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a b s t r a c t 

The steady shear viscosity of bubbly suspensions is known to depend upon the suspending fluid viscosity, the bubble volume fraction and a dimensionless number 

(the capillary number) accounting for the deformability of the bubbles under a viscous stress. However, experimental data on bubbly suspensions in the literature 

are scarce and present two main shortcomings: (i) the studied systems are polydisperse, which leads to arbitrariness in the definition of a capillary number, and (ii) 

there is a lack of data for capillary numbers of order unity, where bubbles are slightly deformable. This leads to the absence of clear conclusion on the relevance 

of the existing theoretical models. In order to make significant progress, an original device is designed to produce monodisperse suspensions of bubbles in a highly 

viscous Newtonian fluid. The steady shear viscosity of the bubbly suspensions is measured in the dilute and semi-dilute concentration regimes (volume fraction of 

bubbles between 2% and 18%) using a Couette geometry with a 20-bubbles-wide gap, for capillary numbers ranging between 0.01 and 10. The new obtained data 

are shown to be much more accurate than data previously reported in the literature. Experimental data are in very good agreement with the model of Frankel and 

Acrivos (1970), originally developed for dilute suspensions, in the whole range of studied volume fractions. 
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. Introduction 

Understanding the behavior of suspensions of particles, bubbles and

roplets, is of high importance for application in the industry (fresh

oncrete, foodstuff, cosmetic products, plaster foams…) and in the en-

ironment (mudslides, lava flows…). A key point is to be able to predict

heir behavior as a function of their content. 

For rigid nonBrownian particles dispersed in a Newtonian fluid, the

uspension has a linear behavior but is non-Newtonian (normal stress

ifferences proportional to the shear rate emerge [1] ). Its shear viscosity

s ( 𝜙) is proportional to the suspending fluid viscosity 𝜂0 and increases

ith the particle volume fraction 𝜙. In the dilute regime, the dimension-

ess viscosity is given by the Einstein equation [2] : 

𝑠 ∕ 𝜂0 = 1 + 2 . 5 𝜙 (1)

At high volume fractions, many phenomenological expressions exist,

mong which the Krieger-Dougherty equation [1] , which describes the

ivergence of the viscosity at a given maximum volume fraction 𝜙m 

, is

he most widely used: 

𝑠 ∕ 𝜂0 = 

( 

1 − 

𝜙

𝜙𝑚 

) −2 . 5 𝜙𝑚 

(2)

This equation was built to account for the viscosity divergence while

emaining consistent with the Einstein equation at low 𝜙. 

For suspensions of bubbles, in addition, the shear viscosity depends

n the applied stress. Indeed, in the limit of infinitely low stresses, bub-

les behave similarly to rigid particles, with a difference on the bound-

ry condition (no slip at the interface of a rigid particle, slip at the in-

erface of a bubble); the shear viscosity is then found to increase with
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he bubble volume fraction. In the limit of infinitely high stresses, bub-

les are deformed and the viscosity is found to decrease with the bubble

olume fraction. At a given volume fraction, the suspension then has a

hear-thinning behavior between two viscosity plateaus. 

The shear-induced deformation of bubbles is accounted for by a di-

ensionless number, the capillary number Ca , which compares the vis-

ous stress at the origin of the bubble deformation, and the capillary

tress resisting to deformation: 

𝑎 = 𝜏𝑅 ∕Γ (3)

ith R the bubble radius, 𝜏 the shear stress applied to the suspension,

nd Γ the air/liquid surface tension. 

For dilute bubble suspensions, the behavior in the limit of nonde-

ormable ( Ca ≪ 1) and fully deformable ( Ca ≫1) bubbles is theoretically

nown [3,4] : 

𝑠 ∕ 𝜂0 = 1 + 𝜙 for 𝐶𝑎 ≪ 1 (4)

𝑠 ∕ 𝜂0 = 1 − 5 𝜙∕3 for 𝐶𝑎 ≫ 1 (5)

Several models have been proposed to account for the behavior of

ubbly suspensions for any capillary number [4–9] . 

The steady-state response of dilute (i.e., at first order in 𝜙) emulsions,

f which bubbly suspensions are a special case, has first been computed

y Oldroyd [5] . This has later been extended to time-dependent flows by

rankel and Acrivos [4] , with rigorous development at first order in the

roplet deformation. For bubbly suspensions, the steady-state viscosity
, Pessac F-33600, France. 
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i  
n the Frankel and Acrivos (1970) model reads 

𝑠 ∕ 𝜂0 = 1 + 

1 − ( 12∕5 ) 𝐶 𝑎 2 

1 + ( 6 𝐶𝑎 ∕5 ) 2 
𝜙 (6)

Beyond the dilute limit, several attempts have been made to de-

ive a constitutive behavior with the help of homogenization techniques

6,8,9] . 

