞

172 
he two particles. We neglect inertia and body forces for both the fluid
nd the particles. 

Hence, the motion of the fluid is governed by the Stokes set of equa-
ions 

 ⋅ 𝝈 = 0 in Ω∖ 𝑃 ( 𝑡 ) , (1) 

 ⋅ 𝒖 = 0 in Ω∖ 𝑃 ( 𝑡 ) , (2) 

here u is the fluid velocity and 𝝈 is the total stress tensor. Eqs. (1) and
2) are the balance equations of momentum and mass, respectively. For a
iscoplastic Bingham fluid, 𝝈 is split into spherical and deviatoric parts:

= − 𝑝 𝑰 + 𝝉 , (3)

here p is the pressure, I is the second-order identity tensor, and 𝝉 is
he deviatoric stress tensor. 

The constitutive law for the Bingham fluid reads 

( 𝒖 ) = 2 𝜂𝑫 ( 𝒖 ) + 𝜏0 
𝑫 ( 𝒖 ) |𝑫 ( 𝒖 ) | if |𝑫 ( 𝒖 ) | ≠ 0 , 

𝝉( 𝒖 ) | ≤ 𝜏0 if |𝑫 ( 𝒖 ) | = 0 , 
(4) 

r equivalently 

 ( 𝒖 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
( 

1 − 

𝜏0 |𝝉( 𝒖 ) |
) 

𝝉( 𝒖 ) 
2 𝜂

if |𝝉( 𝒖 ) | > 𝜏0 , 

0 otherwise , 
(5)

here 𝜏0 is the yield stress, 𝜂 is the plastic viscosity, 𝑫 ( 𝒖 ) = ( 𝛁 𝒖 +
 𝒖 𝑇 )∕2 is the rate of deformation tensor, and, for any tensor 𝜻 = ( 𝜻 𝑖𝑗 ) ,

he notation | 𝜻| represents the following matrix norm 

𝜻|2 = 

1 
2 
𝜻 ∶ 𝜻 = 

1 
2 
∑
𝑖,𝑗 

𝜻2 
𝑖𝑗 
. 

otice that, for 𝜏0 = 0 , we recover the constitutive law for Newtonian
iscous fluids. 

The equations that govern the motion of the i th particle are the fol-
owing inertialess Newton-Euler equations 

 = 𝑭 ℎ 
𝑖 
+ 𝑭 

𝑝 

𝑖 
, (6) 

 = 𝑻 ℎ 
𝑖 
+ 𝑻 

𝑝 

𝑖 
, (7) 

here 𝑭 𝑝 
𝑖 

and 𝑻 𝑝 
𝑖 

are respectively the resultant and the moment of the
ontact forces acting on the i th particle due to the other particle coming
lose to it. In the whole paper, we assume that collision between parti-
les give rise only to normal forces, which yields that the contact torque
 

𝑝 

𝑖 
is zero. The detail of the contact model is presented in Section 3.2 .

 

ℎ 
𝑖 

and 𝑻 ℎ 
𝑖 

denote respectively the resultant and the moment of the hy-
rodynamic forces acting on the i th particle which are calculated by 

 

ℎ 
𝑖 
= ∫𝜕𝑃 𝑖 ( 𝑡 ) 

𝝈 ⋅ 𝒏 d 𝑠, (8) 

 

ℎ 
𝑖 
= ∫𝜕𝑃 𝑖 ( 𝑡 ) 

( 𝒙 − 𝑿 𝑖 ) × ( 𝝈 ⋅ 𝒏 ) d 𝑠, (9) 

here X i is the position of the center of the i th particle and n is the unit
ormal vector to 𝜕P i ( t ) pointing out of the particle. All the moments are
omputed about the center of the particles. The position X i of the i th-
article and its angular rotation 𝚯i are obtained by integration of the
inematic equations 

d 𝑿 𝑖 

d 𝑡 
= 𝑼 𝑖 , 𝑿 𝑖 ( 𝑡 = 0) = 𝑿 𝑖, 0 , (10) 

d 𝚯𝑖 

d 𝑡 
= 𝝎 𝑖 , 𝚯𝑖 ( 𝑡 = 0) = 𝚯𝑖, 0 . (11) 

here U i and 𝝎 i are respectively the translational velocity and the an-
ular velocity of the i th particle. 

For circular particles, Eq. (11) is completely decoupled from the
ther equations and may be ignored. Finally, the following boundary
onditions are needed to close the system 



H. Fahs et al. Journal of Non-Newtonian Fluid Mechanics 261 (2018) 171–187 

Fig. 1. Schematic description of the two-dimensional fluid-particle system: two particles P 1 ( t ) and P 2 ( t ) are suspended in a rectangular fluid domain, Ω, with boundary 

conditions enforcing a linear shear flow far from the particles. 
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 = 𝑼 𝑖 + 𝝎 𝑖 × ( 𝒙 − 𝑿 𝑖 ) on 𝜕𝑃 𝑖 ( 𝑡 ) (12) 

 = 𝒖 Γ = �̇�𝑦 𝒆 𝑥 on Γ1 ∪ Γ3 (13) 

 (− 𝐿 ∕2 , 𝑦 ) = 𝒖 ( 𝐿 ∕2 , 𝑦 ) ∀𝑦 ∈ [− 𝑊 ∕2 , 𝑊 ∕2] (14) 

q. (12) is the no-slip boundary condition on the particle surface. Equa-
ion (13) gives the shear flow condition on the external fluid boundaries
hereas Eq. (14) states periodic conditions on Γ2 and Γ4 . Note that,

he boundary data 𝒖 Γ satisfy the compatibility condition ∫Γ 𝒖 Γ ⋅ 𝒏 dΓ = 0 .
ince inertia is neglected, no initial condition is required for the velocity
eld of the fluid as well as the particles. In our simulations, we use a
tress-free state, 𝝈|𝑡 =0 = 0 and a pressure-free state, 𝑝 |𝑡 =0 = 0 , as initial
onditions over the whole domain. 

. Numerical model 

.1. Combined weak formulation 

We use a Lagrange multiplier based fictitious domain method for
olving the problem which was developed by Glowinski et al. [26–29] .
he key idea of this method is to artificially fill the interior of the parti-
les with the fluid and to introduce a Lagrange multiplier on the particle
oundaries to enforce the rigid-body motion constraint. Its main advan-
age is that the problem, in the whole domain, can be discretized on
 fixed uniform finite element grid, independent of the actual bound-
ry of moving particles. This avoids the construction of boundary-fitted
eshes for each different position of the moving particles and allows

he use of fast and efficient solvers. 
In this work, we follow the approach of Glowinski et al. [26] and

atankar et al. [48] in the derivation of the weak form where the fluid-
article motion is treated implicitly via a combined weak formulation
n which the hydrodynamic force and torque on a particle boundary
xactly cancel. The fluid flow equations are enforced inside, as well as
utside, the particle boundaries. The flow inside and on each particle
oundary is constrained to be a rigid-body motion using a distributed
agrange multiplier. This multiplier can be viewed as a pseudo-force
o maintain the rigid-body motion inside the particle boundary, and is
nalogous to the pressure in incompressible fluid flow, whose gradient
s the force required to maintain the constraint of incompressibility. In
he method of Glowinski et al. [26] the constraint of rigid body motion
s written in the following form 

 ( 𝒙 ) = 𝑼 𝑖 + 𝝎 𝑖 × ( 𝒙 − 𝑿 𝑖 ) , ∀𝒙 ∈ 𝑃 𝑖 . (15)
173 
hus, the translational and angular velocities of the particles appear, in
ome sense, as “extra unknowns ”, in addition to the velocity field inside
he particles. Hence, the resulting algorithm requires extra conditions
n the space of the distributed Lagrange multipliers if the particles are
eutrally buoyant. We prefer to adopt the approach of Patankar et al.
48] in which the rate of deformation tensor is constrained to be zero
nside each particle in order to impose the rigid body condition 

 ( 𝒖 ) = 0 in 𝑃 𝑖 ( 𝑖 = 1 , 2) . (16)

qs. (15) and (16) are equivalent. As a consequence, the extra unknowns
re eliminated from the coupled system of equations and the resulting
lgorithm does not require extra conditions for handling neutrally buoy-
nt particles. 

