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�  �  �  �  �  �  �  �  

The steady shear viscosity of bubbly  suspensions is known to depend upon the suspending �uid  viscosity, the bubble volume fraction  and a dimensionless number 
(the capillary  number) accounting for the deformability  of the bubbles under a viscous stress. However, experimental data on bubbly  suspensions in the literature  

are scarce and present two main shortcomings: (i)  the studied systems are polydisperse, which  leads to arbitrariness in the de	nition  of a capillary  number, and (ii)  

there is a lack of data for capillary  numbers of order unity,  where bubbles are slightly  deformable. This leads to the absence of clear conclusion on the relevance 

of the existing theoretical  models. In order to make signi	cant  progress, an original  device is designed to produce monodisperse suspensions of bubbles in a highly  

viscous Newtonian �uid.  The steady shear viscosity of the bubbly  suspensions is measured in the dilute  and semi-dilute concentration regimes (volume fraction  of 
bubbles between 2% and 18%) using a Couette geometry with  a 20-bubbles-wide gap, for  capillary  numbers ranging between 0.01 and 10. The new obtained data 

are shown to be much more accurate than data previously  reported in the literature.  Experimental data are in very good agreement with  the model of Frankel and 

Acrivos (1970),  originally  developed for dilute  suspensions, in the whole range of studied volume fractions. 
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. Introduction  

Understanding the behavior of suspensions of particles, bubbles and
roplets, is of high importance for  application  in the industry  (fresh
oncrete, foodstu
,  cosmetic products, plaster foamsƒ)  and in the en-
ironment  (mudslides, lava �owsƒ).  A key point  is to be able to predict
heir  behavior as a function  of their  content. 

For rigid  nonBrownian  particles dispersed in a Newtonian �uid,  the
uspension has a linear  behavior but is non-Newtonian (normal  stress
i
erences  proportional  to the shear rate emerge [1]  ). Its shear viscosity

s ( � ) is proportional  to the suspending �uid  viscosity � 0 and increases
ith  the particle  volume fraction  � . In the dilute  regime, the dimension-

ess viscosity is given by the Einstein equation [2]  : 

�  �  � 0 =  1 + 2 . 5 � (1)

At high volume fractions, many phenomenological expressions exist,
mong which  the Krieger-Dougherty equation [1]  , which  describes the
ivergence of the viscosity at a given maximum volume fraction  � m , is

he most widely  used: 

�  �  � 0 =  

�  

1 Š 
�

� �  

�  Š2 . 5 � �  
(2)

This equation was built  to account for  the viscosity divergence while
emaining  consistent with  the Einstein equation at low  � . 

For suspensions of bubbles, in addition,  the shear viscosity depends
n the applied stress. Indeed, in the limit  of in	nitely  low  stresses, bub-
les behave similarly  to rigid  particles, with  a di
erence  on the bound-
ry condition  (no slip at the interface of a rigid  particle,  slip at the in-

erface of a bubble); the shear viscosity is then found to increase with
�  Corresponding author at: Université de Bordeaux, CNRS, Solvay, LOF, UMR 5258
E-mail address: guillaume.ovarlez@u-bordeaux.fr  (G. Ovarlez). 
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he bubble volume fraction.  In the limit  of in	nitely  high stresses, bub-
les are deformed and the viscosity is found to decrease with  the bubble
olume fraction.  At a given volume fraction,  the suspension then has a
hear-thinning behavior between two viscosity plateaus. 

The shear-induced deformation  of bubbles is accounted for  by a di-
ensionless number, the capillary  number Ca , which  compares the vis-

ous stress at the origin  of the bubble deformation,  and the capillary
tress resisting to deformation:  

�  =  �	  �� (3)

ith  R the bubble radius, � the shear stress applied to the suspension
nd � the air/liquid  surface tension. 

For dilute  bubble suspensions, the behavior in the limit  of nonde-
ormable ( Ca 
  1) and fully  deformable ( Ca � 1) bubbles is theoretically
nown [3,4]  : 

�  �  � 0 =  1 + � for � �  
  1 (4)

�  �  � 0 =  1 Š 5 � �3  for � �  � 1 (5)

Several models have been proposed to account for  the behavior of
ubbly  suspensions for  any capillary  number [4…9] . 