Pal [8] has proposed an expansion of the Frankel and Acrivos (1970)

odel for concentrated suspensions based on the same idea as the

rieger-Dougherty equation. The steady-state viscosity in this model

eads 

𝑠 ∕ 𝜂0 = 

( 

1 − 

𝜙

𝜙𝑚 

) − 𝜙𝑚 1 + 𝐾 1 𝐾 2 ( 6 𝐶𝑎 ∕5 ) 2 

1 + 𝐾 

2 
1 ( 6 𝐶𝑎 ∕5 ) 2 

(7)

ith 𝐾 1 = ( 1 − 

𝜙

𝜙𝑚 
) − 

16 
15 𝜙𝑚 , 𝐾 2 = ( 1 − 

𝜙

𝜙𝑚 
) 
8 
5 𝜙𝑚 . For monodisperse bubbles,

 value of 𝜙m 

≃0.64 is expected [10] . 

Faroughi and Huber [9] have used an incremental approach to com-

ute the properties of concentrated suspensions, which leads to an im-

licit equation for the steady-state viscosity: 

𝑠 ∕ 𝜂0 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 − 

(
5 
3 

)(
6 𝐶𝑎 

5 

)2 (
𝜂𝑠 ∕ 𝜂0 

)2 
1 − 

(
5 
3 

)(
6 𝐶𝑎 

5 

)2 

⎞ ⎟ ⎟ ⎟ ⎠ 
− 4 5 

= 

( 

𝜙𝑚 − 𝜙

𝜙𝑚 ( 1 − 𝜙) 

) − 𝜙𝑚 
1− 𝜙𝑚 

(8)

lso with 𝜙m 

≃0.64. 

All these models are consistent at first order in 𝜙, with in particular

 predicted crossover of all curves at a value 𝜂𝑠 ∕ 𝜂0 = 1 for a critical

apillary number independent of 𝜙: 

 𝑎 𝑐 = 

√
5∕12 ≃ 0 . 65 (9)

However, these models provide slightly different predictions in the

emi-dilute regime studied here, where the Frankel and Acrivos (1970)

odel is not expected to be relevant. 

There also exists an empirical model developed by Rust and Manga

7] to be consistent with their experimental data: 

𝑠 ∕ 𝜂0 = 𝜂𝑠, ∞∕ 𝜂0 + 

𝜂𝑠, 0 ∕ 𝜂0 − 𝜂𝑠, ∞∕ 𝜂0 
1 + ( 0 . 72 𝐶𝑎 ) 1 . 43 

(10)

ith 𝜂𝑠, ∞∕ 𝜂0 = 1 − 1 . 14 𝜙 − 9 . 8 𝜙2 , 𝜂𝑠, 0 ∕ 𝜂0 = ( 1 − 

𝜙

𝜙𝑚 
) − 𝜙𝑚 and 𝜙𝑚 = 0 . 6 . It

hould be noted that, in the dilute limit, this model is not consistent

ith the Frankel and Acrivos (1970) model and predicts a crossover of

ll curves at a value 𝜂𝑠 ∕ 𝜂0 = 1 for Ca c ≃1.27. 

Model bubble suspensions have been studied experimentally in

7,11,12,14] . 

Llewellin et al. [11] have studied the unsteady behavior of suspen-

ions of nitrogen bubbles in a golden syrup (with a viscosity of a few tens

f Pa.s), obtained with a commercial aerator. The resulting suspension

s very polydisperse, with bubble diameter ranging from 2 to 200 𝜇m.

ubble volume fraction is varied between 0.036 and 0.46. They have

easured the suspension response under oscillations of small strain am-

litude, which is ideal for testing the Frankel and Acrivos (1970) model

n its strict domain of validity. In these conditions, the behavior is shown

o be governed by the dynamic capillary number Cd = 

𝜂0 𝜔𝑅 
Γ , where 𝜔 is

he angular frequency of the applied oscillations; the dynamic 𝜂′ (Cd)

esponse should then be similar to the steady 𝜂( Ca ) response. However,

n arbitrary choice is introduced to take into account the large polydis-

ersity of the suspension, through the way viscosity is computed as an

verage of the contributions of the various bubble diameters (and thus

apillary numbers) present in the material; several possible weights de-

ending on the bubble diameter are proposed to compute this average,

hich makes the comparison to theoretical models somehow unsatisfac-

ory. 