We define the solution spaces for the velocity and pressure as 

 𝒖 Γ
= { 𝒗 | 𝒗 ∈ [ 𝐻 

1 (Ω)] 2 , 𝒗 = 𝒖 Γ on Γ1 ∪ Γ3 , 𝒗 periodic on Γ∖(Γ1 ∪ Γ3 )} , 

 0 = { 𝒗 | 𝒗 ∈ [ 𝐻 

1 (Ω)] 2 , 𝒗 = 0 on Γ} , 

 = 𝐿 

2 (Ω) , 

 0 = { 𝑞 | 𝑞 ∈ 𝐿 

2 (Ω) , ∫Ω 𝑞 dΩ = 0} . 

he combined weak formulation can be stated as follows: For a.e. t > 0,
nd 𝒖 ∈  𝒖 Γ , 𝑝 ∈  0 and 𝝀 ∈ Λ( 𝑡 ) = [ 𝐿 

2 ( 𝑃 ( 𝑡 ))] 2×2 such that 

∫Ω 𝝉( 𝒖 ) ∶ 𝑫 ( 𝒗 ) dΩ − ∫Ω 𝑝 𝛁 ⋅ 𝒗 dΩ + ∫𝑃 ( 𝑡 ) 
𝝀 ∶ 𝑫 ( 𝒗 ) dΩ = ∫Ω 𝑨 𝑐 ⋅ 𝒗 dΩ, 

∀ 𝒗 ∈  0 , (17) 

∫Ω 𝑞 𝛁 ⋅ 𝒖 dΩ = 0 , ∀ 𝑞 ∈  , (18) 

∫𝑃 ( 𝑡 ) 
𝑫 ( 𝒖 ) ∶ 𝝀 dΩ = 0 , ∀𝝀 ∈ Λ( 𝑡 ) . (19) 

here 𝝀( t ) is the distributed Lagrange multiplier for the rigidity con-
traint and A c is a continuous force field defined on the whole domain
hich accounts for all the forces applied to the i th particle due to colli-

ion 

 𝑐 ( 𝒙 ) = 

{ 

𝑨 𝑐,𝑖 if 𝒙 ∈ 𝑃 𝑖 
0 otherwise 

with 𝑨 𝑐,𝑖 = 

1 
𝑉 𝑖 

𝑭 
𝑝 

𝑖 
(20)

here 𝑉 𝑖 = 𝜋𝑎 2 is the surface of the i th particle. Putting (20) into the
ight hand side of (17) for a velocity field complying with the constraint
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Fig. 2. Two-dimensional sketch of the grid used in the fictitious domain method where each particle is discretized using a triangular mesh. We also show the finite 

element approximations for the pressure p , velocity u , deformation-rate tensor D ( u ) and Lagrange multipliers 𝝀 and 𝝀b . 

Fig. 3. Sketch of the trajectories resulting from the collision of two particles suspended in a shear flow. P 1 , of initial position ( − 𝑥 −∞, 𝑦 −∞), comes from the upper 

left part of the fluid domain while P 2 , of initial position ( 𝑥 +∞, − 𝑦 −∞), comes from the lower right part of the domain. 𝜉min denotes the minimal distance experienced 

by the particles during their collision. 𝑦 +∞ (resp. − 𝑦 +∞) denotes the final vertical position of P 1 (resp. P 2 ). 
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f rigid body (15) or (16) for each particle yields the power of the colli-
ion forces. The above formulation has two important advantages. The
rst is that the hydrodynamic force and torque do not need to be com-
uted. The second advantage is that the resulting finite element schemes
re not subject to a numerical instability which can arise when the equa-
ions of fluid and particle motion are integrated as a coupled system with
xplicitly computed force and torque [see 33 ]. 

The numerical implementation of the formulation (17) –(19) is dif-
cult because of the non-differentiable form of 𝝉( u ) at the yield point
nd the indeterminate nature of the stress in the unyielded regions [61] .
wo main approaches have been developed to overcome the compu-
ational difficulties associated with the discontinuity of the constitu-
ive law, namely the regularization techniques [47] and the multiplier
ethod [17,19] . In the regularization methods the nonsmooth equation

s replaced by an approximated one in which the material at the rigid
egion behaves like a very viscous fluid, whereas the multiplier method
s equivalent to the original constitutive law. The work of Frigaard and
ouar [24] compared both methods and showed that the regularization
ethod failed in accurately tracking the yield surfaces. 
174 
Following the multiplier method of Dean et al. [18] , the constitutive
quation (4) , is rewritten as follows 

( 𝒖 ) = 2 𝜂𝑫 ( 𝒖 ) + 𝜏0 𝝀𝑏 , (21)

here 𝝀b is a tensor-valued function (the multiplier) verifying 

𝑏 = 𝝀𝑇 
𝑏 
, |𝝀𝑏 | ≤ 1 , 𝝀𝑏 ∶ 𝑫 ( 𝒖 ) = |𝑫 ( 𝒖 ) |. (22)

he above relations are equivalent to 

𝑏 ( 𝑡 ) =  Λ𝑏 

[
𝝀𝑏 ( 𝑡 ) + 𝛼𝑫 ( 𝒖 ( 𝑡 )) 

]
, ∀𝛼 > 0 , a.e. on (0 , 𝑇 ) (23)

here Λb is the closed convex set of [ L 2 ( Ω)] 2 ×2 defined by 

𝑏 = { 𝜻 | 𝜻 ∈ [ 𝐿 

2 (Ω)] 2×2 , 𝜻 = 𝜻𝑇 , |𝜻( 𝒙 ) | ≤ 1 , a.e. on Ω} , (24)

nd  Λ𝑏 
is the orthogonal-projection operator from [ L 2 ( Ω)] 2 ×2 onto Λb ; it

erifies 

 Λ𝑏 
( 𝜻)( 𝒙 ) = 𝜻( 𝑥 ) [ max (1 , |𝜻( 𝒙 ) |) ] −1 , a.e. on Ω, ∀𝜻 ∈ [ 𝐿 

2 (Ω)] 2×2 . (25)