The steady-state response of dilute  (i.e., at 	rst  order in � ) emulsions,
f which  bubbly  suspensions are a special case, has 	rst  been computed
y Oldroyd  [5]  . This has later been extended to time-dependent �ows  by
rankel and Acrivos [4]  , with  rigorous development at 	rst  order in the
roplet  deformation.  For bubbly  suspensions, the steady-state viscosity
, Pessac F-33600, France. 
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i  
n the Frankel and Acrivos (1970)  model reads 

�  �  � 0 =  1 + 
1 Š ( 12�5  ) �  �  2 

1 +  ( 6 ��  �5  ) 2 
� (6)

Beyond the dilute  limit,  several attempts have been made to de-
ive a constitutive  behavior with  the help of homogenization techniques
6,8,9]  . 

Pal [8]  has proposed an expansion of the Frankel and Acrivos (1970)
odel for  concentrated suspensions based on the same idea as the
rieger-Dougherty equation. The steady-state viscosity in this model

eads 

�  �  � 0 =  

�  

1 Š 
�

� �  

�  Š � �  1 +  �  1 �  2 ( 6 ��  �5  ) 2 

1 +  �  2 
1 ( 6 ��  �5  ) 2 

(7)

ith  �  1 =  ( 1 Š 
�

� �  
) Š 16 

15 � �  , �  2 =  ( 1 Š 
�

� �  
) 

8 
5 � �  . For monodisperse bubbles,

 value of � m � 0.64 is expected [10]  . 
Faroughi and Huber [9]  have used an incremental  approach to com-

ute the properties of concentrated suspensions, which  leads to an im-
licit  equation for  the steady-state viscosity: 

�  �  � 0 

�  
�  
�  
�  
�  

1 Š 
�

5 
3 

��
6 ��  

5 

� 2 	
� �  �  � 0 


 2 

1 Š 
�

5 
3 

��
6 ��  

5 

� 2 

�  
�  
�  
�  

  

Š 4 5 

=  

�  
� �  Š �

� �  ( 1 Š � ) 

�  Š � �  
1Š � �  

(8)

lso with  � m � 0.64. 
All  these models are consistent at 	rst  order in � , with  in particular

 predicted crossover of all  curves at a value � �  �  � 0 =  1 for  a critical
apillary  number independent of � : 

 �  
  =  
�

5�12 � 0  . 65 (9)

However, these models provide slightly  di
erent  predictions in the
emi-dilute regime studied here, where the Frankel and Acrivos (1970)
odel is not expected to be relevant. 

There also exists an empirical  model developed by Rust and Manga
7]  to be consistent with  their  experimental data: 

�  �  � 0 =  � �,  � �  � 0 +  
� �,  0 �  � 0 Š � �,  � �  � 0 

1 +  ( 0 . 72 ��  ) 1 . 43 
(10)

ith  � �,  � �  � 0 =  1 Š 1 . 14 � Š 9 . 8 � 2 , � �,  0 �  � 0 =  ( 1 Š 
�

� �  
) Š � �  and � �  =  0 . 6 . It

hould be noted that,  in the dilute  limit,  this model is not consistent
ith  the Frankel and Acrivos (1970)  model and predicts a crossover of
ll  curves at a value � �  �  � 0 =  1 for  Ca c � 1.27. 

Model bubble suspensions have been studied experimentally  in
7,11,12,14]  . 

Llewellin  et al. [11]  have studied the unsteady behavior of suspen-
ions of nitrogen bubbles in a golden syrup (with  a viscosity of a few tens
f Pa.s), obtained with  a commercial aerator. The resulting suspension

s very polydisperse, with  bubble diameter ranging from 2 to 200 � m.
ubble volume fraction  is varied between 0.036 and 0.46. They have
easured the suspension response under oscillations of small strain am-
litude,  which  is ideal for  testing the Frankel and Acrivos (1970)  model

n its strict  domain of validity.  In these conditions,  the behavior is shown
o be governed by the dynamic capillary  number Cd = 

� 0 �	  
�

, where �  is
he angular frequency of the applied oscillations; the dynamic � � (Cd)
esponse should then be similar  to the steady � ( Ca ) response. However,
n arbitrary  choice is introduced  to take into  account the large polydis-
ersity of the suspension, through  the way viscosity is computed as an
verage of the contributions  of the various bubble diameters (and thus
apillary  numbers) present in the material;  several possible weights de-
ending on the bubble diameter are proposed to compute this average,
hich  makes the comparison to theoretical  models somehow unsatisfac-

ory.  

