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1 Introduction

Quantum conformal field theories in various space-time dimensions attracted recently a

considerable attention, due to their phenomenological importance in physics, for subjects

ranging from the description of critical phenomena to the fundamental interactions beyond

the Standard Model, but also due to their beautiful mathematical structure allowing to get

a deep insight into the basic features of Quantum Field Theory and, via AdS/CFT duality,

of Quantum Gravity. In spite of the considerable simplifications in the properties of CFTs

w.r.t. the massive QFTs, the non-perturbative structure of strongly interacting CFTs in

d > 2 dimension is very complicated and in general not very well studied analytically. A

considerable progress in this direction has been achieved due to the conformal bootstrap

methods [1, 2] based on the basic properties of CFTs following from the conformal symme-

try, such as crossing symmetry in various channels for the four-point correlation functions.

But this approach stays to a great extent “experimental”, based on heavy numerical com-

putations rather than on explicit analytic formulation of the final results. A great progress

in the understanding of analytic structure of CFTs in d > 2 dimensions has been achieved

for various superconformal QFTs, often due to the AdS/CFT correspondence. In a special

case — the N = 4 SYM— the analytic study of OPE data was greatly advanced due to the

planar integrability of the theory [3]. In particular, the spectral problem — exact, all-loop

calculation of anomalous dimensions of local operators — found its ultimate formulation

in terms of the Quantum Spectral Curve (QSC) [4, 5] — a system of algebraic relations

on Baxter-type Q-functions, supplied by analyticity properties and Riemann-Hilbert mon-

odromy conditions (see recent reviews [6, 7]).

The integrability appears to persist for a class of 3-parameter γ-deformations of the

R-symmetry of N = 4 SYM [8–10] if one tunes the so-called double-trace terms, generated

by the RG of the model, to their critical, in general complex values [11, 12]. The γ-

deformed N = 4 SYMappears to be a family of non-sypersymmetric and non-unitary

four-dimensional CFTs labeled by ’t Hooft coupling g and three γ-deformation angles

γj , j = 1, 2, 3. The OPE data of N = 4 SYMhas been studied in numerous papers, using

the integrability properties, as well as AdS/CFT correspondence for the strong coupling

regime g → ∞, or a direct Feynman graph calculus at weak coupling g → 0. Apart from

the spectral problem, an impressive progress has been achieved in a more difficult problem

of computation of structure constants and correlation functions [13–16], as well as of 1/N2
c

corrections [17]. However, the efficient all-loop solution of these problems is still hindered

by outstanding technical complexity. We also have to admit that integrability of N = 4

SYM is still a somewhat mysterious phenomenon, not very well understood, especially on

the CFT side of this AdS5/ CFT4 duality.

In 2015, one of the authors and Ö. Gürdŏgan proposed a family of non-unitary, non-

supersymmetric CFTs [18], based on a special double scaling limit of γ-deformed N = 4

SYM combining weak coupling limit of small ’t Hooft coupling, g → 0, and strong imag-

inary twist, γj → i∞, with three finite effective couplings ξj = ge−iγj/2. The gauge fields

and the gaugino decouple in this limit and one is left with three complex scalars and

three complex fermions with certain chiral structure of interactions (see the Lagrangian
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of the theory (2.1), (2.2)). These CFTs, on the one hand, helps to shed some light on

the origins of integrability in N = 4 SYM, and on the other hand, the double scaling

limit significantly facilitates the computations of interesting physical properties, such as

OPE data and certain multi-loop Feynman graphs, revealing rich and instructive dynam-

ical properties of the theory. It was further studied in [19], in particular, by the asymp-

totic Bethe ansatz methods. This full three-couplings double scaled version of N = 4

SYMwas dubbed in [19] the chiral CFT, or, shortly, χCFT. We will employ this name in

what follows.

In the single coupling reduction, ξ1 = ξ2 = 0, ξ3 6= 0, the theory reduces to two

interacting complex scalar matrix fields (see eq. (2.6)). The planar Feynman graphs for

typical physical quantities in such a bi-scalar theory appear to have, at least in the balk, the

fishnet structure where the massless scalar propagators form a regular quadratic lattice [18].

This theory will be called in what follows the bi-scalar, or fishnet CFT. The fishnet graphs

of simple shape, such as a torus, appear to represent an integrable statistical mechanical

system [20]. Remarkably, there exists also an integrable generalization of the Fishnet CFT

to any dimension d [21].

Many results recently obtained for the biscaler fishnet CFT, would be too difficult

to achieve for the analogous quantities in the full γ-deformed N = 4 SYM. Among the

studied quantities are anomalous dimensions of the operators Tr[φL1 ] dominated by wheel-

type fishnet graphs. They were computed explicitly, in terms of MZV values, at two

wrappings (up to 2L loops for any L [18, 22]) and, iteratively, to any loop order for L = 3.

