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I discuss a general class of models where the inflation is driven by supersymmetry break-
ing with the superpartner of the goldstino (sgoldstino) playing the role of the inflaton.
Imposing an R-symmetry allows to satisfy easily the slow-roll conditions, avoiding the
so-called η-problem, and leads to two different classes of small field inflation models;
they are characterised by an inflationary plateau around the maximum of the scalar po-
tential, where R-symmetry is either restored or spontaneously broken, with the inflaton
rolling down to a minimum describing the present phase of our Universe. Inflation can be
driven by either an F- or a D-term, while the minimum has a positive tuneable vacuum
energy. The models agree with cosmological observations and in the simplest case predict
a tensor-to-scalar ratio of primordial perturbations 10−9 <∼ r <∼ 10−4 and an inflation
scale 1010 GeV <∼ H∗

<∼ 1012 GeV.

1. Introduction

If String Theory is a fundamental theory of Nature and not just a tool for study-

ing systems with strongly coupled dynamics, it should be able to describe at the

same time particle physics and cosmology, which are phenomena that involve very

different scales from the microscopic four-dimensional (4d) quantum gravity length

of 10−33 cm to large macroscopic distances of the size of the observable Universe

∼1028 cm spanned a region of about 60 orders of magnitude. In particular, besides

the 4d Planck mass, there are three very different scales with very different physics

corresponding to the electroweak, dark energy and inflation. These scales might be

related via the scale of the underlying fundamental theory, such as string theory,

or they might be independent in the sense that their origin could be based on dif-

ferent and independent dynamics. An example of the former constraint and more

predictive possibility is provided by TeV strings with a fundamental scale at low

energies due for instance to large extra dimensions transverse to a four-dimensional

braneworld forming our Universe.1 In this case, the 4d Planck mass is emergent

from the fundamental string scale and inflation should also happen around the
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same scale.2

Here, we will adopt a more conservative approach, trying to relate the scales of

supersymmetry breaking and inflation, assuming that supersymmetry breaking is

realised in a metastable de Sitter vacuum with an infinitesimally small (tuneable)

cosmological constant independent of the breaking scale that may be in the TeV

region or higher.

In a recent work,3 we studied a simple N = 1 supergravity model having this

property and motivated by string theory. Besides the gravity multiplet, the mini-

mal field content consists of a chiral multiplet with a shift symmetry promoted to

a gauged R-symmetry using a vector multiplet. In the string theory context, the

chiral multiplet can be identified with the string dilaton (or an appropriate com-

pactification modulus) and the shift symmetry associated to the gauge invariance

of a two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The

shift symmetry fixes the form of the superpotential and the gauging allows for the

presence of a Fayet-Iliopoulos (FI) term,4 leading to a supergravity action with two

independent parameters that can be tuned so that the scalar potential possesses a

metastable de Sitter minimum with a tiny vacuum energy (essentially the relative

strength between the F- and D-term contributions). A third parameter fixes the

Vacuum Expectation Value (VEV) of the string dilaton at the desired (phenomeno-

logically) weak coupling regime. An important consistency constraint of the model

is anomaly cancellation which has been studied in5 and implies the existence of

additional charged fields under the gauged R-symmetry.

In a subsequent work,6 we analysed a small variation of this model which is

manifestly anomaly free without additional charged fields and allows to couple in a

straight forward way a visible sector containing the minimal supersymmetric exten-

sion of the Standard Model (MSSM) and studied the mediation of supersymmetry

breaking and its phenomenological consequences. It turns out that an additional

‘hidden sector’ field z is needed to be added for the matter soft scalar masses to be

non-tachyonic; although this field participates in the supersymmetry breaking and

is similar to the so-called Polonyi field, it does not modify the main properties of

the metastable de Sitter (dS) vacuum. All soft scalar masses, as well as trilinear

A-terms, are generated at the tree level and are universal under the assumption

that matter kinetic terms are independent of the ‘Polonyi’ field, since matter fields

are neutral under the shift symmetry and supersymmetry breaking is driven by a

combination of the U(1) D-term and the dilaton and z-field F-term. Alternatively,

a way to avoid the tachyonic scalar masses without adding the extra field z is to

modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use a field

representation in which the gauged shift symmetry corresponds to an ordinary U(1)

and not an R-symmetry. The two representations differ by a Kähler transformation

that leaves the classical supergravity action invariant. However, at the quantum

level, there is a Green-Schwarz term generated that amounts an extra dilaton de-



pendent contribution to the gauge kinetic terms needed to cancel the anomalies

of the R-symmetry. This creates an apparent puzzle with the gaugino masses that

vanish in the first representation but not in the latter. The resolution to the puzzle

is based on the so called anomaly mediation contributions7, 8 that explain precisely

the above apparent discrepancy. It turns out that gaugino masses are generated

at the quantum level and are thus suppressed compared to the scalar masses (and

A-terms).

This model has the necessary ingredients to be obtained as a remnant of moduli

stabilisation within the framework of internal magnetic fluxes in type I string theory,

turned on along the compact directions for several abelian factors of the gauge

group. All geometric moduli can in principle be fixed in a supersymmetric way, while

the shift symmetry is associated to the 4d axion and its gauging is a consequence

of anomaly cancellation.9, 10

We then made an attempt to connect the scale of inflation with the electroweak

and supersymmetry breaking scales within the same effective field theory, that at

the same time allows the existence of an infinitesimally small (tuneable) positive

cosmological constant describing the present dark energy of the universe. We thus

addressed the question whether the same scalar potential can provide inflation with

the dilaton playing also the role of the inflaton at an earlier stage of the universe

evolution.11 We showed that this is possible if one modifies the Kähler potential

by a correction that plays no role around the minimum, but creates an appropriate

plateau around the maximum. In general, the Kähler potential receives perturba-

tive and non-perturbative corrections that vanish in the weak coupling limit. After

analysing all such corrections, we find that only those that have the form of (Neveu-

Schwarz) NS5-brane instantons can lead to an inflationary period compatible with

cosmological observations. The scale of inflation turns out then to be of the order

of low energy supersymmetry breaking, in the TeV region. On the other hand, the

predicted tensor-to-scalar ratio is too small to be observed.

Inflationary models12 in supergravitya suffer in general from several problems,

such as fine-tuning to satisfy the slow-roll conditions, large field initial conditions

that break the validity of the effective field theory, and stabilisation of the (pseudo)

scalar companion of the inflaton arising from the fact that bosonic components of

superfields are always even. The simplest argument to see the fine tuning of the

potential is that a canonically normalised kinetic term of a complex scalar field X

corresponds to a quadratic Kähler potential K = XX̄ that brings one unit contri-

bution to the slow-roll parameter η = V ′′/V , arising from the eK proportionality

factor in the expression of the scalar potential V . This problem can be avoided

in models with no-scale structure where cancellations arise naturally due to non-

canonical kinetic terms leading to potentials with flat directions (at the classical

level). However, such models require often trans-Planckian initial conditions that

invalidate the effective supergravity description during inflation. A concrete exam-

aFor reviews on supersymmetric models of inflation, see for example.13



ple where all these problems appear is the Starobinsky model of inflation,14 despite

its phenomenological success.