Substituting (21) into (17) yields 
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Fig. 4. Validation: particle trajectories in a Stokes flow, with the same geometric parameters as Choi et al. [9] ( 𝑎 = 0 . 1 , 𝑥 ∞ = 0 . 5 , 𝐿 = 4 , 𝑊 = 1 ). For the sake of 

comparison, data are not plotted here in the dimensionless space, as in Choi et al. [9 , Figure 31]. 
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Fig. 5. Wall effect: trajectories for two different box sizes. The local minimum 

of the trajectories (previously observed experimentally is eliminated when using 

a large box. Dotted lines correspond to reversing trajectories, the dashed line is 

a closed trajectory. 
∫Ω(2 𝜂𝑫 ( 𝒖 ) + 𝜏0 𝝀𝑏 ) ∶ 𝑫 ( 𝒗 ) dΩ − ∫Ω 𝑝 𝛁 ⋅ 𝒗 dΩ + ∫𝑃 ( 𝑡 ) 

𝝀 ∶ 𝑫 ( 𝒗 ) dΩ = ∫Ω 𝑨 𝑐 ⋅ 𝒗 dΩ, (26) 

From now, we non-dimensionalize all lengths by the radius of the
articles a , the time by the inverse of the shear rate �̇�−1 , the velocity by
̇ 𝑎 and the pressure and total stress by 𝜂�̇�. We also introduce the classical
imensionless Bingham number 

 𝑛 = 

𝜏0 
𝜂�̇�

. 

or the sake of simplicity we do not introduce different notations for the
imensionless quantities; Eq. (26) now reads 

∫Ω(2 𝑫 ( 𝒖 ) + 𝐵𝑛 𝝀𝑏 ) ∶ 𝑫 ( 𝒗 ) dΩ − ∫Ω 𝑝 𝛁 ⋅ 𝒗 dΩ + ∫𝑃 ( 𝑡 ) 
𝝀 ∶ 𝑫 ( 𝒗 ) dΩ

= ∫Ω 𝑨 𝑐 ⋅ 𝒗 dΩ, (27) 

Eq. (27) , combined with the dimensionless forms of Eqs. (18) ,
19) and (23) , constitute the complete set of the dimensionless com-
ined weak formulation. 

.2. Collision strategy 

For handling more than one particle in the fluid, a collision model
s required to prevent particles from interpenetrating each other. Theo-
etically, smooth rigid particles in a Newtonian fluid cannot touch since
he viscous fluid in the narrow gap between close particles exerts lu-
rication forces which prevent the collision within a finite time [16] .
owever, in numerical simulations, particles can come into contact or
ven overlap each other due to the discretization errors. Moreover, in
xperiments, particles are never perfectly smooth. It has been shown in
lanc et al. [6] that any small surface roughness causes the particles to
ome into contact, which impacts the suspensions microstructure and
ehavior. This point thus has to be finely controlled in simulations. 

Different collision models have been developed to prevent interpen-
tration and handle the interparticle direct interaction that results from
ollision. The first approach consists in accurately approximating the
ubrication forces by locally refining the gap zone between the particles
s proposed by Hu [32] . Furthermore, the time step has to be reduced
ignificantly in order to resolve the collision which makes the result-
ng scheme computationally expensive. To handle this problem numer-
cally, less time consuming numerical models have been proposed, such
175 
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Fig. 6. Wall effect: minimum separation distance during purely hydrodynamic interactions, 𝜉min , as a function of the initial offset 𝑦 −∞, for different box sizes, for 

𝐵𝑛 = 0 . 

Fig. 7. Wall effect: Trajectories of particle P 1 with purely hydrodynamic interactions and two different box sizes 96 ×48 (solid line) and 192 ×96 (dashed line) for 

𝐵𝑛 = 10 ; 𝑦 −∞ = 0 . 2 . The local minimum is eliminated when using a large box. 
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s repulsive potential force models [27,42,58] , lubrication theory-based
ollision models [41,44] , hard-sphere models [2,35] , repulsive velocity
arrier models [14] , stochastic collision models [52] , and adaptive col-
ision time models [37] . In all these models, a security zone is defined
round the particle such that when the gap between particles is smaller
han the security zone a repelling force is activated which pushes them
part. This repelling force is usually introduced between particles to
ualitatively model non-hydrodynamic effects such as surface roughness
hich play a major role not only in causing particle contacts but also

n the rheological behavior of suspensions [59,60] . Therefore, the accu-
ate numerical modeling of the collision process is crucial for the quality
f the simulation and its comparison with experimental results. Some
f these models have been recently analyzed and compared by Usman
56] for the simulation of particle sedimentation in two-dimensions. 
b  

176 
Two collision models are investigated here. The first one is suggested
y Glowinski et al. [27] and well-tested in the context of fictitious do-
ain method, where a short-range repulsion force between particles that

re near contact is introduced. It takes the following explicit form 

 

𝑝 

𝑖 
( 𝑿 𝑖 ) = 

1 
𝛿
( 𝑿 𝑖 − 𝑿 𝑗 ) ( 𝜀 − 𝜉) 2 , (28) 

here 𝛿 is a small positive stiffness parameter that determines the mag-
itude of this force; 𝜀 is the characteristic range of the force, 𝜉 = 𝑟 − 2
s the dimensionless surface-to-surface separation with r the dimension-
ess center-to-center separation. The repulsive interactions are present
nly for 𝜉 < 𝜀 . In this approach, the choice of the stiffness parameter 𝛿 is
rucial. If 𝛿 is too large, the interpenetration will not be prevented, and
f it is too small, the repulsive force will be too strong and particles will
ounce too much during the collision, as explained by Hu et al. [34] . In
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Fig. 8. Comparison between the trajectories of particle P 1 obtained with the repulsive potential force model of Glowinski et al. [27] (dashed lines) and those obtained 

with the surface roughness model of da Cunha and Hinch [12] (solid line) for box size 96 × 48. For both models the contact begins at the same point (open square). 

For the model of da Cunha and Hinch [12] the contact ends when the particles cross the symmetry axis 𝑥 = 0 (vertical dashed-dotted line). For the model of Glowinski 

et al. [27] , the contact ends in the extensional quadrant depending on the value of the stiffness parameter 𝛿 (closed circles). Parameters: 𝐵𝑛 = 0 , 𝑦 −∞ = 0 . 4 , 𝜀 = 0 . 3 . 

g  

n  

t  

k  

a  

c  

t
 

[  

h  

t  

p  

W  

e  

w  

i  

g  

t  

t  

r  

l  

m  

m

3

 

t
 

l

𝑼

𝝎

w  

c  

 

c  

c  

Δ  

s  

t  

s

𝑿

T  

o

𝑿

F  

s  

a  

p  

c

𝑿

w  

m  

c  

f  

H  

E  

b
 

f

𝑿

T  

p  

c  

m  
eneral, the ideal value of 𝛿 may vary from case to case and still there is
o accurate theory to determine the appropriate values of this parame-
er. According to Glowinski et al. [26] , the particle surfaces should be
ept at a distance of more than one grid element apart, in order to have
t most one rigid body motion constraint at each node. Anyway, in this
ollision scheme, there is no control on the minimum distance between
he particles and the particles may still overlap. 