Another remarkable example of exact computations, unique in d > 2 CFTs, are the all-

loop four-point correlation functions of the shortest protected operators [7, 12, 24]. The

biscalar fishnet CFT gives a unique opportunity of the study the single-trace multi-point

correlators and of the related exact planar scalar amplitudes, revealing their explicit and

well-defined Yangian symmetry [25, 26]. One is even able to compute exactly, using the

above mentioned exact four-point correlators, the simplest non-planar (∼ 1/N2
c ) scattering

amplitude [27] (see also [28] for the perturbative study of this amplitude).

All this shows that this integrable theory resulting from the double-scaling limit of

planar γ-deformed N = 4 SYMallows a unique insight into the non-perturbative structure

of strongly interacting CFTs and a closer look at them could reveal many general properties

of CFTs in d > 2 dimensions. It is also worth mentioning the existence of 3 dimensional

analogue of these CFTs, obtained by a similar limit from the three-dimensional γ-deformed

ABJM model [19] dominated by fishnet graphs with regular triangular structure, as well

as the 6d version of fishnet CFT [29], where the fishnet graphs have a regular hexagonal

structure. The “bulk” integrability of all three cases of regular fishnet planar graphs was

predicted in [20].

Whether as a big progress already has been done in the study of the bi-scalar fishnet

CFT has been done, little is known about the most general version of the double-scaled

γ-deformed N = 4 SYM mentioned above. Until very recently, apart from the original

formulation [18] and the study, in [19], of asymptotic Bethe ansatz equations for anomalous

dimensions in certain sectors of this very interesting theory, as well as the computations

of related unwrapped and single-wrapped Feynman graphs, no serious attempts had been

– 2 –
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undertaken, at least until very recently, to understand deeper the physical properties and

the Feynman graph structure of the full χCFT. It is worth noticing that, unlike the bi-

scalar fishnet CFT, the reasons for the integrability of this model remain mysterious.

A few days before the completion of the current paper, a very interesting study of the

one loop perturbative properties of this χCFT was undertaken [30], and especially of its

two reductions: the bi-scalar fishnet CFT, as well as β-deformed N = 1 supersymmetric

case, when all three couplings are equal [19]. The paper explores an interesting subject of

study of non-unitary spin chains, having a rich and complicated structure of the spectrum,

including the Jordan cells as specific multiplets of states. The Jordan multiplets leading to

the logarithmic behavior in non-unitary CFT’s [31], are noticed and studied perturbatively

in the fishnet CFT [32, 33]. The notion of one-loop integrability in χCFT appears to

be quite different from the one-loop integrability of its mother theory — the N = 4

SYM [34, 35].

The non-unitarity of the studied χCFT represents an obvious drawback from the point

of view of the physical interpretations: the presence of complex OPE data violating var-

ious basic quantum-mechanical axiomes and usual analyticity constraints. On the other

hand, the non-unitary theories are curious objects in themselves, having interesting OPE

properties, such as a logarithmic behaviour of certain correlators χCFT is an example of

logarithmic CFTs). In addition, they share many basic common features with unitary

CFTs and help to understand their general features.

We attempt in this paper to answer some of the questions posed above about the

χCFT. First of all, we will give the complete description of the bulk structure of Feynman

graphs (far from their boundaries defined by the particular underlying physical quantities).

It appears to be much richer than in the fishnet CFT, though much simpler than in the

full N = 4 SYMconserving a certain lattice regularity. A pictorious way to describe these

graphs is to introduce the regular triangular lattice and the to do all possible Baxter moves

of all three types of lines, as shown on figure 2. These lines should represent sequences

of bosonic and fermionic propagators and the mixed intersections (where both bosonic

and fermionic propagators meet) should be disentangled, in a unique way, into pairs of

Yukawa vertices). These configurations should be summed up, so that the collection of

such graphs could be called the “dynamical fishnet”. The integrability of these graphs,

or the sum of them, remains to be proved, though we demonstrate it in this paper in a

simpler case of the two-coupling reduction of χCFT (see eq. (2.4)), with two bosonic and

one Yukawa coupling.

Then we will compute exactly the 4-point correlation functions of certain short, pro-

tected scalar operators, similar those obtained in fishnet CFT [7, 12, 24]. For that we

identify all the graphs contributing these quantities and sum them up using the Bethe-

Salpeter approach helped by the conformal invariance. In comparison to the fishnet CFT,

the two-coupling dependence of these correlators in the full double-scaled CFT reveals a

rich phase structure in the coupling space. We study in detail the related perturbative

expansions of these correlators, as well as their strong coupling limits.

– 3 –
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2 Feynman graphs and correlators of χCFT — the strongly γ-deformed

N = 4 SYM theory

In this section, we will study the generic structure of planar Feynman graphs and dis-

cuss their integrability properties, in the full three-coupling chiral CFT (χCFT) proposed

in [18] (see also [19] for more details).