All three problems above are solved when the inflaton is identified with the scalar

component of the goldstino superfieldb, in the presence of a gauged R-symmetry.16

Indeed, the superpotential is in that case linear and the big contribution to η de-

scribed above cancels exactly. Since inflation arises at a plateau around the max-

imum of the scalar potential (hill-top) no large field initial conditions are needed,

while the pseudo-scalar companion of the inflaton is absorbed into the R-gauge

field that becomes massive, leading the inflaton as a single scalar field present in

the low-energy spectrum. This model provides therefore a minimal realisation of

natural small-field inflation in supergravity, compatible with present observations,

as we show below. Moreover, it allows the presence of a realistic minimum describing

our present Universe with an infinitesimal positive vacuum energy arising due to a

cancellation between an F- and D-term contributions to the scalar potential, without

affecting the properties of the inflationary plateau, along the lines of Refs.3, 11, 17

In the above models the D-term has a constant FI contribution but plays no role

during inflation and can be neglected, while the pseudoscalar partner of the inflaton

is absorbed by the U(1)R gauge field that becomes massive away from the origin.

Recently, a new FI term was proposed19 that has three important properties: (1) it

is manifestly gauge invariant already at the Lagrangian level; (2) it is associated to

a U(1) that should not gauge an R-symmetry and (3) supersymmetry is broken by

(at least) a D-auxiliary expectation value and the extra bosonic part of the action

is reduced in the unitary gauge to a constant FI contribution leading to a positive

shift of the scalar potential, in the absence of matter fields. In the presence of matter

fields, the FI contribution to the D-term acquires a special field dependence e2K/3

that violates invariance under Kähler transformations.

In a recent work,18 we studied the properties of the new FI term and explored its

consequences to the class of inflation models we introduced in.16c We first showed

that matter fields charged under the U(1) gauge symmetry can consistently be added

in the presence of the new FI term, as well as a non-trivial gauge kinetic function. We

then observed that the new FI term is not invariant under Kähler transformations.

On the other hand, a gauged R-symmetry in ordinary Kähler invariant supergravity

can always be reduced to an ordinary (non-R) U(1) by a Kähler transformation.

By then going to such a frame, we find that the two FI contributions to the U(1)

D-term can coexist, leading to a novel contribution to the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of in-

flation from supersymmetry breaking, driven by a D- instead of an F-term. The

inflaton is still a superpartner of the goldstino which is now a gaugino within a

massive vector multiplet, where again the pseudoscalar partner is absorbed by the

bSee15 for earlier work relating supersymmetry and inflation.
cThis new FI term was also studied in20 to remove an instability from inflation in Polonyi-
Starobinsky supergravity.



gauge field away from the origin. For a particular choice of the inflaton charge, the

scalar potential has a maximum at the origin where inflation occurs and a super-

symmetric minimum at zero energy, in the limit of negligible F-term contribution

(such as in the absence of superpotential). The slow roll conditions are automat-

ically satisfied near the point where the new FI term cancels the charge of the

inflaton, leading to higher than quadratic contributions due to its non trivial field

dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that

takes it to the non R-symmetry frame. In the presence of a small superpotential, the

inflation is practically unchanged and driven by the D-term, as before. However, the

maximum is now slightly shifted away from the origin and the minimum has a small

non-vanishing positive vacuum energy, where supersymmetry is broken by both F-

and D-auxiliary expectation values of similar magnitude. The model predicts in

general small primordial gravitational waves with a tensor-to-scaler ration r well

below the observability limit. However, when higher order terms are included in the

Kähler potential, one finds that r can increase to large values r ≃ 0.015.

On general grounds, there are two classes of such models depending on whether

the maximum corresponds to a point of unbroken (case 1) or broken (case 2) R-

symmetry. The latter corresponds actually to a generalisation of the model we

discussed above,11 inspired by string theory.3 It has the same field content but in

a different field basis with a chiral multiplet S ∝ lnX playing the role of the string

dilaton. Thus, S has a shift symmetry which is actually an R-symmetry gauged by a

vector multiplet and the superpotential is a single exponential. The scalar potential

has a minimum with a tuneable vacuum energy and a maximum that can produce

inflation when appropriate corrections are included in the Kähler potential. In these

coordinates R-symmetry is restored at infinity, corresponding to the weak coupling

limit. Small field inflation is again guaranteed consistently with the validity of the

effective field theory.

In the following, we will present the main features of models of case 1, where

inflation occurs near the maximum of the scalar potential where R-symmetry is

restored and supersymmetry breaking is driven predominantly either by an F-term

or by a D-term.

2. Conventions

Throughout this paper we use the conventions of.21 A supergravity theory is speci-

fied (up to Chern-Simons terms) by a Kähler potential K, a superpotential W , and

the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enumerated by

the index α and the indices A,B indicate the different gauge groups. Classically, a

supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W (z) −→ e−κ2J(z)W (z), (1)



where κ is the inverse of the reduced Planck mass,MPl = κ−1 = 2.4×1015 TeV. The

gauge transformations of chiral multiplet scalars are given by holomorphic Killing

vectors, i.e. δzα = θAkαA(z), where θ
A is the gauge parameter of the gauge group

A. The Kähler potential and superpotential need not be invariant under this gauge

transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (2)

provided that the gauge transformation of the superpotential satisfies δW =

−θAκ2rA(z)W . One then has from δW =Wαδz
α

Wαk
α
A = −κ2rAW, (3)

where Wα = ∂αW and α labels the chiral multiplets. The supergravity theory can

then be described by a gauge invariant function

G = κ2K + log(κ6WW̄ ). (4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K
(

−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄
)

VD =
1

2
(Ref)

−1 AB PAPB, (5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW (z) + κ2(∂αK)W (z). (6)

The moment maps PA are given by

PA = i(kαA∂αK − rA). (7)

In this paper we will be concerned with theories having a gauged R-symmetry, for

which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is

a Fayet-Iliopoulos4 constant parameter.

3. Symmetric versus non-symmetric point

Here, we present a class of inflation models in supergravity theories containing a

single chiral multiplet transforming under a gauged R-symmetry with a correspond-

ing abelian vector multiplet.16 We assume that the chiral multiplet X (with scalar

component X) transforms as:

X −→ Xe−iqω. (8)

where q is its charge, and ω is the gauge parameter.