The second collision model we use is that of da Cunha and Hinch
12] for the surface roughness. Let 𝜀 be the dimensionless roughness
eight or the maximum allowed dimensionless film thickness between
he surfaces of the two particles. Assume that all contacts between the
articles have the same minimum center-to-center separation 𝑟 = 2 + 𝜀 .
hen the particles are at their minimum separation, a normal force is

xerted to prevent particles to interpenetrate but no force is exerted
hen the particle separate. Furthermore, the effects of the roughness

s ignored up to the point of contact. The flow brings the particles to-
ether in the compressive quadrants of shear and separates them when
hey are in the extensional quadrants. This model changes neither the
angential motion nor the rotational motion. The model can be summa-
ized as follows. First, we check if the surface-to-surface separation, 𝜉, is
arger than the minimum separation, 𝜀 . If 𝜉 < 𝜀 , then both particles are
oved away at a distance ( 𝜀 − 𝜉)∕2 along their line of centers so that the
inimum constraint is always verified. 

.3. Computational scheme 

Let Δ𝑡 = 𝑡 𝑛 +1 − 𝑡 𝑛 > 0 be a time discretization step with t n the n th
ime level. For any field f ( t ), we denote by f n its value at time 𝑡 = 𝑡 𝑛 . 

Step 1: Calculate particle velocity: given u n and P i ( t 
n ), find the trans-

ational and angular velocities of the i th particle 

 

𝑛 
𝑖 
= 

1 
𝑉 𝑖 ∫𝑃 𝑖 ( 𝑡 𝑛 ) 

𝒖 𝑛 dΩ (29) 

 

𝑛 
𝑖 
= 

1 
𝐼 𝑖 ∫𝑃 𝑖 ( 𝑡 𝑛 ) 

( 𝒙 − 𝑿 

𝑛 
𝑖 
) × 𝒖 𝑛 dΩ (30) 

here 𝐼 𝑖 = 𝜋𝑎 4 ∕2 is the second moment of area of the i th particle. For
ircular particles, the calculation of the angular velocity is not necessary.
177 
Step 2: Update the particle positions. When particles come near
ontact, the time step should be reduced. We adopt here a subcy-
ling technique similar to that considered in Patankar et al. [48] . Let
𝑡 𝑘 = Δ𝑡 ∕ 𝐾 𝑡 ( 𝑘 = 1 , … , 𝐾 𝑡 ) be the local time step with K t the number of

ubstep calculations. Set 𝑿 

𝑛 +1 , 0 
𝑖 

= 𝑿 

𝑛 
𝑖 
. First, the new interim configura-

ion is obtained by integrating the kinematic Eq. (10) using the explicit
econd-order Adams–Bashforth scheme 

 

∗ 
𝑖 

𝑛 +1 ,𝑘 = 𝑿 

𝑛 +1 ,𝑘 −1 
𝑖 

+ 

( 

3 𝑼 

𝑛 
𝑖 
− 𝑼 

𝑛 −1 
𝑖 

2 

) 

Δ𝑡 𝑘 (31) 

he first time step of the simulation is performed with an explicit first-
rder Euler scheme 

 

∗ 
𝑖 

𝑛 +1 ,𝑘 = 𝑿 

𝑛 +1 ,𝑘 −1 
𝑖 

+ 𝑼 

𝑛 
𝑖 
Δ𝑡 𝑘 . (32) 

or nonhydrodynamic interactions, i.e. 𝑭 𝑝 
𝑖 
≠ 0 in (10) , the particle po-

itions in the above equations are considered as intermediate positions
nd should be corrected by using the collision models discussed in the
revious section. For the model of Glowinski et al. [27] , this correction
an be seen as a second-order perturbation in time 

 

𝑛 +1 ,𝑘 
𝑖 

= 𝑿 

∗ 
𝑖 

𝑛 +1 ,𝑘 + 

[ 

𝑭 
𝑝 

𝑖 
( 𝑿 

𝑛 +1 ,𝑘 −1 
𝑖 

) + 𝑭 
𝑝 

𝑖 
( 𝑿 

∗ 
𝑖 

𝑛 +1 ,𝑘 ) 
2 𝑀 𝑖 

] 

Δ𝑡 2 
𝑘 

2 
. (33) 

here 𝑭 𝑃 
𝑖 

is the repulsive force given in (28) , and M i is the pseudo-
ass of the i -th particle. Note that the pseudo-mass M i is used only to

ompute the new position of the particle as a function of the contact
orce evaluated at time 𝑡 + Δ𝑡 𝑘 and is not used elsewhere in this work.
ence M i is just a parameter of the contact law. A careful examination of
qs. (28) and (33) allows to show that the contact stiffness is controlled
y the product M i 𝛿. In the numerical computation, we choose 𝑀 𝑖 = 𝑉 𝑖 . 

For the model of da Cunha and Hinch [12] , the correction is done as
ollows: 

 

𝑛 +1 ,𝑘 
𝑖 

= 𝑿 

∗ 
𝑖 

𝑛 +1 ,𝑘 + 

𝜀 − 𝜉

2 𝑟 
( 𝑿 

∗ 
𝑖 

𝑛 +1 ,𝑘 − 𝑿 

∗ 
𝑗 

𝑛 +1 ,𝑘 ) (34) 

his correction is equivalent to a modification of the velocity of the i th
article, 𝑼 

𝑛 
𝑖 
, by ( 𝜀 − 𝜉)∕2Δ𝑡 𝑘 along the line of centers. Furthermore, one

an verify that the minimal distance of the particles after collision is still
aintained, |𝑿 

𝑛 +1 ,𝑘 
𝑖 

− 𝑿 

𝑛 +1 ,𝑘 
𝑗 

| = 2 + 𝜀 . Set 𝑿 

𝑛 +1 
𝑖 

= 𝑿 

𝑛 +1 ,𝐾 𝑡 
𝑖 

, this gives the
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Fig. 9. Roughness effect for a Newtonian fluid ( 𝐵𝑛 = 0 ): (top panel) trajectories of particle P 1 for varying surface roughness 𝜀 , for 𝑦 −∞ = 0 . 3 ; (bottom panel) trajectories 

with varying initial offset 𝑦 −∞ for surface roughness 𝜀 = 0 . 35 . 
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article positions at time level 𝑡 𝑛 +1 . In our calculations, the number of
ubsteps is chosen as 𝐾 𝑡 = 1 for 𝜉 ≥ 𝜀 and 𝐾 𝑡 = 10 for 𝜉 < 𝜀 . Taking more
han 10 substeps has no effect on the simulation. 

Finally, the particle contact force A c , i in (20) is given by 

 

𝑛 +1 
𝑐,𝑖 

= 

2 
(Δ𝑡 ) 2 

( 

𝑿 

𝑛 +1 
𝑖 

− 𝑿 

𝑛 
𝑖 
− 

( 

𝑼 

𝑛 
𝑖 
+ 𝑼 

𝑛 −1 
𝑖 

2 

) 

Δ𝑡 

) 

his term provides an additional body force acting on the particle and
s included in the combined weak formulation to be solved in the next
tep. 