Rust and Manga [7]  have studied the steady state viscosity of bubbly
uspensions in the range of capillary  numbers [0.09  … 3] and have found
heir  results to be well  	tted  to a phenomenological model ( Eq. (10)  )
20 
hey have developed. Their system is made up of a very viscous Newto-
ian �uid  ( � 0 =  180 Pa.s) in which  bubbles are obtained by mixing.  This

eads to very polydisperse suspensions (the exact polydispersity  is not re-
orted, but a picture  shows that  the diameter varies over more than one
rder of magnitude, typically  between 50 and 500 � m). Several short-
omings can be noted: (i)  their  results are very scattered for  Ca < 0.3,
ii)  there is a lack of data at high capillary  numbers, (iii)  the system
olydispersity  makes the de	nition  of a capillary  number tricky  and is
ot taken into  account in the comparison to the models by contrast with
11]  and [12]  ( Ca is computed with  an arbitrary  surface-averaged bub-
le radius), (iv)  the stress (and thus capillary  number) inhomogeneity

n the rheometer cell is not considered in the comparison to the models,
hereas it  varies by more than a factor 2 across the gap of the geometry.

Joh et al. [12]  have studied both the steady state viscosity and the
esponse to small strain oscillations of bubbly  suspensions. Bubbles are
aid to be formed by •self explosion Ž in a polyol  �uid  of viscosity 4 Pa.s
 process leading to a polydisperse suspension with  a bubble diameter
anging mostly between 50 and 600 � m. The volume fraction  is varied
etween 0.1 and 0.3; no data is reported in the dilute  regime. The sus-
ensions are characterized using a 60 mm diameter and 2° angle cone-
nd-plate geometry. This choice looks surprising since the gap between

he cone and the plate is only  1 mm at the edge of the cone with  such a
eometry, and decreases linearly  down to a few tens of microns at the
one truncation.  One may thus wonder if  the results are really  repre-
entative of the material  bulk  behavior; 	nite  size e
ect  such as bubble
lignment  or even bubble squeezing due to con	nement  can indeed be
xpected [13]  . They have used the same approach as Llewellin  et al.
11]  to take into  account the suspension polydispersity  in the compari-
on to the models; as mentioned above, there is then an arbitrary  choice
n the way the contribution  of each bubble diameter range to the over-
ll  viscosity is estimated, which  prevents from drawing  	nal  conclusions
n the relevance of the existing theoretical  models. 

Torres et al. [14]  have investigated the steady-state and dynamic
ehaviors of suspensions of bubbles in both Newtonian and non-
ewtonian �uids.  The Newtonian suspending �uid  is honey (viscosity:
.2 Pa.s), which  is aerated with  a commercial planetary-action  mixer,

eading again to a polydisperse suspension, with  a bubble diameter rang-
ng between 10 and 270 � m. The bubbly  suspension is studied within  a
 mm gap parallel-plate  geometry; the gap size is thus only  4 times the

argest bubble diameter. With  a parallel  plate geometry, the capillary
umber varies along the radial  dimension, which  is not taken into  ac-
ount in the analysis. The studied volume fractions are 13, 14 and 27%;
o data is reported in the dilute  regime. The capillary  number is varied
etween 10 Š 3 and 0.4; the high capillary  number regime is not studied.
he same observations are made as in [7,11]  . In addition,  normal  stress
i
erences  have been characterized; as in suspensions of hard spheres

hey are shown to be proportional  to the shear rate at low  capillary
umber. 

In order to make signi	cant  progress, an original  device is designed
o produce monodisperse suspensions of bubbles in a highly  viscous
ewtonian �uid.  The shear viscosity of the bubbly  suspensions is mea-
ured in the dilute  and semi-dilute concentration regimes (volume frac-
ion  of bubbles between 2% and 18%) using a Couette geometry, for
apillary  numbers ranging between 0.01 and 10. The new obtained data
re shown to be much more accurate than data previously  reported in

he literature.  Experimental data are compared to the existing models,
nd are shown to be in very good agreement with  the model of Frankel
nd Acrivos (1970),  originally  developed for  dilute  suspensions, in the
hole range of studied volume fractions. 