The Kähler potential is therefore a function of XX̄, while the superpotential is

constrained to be of the form Xb:

K = K(XX̄),

W = κ−3fXb, (9)



where X is a dimensionless field. For b 6= 0, the gauge symmetry eq. (8) becomes a

gauged R-symmetry. The gauge kinetic function can have a constant contribution

as well as a contribution proportional to lnX

f(X) = γ + β lnX. (10)

The latter contribution proportional to β is not gauge invariant and can be used as

a Green-Schwarz counter term to cancel possible anomalies. One can show however

that the constant β is fixed to be very small by anomaly cancellation conditions

and does not change our results.16 We will therefore omit this term in our analysis

below.

We are interested in the general properties of supergravity theories of inflation

that are of the above form. Before performing our analysis, a distinction should

be made concerning the initial point where slow-roll inflation starts. The inflaton

field (which will turn out to be ρ, where X = ρeiθ) can either have its initial value

close to the symmetric point where X = 0, or at a generic point X 6= 0. The

minimum of the potential, however, is always at a nonzero point X 6= 0. This is

because at X = 0 the negative contribution to the scalar potential vanishes and no

cancellation between F-term and D-term is possible. The supersymmetry breaking

scale is therefore related to the cosmological constant as κ−2m2
3/2 ≈ Λ. One could

in principle assume that the value of the potential at its minimum is of the order

of the supersymmetry breaking scale. However, in this case additional corrections

are needed to bring down the minimum of the potential to the present value of the

cosmological constant, and we therefore do not discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton field will roll

towards a minimum of the potential at X 6= 0. On the other hand, in the second

case inflation will start at a generic point X 6= 0. It is then convenient to work with

another chiral superfield S, which is invariant under a shift symmetry

S −→ S − icα (11)

by performing a field redefinition

X = eS . (12)

In this case the most general Kähler potential and superpotential are of the form

K = K(S + S̄),

W = κ−3aebS . (13)

Note that this field redefinition is not valid at the symmetric point X = 0 for the

first case.

4. Case 1: Inflation near the symmetric point

4.1. Slow roll parameters

In this section we derive the conditions that lead to slow-roll inflation scenarios,

where the start of inflation is near a local maximum of the potential at X = 0.



Since the superpotential has charge 2 under R-symmetry, one has 〈W 〉 = 0 as long

as R-symmetry is preserved. Therefore, 〈W 〉 can be regarded as the order parameter

of R-symmetry breaking. On the other hand, the minimum of the potential requires

〈W 〉 6= 0 and broken R-symmetry. It is therefore attractive to assume that at earlier

times R-symmetry was a good symmetry, switching off dangerous corrections to the

potential. As similar approach was followed in,22 where a discrete R-symmetry is

assumed. Instead, we assume a gauged R-symmetry which is spontaneously broken

at the minimum of the potential.

While the superpotential is uniquely fixed in eq. (9), the Kähler potential is only

fixed to be of the form K(XX̄). We expand the Kähler potential as follows

K(X, X̄) = κ−2XX̄ + κ−2A(XX̄)2,

W (X) = κ−3fXb,

f(X) = 1, (14)

where A and f are constants. The gauge kinetic function is taken to be constant

since it was shown that the coefficient β in front of the logarithmic term in eq. (10)

is fixed to be very small by anomaly cancellation conditions.16 As far as the scalar

potential is concerned, the coefficient γ can be absorbed in other parameters of the

theory. We therefore take γ = 1.

The scalar potential is given by

V = VF + VD, (15)

where

VF = κ−4f2(XX̄)b−1eXX̄(1+AXX̄)

[

−3XX̄ +

(

b+XX̄(1 + 2AXX̄)
)2

1 + 4AXX̄

]

(16)

and

VD = κ−4 q
2

2

[

b+XX̄(1 + 2AXX̄)
]2
. (17)

The superpotential is not gauge invariant under the U(1) gauge symmetry. In-

stead it transforms as

W →We−iqbw . (18)

Therefore, the U(1) is a gauged R-symmetry which we will further denote as U(1)R.

From WXk
X
R = −rRκ2W , where kXR = −iqX is the Killing vector for the field X

under the R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet-Iliopoulos contribution

to the scalar potential, and WX is short-hand for ∂W/∂X , we find

rR = iκ−2qb. (19)

A consequence of the gauged R-symmetry is that the superpotential coupling b

enters the D-term contribution of the scalar potential as a constant Fayet-Iliopoulos



contribution.d

Note that the scalar potential is only a function of the modulus of X and that

the potential contains a Fayet-Iliopoulos contribution for b 6= 0. Moreover, its phase

will be ‘eaten’ by the U(1) gauge boson upon a field redefinition of the gauge

potential similarly to the standard Higgs mechanism. After performing a change of

field variables

X = ρeiθ, X̄ = ρe−iθ, (ρ ≥ 0) (20)

the scalar potential is a function of ρ,

κ4V = f2ρ2(b−1)eρ
2+Aρ4

(

−3ρ2 +

(

b+ ρ2 + 2Aρ4
)2

1 + 4Aρ2

)

+
q2

2

(

b+ ρ2 + 2Aρ4
)2
.(21)

Since we assume that inflation starts near ρ = 0, we require that the potential

eq. (21) has a local maximum at this point. It turns out that the potential only

allows for a local maximum at ρ = 0 when b = 1. For b < 1 the potential diverges

when ρ goes to zero. For 1 < b < 1.5 the first derivative of the potential diverges,

while for b = 1.5, one has V ′(0) = 9
4f

2+ 3
2q

2 > 0, and for b > 1.5, on has V ′′(0) > 0.

We thus take b = 1 and the scalar potential reduces to

κ4V = f2eρ
2+Aρ4

(

−3ρ2 +

(

1 + ρ2 + 2Aρ4
)2

1 + 4Aρ2

)

+
q2

2

(

1 + ρ2 + 2Aρ4
)2
. (22)

A plot of the potential for A = 1/2, q = 1 and f tuned so that the minimum has

zero energy is given in Figure 1.

Fig. 1.

dFor other studies of inflation involving Fayet-Iliopoulos terms see for example,24 or25 for more
recent work. Moreover, our motivations have some overlap with,22 where inflation is also assumed
to start near an R-symmetric point at X = 0. However, this work uses a discrete R-symmetry
which does not lead to Fayet-Iliopoulos terms.



Note that in this case the the superpotential is linear W = fX , describing the

sgoldstino (up to an additional low-energy constraint).26 Indeed, modulo a D-term

contribution, the inflaton in this model is the superpartner of the goldstino. In

fact, for q = 0 the inflaton reduces to the partner of the goldstino as in Minimal

Inflation models.27 The important difference however is that this is a microscopic

realisation of the identification of the inflaton with the sgoldstino, and that the

so-called η-problem is avoided (see discussion below).