Rust and Manga [7] have studied the steady state viscosity of bubbly

uspensions in the range of capillary numbers [0.09 – 3] and have found

heir results to be well fitted to a phenomenological model ( Eq. (10) )
20 
hey have developed. Their system is made up of a very viscous Newto-

ian fluid ( 𝜂0 = 180 Pa.s) in which bubbles are obtained by mixing. This

eads to very polydisperse suspensions (the exact polydispersity is not re-

orted, but a picture shows that the diameter varies over more than one

rder of magnitude, typically between 50 and 500 𝜇m). Several short-

omings can be noted: (i) their results are very scattered for Ca < 0.3,

ii) there is a lack of data at high capillary numbers, (iii) the system

olydispersity makes the definition of a capillary number tricky and is

ot taken into account in the comparison to the models by contrast with

11] and [12] ( Ca is computed with an arbitrary surface-averaged bub-

le radius), (iv) the stress (and thus capillary number) inhomogeneity

n the rheometer cell is not considered in the comparison to the models,

hereas it varies by more than a factor 2 across the gap of the geometry.

Joh et al. [12] have studied both the steady state viscosity and the

esponse to small strain oscillations of bubbly suspensions. Bubbles are

aid to be formed by “self explosion ” in a polyol fluid of viscosity 4 Pa.s,

 process leading to a polydisperse suspension with a bubble diameter

anging mostly between 50 and 600 𝜇m. The volume fraction is varied

etween 0.1 and 0.3; no data is reported in the dilute regime. The sus-

ensions are characterized using a 60 mm diameter and 2° angle cone-

nd-plate geometry. This choice looks surprising since the gap between

he cone and the plate is only 1 mm at the edge of the cone with such a

eometry, and decreases linearly down to a few tens of microns at the

one truncation. One may thus wonder if the results are really repre-

entative of the material bulk behavior; finite size effect such as bubble

lignment or even bubble squeezing due to confinement can indeed be

xpected [13] . They have used the same approach as Llewellin et al.

11] to take into account the suspension polydispersity in the compari-

on to the models; as mentioned above, there is then an arbitrary choice

n the way the contribution of each bubble diameter range to the over-

ll viscosity is estimated, which prevents from drawing final conclusions

n the relevance of the existing theoretical models. 

Torres et al. [14] have investigated the steady-state and dynamic

ehaviors of suspensions of bubbles in both Newtonian and non-

ewtonian fluids. The Newtonian suspending fluid is honey (viscosity:

.2 Pa.s), which is aerated with a commercial planetary-action mixer,

eading again to a polydisperse suspension, with a bubble diameter rang-

ng between 10 and 270 𝜇m. The bubbly suspension is studied within a

 mm gap parallel-plate geometry; the gap size is thus only 4 times the

argest bubble diameter. With a parallel plate geometry, the capillary

umber varies along the radial dimension, which is not taken into ac-

ount in the analysis. The studied volume fractions are 13, 14 and 27%;

o data is reported in the dilute regime. The capillary number is varied

etween 10 − 3 and 0.4; the high capillary number regime is not studied.

he same observations are made as in [7,11] . In addition, normal stress

ifferences have been characterized; as in suspensions of hard spheres,

hey are shown to be proportional to the shear rate at low capillary

umber. 

In order to make significant progress, an original device is designed

o produce monodisperse suspensions of bubbles in a highly viscous

ewtonian fluid. The shear viscosity of the bubbly suspensions is mea-

ured in the dilute and semi-dilute concentration regimes (volume frac-

ion of bubbles between 2% and 18%) using a Couette geometry, for

apillary numbers ranging between 0.01 and 10. The new obtained data

re shown to be much more accurate than data previously reported in

he literature. Experimental data are compared to the existing models,

nd are shown to be in very good agreement with the model of Frankel

nd Acrivos (1970), originally developed for dilute suspensions, in the

hole range of studied volume fractions. 

. Materials and methods 

The materials and methods are designed to: (i) avoid bubble rise

uring the experiments (this puts constraints on R / 𝜂0 , where R is the

ubble radius and 𝜂0 is the interstitial fluid viscosity), (ii) obtain data

n the range of capillary numbers [0.01 – 10] for typical shear rates
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Fig. 1. Shear viscosity as a function of the shear rate for the PDMS oil used 

as a suspending fluid in the present study for three different temperatures (see 

legend). 
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𝜙  

o  

b  
̇ that can be applied (this puts constraints on 𝜂0 𝑅 ̇𝛾∕Γ where Γ is the

ir/liquid surface tension), (iii) characterize a representative volume of

he material (this puts constraints on 𝛿/ R where 𝛿 is the gap size of the

heometer geometry), (iv) study monodisperse bubbles, (v) obtain vol-

me fraction as high as 20%. With all these constraints in mind, we have

tudied suspensions of bubbles of radius 350 𝜇m in a fluid of viscosity

00 Pa.s, within a Couette geometry of 6 mm gap, which are prepared

n-situ with a home-made setup. 