. Materials  and  methods  

The materials and methods are designed to: (i)  avoid bubble rise
uring  the experiments (this  puts constraints on R /  � 0 , where R is the
ubble radius and � 0 is the interstitial  �uid  viscosity), (ii)  obtain data

n the range of capillary  numbers [0.01  … 10] for  typical  shear rates



R. Morini, X. Chateau and G. Ovarlez et al. Journal of Non-Newtonian Fluid Mechanics 264 (2019)  19…24 

Fig.  1. Shear viscosity as a function  of the shear rate for the PDMS oil  used 

as a suspending �uid  in the present study for three di
erent  temperatures (see 
legend). 
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� that  can be applied (this  puts constraints on � 0 	  �� �� where � is the
ir/liquid  surface tension), (iii)  characterize a representative volume of

he material  (this  puts constraints on � /  R where � is the gap size of the
heometer geometry), (iv)  study monodisperse bubbles, (v)  obtain vol-
me fraction  as high as 20%. With  all  these constraints in mind,  we have
tudied suspensions of bubbles of radius 350 � m in a �uid  of viscosity
00 Pa.s, within  a Couette geometry of 6 mm gap, which  are prepared

n-situ  with  a home-made setup. 

.1. Materials 

As a suspending �uid,  we use a PDMS oil  with  a viscosity close to
00 Pa.s (Fungilab RT100000). The oil  dynamic viscosity � 0 is mea-
ured with  a Kinexus Ultra  + rheometer (Malvern  Instruments) using a
hermostated cone-and-plate geometry. Within  the investigated range of
hear rates, the PDMS oil  exhibits a slight  shear-thinning behavior, as
ften found for  highly  viscous polymeric  �uids.  The decrease in � 0 val-
es is less than 5% as the shear rate increases from 0.01 s Š 1 to 10 s Š 1 ,
ut has to be taken into  account as we need to characterize viscosity
ariations  of a few percent when adding bubbles in the dilute  regime.
oreover, the e
ect  of temperature is noticeable: d( � 0 )/d  T � 2 Pa.s/°C
ithin  the range of temperature T 22…24°C (see Fig. 1 ). In the following,

emperature and shear rate dependencies are taken into  account when
omputing  the experimental dimensionless viscosity of the bubbly  sus-
ension. 

It  should be noted that  the shear-thinning behavior of the oil  leads
o slight  viscosity variations  within  the gap of the wide-gap Couette ge-
metry used to characterize the bubbly  suspensions (see below),  since

he shear stress varies by a factor close to 2 from the inner to the outer
ylinder.  These viscosity variations  are less than 0.5%. Moreover, since
he local shear rate in the interstitial  �uid  is higher than the macro-
copic shear rate, the thinning  behavior leads to a slight  overestimation
f the actual �uid  viscosity •seen•• by the bubbles. In the range of vol-
me fraction  investigated, the local shear rate increase can be estimated
15…17] to be less than 20%, thus leading to a maximum overestimation
f the �uid  viscosity of 0.2%. 

Using a pendant drop tensiometer (Teclis) the surface tension of the
DMS oil  is measured to be � =  20 ± 1 mN/m.  

The gas used to form the bubbles is dinitrogen  (N 2 ). 500 µm dinitro-
en bubbles in PDMS oil  are found to be stable with  respect to ripening

ects  over times corresponding to the experiment, i.e. 30 min.  There-
ore, the bubble size is entirely  controlled  by the generation process. 
21 
.2. Generation of the bubbly liquid 

Bubbles are formed in a T-junction  with  two entries (nitrogen  and
iquid)  and one exit  (bubbly  liquid).  The liquid  is pushed at a constant
olume �ow  rate q 0 using a syringe pump whereas the gas is pushed by
pplying  a constant gas pressure at the entry of the T-junction  (typically
 di
erential  pressure equal to 2 bars). The T junction  has an internal
iameter equal to 1.2 mm, in which  a glass capillary  of internal  diame-

er 0.5 mm has been inserted. Out�ow  tubes have an internal  diameter
qual to 2 mm and the apparent shear rate of the �uid  is of the order of
 s Š 1 . Thanks to the �ow  focusing mechanism [18]  , small volumes of
as and liquid  pass alternatively  through  the junction.  The bubble size