The kinetic terms for the scalars can be written ase

Lkin = −gXX̄ ∂̂µX∂̂
µX

= −gXX̄

[

∂µρ∂
µρ+ ρ2 (∂µθ + qAµ) (∂

µθ + qAµ)
]

. (23)

It was already anticipated above that the phase θ plays the role of the longitudinal

component of the gauge field Aµ, which acquires a mass by a Brout-Englert-Higgs

mechanism.

We now interpret the field ρ as the inflaton. It is important to emphasise that, in

contrast with usual supersymmetric theories of inflation where one necessarily has

two scalar degrees of freedom resulting in multifield inflation,28 our class of models

contains only one scalar field ρ as the inflaton. In order to calculate the slow-roll

parameters, one needs to work with the canonically normalised field χ satisfying

dχ

dρ
=
√

2gXX̄ . (24)

The slow-roll parameters are given in terms of the canonical field χ by

ǫ =
1

2κ2

(

dV/dχ

V

)2

, η =
1

κ2
d2V/dχ2

V
. (25)

Since we assume inflation to start near ρ = 0, we expand

ǫ = 4
(

−4A+x2

2+x2

)2

ρ2 +O(ρ4),

η = 2
(

−4A+x2

2+x2

)

+O(ρ2), (26)

where we defined q = fx. Notice that for ρ ≪ 1 the ǫ parameter is very small,

while the η parameter can be made small by carefully tuning the parameter A. Any

higher order corrections to the Kähler potential do not contribute to the leading

contributions in the expansion near ρ = 0 for η and ǫ. Such corrections can therefore

be used to alter the potential near its minimum, at some point X 6= 0 without

influencing the slow-roll parameters.

eThe covariant derivative is defined as ∂̂µX = ∂µX − Aµk
X
R , where kXR = −iqX is the Killing

vector for the U(1) transformation eq. (8).



A comment on the η-problem in Supergravity

A few words are now in order concerning the η-problem.29 The η problem in N = 1

supergravity is often stated as follows (see for example30): If, for instance, a theory

with a single chiral multiplet with scalar component ϕ is taken, then the Kähler

potential can be expanded around a reference location ϕ = 0 as K = K(0) +

Kϕϕ̄(0)ϕϕ̄+ . . . . The Lagrangian becomes

L = −∂µφ∂µφ̄− V(0)
(

1 + κ2φφ̄ + · · ·
)

, (27)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄, and the ellipses stand

for extra terms in the expansion coming from K and W . Following this argument,

the mass mφ turns out to be proportional to the Hubble scale

m2
φ = κ2V(0) + · · · = 3H2 + . . . , (28)

and therefore

η =
m2

φ

3H2
= 1 + . . . . (29)

Or otherwise stated, this leading contribution of order 1 to the η-parameter has its

origin from the fact that the F-term contribution to the scalar potential contains

an exponential factor eK: V = eXX̄+... [. . . ] resulting in its second derivative VXX̄ =

V [1 + . . . ].

However, in our model the factor ’1’ drops out for the particular choice b = 1

in the superpotentialf , resulting in an inflaton mass m2
ρ which is determined by the

next term A(XX̄)2 in the expansion of the Kähler potential,

m2
χ =

(

−4A+ x2
)

κ−2f2 +O(ρ2),

H2 = κ−2f2

6 (2 + x2) +O(ρ2). (30)

As a result, there are two ways to evade the η-problem:

• First, one can obtain a small η by having a small q ≪ f , while A should be

of order O(10−1). In this case, the rôle of the gauge symmetry is merely to

constrain the form of the Kähler potential and the superpotential, and to

provide a Higgs mechanism that eliminates the extra scalar (phase) degree

of freedom.

• Alternatively there could be a cancellation between q2 and 4Af2.

Since A is the second term in the expansion of the Kähler potential eq. (14), it is

natural to be of order O(10−1) and therefore providing a solution to the η-problem.

Note that the mass of the inflaton given in eqs. (30) is only valid during inflation

at small ρ. The mass of the inflaton at its VEV will be affected by additional

fNote that in hybrid inflation models the η-problem is also evaded by a somewhat similar way,
but these models generally include several scalar fields (and superfields) besides the inflaton (see
e.g.31).



corrections that are needed to obtain in particular a vanishing value for the scalar

potential at its minimum.16

The upper bound on the tensor-to-scalar ratio

Before moving on to the next section, let us focus on the approximation at ρ ≪ 1

where the perturbative expansion of the slow-roll parameters in eqs. (26) is valid,

and assume that the horizon exit occurs at the field value ρ∗ very close to the

maximum ρ = 0. In this approximation, eqs. (26) become

ǫ(ρ) ≈ ǫpert(ρ) = |η∗|2ρ2, η(ρ) ≈ η∗, (31)

where the asterisk refers to the value of parameters evaluated at the horizon exit.

To discuss the upper bound on the tensor-to-scalar ratio, it is convenient to di-

vide the region [ρ = 0, ρend] into two regions: one is [0, ρp], where the approximation

31 is valid, and the other is the rest [ρp, ρend]. Here ρend means the inflation end.

Note that ρp < ρend because the approximation 31 breaks down before the end of

inflation where ǫ(ρend) = 1 or |η(ρend)| = 1. In terms of this division, the number

of e-folds from the horizon exit to the end of inflation can be approximated by

NCMB ≃ Npert(ρ∗, ρp) + κ

∫ χend

χp

dχ
√

2ǫ(χ)
, (32)

where we introduced

Npert(ρ1, ρ2) = κ

∫ χ2

χ1

dχ
√

2ǫpert(χ)
=

1

|η∗|
ln

(

ρ2
ρ1

)

. (33)

Here χ is the canonically normalised field defined by eq. (24). Let us next focus on

the region [ρp, ρend]. It is natural to expect the following inequality

κ

∫ χend

χp

dχ
√

2ǫ(χ)
<∼ κ

∫ χend

χp

dχ
√

2ǫpert(χ)
. (34)

This is based on the following observation. The right hand side describes a hypo-

thetical situation, as if the slow-roll condition were valid throughout the inflation

until its end. But since in the actual inflation the slow-roll condition breaks down in

the region [ρp, ρend], the actual number of e-folds in this region will be smaller than

that in the hypothetical situation. Adding Npert(ρ∗, ρp) to the both hand sides of

34 and using 32, we find

NCMB <∼
1

|η∗|
ln

(

ρend
ρ∗

)

. (35)

Using 31 and the definition of the tensor-to-scalar ratio r = 16ǫ∗, we obtain the

upper bound:

r <∼ 16
(

|η∗|ρende−|η∗|NCMB

)2

. (36)

To satisfy CMB data, let us choose η = −0.02 and NCMB ≈ 50. Assuming ρend <∼
1/2, we obtain the upper bound r <∼ 10−4. Note that this is a little bit lower than



the Lyth bound32 for small field inflation, r <∼ 10−3. From the upper bound on r,

we can also find the upper bound on the Hubble parameter as follows. In general,

the power spectrum amplitude As is related to the Hubble parameter at horizon

exit H∗ by

As =
2κ2H2

∗

π2r
. (37)

Combining this with the upper bound r <∼ 10−4 and the value As = 2.2× 10−9 by

CMB data, we find the upper bound on the Hubble parameter H∗ <∼ 109 TeV.