.1. Materials 

As a suspending fluid, we use a PDMS oil with a viscosity close to

00 Pa.s (Fungilab RT100000). The oil dynamic viscosity 𝜂0 is mea-

ured with a Kinexus Ultra + rheometer (Malvern Instruments) using a

hermostated cone-and-plate geometry. Within the investigated range of

hear rates, the PDMS oil exhibits a slight shear-thinning behavior, as

ften found for highly viscous polymeric fluids. The decrease in 𝜂0 val-

es is less than 5% as the shear rate increases from 0.01 s − 1 to 10 s − 1 ,

ut has to be taken into account as we need to characterize viscosity

ariations of a few percent when adding bubbles in the dilute regime.

oreover, the effect of temperature is noticeable: d( 𝜂0 )/d T ≈ 2 Pa.s/°C

ithin the range of temperature T 22–24°C (see Fig. 1 ). In the following,

emperature and shear rate dependencies are taken into account when

omputing the experimental dimensionless viscosity of the bubbly sus-

ension. 

It should be noted that the shear-thinning behavior of the oil leads

o slight viscosity variations within the gap of the wide-gap Couette ge-

metry used to characterize the bubbly suspensions (see below), since

he shear stress varies by a factor close to 2 from the inner to the outer

ylinder. These viscosity variations are less than 0.5%. Moreover, since

he local shear rate in the interstitial fluid is higher than the macro-

copic shear rate, the thinning behavior leads to a slight overestimation

f the actual fluid viscosity “seen’’ by the bubbles. In the range of vol-

me fraction investigated, the local shear rate increase can be estimated

15–17] to be less than 20%, thus leading to a maximum overestimation

f the fluid viscosity of 0.2%. 

Using a pendant drop tensiometer (Teclis) the surface tension of the

DMS oil is measured to be Γ = 20 ± 1 mN/m. 

The gas used to form the bubbles is dinitrogen (N 2 ). 500 μm dinitro-

en bubbles in PDMS oil are found to be stable with respect to ripening

ffects over times corresponding to the experiment, i.e. 30 min. There-

ore, the bubble size is entirely controlled by the generation process. 
21 
.2. Generation of the bubbly liquid 

Bubbles are formed in a T-junction with two entries (nitrogen and

iquid) and one exit (bubbly liquid). The liquid is pushed at a constant

olume flow rate q 0 using a syringe pump whereas the gas is pushed by

pplying a constant gas pressure at the entry of the T-junction (typically

 differential pressure equal to 2 bars). The T junction has an internal

iameter equal to 1.2 mm, in which a glass capillary of internal diame-

er 0.5 mm has been inserted. Outflow tubes have an internal diameter

qual to 2 mm and the apparent shear rate of the fluid is of the order of

 s − 1 . Thanks to the flow focusing mechanism [18] , small volumes of

as and liquid pass alternatively through the junction. The bubble size

s expected to be set by the internal diameter of the T-junction as well

s the liquid flow rate and the gas pressure. However, due to the high

iscosity of the liquid, the flow configuration is found to be stable only

ithin a limited range of the flow parameters for a given internal diame-

er, so that we are not able to tune easily the bubble size. In this study we

enerate steadily monodisperse assemblies of bubbles (see Fig. 2 ) with

 radius close to 350 μm. We notice a small rate, i.e. < 5%, of coales-

ence events, occurring mainly in the tubing between the generator and

he measurement cell. As explained in the following, the measurement

rocedure requires that we reproduce several times the same sample,

ith the same bubble size. The bubble size is measured by image anal-

sis of a monolayer of the foam bubbles squeezed between two glass

lides separated by spacers of known thickness. From preliminary mea-

urements for the bubble size produced for several runs with several

enerators, the bubble radius 𝑅 = 350 ± 30 μm used for this study corre-

ponds to the observed average value and the observed deviation. Sim-

larly, the measured volume fraction of gas incorporated in the liquid is

0 = 0 . 14 ± 0 . 01 at atmospheric pressure. This value results directly from

he bubble generation frequency and bubble size, so we are not able to

une it. As a consequence our approach consists in using simultaneously

 identical T-junctions, where n b of them are producing bubbles at 𝜙0 

nd each other junction (numbered 𝑖 ∈ [ 1 , 𝑛 − 𝑛 𝑏 ]) is injecting liquid at

 i without any bubble. In most of experiments, 2 < n < 4 and the result-

ng gas volume fraction is given by 𝜙 = 𝜙0 ∕( 1 + 

∑
i 
𝑞 𝑖 ( 1 − 𝜙0 )∕ 𝑛 𝑏 𝑞 0 ) . Note

hat (i) 𝜙0 is the maximum gas volume fraction that can be achieved

ith our generation setup, and that (ii) in practice, q 0 ≈ 0.3 mL/min. 