s expected to be set by the internal  diameter of the T-junction  as well
s the liquid  �ow  rate and the gas pressure. However, due to the high
iscosity of the liquid,  the �ow  con	guration  is found to be stable only
ithin  a limited  range of the �ow  parameters for  a given internal  diame-

er, so that  we are not able to tune easily the bubble size. In this study we
enerate steadily monodisperse assemblies of bubbles (see Fig. 2 ) with
 radius close to 350 µm. We notice a small rate, i.e. <  5%, of coales-
ence events, occurring  mainly  in the tubing  between the generator and
he measurement cell. As explained in the following,  the measurement
rocedure requires that  we reproduce several times the same sample,
ith  the same bubble size. The bubble size is measured by image anal-
sis of a monolayer of the foam bubbles squeezed between two glass
lides separated by spacers of known thickness. From preliminary  mea-
urements for  the bubble size produced for  several runs with  several
enerators, the bubble radius 	  =  350 ± 30 µm used for  this study corre-
ponds to the observed average value and the observed deviation.  Sim-
larly,  the measured volume fraction  of gas incorporated in the liquid  is

0 =  0 . 14 ± 0 . 01 at atmospheric pressure. This value results directly  from
he bubble generation frequency and bubble size, so we are not able to
une it.  As a consequence our approach consists in using simultaneously
 identical  T-junctions, where n b of them are producing bubbles at � 0 
nd each other junction  (numbered � � [  1 , �  Š �  �  ]) is injecting  liquid  at
 i without  any bubble. In most of experiments, 2 < n < 4 and the result-

ng gas volume fraction  is given by � =  � 0 �(  1 +  
�

i 
�  � ( 1 Š � 0 )�  �  �  �  0 ) . Note

hat (i)  � 0 is the maximum gas volume fraction  that  can be achieved
ith  our generation setup, and that  (ii)  in practice, q 0 � 0.3 mL/min.  

.3. Filling of the measurement cell 

Due to the absence of surfactant for  stabilizing  the bubbles in the
DMS oil,  it  is necessary to manipulate the bubbly  liquid  with  great care
uring  the 	lling  of the measurement cell, in order to avoid breaking
ubbles or inducing  coalescence. We have therefore developed a dedi-
ated measurement cell and a 	lling  method which  can be described as
ollows.  The measurement cell is a Couette cylinder  cell: inner (rotating)
ylinder  r i =  12.5 mm, outer cylinder  r o =  18.5 mm, height h = 40 mm;
he walls of the cylinders are serrated to avoid wall  slip and bubble
lignment  along the surfaces. The cell allows the 	lling  from the bot-
om (see Fig. 2 ) thanks to a lid  which  locks the inner cylinder  of the cell
nd also prevents the liquid  from �owing  out. During the 	lling  step,

he cell is mounted on a rotation  stage coupled to a vertical  translation
tage, producing a helical  displacement which  allows for  the bubbly  liq-
id  from the generators to be deposited inside the gap of the cell without
igni	cant  shear stress. When the cell is 	lled,  a bottom is put in place,
he cell position  is reversed and the cell is set in the rheometer. The
nner cylinder  is attached, the lid  is removed and the measurement can
tart. 

In considering the useful volume to be 	lled  in the measurement cell,
.e. about 30 mL, the 	lling  time varies from 12 min  ( q 0 =  0.3 mL/min,

i 
�  � =  2.2 mL/min  and � =  0.02) to 20 min  (4 × q 0 =  1.2 mL/min  and

= 0.15). Those 	lling  times are compatible with  the slow rising process
f the bubbles in the PDMS oil.  Indeed, the rising velocity  of a single
ubble, which  provides an upper bound for  the bubbly  suspension, is
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Fig.  2. Measurement cell and its 	lling  procedure. The cell is composed of a main part, a lid  (that  is used during  the 	lling  step) and a bottom (used during  the 

measurement). The 	lling  is achieved with  the cell in position  1 	xed  on a displacement stage allowing  a helical  deposition of the bubbly  liquid  in the gap. The 

pictures show the 	lling  step (4 tubes feed material  inside the cell),  the measurement step, and the bubbles in the bubbly  liquid.  