In Ref.,16 we will also find the lower bound r >∼ 10−9 (equivalently H∗ >∼ 107

TeV), based on an model-independent argument. This bound can be lowered at the

cost of naturalness between parameters in the potential.

5. On the new FI term

5.1. Review

In,19 the authors propose a new contribution to the supergravity Lagrangian of the

formg

LFI = ξ2

[

S0S̄0
w2w̄2

T̄ (w2)T (w̄2)
(V )D

]

D

. (38)

The chiral compensator field S0, with Weyl and chiral weights (Weyl,Chiral) =

(1, 1), has components S0 = (s0, PLΩ0, F0) . The vector multiplet has vanishing

Weyl and chiral weights, and its components are given by V = (v, ζ,H, vµ, λ,D). In

the Wess-Zumino gauge, the first components are put to zero v = ζ = H = 0. The

multiplet w2 is of weights (1, 1), and given by

w2 =
λ̄PLλ

S2
0

, w̄2 =
λPRλ̄

S̄2
0

. (39)

The components of λ̄PLλ are given by

λ̄PLλ =
(

λ̄PLλ ;
√
2PL

(

− 1

2
γ · F̂ + iD

)

λ ; 2λ̄PL /Dλ+ F̂− · F̂− −D2
)

. (40)

The kinetic terms for the gauge multiplet are given by

Lkin = −1

4

[

λ̄PLλ
]

F
+ h.c. . (41)

The operator T (T̄ ) is defined in,34, 35 and leads to a chiral (antichiral) multiplet.

For example, the chiral multiplet T (w̄2) has weights (2, 2). In global supersymmetry

the operator T corresponds to the usual chiral projection operator D̄2.h

gA similar, but not identical term was studied in.33
hThe operator T indeed has the property that T (Z) = 0 for a chiral multiplet Z. Moreover, for a
vector multiplet V we have T (ZC) = ZT (C), and [C]D = 1

2
[T (C)]F .



From now on, we will drop the notation of h.c. and implicitly assume its presence

for every [ ]F term in the Lagrangian. Finally, the multiplet (V )D is a linear

multiplet with weights (2, 0), given by

(V )D =
(

D, /Dλ, 0,DbF̂ab,− /D /Dλ,−�CD
)

. (42)

The definitions of /Dλ and the covariant field strength F̂ab can be found in eq. (17.1)

of,23 which reduce for an abelian gauge field to

F̂ab = e µ
a e

ν
b

(

2∂[µAν] + ψ̄[µγν]λ
)

Dµλ =

(

∂µ − 3

2
bµ +

1

4
wab

µ γab −
3

2
iγ∗Aµ

)

λ−
(

1

4
γabF̂ab +

1

2
iγ∗D

)

ψµ. (43)

Here, e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The

fields wab
µ , bµ, and Aµ are the gauge fields corresponding to Lorentz transformations,

dilatations, and TR symmetry of the conformal algebra respectively, while ψµ is the

gravitino. The conformal d’Alembertian is given by �C = ηabDaDb.

It is important to note that the FI term given by eq. (38) does not require the

gauging of an R-symmetry, but breaks invariance under Kähler transformations. In

fact, a gauged R-symmetry would forbid such a term LFI .
19i

The resulting Lagrangian after integrating out the auxiliary field D contains a

term

LFI,new = −ξ
2
2

2
(s0s̄0)

2
. (44)

In the absence of additional matter fields, one can use the Poincaré gauge s0 = s̄0 =

1, resulting in a constant D-term contribution to the scalar potential. This prefactor

however is relevant when matter couplings are included in the next section.

5.2. Adding (charged) matter fields

In this section we couple the term LFI given by eq. (38) to additional matter fields

charged under the U(1). For simplicity, we focus on a single chiral multiplet X . The

extension to more chiral multiplets is trivial. The Lagrangian is given by

L = −3
[

S0S̄0e
− 1

3
K(X,X̄)

]

D
+
[

S3
0W (X)

]

F
− 1

4

[

f(X)λ̄PLλ
]

F
+ LFI, (45)

with a Kähler potential K(X, X̄), a superpotentialW (X) and a gauge kinetic func-

tion f(X). The first three terms in eq. (45) give the usual supergravity Lagrangian.23

We assume that the multiplet X transforms under the U(1),

V → V + Λ + Λ̄,

X → Xe−qΛ, (46)

iWe kept the notation of.19 Note that in this notation the field strength superfield Wα is given by
W2 = λ̄PLλ, and (V )D corresponds to DαWα.



with gauge multiplet parameter Λ. We assume that the U(1) is not an R-symmetry.

In other words, we assume that the superpotential does not transform under the

gauge symmetry. For a model with a single chiral multiplet this implies that the

superpotential is constant

W (X) = F. (47)

Gauge invariance fixes the Kähler potential to be a function of XeqV X̄ (for nota-

tional simplicity, in the following we omit the eqV factors).

Indeed, in this case the term LFI can be consistently added to the theory, similar

to,19 and the resulting D-term contribution to the scalar potential acquires an extra

term proportional to ξ2

VD =
1

2
Re (f(X))−1

(

ikX∂XK + ξ2e
2
3
K
)2

, (48)

where the Killing vector is kX = −iqX and f(X) is the gauge kinetic function. The

F-term contribution to the scalar potential remains the usual

VF = eK(X,X̄)
(

−3WW̄ + gXX̄∇XW ∇̄X̄W̄
)

. (49)

For a constant superpotential (47) this reduces to

VF = |F |2eK(X,X̄)
(

−3 + gXX̄∂XK∂X̄K
)

. (50)

From eq. (48) it can be seen that if the Kähler potential includes a term pro-

portional to ξ1 log(XX̄), the D-term contribution to the scalar potential acquires

another constant contribution. For example, if

K(X, X̄) = XX̄ + ξ1 ln(XX̄), (51)

the D-term contribution to the scalar potential becomes

VD =
1

2
Re (f(X))

−1
(

qXX̄ + qξ1 + ξ2e
2
3
K
)2

. (52)

In fact the contribution proportional to ξ1 is the usual FI term in a non R-symmetric

Kähler frame, which can be consistently added to the model including the new FI

term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄) → K(X, X̄) + J(X) + J̄(X̄),

W (X) →W (X)e−J(X), (53)

with J(X) = −ξ1 lnX allows one to recast the model in the form

K(X, X̄) = XX̄,

W (X) = m3/2X. (54)



The two models result in the same Lagrangian, at least classicallyj. However, in

the Kähler frame of eqs. (54) the superpotential transforms nontrivially under the

gauge symmetry. As a consequence, the gauge symmetry becomes an R-symmetry.