.3. Filling of the measurement cell 

Due to the absence of surfactant for stabilizing the bubbles in the

DMS oil, it is necessary to manipulate the bubbly liquid with great care

uring the filling of the measurement cell, in order to avoid breaking

ubbles or inducing coalescence. We have therefore developed a dedi-

ated measurement cell and a filling method which can be described as

ollows. The measurement cell is a Couette cylinder cell: inner (rotating)

ylinder r i = 12.5 mm, outer cylinder r o = 18.5 mm, height h = 40 mm;

he walls of the cylinders are serrated to avoid wall slip and bubble

lignment along the surfaces. The cell allows the filling from the bot-

om (see Fig. 2 ) thanks to a lid which locks the inner cylinder of the cell

nd also prevents the liquid from flowing out. During the filling step,

he cell is mounted on a rotation stage coupled to a vertical translation

tage, producing a helical displacement which allows for the bubbly liq-

id from the generators to be deposited inside the gap of the cell without

ignificant shear stress. When the cell is filled, a bottom is put in place,

he cell position is reversed and the cell is set in the rheometer. The

nner cylinder is attached, the lid is removed and the measurement can

tart. 

In considering the useful volume to be filled in the measurement cell,

.e. about 30 mL, the filling time varies from 12 min ( q 0 = 0.3 mL/min,

i 
𝑞 𝑖 = 2.2 mL/min and 𝜙= 0.02) to 20 min (4 × q 0 = 1.2 mL/min and

= 0.15). Those filling times are compatible with the slow rising process

f the bubbles in the PDMS oil. Indeed, the rising velocity of a single

ubble, which provides an upper bound for the bubbly suspension, is
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Fig. 2. Measurement cell and its filling procedure. The cell is composed of a main part, a lid (that is used during the filling step) and a bottom (used during the 

measurement). The filling is achieved with the cell in position 1 fixed on a displacement stage allowing a helical deposition of the bubbly liquid in the gap. The 

pictures show the filling step (4 tubes feed material inside the cell), the measurement step, and the bubbles in the bubbly liquid. 

Fig. 3. Dimensionless apparent viscosity 𝜂s, app / 𝜂0 of dilute bubbly suspensions 

versus capillary number Ca for two volume fractions ( 𝜙 = 0 . 018 ± 20% , 𝜙 = 
0 . 045 ± 20% , see legend). Previous data from Rust and Manga [7] for 𝜙 = 0 . 035 
are also plotted. 

g  

t  

d  

o  

i  

t  

v  

t  

t  

Fig. 4. Dimensionless apparent viscosity 𝜂s, app / 𝜂0 of dilute bubbly suspensions 

versus capillary number Ca for all volume fractions investigated (see legend). 

The predictions of the Frankel and Acrivos (1970) model are also plotted on the 

same graph, using the following 𝜙 values: 0.018, 0.045, 0.085, 0.125, 0.18. 
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iven by 𝑣 𝑏 = 𝜋Δ𝜌𝑔 𝑅 

2 ∕3 𝜂0 [19] , so that within our experimental condi-

ions v b ≈10 2 R 

2 ≈ 10 μm/s. Thus the average rising height of the first

eposited bubble layer is 𝐿 ≈ 10 5 𝑅 

2 ∼ 10 −2 m. Note that (i) this height

f liquid without bubble is partly contained in the lid of the cell, that

s removed afterwards (see Fig. 2 ), and (ii) due to the helical deposi-

ion method, the bubble assembly remains uniform with a modified gas

olume fraction that can be estimated to be 𝜙( ℎ + 𝐿 )∕ ℎ . Depending on

he filling time, the gas volume fraction in the cell is found to vary be-

ween 1.1 𝜙 and 1.25 𝜙, which finally allows us to study values of bubble
22 
olume fraction as high as 19%. This effect is taken into account in the

ollowing. 