Fig.  3. Dimensionless apparent viscosity � s, app /  � 0 of dilute  bubbly  suspensions 
versus capillary  number Ca for two volume fractions ( � = 0 . 018 ± 20% , � = 

0 . 045 ± 20% , see legend). Previous data from Rust and Manga [7]  for  � = 0 . 035 

are also plotted.  
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Fig.  4. Dimensionless apparent viscosity � s, app /  � 0 of dilute  bubbly  suspensions 
versus capillary  number Ca for all  volume fractions investigated (see legend). 
The predictions of the Frankel and Acrivos (1970)  model are also plotted  on the 

same graph, using the following  � values: 0.018, 0.045, 0.085, 0.125, 0.18. 
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c  
iven by �  �  =  � 	 ��  	  2 �3  � 0 [19]  , so that  within  our experimental condi-
ions v b � 10 2 R 2 � 10 µm/s.  Thus the average rising height of the 	rst
eposited bubble layer is �  � 10  5 	  2 
 10  Š2 m. Note that  (i)  this height
f liquid  without  bubble is partly  contained in the lid  of the cell, that

s removed afterwards (see Fig. 2 ), and (ii)  due to the helical  deposi-
ion  method, the bubble assembly remains uniform  with  a modi	ed  gas
olume fraction  that  can be estimated to be � ( �  +  �  )�  �  . Depending on
he 	lling  time,  the gas volume fraction  in the cell is found to vary be-
ween 1.1 � and 1.25 � , which  	nally  allows us to study values of bubble
22 
olume fraction  as high as 19%. This e
ect  is taken into  account in the
ollowing.  

.4. Rheological measurements 

The viscosity of the bubbly  liquid  is measured within  steady �ow
onditions at applied torque T , and the response of the material  obtained
hrough  the measurement of the resulting rotation  velocity  of the inner
ylinder  � . The shear stress � at a radial  position  r in gap of the Couette
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Fig.  5. Dimensionless apparent viscosity � s, app /  � 0 of dilute  bubbly  suspensions versus capillary  number Ca for all  the volume fractions investigated. The predictions 

of the various models presented in the introduction  are also plotted  on the same graphs (see legend) using the same value for the volume fraction,  i.e. � = 0.018 for 

(a), � = 0.045 for (b), � = 0.085 for (c), � =  0.125 for (d),  and � = 0.18 for (e). 
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ell ( Fig. 2 ) is 

( �  ) =  �  �2  ��  �  2 (11)

hich  implies that  the local capillary  number is � �  ( �  ) =  � ( �  ) 	  �� =
 	  �2  ��  � �  2 . In the following,  when discussing the data, we refer to the
alues of � ( r ) and Ca ( r ) estimated at the average position  ��  =  ( �  � +  �    )�2  .
he shear rate at ��  will  be evaluated as its apparent value 

��!!  ( ��  ) =  � �  2 
  �  2 

� �  
�
�r 3 	 �    Š �  � 


�
(12)

hich  is exact only  for  a Newtonian behavior. We will  then report  ap-
arent viscosity data � �,�!!  ( � �  ) =  � ( ��  )�  �� �!!  ( ��  ) . 

The spatial variations  of Ca within  the gap are of order 80%. For a
uantitative  comparison of the experimental data and the models, these
patial variations  need to be accounted for.  For each of the models, the
ehavior of the theoretical  bubbly  suspension in the studied wide gap
ouette cell will  thus be computed to compute the theoretically  expected

"�  
�,�!!  ( � �  ) , which  will  	nally  be compared to the experimental � �,�!!  ( � �  ) ;
etails on these computations are provided in the next subsection. 

In contrast to the experiment performed by Rust and Manga [7]  ,
t  was not possible to measure continuously,  i.e. with  the same sample,
he viscosity corresponding to increasing values of Ca . Indeed, after sev-
ral rotations of the inner cylinder  we observed large gas bubbles rising
rom the bulk  sample and bursting at the free surface. This phenomenon
s due to the fact that  the bubbles interface is not stabilized against co-
lescence, and this e
ect  is all  the more pronounced that  the Ca value

s high and that  the gas volume fraction  is high. Therefore, we start the
easurement for  a low  value of Ca (typically  0.1) by applying  a constant

tress, then we measure the viscosity for  one or several larger Ca val-
es by applying  various constant stress values and we return  to the 	rst

ow  Ca value in order to check that  the viscosity did not change, i.e. that
he sample remained homogenous during  the measurement at higher Ca
alue. For each measurement, a constant stress is applied during  30 s,
hich  was su�cient  in all  cases to reach a steady state. 