Step 3: Solving the generalized Stokes problem. Assuming all quan-
ities at time level n are known and let 

𝑛 +1 , 0 
𝑏 

= 𝝀𝑛 
𝑏 
∈ Λ𝑏 

or k ≥ 0, find 𝒖 𝑛 +1 ,𝑘 +1 , 𝑝 𝑛 +1 ,𝑘 +1 and 𝝀𝑛 +1 ,𝑘 +1 from 

 ∫Ω 𝑫 ( 𝒖 𝑛 +1 ,𝑘 +1 ) ∶ 𝑫 ( 𝒗 ) dΩ − ∫Ω 𝑝 𝑛 +1 ,𝑘 +1 𝛁 ⋅ 𝒗 dΩ + ∫𝑃 ( 𝑡 𝑛 +1 ) 
𝝀𝑛 +1 ,𝑘 +1 ∶ 
178 
𝑫 ( 𝒗 ) dΩ

= ∫Ω 𝑨 

𝑛 +1 
𝑐 

⋅ 𝒗 dΩ − 𝐵𝑛 ∫Ω 𝝀
𝑛 +1 ,𝑘 
𝑏 

∶ 𝑫 ( 𝒗 ) dΩ, (35) 

∫Ω 𝑞 𝛁 ⋅ 𝒖 𝑛 +1 ,𝑘 +1 dΩ = 0 , (36) 

∫𝑃 ( 𝑡 𝑛 +1 ) 
𝑫 ( 𝒖 𝑛 +1 ,𝑘 +1 ) ∶ 𝝀 dΩ = 0 . (37) 

hen, we calculate 𝝀𝑛 +1 ,𝑘 +1 
𝑏 

from 

𝑛 +1 ,𝑘 +1 
𝑏 

=  Λ𝑏 

[
𝝀
𝑛 +1 ,𝑘 
𝑏 

+ 𝛼𝑫 ( 𝒖 𝑛 +1 ,𝑘 +1 ) 
]
, (38) 

here 𝛼 is an iterative parameter and  Λ𝑏 
is defined by (25) . The

bove step is iterated for k until the solutions are converged. The con-
ergence of the algorithm is proved in Dean et al. [18] for the inter-
al 0 < 𝛼 < 2/ Bn . The stopping criterion used in the numerical results
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Fig. 10. Roughness effect: minimal separation distance, 𝜉min , as a function of the initial offset 𝑦 −∞ (line), for a Newtonian fluid ( 𝐵𝑛 = 0 ). The same curve can be 

used to obtain the critical offset, 𝑦 𝑐, −∞, as a function of the surface roughness, 𝜀 (open circles). The box size is 96 ×48. This figure should be compared with Fig. 2 of 

Frechette and Drazer [23] . 

Fig. 11. Trajectories with purely hydrodynamic interactions and varying initial offset for Bingham number 𝐵𝑛 = 0 , 1 , 10 , 30 . 
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s |𝝀𝑛 +1 ,𝑘 +1 
𝑏 

− 𝝀
𝑛 +1 ,𝑘 
𝑏 

| ≤ 10 −4 for 𝛼 = 1∕ 𝐵𝑛 . The number of iterations re-
uired for convergence depends on the Bingham number and the initial
ffset. It decreases with increasing the Bingham number and increases
ith increasing the initial offset. 

The sub-problem (35) –(37) , after the discretization in space, is a fi-
ite dimensional linear problem with the following twofold saddle-point
tructure 
t  

179 
 

 

 

 

𝑨 𝑩 

𝑇 𝑪 

𝑇 

𝑩 0 0 
𝑪 0 0 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝒖 

𝑝 

𝝀

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝒇 

0 
0 

⎤ ⎥ ⎥ ⎦ (39) 

here each row corresponds to one of the equations (35) –(37) . In (39) , A
s the Laplacian matrix for the velocity, B is the divergence matrix and C
s the coupling matrix between the fluid velocity and the Lagrange mul-
iplier. This problem can be considered as a generalized Stokes problem,
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Fig. 12. (left) Trajectories of particle P 1 with initial offset 𝑦 −∞ = 1 . 0 (top), 𝑦 −∞ = 0 . 5 (center) and 𝑦 −∞ = 0 . 2 (bottom) for purely hydrodynamics interaction and 

varying Bingham number 𝐵𝑛 = 0 , 1 , 10 , 30 . (right) Corresponding particles separation as a function of the particle P 1 horizontal position for varying Bingham number 

𝐵𝑛 = 0 , 1 , 10 , 30 . Initial offset 𝑦 −∞ = 1 . 0 (top), 𝑦 −∞ = 0 . 5 (center) and 𝑦 −∞ = 0 . 2 (bottom). 
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nd it is solved using an Uzawa/conjugate gradient algorithm together
ith a fast Fourier transform based solver. The stopping criterion of the
lgorithm is ‖r ( k ) ‖/ ‖r (0) ‖≤ 𝜀 cg where r ( k ) is the residual error at the k th
teration, and 𝜀 cg is a given tolerance. It typically takes less than 5 iter-
tions in our simulations to achieve convergence when 𝜀 𝑐𝑔 = 5 × 10 −8 . 

The set of equations (35) –(38) are discretized in space by using the
alerkin finite-element method. We introduce a regular finite-element
artition  Ω

ℎ 
of Ω made of squares, where h is the mesh size. Then, a

wice finer partition  Ω
ℎ ∕2 is obtained by joining the midpoints of the

dges of  Ω
ℎ 
, dividing each square into 4 similar subsquares. For the dis-

rete velocity-pressure spaces, we use continuous linear polynomials for
he velocity defined on the finer grid  Ω

ℎ ∕2 (the so-called 𝑄 1 -iso- 𝑄 2 ele-

ents) and continuous linear polynomials ( Q 1 ) for the pressure defined
n the grid  Ω

ℎ 
, as shown in Fig. 2 . This choice of the finite dimen-

ional spaces satisfies the Babuska–Brezzi inf-sup condition, and guar-
ntees well-posedness of the formulation. For the discretization of the
agrange multiplier 𝝀( t ), we approximate the functional space Λ( t ) by
iecewise constant functions defined on a triangular mesh,  𝑃 𝑖 ( 𝑡 ) 

ℎ 𝑖 
, mov-

ng with each rigid body P i ( t ). A linear interpolation is used to project 𝝀
rom the particle mesh to the uniform background mesh and to project u
rom the background mesh to the particle mesh. Thanks to the rotation
180 
nvariance property of the circular particles, the mesh  𝑃 𝑖 ( 𝑡 ) 
ℎ 𝑖 

is obtained

y translating  𝑃 𝑖 (0) 
ℎ 𝑖 

by the vector 𝑿 𝑖 ( 𝑡 ) − 𝑿 𝑖 (0) . According to Glowinski

t al. [27] , some compatibility conditions have to be satisfied between
he spaces used to approximate { u , p } and 𝝀. Let ℎ 𝒖 = ℎ ∕2 and h i be
he mesh sizes associated to the velocity grid  Ω

ℎ ∕2 and to the rigid body

esh  𝑃 𝑖 ( 𝑡 ) 
ℎ 𝑖 

. A relation of the form h u ∼ 𝜅h i with 0.1 < 𝜅 < 1 is needed in

rder to satisfy some inf-sup condition, as explained in Court et al. [10] .
n our numerical computations we take ℎ 𝒖 = 0 . 56 ℎ 𝑖 which seems to be
 good compromise between these two alternatives. 