.4. Rheological measurements 

The viscosity of the bubbly liquid is measured within steady flow

onditions at applied torque T , and the response of the material obtained

hrough the measurement of the resulting rotation velocity of the inner

ylinder Ω. The shear stress 𝜏 at a radial position r in gap of the Couette
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Fig. 5. Dimensionless apparent viscosity 𝜂s, app / 𝜂0 of dilute bubbly suspensions versus capillary number Ca for all the volume fractions investigated. The predictions 

of the various models presented in the introduction are also plotted on the same graphs (see legend) using the same value for the volume fraction, i.e. 𝜙 = 0.018 for 

(a), 𝜙 = 0.045 for (b), 𝜙 = 0.085 for (c), 𝜙 = 0.125 for (d), and 𝜙 = 0.18 for (e). 
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ell ( Fig. 2 ) is 

( 𝑟 ) = 𝑇 ∕2 𝜋ℎ 𝑟 2 (11)

hich implies that the local capillary number is 𝐶𝑎 ( 𝑟 ) = 𝜏( 𝑟 ) 𝑅 ∕Γ =
 𝑅 ∕2 𝜋ℎ Γ𝑟 2 . In the following, when discussing the data, we refer to the

alues of 𝜏( r ) and Ca ( r ) estimated at the average position ̄𝑟 = ( 𝑟 𝑖 + 𝑟 𝑜 )∕2 .
he shear rate at �̄� will be evaluated as its apparent value 

̇ 𝑎𝑝𝑝 ( ̄𝑟 ) = Ω 𝑟 2 
𝑜 
𝑟 2 
𝑖 
∕ 
[
r̄ 3 
(
𝑟 𝑜 − 𝑟 𝑖 

)]
(12)

hich is exact only for a Newtonian behavior. We will then report ap-

arent viscosity data 𝜂𝑠,𝑎𝑝𝑝 ( 𝐶𝑎 ) = 𝜏( ̄𝑟 )∕ ̇𝛾𝑎𝑝𝑝 ( ̄𝑟 ) . 
The spatial variations of Ca within the gap are of order 80%. For a

uantitative comparison of the experimental data and the models, these

patial variations need to be accounted for. For each of the models, the

ehavior of the theoretical bubbly suspension in the studied wide gap

ouette cell will thus be computed to compute the theoretically expected
𝑡ℎ 
𝑠,𝑎𝑝𝑝 

( 𝐶𝑎 ) , which will finally be compared to the experimental 𝜂𝑠,𝑎𝑝𝑝 ( 𝐶𝑎 ) ;
etails on these computations are provided in the next subsection. 

In contrast to the experiment performed by Rust and Manga [7] ,

t was not possible to measure continuously, i.e. with the same sample,

he viscosity corresponding to increasing values of Ca . Indeed, after sev-

ral rotations of the inner cylinder we observed large gas bubbles rising

rom the bulk sample and bursting at the free surface. This phenomenon

s due to the fact that the bubbles interface is not stabilized against co-

lescence, and this effect is all the more pronounced that the Ca value

s high and that the gas volume fraction is high. Therefore, we start the

easurement for a low value of Ca (typically 0.1) by applying a constant

tress, then we measure the viscosity for one or several larger Ca val-

es by applying various constant stress values and we return to the first

ow Ca value in order to check that the viscosity did not change, i.e. that

he sample remained homogenous during the measurement at higher Ca

alue. For each measurement, a constant stress is applied during 30 s,

hich was sufficient in all cases to reach a steady state. 

We notice that for the largest investigated gas volume fractions, it

as not possible to measure the viscosity corresponding to 𝐶𝑎 > ∼ 1 with-
23 
ut observing large bubbles rising; this points to the impact of bub-

le shape on the rise velocity of a bubble assembly. In the follow-

ng we report results for those where large bubble rising was not ob-

erved. Five small ranges of gas volume fractions have been considered:

= 0 . 018 ± 20% , 𝜙 = 0 . 045 ± 20% , 𝜙 = 0 . 085 ± 15% , 𝜙 = 0 . 125 ± 12% ,

nd 𝜙 = 0 . 18 ± 10% . For each range of volume fraction, 5 samples were

repared; in the following, at each 𝜙, we show the data averaged over

he 5 samples. 

.5. Model analysis 

As stated above, in order to make a quantitative comparison possi-

le between the experimental measurements and the models, we need

o account for the stress inhomogeneity in the Couette device. Indeed,

he model predictions are for homogeneous simple shear flows, whereas

xperimental data are apparent viscosity data 𝜂𝑠,𝑎𝑝𝑝 ( 𝐶𝑎 ) = 𝜏( ̄𝑟 )∕ ̇𝛾𝑎𝑝𝑝 ( ̄𝑟 ) in
n inhomogeneous stress field. In the following, we thus show how a

rediction 𝜂𝑡ℎ 
𝑠,𝑎𝑝𝑝 

( 𝐶𝑎 , 𝜙) can be computed from the theoretical prediction

s ( Ca, 𝜙) for the viscosity of a bubbly suspension of given volume frac-

ion 𝜙. 