We notice that  for  the largest investigated gas volume fractions, it
as not possible to measure the viscosity corresponding to ��  > 
 1 with-
23 
ut observing large bubbles rising;  this points to the impact of bub-
le shape on the rise velocity  of a bubble assembly. In the follow-

ng we report  results for  those where large bubble rising was not ob-
erved. Five small ranges of gas volume fractions have been considered:
= 0 . 018 ± 20% , � =  0 . 045 ± 20% , � =  0 . 085 ± 15% , � =  0 . 125 ± 12% ,

nd � =  0 . 18 ± 10% . For each range of volume fraction,  5 samples were
repared; in the following,  at each � , we show the data averaged over

he 5 samples. 

.5. Model analysis 

As stated above, in order to make a quantitative  comparison possi-
le between the experimental measurements and the models, we need

o account for  the stress inhomogeneity  in the Couette device. Indeed,
he model predictions are for  homogeneous simple shear �ows,  whereas
xperimental data are apparent viscosity data � �,�!!  ( � �  ) =  � ( ��  )�  �� �!!  ( ��  ) in
n inhomogeneous stress 	eld.  In the following,  we thus show how a
rediction  � "�  

�,�!!  ( � �  , � ) can be computed from the theoretical  prediction

s ( Ca, � ) for  the viscosity of a bubbly  suspension of given volume frac-
ion  � . 

We 	rst  note that,  for  a given torque T applied to the rheome-
er, � ( �  ) =  �  �2  ��  �  2 , which  does not depend on the material.  The ac-
ual  values of �� ( �  ) and of the resulting macroscopic measurement � =
��!!  ( ��  )[ ��  3 ( �    Š �  � ) ]�[  �  2 

  �  2 
� ] , however, are not known a priori and need

o be computed for  each constitutive  behavior. In order to compute
"�  
�,�!!  ( � �  , � ) , we need to know the value of �� "�  

�!!  ( ��  ) for  a given � s ( Ca,
). We 	rst  recall that  �� ( �  ) =  Š �  # �  ( �  ( �  ) ) where �  ( r ) is the local rota-

ion  velocity.  We then write  
�  0 
�
�  � 

�� ( �  )�  �  d �  =  
�  0 
�
�  � 

Š # �  ( �  ( �  ) )d �  =  � by using the

oundary conditions �  ( �    ) =  0 at the outer cylinder  and �  ( �  � ) =  � at
he inner cylinder.  Replacing � by �� "�  

�!!  ( ��  )[ ��  3 ( �    Š �  � ) ]�[  �  2 
  �  2 

� ] and �� ( �  ) by

ts actual value � ( r )/  � s ( Ca, � ), we then obtain:  
�  0 
�
�  i 

� ( �  )�[  �  � �  ( � �,  � )]d �  =

��!!  ( ��  )[ ��  3 ( �    Š �  � ) ]�[  �  2 
  �  2 

� ] . Noting  that  � ( �  ) =  � ( ��  ) × ��  2 �  �  2 and ��  ( �  ) =
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�  × ��  2 �  �  2 , we end up with  the following  equation for  � "�  
�,�!!  ( � �  , � ) =

( ��  )�  �� "�  
�!!  ( ��  ) : 

"�  
�,�!!  

�
� �  , �

�
=  

�
��  
	
�    Š �  � 



�  
	
�  2 
  �  2 

� 

�

�  
�  0 
�
�  � 

1�[  �  3 � �  

�  

� �  ×
��  2 

�  2 
, �

�  

]d �  (13)

hich  needs to be computed for  each theoretical  behavior � s ( Ca, � ). As
n example, the Frankel and Acrivos (1970)  equation yields the follow-

ng development at 	rst  order in � for  � "�  
�,�!!  ( � �  , � ) : 

"�  
�,�!!  

�
� �  , �

�
=  1 Š 

5 �
3 

+ 
20 �

9 
×

$�  2 
0 $�  2 

� 

$�  2 
0 Š $�  2 

� 

×
1 

��  
× arctan 

�  
�  
�  
�  

30 
	
$�  2 
0 Š $�  2 

� 



� �  

25 $�  2 
0 $�  2 

� +  36 ��  
2 

�
�
�



(14)

here $�  =  �  �  ��  . 