One of the most important issue of the fictitious domain method is
he calculation of integrals involving the distributed multiplier. Let  ( 𝑡 ) 

ℎ 

e the intersection between each edge of each element in  𝑃 𝑖 ( 𝑡 ) 
ℎ 𝑖 

and  Ω
ℎ ∕2 .

he partition  ( 𝑡 ) 
ℎ 

contains a set of edges S . We approximate the last term
f the left-hand side of Eq. (35) with 

𝑃 𝑖 ( 𝑡 ) 
𝝀ℎ ∶ 𝑫 ℎ ( 𝒗 ℎ ) dΩ = ∫ 𝑃 𝑖 ( 𝑡 ) 

ℎ 𝑖 

𝝀ℎ ∶ 𝑫 ℎ ( 𝒗 ℎ ) dΩ = 

∑
𝑆∈ ( 𝑡 ) 

ℎ 

∫𝑆 

𝒗 ℎ ⋅ 𝒏 𝑆 d 𝑆 (40)

here n S is the unit outward normal to S . The last integral in (40) is eval-
ated numerically by using an appropriate quadrature rule over S . Since
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Fig. 13. Critical interparticle distance 𝜉cri (i.e. interparticle distance of departure from the flow driven motion) as a function of the Bingham number Bn for several 

values of the initial offset 𝜉−∞. 

Fig. 14. Minimal separation distance, 𝜉min , as a function of the initial offset 𝑦 −∞, for different Bn . The same curve can be used to obtain the critical offset, 𝑦 𝑐, −∞, as 

a function of the surface roughness, 𝜀 for each Bn . 
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he finite element space used for the velocity includes polynomials up to
egree one in each direction, the integrand in (40) involves polynomials
p to degree 2. In our implementation we use a 3-point Newton-Cotes
ule which is exact for polynomials of degree 2 over segments. 

.4. Computation times 

Computations have been realized on a linux workstation (64 Go
emory, xeon E5-2650@2.00 HHz). The code has not been parallelized.
s regards the computing time, for a 96 ×48 box, the full computation of
ne pair particle trajectory in the Binghamian regime ( Bn ≠0) requires
bout 20 h. 
181 
. Results 

.1. Sketch of a trajectory and definitions 

In Fig. 3 , we show a sketch of the particle trajectories. 
The initial positions of the particles are ( − 𝑥 −∞, 𝑦 −∞) and ( 𝑥 −∞,

 𝑦 −∞). Their minimum separation distance during collision is denoted

min . Their final positions are ( 𝑥 +∞, 𝑦 +∞) and ( − 𝑥 +∞, − 𝑦 +∞). For con-
enience, the final positions are set as 𝑥 +∞ = 𝑥 −∞. For particles in-
eracting only through hydrodynamic interaction, symmetric trajecto-
ies are expected (ie 𝑦 +∞ = 𝑦 −∞) as a natural consequence of time
eversibility. 
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Fig. 15. Shear rate fields around one particle (left) and two particles (right) in the shear flow ( ̇𝛾 = 1 ) of a Newtonian fluid ( 𝐵𝑛 = 0 ). The blue (resp. red) line is the 

�̇� = 0 . 9 (resp. �̇� = 1 . 1 ) isoline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Shear rate fields around one particle (left) and two particles (right) in the shear flow ( ̇𝛾 = 1 ) of a Bingham fluid ( 𝐵𝑛 = 30 ). The blue (resp. red) line is the 

�̇� = 0 . 9 (resp. �̇� = 1 . 1 ) isoline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In the following, all the numerical simulation were performed for
 −∞ = −3 . 

.2. Validation 

In order to validate our code, we first consider pair trajectories of
D particles in an inertialess Newtonian fluid, with the same geometric
arameters as Choi et al. [9] , in the absence of contact forces. The tra-
ectories are depicted in Fig. 4 . The agreement with figure 31 in Choi
t al. [9] is excellent. 

.3. Box size effects 

In this subsection, we evaluate the impact of working with a finite
ize box on the results. In Fig. 5 we show the pair trajectories in a New-
onian fluid ( 𝐵𝑛 = 0 ), for 2 different box sizes. 

When the box is too small, the particles tend to first move down-
ards. There are reverse trajectories (dotted lines in Fig. 5 ) which tend

o replace the closed trajectories (dashed lines), due to hydrodynamic
nteractions between the particles and the walls. The local minimum of
182 
he trajectories (previously observed experimentally (e.g., Snijkers et al.
51 , Figure 7]) and numerically (e.g., Choi et al. [9 , Figure 31]) is thus
liminated when using a large box. 

The box size also has an impact on the minimum separation distance
uring collision 𝜉min . The values of 𝜉min as a function of the initial ver-
ical position 𝑦 −∞ are depicted in Fig. 6 for different box sizes. 

𝜉min is an increasing function of 𝑦 −∞ in all cases. However, for small
oxes, no data are obtained below a critical value of 𝑦 −∞ because of the
everse trajectories. Moreover, at a given 𝑦 −∞, 𝜉min is much lower for
mall boxes. It is readily seen in Fig. 6 that 𝜉min converges (to the value
or an infinite domain) when the box size is increased. A box size equal
o 96 × 48 then appears to be a good compromise between precision
nd computation cost. 

In a Binghamian fluid, the influence of the box walls is further en-
anced at large Bingham number by plastic effects, as illustrated in
ig. 7 for a Bingham number 𝐵𝑛 = 10 . 

The trajectory for a 96 × 48 box can be compared to the Newto-
ian case ( 𝐵𝑛 = 0 ) of Fig. 5 . It is seen that for 𝐵𝑛 = 10 , wall effects are
till present, leading the particle to first move downwards, by contrast
ith the case 𝐵𝑛 = 0 . This effect is eliminated by increasing the box
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Fig. 17. Norm of the disturbance velocity around one particle at fixed distance from the particle center ( 𝑟 ∕ 𝑎 = 2 ) for several Bingham number. 

Fig. 18. Norm of the disturbance velocity around one particle along the 𝜃 = 45 𝑜 direction for several Bingham numbers. 
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ize again. However, the computational cost is too expensive at such
ox sizes. In the following we will thus mainly present results obtained
sing boxes with size 96 × 48. It is readily seen in Figs. 7, 11 , 12 and
9 that such a box size does not allow to eliminate all the hydrody-
amical interactions between the particles and the walls for the largest
ingham number values and the smaller initial offsets. As we are mainly

nterested in this work to the effect of short range hydrodynamical in-
erparticle interactions and surface roughness on collision-induced ver-
ical displacement (ie difference between the final offset and the initial
ffset 𝑦 +∞ − 𝑦 −∞) it is believed that this effect is weak enough not to
ffect the observed trends and it remains possible to study the influence
f the initial offset 𝑦 −∞, the roughness 𝜀 and the Bingham number Bn
n this process. Furthermore the departure from symmetry observed in
ig. 12 (left) provides an estimate of the numerical error in our sim-
183 
lations, which is increased as Bn is increased: we can not go beyond
n = 30 in a reasonable computation time. 

.4. Surface roughness effects 

In Fig. 8 we compare the trajectories obtained for the two models of
ontact studied in this paper, in the case of a Newtonian fluid ( 𝐵𝑛 = 0 ).