Note that:18

(1) The extra term (38) violates the Kähler invariance of the theory, and the two

models related by a Kähler transformation are no longer equivalent.

(2) The model written in the Kähler frame where the gauge symmetry becomes an

R-symmetry in eqs. (54) can not be consistently coupled to LFI.

6. The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not

transform, and take into account the two types of FI terms which were discussed

in the last section. For convenience, we repeat here the Kähler potential in eq. (51)

and restore the inverse reduced Planck mass κ =M−1
Pl = (2.4× 1018GeV)−1:

K = κ−2(XX̄ + ξ1 lnXX̄). (55)

The superpotential and the gauge kinetic function are set to be constantk:

W = κ−3F, f(X) = 1. (56)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting

ξ1 = b, the full scalar potential V = VF + VD is a function of ρ. The F-term

contribution to the scalar potential is given by

VF =
1

κ4
F 2eρ

2

ρ2b

[

(

b+ ρ2
)2

ρ2
− 3

]

, (57)

and the D-term contribution is

VD =
q2

2κ4

(

b+ ρ2 + ξρ
4b
3 e

2
3
ρ2
)2

. (58)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We consider the

case with ξ 6= 0 because we are interested in the role of the new FI-term in infla-

tionary models driven by supersymmetry breaking. Moreover, the limit ξ → 0 is

ill-defined.19

The first FI parameter b was introduced as a free parameter. We now proceed to

narrowing the value of b by the following physical requirements. We first consider

jAt the quantum level, a Kähler transformation also introduces a change in the gauge kinetic
function f , see for example.36
kStrictly speaking, the gauge kinetic function gets a field-dependent correction proportional to
q2 ln ρ, in order to cancel the chiral anomalies.11 However, the correction turns out to be very
small and can be neglected below, since the charge q is chosen to be of order of 10−5 or smaller.



the behaviour of the potential around ρ = 0,

VD =
q2

2κ4

[

(

b2 + 2bρ2 +O(ρ4)
)

+ 2bξρ
4b
3

(

1 +O(ρ2)
)

+ ξ2ρ
8b
3

(

1 +O(ρ2)
)

]

, (59)

VF =
F 2

κ4
ρ2b
[

b2ρ−2 + (2b− 3) +O(ρ2)
]

. (60)

Here we are interested in small-field inflation models in which the inflation starts

in the neighbourhood of a local maximum at ρ = 0. In,16 we considered models of

this type with ξ = 0 (which were called Case 1 models), and found that the choice

b = 1 is forced by the requirement that the potential takes a finite value at the local

maximum ρ = 0. Now, we will investigate the effect of the new FI parameter ξ on

the choice of b under the same requirement.

First, in order for V(0) to be finite, we need b ≥ 0. We first consider the case

b > 0. We next investigate the condition that the potential at ρ = 0 has a local

maximum. For clarity we discuss below the cases of F = 0 and F 6= 0 separately.

The b = 0 case will be treated at the end of this section.

6.1. Case F = 0

In this case VF = 0 and the scalar potential is given by only the D-term contribution

V = VD. Let us first discuss the first derivative of the potential:

V ′
D =

q2

2κ4

[

4bρ
(

1 +O(ρ2)
)

+
8b2

3
ξρ

4b
3
−1
(

1 +O(ρ2)
)

+
8b

3
ξ2ρ

8b
3
−1
(

1 +O(ρ2)
)

]

.

(61)

For V ′
D(0) to be convergent, we need b ≥ 3/4 (note that ξ 6= 0). When b = 3/4, we

have V ′
D(0) = 8b2ξ/3, which does not give an extremum because we chose ξ 6= 0.

On the other hand, when b > 3/4, we have V ′
D(0) = 0. To narrow the allowed value

of b further, let us turn to the second derivative,

V ′′
D =

q2

2κ4

[

4b
(

1 +O(ρ2)
)

+
8b2

3

(4b

3
− 1
)

ξρ
4b
3
−2
(

1 +O(ρ2)
)

+
8b

3

(8b

3
− 1
)

ξ2ρ
8b
3
−2
(

1 +O(ρ2)
)

]

. (62)

When 3/4 < b < 3/2, the second derivative V ′′
D(0) diverges. When b > 3/2, the

second derivative becomes V ′′
D(0) = 2κ−4q2b > 0, which gives a minimum.

We therefore conclude that to have a local maximum at ρ = 0, we need to choose

b = 3/2, for which we have

V ′′
D(0) = 3κ−4q2(ξ + 1). (63)

The condition that ρ = 0 is a local maximum requires ξ < −1.

Let us next discuss the global minimum of the potential with b = 3/2 and

ξ < −1. The first derivative of the potential without approximation reads

V ′
D ∝ ρ(3 + 3ξe

2
3
ρ2

+ 2ξρ2e
2
3
ρ2

)(3 + 2ρ2 + 2ξρ2e
2
3
ρ2

). (64)



Since 3 + 3ξe
2
3
ρ2

+ 2ξρ2e
2
3
ρ2

< 0 for ρ ≥ 0 and ξ < −1, the extremum away from

ρ = 0 is located at ρv satisfying the condition

3 + 2ρ2v + 2ξρ2ve
2
3
ρ2
v = 0. (65)

Substituting this condition into the potential VD gives VD(ρv) = 0.

We conclude that for ξ < −1 and b = 3/2 the potential has a maximum at ρ = 0,

and a supersymmetric minimum at ρv. We postpone the analysis of inflation near

the maximum of the potential in section 7, and the discussion of the uplifting of

the minimum in order to obtain a small but positive cosmological constant below.

In the next subsection we investigate the case F 6= 0.

We finally comment on supersymmetry (SUSY) breaking in the scalar potential.

Since the superpotential is zero, the SUSY breaking is measured by the D-term order

parameter, namely the Killing potential associated with the gauged U(1), which is

defined by

D = iκ−2−iqX
W

(

∂W

∂X
+ κ2

∂K
∂X

W

)

. (66)

This enters the scalar potential as VD = D2/2. So, at the local maximum and during

inflation D is of order q and supersymmetry is broken. On the other hand, at the

global minimum, supersymmetry is preserved and the potential vanishes.