. Results  and  discussion  

In Fig. 3 we plot  the apparent viscosity data obtained in the dilute
egime ( � <  5%) together with  previous data from Rust and Manga [7]  .

It  is 	rst  observed that  we successfully managed to obtain data much
ore accurate than previously  reported and for  a wider  range of capil-

ary  numbers. This opens the possibility  to test accurately the proposed
odels, in particular  in the dilute  limit.  We now switch to the presen-

ation  of all  of our data together with  their  comparison to the models
resented in the introduction.  

In Fig. 4 , we observe all  the features of bubbly  suspensions reported
n the literature:  (i)  the dimensionless viscosity � s, app /  � 0 is a decreasing
unction  of the capillary  number Ca , with  a plateau at low  Ca that  is
eadily  observable for  Ca < 0.1, whereas the plateau at large Ca is not
bserved and should thus be attained for  Ca > 10, (ii)  � s, app /  � 0 is an

ncreasing function  of � at low  Ca and a decreasing function  of � at
igh Ca , and (iii)  there is a crossover of all  curves at a same point  ( �  �  
  �
 . 6 , � �,�!!  �  � 0 =  1) consistent with  the theoretical  prediction  for  the dilute
egime ( Eq. (9)  ). 

It  is also remarkable here that  the Frankel and Acrivos (1970)  model
rovides a good agreement with  all  of our data, whereas it  is a develop-
ent at 	rst  order in � only,  which  is not a priori expected to be valid

or volume fractions larger than � 5%. The same feature was observed
or the elastic modulus of soft aerated solids [16]  . 

In order to test more accurately all  of the models, we now plot  sepa-
ately  in Fig. 5 the dimensionless viscosity � s, app /  � 0 data for  all  investi-
ated volume fractions and compare each of the curves to Eqs. (6)  …(8)
nd (10)  . 

In the dilute  regime ( � =  0 . 018 ), all  the theoretical  models, which
re consistent with  the Frankel and Acrivos (1970)  model at 	rst  order

n � are observed to be in good agreement with  the data. However, the
mpirical  model of Rust and Manga [7]  is already seen here to tend
o overestimate the value of the viscosity of the bubbly  suspension for
eformable bubbles ( � �  =  %(1)) . 

As the concentration is increased, the tendency of the Rust and
anga (2002)  model to overestimate the viscosity of deformable bub-
les is con	rmed.  At the highest volume fraction  investigated, it  also
verestimates the viscosity of undeformed bubble ( Ca < 0.1). This also
eems to be the case of the Faroughi and Huber (2015)  and the Pal
2004)  model, although it  is hard to conclude given the uncertainty  of
he measurements. 

The Frankel and Acrivos (1970)  model 	nally  seems to provide the
est agreement with  the data in the whole range of volume fraction  and
apillary  numbers investigated. 
24 
. Conclusion  

In order to make signi	cant  progress as compared to results available
n the literature,  an original  device was designed to produce monodis-
erse suspensions of bubbles in a highly  viscous Newtonian �uid.  The
iscosity of the bubbly  suspensions was measured in the dilute  and semi-
ilute  concentration regimes (volume fraction  of bubbles between 2%
nd 18%) using a Couette geometry, for  capillary  numbers ranging be-

ween 0.01 and 10. The new obtained data were shown to be much more
ccurate than data previously  reported in the literature,  thus allowing
or a comparison with  theoretical  models. Classical features of bubbly
uspensions have been observed: (i)  the dimensionless viscosity � s /  � 0 is
 decreasing function  of the capillary  number Ca , with  a plateau at low
a that  is readily  observable for  Ca < 0.1, whereas the plateau at large
a is not observed and should thus be attained for  Ca > 10, (ii)  � s /  � 0 is
n increasing function  of � at low  Ca and a decreasing function  of �
t high Ca , and (iii)  there is a crossover of all  curves at a same point
 � �  =  0 . 6 , � �  �  � 0 =  1) consistent with  the theoretical  prediction  for  the
ilute  regime. Over the whole range of capillary  numbers and volume
raction  investigated, the best agreement was found with  the model of
rankel and Acrivos [4]  , originally  designed for  dilute  suspensions, and
hich  was thus not expected to be valid  at volume fraction  as high as
0%. 
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