It is clearly observed that both models are equivalent when the stiff-
ess parameter 𝛿 of the Glowinski et al. [27] model ( Eq. (28) ) ap-
roaches zero, i.e., in the limit of infinite stiffness. This result raises
oubt about the Hu et al. [33] claim that small values for 𝛿 are not
hysically relevant. As Hu et al. [33] have provided no quantitative ar-
uments to support their opinion we do not further discuss this point
n the sequel. Furthermore the da Cunha and Hinch [12] model being
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Fig. 19. Bingham effect: trajectories with varying initial offset for the roughness parameter 𝜀 = 0 . 35 and different Bingham number Bn . 
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ore convenient and having only one parameter, we thus show only
esults obtained with this model. 

We now discuss the impact of roughness on the trajectories.
ig. 9 (top panel) shows the trajectories obtained in a Newtonian fluid
or an initial position 𝑦 −∞ = 0 . 3 for various surface roughness 𝜀 . For
 ≤ 0.2, 𝑦 +∞ = 𝑦 −∞, symmetric trajectories are observed. This is due to
he fact that particles do not touch, as the minimum interparticle dis-
ance in the absence of roughness is slightly higher than 0.2 (see Fig. 6 ).
or 𝜀 > 0.2, particles come into contact and trajectories are no more
ymmetric; 𝑦 +∞ > 𝑦 −∞, and 𝑦 +∞ increases as the roughness is increased.

In Fig. 9 (bottom panel), we plot the trajectories in a Newtonian fluid
 𝐵𝑛 = 0 ) for a surface roughness 𝜀 = 0 . 35 and various initial positions
 −∞. It is observed that it exists a critical value of the initial offset,
enoted 𝑦 𝑐, −∞ in the sequel, above which trajectories are symmetric,
hereas they are asymmetric for 𝑦 −∞ < 𝑦 𝑐, −∞. Again, this is due to the

act that particles do not touch when the minimum interparticle distance
n the absence of roughness is higher than 𝜀 ; from Fig. 6 , it is seen that
t is the case for 𝑦 −∞ larger than ≃0.55 for 𝜀 = 0 . 35 i.e 𝑦 𝑐, −∞( 𝜀 = 0 . 35) ≃
 . 55 . More generally, for any surface roughness 𝜀 , 𝑦 𝑐, −∞( 𝜀 ) is solution of
he equation 

min 
(
𝑦 𝑐, −∞( 𝜀 ) 

)
= 𝜀 

Using a bisection method we show that 𝑦 𝑐, −∞ = 0 , 573 for 𝜀 = 0 , 35 .
he critical initial offset 𝑦 𝑐, −∞( 𝜀 ) is equal to the final offset 𝑦 +∞ for all
he trajectories with initial offset lower than 𝑦 𝑐, −∞( 𝜀 ) . This is the direct
onsequence of (i) fore-aft symmetry in Newtonian fluids in the absence
f inertia, and (ii) the da Cunha and Hinch [12] model used in this work.
ndeed, when particles come into contact, they stay at their minimum
eparation distance ( 𝜀 ) as long as they are in the compressive quadrant
 y > 0, x < 0, for particle P 1 ). As soon as the particles enter the exten-
ional quadrant (now x > 0 for y > 0 for particle P 1 ), they interact only
ydrodynamically and their trajectory is that of smooth particles expe-
iencing a minimal surface separation equal to 𝜀 . We checked in our
184 
imulations that the functions 𝑦 𝑐, −∞( 𝜀 ) and 𝜉min ( 𝑦 −∞) are identical (see
ig. 10 ), as already shown in [23,50] . 

.5. Impact of the Bingham number 

.5.1. Hydrodynamic interactions 
We plot the trajectories of particle P 1 for given Bingham numbers

n and various initial offset 𝑦 −∞, for purely hydrodynamic interactions
 𝜀 = 0 ) in Fig. 11 . 

Several trends can be observed. First, increasing the Bingham num-
er seems to cause the disappearance of closed trajectories. This is cor-
elated to the observation of reversing trajectories for a wider range of
nitial positions when increasing Bn . E.g., for 𝑦 −∞ = 0 . 1 , open trajecto-
ies are observed for 𝐵𝑛 = 0 and 1, a closed trajectory is observed for
𝑛 = 10 , while a reversing trajectory is observed for 𝐵𝑛 = 30 . An other

elated observation is that, for large Bn , particles tend to move toward
he x-axis when approaching and to move away after crossing. All of
hese trends have also been observed in another nonlinear problem by
ulkarni and Morris [38] , for inertial flows. However, as expected in

he absence of inertia, fore-aft symmetry of particles trajectories is ob-
erved here in all cases. This last observation is in contradiction with
xperimental observations of fore-aft asymmetry in a paper under re-
iew at the same time as our paper [21] ; in yield stress fluids such as
oncentrated microgel suspensions, important elastic effects – absent in
ur simulations – may indeed lead to fore-aft asymmetry [22] . 

We now plot in Fig. 12 the particle P1 trajectories (left) and the
nterparticle distance 𝜉 vs particle P1 horizontal position (right) for
arying Bingham numbers. It can be seen that at large Bn the particles
rst approach without significant hydrodynamic interaction: indeed the
traight part of the 𝜉( x ) curves corresponds to two approaching particles
hat would move respectively along horizontal streamlines 𝑦 ( 𝑥 ) = 𝑦 −∞
nd 𝑦 (− 𝑥 ) = − 𝑦 −∞. The departure from this flow driven motion to a
egime in which interparticle hydrodynamic interaction affects the par-
icle trajectories depends on Bn : increasing the Bingham number seems



H. Fahs et al. Journal of Non-Newtonian Fluid Mechanics 261 (2018) 171–187 

Fig. 20. Angle of first contact between the particles as a function of the initial offset 𝑦 −∞, for different Bn and roughness 𝜀 = 0 . 35 , measured as the angle between 

the two particle centers and the Ox axis. The angle of last contact is equal to 𝜋/2 whatever the roughness, the initial position and the Bingham number. 
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h  

𝑦  
o decrease the range of interparticle hydrodynamic interaction. This is
onsistent with the recent experimental observations of Firouznia et al.
21] for particles trajectories in a Carbopol gel. It is reminded that the
light departure from symmetry in Fig. 12 (left) provides an estimate
f the numerical error in our simulations, which is increased as Bn is
ncreased; for this reason, we do not go beyond Bn = 30 in this work. 