6.2. Case F 6= 0

In this section we take into account the effect of VF ; its first derivative reads:

V ′
F = κ−4F 2

[

b2(2b− 2)ρ2b−3 + 2b(2b− 3)ρ2b−1
(

1 +O(ρ2)
)

]

. (67)

For V ′(0) to be convergent, we need b ≥ 3/2, for which V ′
D(0) = 0 holds. For b = 3/2,

we have V ′
F (0) = (9/4)κ−4F 2 > 0, that does not give an extremum. For b > 3/2,

we have V ′
F (0) = 0. To narrow the allowed values of b further, let us turn to the

second derivative,

V ′′
F = κ−4F 2

[

b2(2b− 2)(2b− 3)ρ2b−4 + 2b(2b− 3)(2b− 1)ρ2b−2
(

1 +O(ρ2)
)

]

.

(68)

For 3/2 < b < 2, the second derivative V ′′
F (0) diverges. For b ≥ 2, the second

derivative is positive V ′′(0) > 0, that gives a minimum (note that V ′′
D(0) > 0 as well

in this range).

We conclude that the potential cannot have a local maximum at ρ = 0 for any

choice of b. Nevertheless, as we will show below, the potential can have a local

maximum in the neighbourhood of ρ = 0 if we choose b = 3/2 and ξ < −1. For this

choice, the derivatives of the potential have the following properties,

V ′(0) < 0, V ′′(0) = 3κ−4q2(ξ + 1). (69)



Fig. 2. This plot shows the scalar potentials in F = 0 and F 6= 0 cases. When F = 0,
we have a local maximum at ρmax = 0 and a global minimum with zero cosmological
constant. For F 6= 0, the local maximum is shifted by a small positive value to ρmax 6= 0.
The global minimum now has a positive cosmological constant.

The extremisation condition around ρ = 0 becomes

3κ−4q2(ξ + 1)ρ+
9

4
κ−4F 2 ≃ 0. (70)

So the extremum is at

ρ ≃ − 3F 2

4q2(ξ + 1)
. (71)

Note that the extremum is in the neighbourhood of ρ = 0 as long as we keep the F -

contribution to the scalar potential small by taking F 2 ≪ q2|ξ+1|, which guarantees

the approximation ignoring higher order terms in ρ. We now choose ξ < −1 so that

ρ for this extremum is positive. The second derivative at the extremum reads

V ′′ ≃ 3κ−4q2(ξ + 1), (72)

as long as we ignore higher order terms in F 2/(q2|ξ + 1|). By our choice ξ < −1,

the extremum is a local maximum, as desired.

Let us comment on the global minimum after turning on the F-term contribution.

As long as we choose the parameters so that F 2/q2 ≪ 1, the change in the global

minimum ρv is very small, of order O(F 2/q2), because the extremisation condition

depends only on the ratio F 2/q2. So the change in the value of the global minimum

is of order O(F 2). The plot of this change is given in Fig. 2.

In the present case F 6= 0, the order parameters of SUSY breaking are both the

Killing potential D and the F-term contribution FX , which read

D ∝ q(32 + ρ2), FX ∝ Fρ1/2eρ
2/2, (73)

where the F-term order parameter FX is defined by

FX = − 1√
2
eκ

2K/2

(

∂2K
∂X∂X̄

)−1(
∂W̄

∂X̄
+ κ2

∂K
∂X̄

W̄

)

. (74)



Therefore, at the local maximum, FX/D is of order O((ξ + 1)−1/2F 2/q2) because

ρ there is of order O((ξ + 1)−1F 2/q2). On the other hand, at the global minimum,

both D and FX are of order O(F ), assuming that ρ at the minimum is of order

O(1), which is true in our models below. This makes tuning of the vacuum energy

between the F- and D-contribution in principle possible, along the lines of.11, 16

A comment must be made here on the action in the presence of non-vanishing F

and ξ. As mentioned above, the supersymmetry is broken both by the gauge sector

and by the matter sector. The associated goldstino therefore consists of a linear

combination of the U(1) gaugino and the fermion in the matter chiral multiplet X .

In the unitary gauge the goldstino is set to zero, so the gaugino is not vanishing

anymore, and the action does not simplify as in Ref.19 This, however, only affects

the part of the action with fermions, while the scalar potential does not change.

This is why we nevertheless used the scalar potential (57) and (58).

Let us consider now the case b = 0 where only the new FI parameter ξ contributes

to the potential. In this case, the condition for the local maximum of the scalar

potential at ρ = 0 can be satisfied for − 3
2 < ξ < 0. When F is set to zero, the scalar

potential (58) has a minimum at ρ2min = 3
2 ln

(

− 3
2ξ

)

. In order to have Vmin = 0,

we can choose ξ = − 3
2e . However, we find that this choice of parameter ξ does not

allow slow-roll inflation near the maximum of the scalar potential. Similar to the

previous model of section 4, it may be possible to achieve both the scalar potential

satisfying slow-roll conditions and a small cosmological constant at the minimum

by adding correction terms to the Kähler potential and turning on a parameter F .

However, here, we will focus on b = 3/2 case where, as we will see shortly, less

parameters are required to satisfy the observational constraints.

7. Application in Inflation

We recall that the the models we described in section 4, the inflaton is identified

with the sgoldstino, carrying a U(1) charge under a gauged R-symmetry and infla-

tion occurs around the maximum of the scalar potential, where the U(1) symmetry

is restored, with the inflaton rolling down towards the electroweak minimum. These

models avoid the so-called η-problem in supergravity by taking a linear superpo-

tential, W ∝ X . In contrast, here we will consider models with two FI parameters

b, ξ in the Kähler frame where the U(1) gauge symmetry is not an R-symmetry.

If the new FI term ξ is zero, these models are Kähler equivalent to those with a

linear superpotential (Case 1 models with b = 1). The presence of non-vanishing

ξ, however, breaks the Kähler invariance as we discussed before. Moreover, the FI

parameter b cannot be 1 but is forced to be b = 3/2, according to the argument in

Section 6. So the new models do not seem to avoid the η-problem. Nevertheless, we

will show below that this is not the case and the new models with b = 3/2 avoid

the η-problem thanks to the other FI parameter ξ which is chosen near the value at

which the effective charge of X vanishes between the two FI-terms. Inflation is again

driven from supersymmetry breaking but from a D-term rather than an F-term as



we had before.

7.1. Example for slow-roll D-term inflation

In this section we focus on the case where b = 3/2 and derive the condition that leads

to slow-roll inflation scenarios, where the start of inflation (or, horizon crossing) is

near the maximum of the potential at ρ = 0. We also assume that the scalar

potential is D-term dominated by choosing F = 0, for which the model has only

two parameters, namely q and ξ. The parameter q controls the overall scale of the

potential and it will be fixed by the amplitude As of the CMB data. The only

free-parameter left over is ξ, which can be tuned to satisfy the slow-roll condition.