We first note that, for a given torque T applied to the rheome-

er, 𝜏( 𝑟 ) = 𝑇 ∕2 𝜋ℎ 𝑟 2 , which does not depend on the material. The ac-

ual values of �̇�( 𝑟 ) and of the resulting macroscopic measurement Ω =
̇ 𝑎𝑝𝑝 ( ̄𝑟 )[ ̄𝑟 3 ( 𝑟 𝑜 − 𝑟 𝑖 ) ]∕[ 𝑟 2 𝑜 𝑟 

2 
𝑖 
] , however, are not known a priori and need

o be computed for each constitutive behavior. In order to compute
𝑡ℎ 
𝑠,𝑎𝑝𝑝 

( 𝐶𝑎 , 𝜙) , we need to know the value of �̇� 𝑡ℎ 
𝑎𝑝𝑝 

( ̄𝑟 ) for a given 𝜂s ( Ca,

). We first recall that �̇�( 𝑟 ) = − 𝑟 𝜕 𝑟 ( 𝜔 ( 𝑟 ) ) where 𝜔 ( r ) is the local rota-

ion velocity. We then write 
𝑟 0 
∫
𝑟 𝑖 

�̇�( 𝑟 )∕ 𝑟 d 𝑟 = 

𝑟 0 
∫
𝑟 𝑖 

− 𝜕 𝑟 ( 𝜔 ( 𝑟 ) )d 𝑟 = Ω by using the

oundary conditions 𝜔 ( 𝑟 𝑜 ) = 0 at the outer cylinder and 𝜔 ( 𝑟 𝑖 ) = Ω at

he inner cylinder. Replacing Ω by �̇� 𝑡ℎ 
𝑎𝑝𝑝 

( ̄𝑟 )[ ̄𝑟 3 ( 𝑟 𝑜 − 𝑟 𝑖 ) ]∕[ 𝑟 2 𝑜 𝑟 
2 
𝑖 
] and �̇�( 𝑟 ) by

ts actual value 𝜏( r )/ 𝜂s ( Ca, 𝜙), we then obtain: 
𝑟 0 
∫
𝑟 i 
𝜏( 𝑟 )∕[ 𝑟 𝜂𝑠 ( 𝐶𝑎, 𝜙)]d 𝑟 =

̇ 𝑎𝑝𝑝 ( ̄𝑟 )[ ̄𝑟 3 ( 𝑟 𝑜 − 𝑟 𝑖 ) ]∕[ 𝑟 2 𝑜 𝑟 
2 
𝑖 
] . Noting that 𝜏( 𝑟 ) = 𝜏( ̄𝑟 ) × �̄� 2 ∕ 𝑟 2 and 𝐶𝑎 ( 𝑟 ) =
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𝑎 × �̄� 2 ∕ 𝑟 2 , we end up with the following equation for 𝜂𝑡ℎ 
𝑠,𝑎𝑝𝑝 

( 𝐶𝑎 , 𝜙) =
( ̄𝑟 )∕ ̇𝛾𝑡ℎ 

𝑎𝑝𝑝 
( ̄𝑟 ) : 

𝑡ℎ 
𝑠,𝑎𝑝𝑝 

(
𝐶𝑎 , 𝜙

)
= 

[
�̄� 
(
𝑟 𝑜 − 𝑟 𝑖 

)
∕ 
(
𝑟 2 
𝑜 
𝑟 2 
𝑖 

)]
∕ 

𝑟 0 
∫
𝑟 𝑖 

1∕[ 𝑟 3 𝜂𝑠 
( 

𝐶𝑎 × �̄� 2 

𝑟 2 
, 𝜙

) 

]d 𝑟 (13)

hich needs to be computed for each theoretical behavior 𝜂s ( Ca, 𝜙). As

n example, the Frankel and Acrivos (1970) equation yields the follow-

ng development at first order in 𝜙 for 𝜂𝑡ℎ 
𝑠,𝑎𝑝𝑝 

( 𝐶𝑎 , 𝜙) : 

𝑡ℎ 
𝑠,𝑎𝑝𝑝 

(
𝐶𝑎 , 𝜙

)
= 1 − 

5 𝜙
3 

+ 

20 𝜙
9 

×
�̂� 2 0 ̂𝑟 

2 
𝑖 

�̂� 2 0 − ̂𝑟 2 
𝑖 

× 1 
𝐶𝑎 

× arctan 
⎛ ⎜ ⎜ ⎝ 
30 

(
�̂� 2 0 − ̂𝑟 2 

𝑖 

)
𝐶𝑎 

25 ̂𝑟 2 0 ̂𝑟 
2 
𝑖 
+ 36 𝐶𝑎 

2 

⎞⎟⎟⎠
(14)

here �̂� = 𝑟 ∕ ̄𝑟 . 