Closer inspection of the trajectories ( Fig. 12 - left) and of the 𝜉( x )
unctions ( Fig. 12 - right) shows that the particles come closer on to the
ther when Bn is increased. As it is clearly seen in bottom Fig. 12 for
 −∞ = 0 . 2 , at 𝐵𝑛 = 0 particles smoothly approach each other while at
𝑛 = 30 there are two regimes: for most interparticle distances they
ardly interact while they suddenly repel strongly when the interpar-
icle distance decreases to approximatively 0.15. During all their hy-
rodynamic interaction, this distance does not change significantly. To
easure this effect it is convenient to introduce a critical distance 𝜉cri 

s the gap between the particles at which departure from flow driven
otion occurs. More precisely, as a single particle suspended in a large

olume of fluid undergoing a simple sheared fluid moves in a horizon-
al straight line, departure from the rectilinear motion is the signature
f the presence in the neighborhood of one or several others particles.
e arbitrarily define 𝜉cri as the distance between particles at which the

ap between straight horizontal trajectories and real trajectories become
arger than 5% of the particle radius. The critical distance 𝜉cri is clearly
n decreasing function of the Bingham number, which is reminiscent
o what is observed for the creeping motion of a solid object in a yield
tress fluid [4,54] . To illustrate this, we plot in Fig. 13 the interparticle
istance of departure from the flow driven motion 𝜉cri (estimated to oc-
ur for a gap between straight trajectories and real trajectories smaller
han 5% of the particle radius) as a function of the Bingham number. 

As a consequence the minimal separation distance 𝜉min between two
mooth particles decreases when Bn increases (see Fig. 14 ) which in
urn enhances the surface roughness effects: contact between particles
hould thus occur for smaller surface roughness at large Bn . This point
s further discussed in the next section. 

Understanding the hydrodynamic interaction between particles re-
uires to study the velocity and shear rates fields around particles. To
o so, we plot the colormap of shear rate around one particle (left) and
wo particles (right) in linear shear flow of a Newtonian fluid ( 𝐵𝑛 = 0 )
n Fig. 15 and in linear flow of a Bingham fluid ( 𝐵𝑛 = 30 ) in Fig. 16 . 
c  

185 
It is readily seen from Figs. 15 and 16 that the shear rate fields for
𝑛 = 0 and 𝐵𝑛 = 30 are very different, which explains why the hydrody-
amic interactions are also different. Transitions from high shear rate
egions to low shear rate regions are more smooth for the Newtonian
uid than for the Bingham fluid, which is not surprising since it is well
nown that plastic materials are more prone to localization than viscous
nes. Moreover the maximum value of the shear rate is larger for Bing-
am fluid than for Newtonian fluid. This is also a direct consequence
f stronger localization of shear rate for plastic material. Furthermore a
squared ” rigid region appears around the particle when the Bingham
umber is large ( 𝐵𝑛 = 30 ) as it can be seen in Fig. 16 . 

Because of the strong differences between the Newtonian and Bing-
amian shear rate field morphologies it is difficult to assess the relative
agnitude of the hydrodynamic interaction from Figs. 15 and 16 even

t is clearly seen that the flow is strongly modified in the area between
he particles. A convenient quantitative evaluation of hydrodynamic in-
eraction ranges has been proposed by [21] . As they did, we compute
he normalized norm of the difference between the computed velocity
eld and the far field velocity (ie the quantity ||𝒖 − �̇�𝑦 𝒆 𝑥 ‖|∕ max ||𝒖 ||)
ver the domain Ω\ P ( t ). Variation of normalized disturbance velocity
round one particle at fixed distance 𝑟 ∕ 𝑎 = 2 from the particle center is
lotted in Fig. 17 and the same quantity as a function of the particle
enter distance along the 𝜃 = 45 𝑜 direction is represented in Fig. 18 . It
s readily seen in Figs. 17 and 18 that the relative disturbance velocity
ecays more rapidly for viscoplastic flow. Moreover, similarly to what
as been observed by [21] , the relative disturbance velocity norm is
aximum in the 𝜃 = 45 𝑜 direction for a Newtonian fluid whereas it is
o more the case when the Bingham number is large enough. When
omparing our results to the experimental work of [21] , It should be
ept in mind that our simulations have been performed for a 2d sys-
em (circular cylinders) whereas experimental data are for a 3d system
spheres). 

.5.2. Impact of roughness 
We now study the case of rough particles. 
In Fig. 19 , we plot the trajectories of particles suspended in a Bing-

am fluid for a surface roughness 𝜀 = 0 . 35 and various initial positions
 −∞, for various Bn . As for a Newtonian fluid ( 𝐵𝑛 = 0 ), it exists a criti-
al offset 𝑦 𝑐, −∞ below which all trajectories lead to a contact and follow
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[  
he same trajectory in the extensional quadrant, leading to a depletion
one; again, 𝑦 𝑐, −∞( 𝜀, 𝐵𝑛 ) and 𝜉min ( 𝑦 −∞, 𝐵𝑛 ) are identical (see Fig. 14 ). All
he trajectories starting from 𝑦 −∞ ≤ 𝑦 𝑐 ( 𝜀, 𝐵𝑛 ) reach the same final offset
 c ( 𝜀 , Bn ) while particles starting from 𝑦 −∞ > 𝑦 𝑐 ( 𝜀, 𝐵𝑛 ) do not experience
irect contact during their crossing. y c ( 𝜀 , Bn ) is an increasing function
f Bn . In other words, there is a fore-aft asymmetry which is enhanced
y plastic effects; this feature is also observed in recent experiments
21] . Another related feature is that contacts between particles occur
or smaller surface roughness at large Bn . This is illustrated in Fig. 14 . 

In addition to the enhanced fore-aft asymmetry, increasing the Bing-
am number leads to longer contact duration. To characterize quantita-
ively this feature, we plot the angle of first contact between the parti-
les as a function of the initial offset 𝑦 −∞, for different Bn and roughness
 = 0 . 35 in Fig. 20 . The contact angle is defined as the angle between the
wo particle centers and the Ox axis. It is reminded that for our contact
odel, the angle of last contact is equal to 𝜋/2 whatever the roughness,

he initial position and the Bingham number; therefore, the smaller the
alue of the first contact angle, the longer the contact duration. This
s likely related to the observation of smaller ranges of hydrodynamic
nteraction between particles for large Bingham numbers (see Fig. 13 ). 

These observations of Bingham-number-dependent fore aft-
symmetry and contact duration must have an impact on the
icrostructure of suspensions of particles in a yield stress fluid.
onsistently, a large impact of the Bingham number was reported
n the microstructure of concentrated suspensions in Ovarlez et al.
45] : the shear-rate-dependent depletion zones observed through X-ray
omography for real suspensions can at least qualitatively be explained
y the enhanced fore-aft asymmetry of the two particles trajectories at
arge Bingham number. 

. Conclusion 

We have studied numerically the pair trajectories of rigid circular
articles in a two dimensional inertialess simple shear flow of a (Bing-
amian) yield stress fluid. Due to the nonlinear behavior of the suspend-
ng fluid, it is found that the trajectories of the particles depend on the
ingham number. In the absence of interparticle contacts, fore-aft sym-
etry is observed in all cases; however, the particles are found to come

loser to each other as the Bingham number is increased. When particles
ome into contact, due to the particle roughness, a fore-aft asymmetry
f trajectories is observed. Plastic effects are found to enhance surface
oughness effects: contacts between particles occur for smaller surface
oughness at large Bn . Moreover, the magnitude of the asymmetry is an
ncreasing function of both the Bingham number and the particle rough-
ess. The impact of the Bingham number Bn on the trajectory is likely
elated to a decrease of the range of hydrodynamic interactions as Bn
s increased. These observations may explain why the microstructure of
uspensions of particles in a yield stress fluid is shear-rate-dependent
45] leading to a complex nonlinear macroscopic behavior. 
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