In order to calculate the slow-roll parameters, we need to work with the canoni-

cally normalised field χ defined by eqs. (24), (25). Since we assume inflation to start

near ρ = 0, the slow-roll parameters for small ρ can be expanded as

ǫ =
F 4

q4
+

4F 2
(

2(ξ + 1)q4 − 3F 4
)

3q6
ρ

+

(

16

9
(ξ + 1)2 +

2F 4
(

18F 4 − q4(20ξ + 11)
)

3q8

)

ρ2 +O(ρ3),

η =
4(1 + ξ)

3
+O(ρ). (75)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ

to avoid the η-problem. The observation is that at ξ = −1, the effective charge of

X vanishes and thus the ρ-dependence in the D-term contribution (58) becomes of

quartic order.

For our present choice F = 0, the potential and the slow-roll parameters become

functions of ρ2 and the slow-roll parameters for small ρ2 read

η =
4(1 + ξ)

3
+O(ρ2) ,

ǫ =
16

9
(ξ + 1)2ρ2 +O(ρ4) ≃ η(0)2ρ2 . (76)

Note that we obtain the same relation between ǫ and η as in the model of inflation

from supersymmetry breaking driven by an F-term from a linear superpotential

and b = 1 (see eq. (26)). Thus, there is a possibility to have flat plateau near

the maximum that satisfies the slow-roll condition and at the same time a small

cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ2
∫ χend

χ∗

V
∂χV

dχ = κ2
∫ ρend

ρ∗

V
∂ρV

(

dχ

dρ

)2

dρ, (77)

where we choose |ǫ(χend)| = 1. Notice that the slow-roll parameters for small ρ2

satisfy the simple relation ǫ = η(0)2ρ2 + O(ρ4) by eq. (76). Therefore, the number



of e-folds between ρ = ρ1 and ρ2 (ρ1 < ρ2) takes the following simple approximate

form as in (32):

N ≃ 1

|η(0)| ln
(

ρ2
ρ1

)

=
3

4|ξ + 1| ln
(

ρ2
ρ1

)

. (78)

as long as the expansions in (76) are valid in the region ρ1 ≤ ρ ≤ ρ2. Here we also

used the approximation η(0) ≃ η∗, which holds in this approximation.

We can compare the theoretical predictions of our model to the observational

data via the power spectrum of scalar perturbations of the CMB, namely the am-

plitude As, tilt ns and the tensor-to-scalar ratio of primordial fluctuations r. These

are written in terms of the slow-roll parameters:

As =
κ4V∗

24π2ǫ∗
,

ns = 1 + 2η∗ − 6ǫ∗ ≃ 1 + 2η∗ ,

r = 16ǫ∗ , (79)

where all parameters are evaluated at the field value at horizon crossing χ∗. From

the relation of the spectral index above, one should have η∗ ≃ −0.02, and thus

eq. (78) gives approximately the desired number of e-folds when the logarithm is

of order one. Actually, using this formula, we can estimate the upper bound of the

tensor-to-scalar ratio r and the Hubble scale H∗ following the same argument given

in section 4; that is, the upper bounds are given by computing the parameters r,H∗

assuming that the expansions (76) hold until the end of inflation. We then get the

bound

r . 16(|η∗|ρende−|η∗|N )2 ≃ 10−4, H∗ . 1012GeV, (80)

where we used |η∗| = 0.02, N ≃ 50 − 60 and ρend . 0.5, which are consistent with

our models. In the next subsection, we will present a model which gives a tensor-

to-scalar ratio bigger than the upper bound above, by adding some perturbative

corrections to the Kähler potential.

As an example, let us consider the case where

q = 4.544× 10−7, ξ = −1.005. (81)

By choosing the initial condition ρ∗ = 0.055 and ρend = 0.403, we obtain the results

N = 58, ns = 0.9542, r = 7.06× 10−6 and As = 2.2 × 10−9, which are within the

2σ-region of Planck’15 data.18

As was shown in Section 6.1, this model has a supersymmetric minimum with

zero cosmological constant because F is chosen to be zero. One possible way to

generate a non-zero cosmological constant at the minimum is to turn on the su-

perpotential W = κ−3F 6= 0, as mentioned in Section 6.2. In this case, the scale

of the cosmological constant is of order O(F 2). It would be interesting to find an

inflationary model which has a minimum at a tiny tuneable vacuum energy with a

supersymmetry breaking scale consistent with the low energy particle physics.



Fig. 3. A plot of the predictions for the scalar potential with F = 0, b = 3/2, A = 0.545,
B = 0.230, ξ = −1.140 and q = 2.121× 10−5 in the ns - r plane, versus Planck’15 results.

7.2. A small field inflation model from supergravity with

observable tensor-to-scalar ratio

While the results in the previous example agree with the current limits on r set by

Planck, supergravity models with higher r are of particular interest. In this section

we show that our model can get large r at the price of introducing some additional

terms in the Kähler potential. Let us consider the previous model with additional

quadratic and cubic terms in XX̄:

K = κ−2
(

XX̄ +A(XX̄)2 +B(XX̄)3 + b lnXX̄
)

, (82)

while the superpotential and the gauge kinetic function remain as in eq. (56). We

now assume that inflation is driven by the D-term, setting the parameter F = 0. In

terms of the field variable ρ, we obtain the scalar potential:

V = q2
(

b+ ρ2 + 2Aρ4 + 3Bρ6 + ξρ
4b
3 e

2
3 (Aρ4+Bρ6+ρ2)

)2

. (83)

We thus have two more parameters A and B. This does not affect the arguments of

the choices of b in the previous sections because these parameters appear in higher

orders in ρ in the scalar potential. So, we consider the case b = 3/2. The simple

formula (78) for the number of e-folds for small ρ2 also holds even when A,B are

turned on because the new parameters appear at order ρ4 and higher. To obtain

r ≈ 0.01, we can choose for example

q = 2.121× 10−5, ξ = −1.140, A = 0.545, B = 0.230. (84)

By choosing the initial condition ρ∗ = 0.240 and ρend = 0.720, we obtain the results

N = 57, ns = 0.9603, r = 0.015 and As = 2.2 × 10−9, which agree with Planck’15

data as shown in Fig. 3.

In summary, in contrast to the model in section 4, where the F-term contribution

is dominant during inflation, here inflation is driven purely by a D-term. Moreover,

a canonical Kähler potential (55) together with two FI-parameters (q and ξ) is

enough to satisfy Planck’15 constraints, and no higher order correction to the Kähler



potential is needed. However, to obtain a larger tensor-to-scalar ratio, we have

to introduce perturbative corrections to the Kähler potential up to cubic order

in XX̄ (i.e. up to order ρ6). This model provides a supersymmetric extension of

the model37 , which realises large r at small field inflation without referring to

supersymmetry.
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