. Results and discussion 

In Fig. 3 we plot the apparent viscosity data obtained in the dilute

egime ( 𝜙< 5%) together with previous data from Rust and Manga [7] .

It is first observed that we successfully managed to obtain data much

ore accurate than previously reported and for a wider range of capil-

ary numbers. This opens the possibility to test accurately the proposed

odels, in particular in the dilute limit. We now switch to the presen-

ation of all of our data together with their comparison to the models

resented in the introduction. 

In Fig. 4 , we observe all the features of bubbly suspensions reported

n the literature: (i) the dimensionless viscosity 𝜂s, app / 𝜂0 is a decreasing

unction of the capillary number Ca , with a plateau at low Ca that is

eadily observable for Ca < 0.1, whereas the plateau at large Ca is not

bserved and should thus be attained for Ca > 10, (ii) 𝜂s, app / 𝜂0 is an

ncreasing function of 𝜙 at low Ca and a decreasing function of 𝜙 at

igh Ca , and (iii) there is a crossover of all curves at a same point ( 𝐶 𝑎 𝑐 ≃
 . 6 , 𝜂𝑠,𝑎𝑝𝑝 ∕ 𝜂0 = 1) consistent with the theoretical prediction for the dilute

egime ( Eq. (9) ). 

It is also remarkable here that the Frankel and Acrivos (1970) model

rovides a good agreement with all of our data, whereas it is a develop-

ent at first order in 𝜙 only, which is not a priori expected to be valid

or volume fractions larger than ≃5%. The same feature was observed

or the elastic modulus of soft aerated solids [16] . 

In order to test more accurately all of the models, we now plot sepa-

ately in Fig. 5 the dimensionless viscosity 𝜂s, app / 𝜂0 data for all investi-

ated volume fractions and compare each of the curves to Eqs. (6) –(8)

nd (10) . 

In the dilute regime ( 𝜙 = 0 . 018 ), all the theoretical models, which

re consistent with the Frankel and Acrivos (1970) model at first order

n 𝜙 are observed to be in good agreement with the data. However, the

mpirical model of Rust and Manga [7] is already seen here to tend

o overestimate the value of the viscosity of the bubbly suspension for

eformable bubbles ( 𝐶𝑎 = 𝑂(1)) . 
As the concentration is increased, the tendency of the Rust and

anga (2002) model to overestimate the viscosity of deformable bub-

les is confirmed. At the highest volume fraction investigated, it also

verestimates the viscosity of undeformed bubble ( Ca < 0.1). This also

eems to be the case of the Faroughi and Huber (2015) and the Pal

2004) model, although it is hard to conclude given the uncertainty of

he measurements. 

The Frankel and Acrivos (1970) model finally seems to provide the

est agreement with the data in the whole range of volume fraction and

apillary numbers investigated. 
24 
. Conclusion 

In order to make significant progress as compared to results available

n the literature, an original device was designed to produce monodis-

erse suspensions of bubbles in a highly viscous Newtonian fluid. The

iscosity of the bubbly suspensions was measured in the dilute and semi-

ilute concentration regimes (volume fraction of bubbles between 2%

nd 18%) using a Couette geometry, for capillary numbers ranging be-

ween 0.01 and 10. The new obtained data were shown to be much more

ccurate than data previously reported in the literature, thus allowing

or a comparison with theoretical models. Classical features of bubbly

uspensions have been observed: (i) the dimensionless viscosity 𝜂s / 𝜂0 is

 decreasing function of the capillary number Ca , with a plateau at low

a that is readily observable for Ca < 0.1, whereas the plateau at large

a is not observed and should thus be attained for Ca > 10, (ii) 𝜂s / 𝜂0 is

n increasing function of 𝜙 at low Ca and a decreasing function of 𝜙

t high Ca , and (iii) there is a crossover of all curves at a same point

 𝐶𝑎 = 0 . 6 , 𝜂𝑠 ∕ 𝜂0 = 1) consistent with the theoretical prediction for the

ilute regime. Over the whole range of capillary numbers and volume

raction investigated, the best agreement was found with the model of

rankel and Acrivos [4] , originally designed for dilute suspensions, and

hich was thus not expected to be valid at volume fraction as high as

0%. 
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