This CFT was obtained as a double scaling limit of γ-twisted N = 4 SYMdescribed

above. It is defined by the Lagrangian for three complex scalars and three complex fermions

transforming in the adjoint representation of SU(Nc):

Lφψ = NcTr

(
−1

2
∂µφ†j∂µφ

j + iψ̄α̇j (σ̃µ)αα̇∂µψ
j
α

)
+ Lint (2.1)

where the sum is taken with respect to all doubly repeated indices, including j = 1, 2, 3,

and the interaction part is

Lint = Nc Tr
[
ξ2

1 φ
†
2φ
†
3φ

2φ3+ξ2
2 φ
†
3φ
†
1φ

3φ1+ξ2
3 φ
†
1φ
†
2φ

1φ2+i
√
ξ2ξ3(ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2)

+ i
√
ξ1ξ3(ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3) + i

√
ξ1ξ2(ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1)

]
.

(2.2)

We suppressed in the last equation the spinorial indices assuming the scalar product of

both fermions in each term. We will refer to this theory as χCFT theory.

The double scaling procedure and the derivation of this action from γ-deformed

N = 4 SYM can be found in papers [19, 36]. In the next sections, we will study the four-

point functions obtained by point splitting of fields in coinciding points, in the two-point

correlation functions of local operators of three types:

Tr[φ2
j (x)] (j = 1, 2, 3), Tr[φjφk(x)] (i > j), Tr[φjφ

†
k(x)] (i 6= j). (2.3)

Since the Lagrangian (2.2) depends on three arbitrary couplings, For some particular

values of these couplings, interesting reductions of this χCFT emerge. For example, in the

limit ξ1 → 0, one fermion decouples and we obtain the following action [19]

Lint = Nc Tr
(
ξ2

3 φ
†
1φ
†
2φ

1φ2 + ξ2
2 φ
†
3φ
†
1φ

3φ1 + i
√
ξ2ξ3(ψ2φ1ψ3 + ψ̄2φ

†
1ψ̄3)

)
. (2.4)

We will refer to this theory as χ0CFT theory. Another interesting case of (2.2) occurs

when all three couplings are equal ξ1 = ξ2 = ξ3 = ξ and corresponds to the doubly-scaled

β-deformed SYM [37, 38]. It has the following interaction Lagrangian [19]

Lint = ξ2Nc Tr
(
φ†2φ

†
3φ

2φ3 + φ†3φ
†
1φ

3φ1 + φ†1φ
†
2φ

1φ2
)

+ iξNcTr
(
ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2 + ψ1φ2ψ3 + ψ̄1φ

†
2ψ̄3 + ψ2φ3ψ1 + ψ̄2φ

†
3ψ̄1

)
.

(2.5)

In this case, one supersymmetry is left unbroken, as in the original β-deformed N = 1

SYM.

– 4 –
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32 31 21

Figure 1. The chiral vertices of the DS theory (2.2). The graphs of the first line represent the

quartic scalar interactions and the ones in the second line are the Yukawa interactions. Tick solid

lines and dashed lines represent scalar and fermionic propagators respectively. Colors stand for the

various “flavour” of the particles φi and ψi: black for i = 1, red for i = 2 and green for i = 3.

Arrows symbolize the fixed orientation (chirality) of the vertices and, according to our notation, it

points always to the fields with bars or daggers. The second chirality of Yukawa interactions i.e.

the one with ψ̄i → ψi and φ†i → φi with i = 1, 2, 3, can be represented as the second line of vertices

with flipped arrows.

Most of the papers on this relatively young subject were devoted to the abovementioned

single coupling reduction of this model: ξ1 = ξ2 = 0, ξ3 ≡ ξ 6= 0, i.e. the bi-scalar, fishnet

CFT defined by the action [18]:

Lφ =
Nc

2
Tr
(
∂µφ†1∂µφ

1 + ∂µφ†2∂µφ
2 + 2ξ2 φ†1φ

†
2φ

1φ2
)
. (2.6)

Our paper is devoted to generalization of some of these results of [23, 24] to the full chiral

model — χCFT (2.2) and to its various limits presented above. This represents a step

forward, w.r.t. the bi-scalar model (2.6), in understanding the non-perturbative structure

of physical quantities of the full N = 4 SYM.

We will also describe the general bulk structure of the underlying planar graphs. In-

deed, one interesting feature of those models is the drastic simplification of their weak

coupling expansions in terms of Feynman diagrams in the planar limit. In general, any

diagram of χCFT can be built as a collection of the vertices in figure 1, connected by

scalar and fermionic propagators.1 The arrows indicate the fixed orientation (chirality) of

the interactions, i.e. in a propagator it is directed from a field to its hermitian conjugate.

An essential feature of (2.2) is the absence of the hermitian conjugate of every interaction

vertex, or of the vertices obeying the reality condition. The chirality of this theory makes

it non-unitary and plays a crucial role for the underlying conformality and integrability in

the ’t Hooft limit. In fact, in the absence of the hermitian conjugate vertices, all the graphs

which could renormalize the couplings and the mass are non-planar. As a consequence, we

will see in section 2.2 that the planar weak coupling expansion of physical quantities w.r.t.

1Apart from the double-trace vertices [39, 40] whose role will be discussed below.
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interactions (2.2) in χCFT is dominated, at least in the bulk and for high enough perturba-

tive order, by a specific class of planar diagrams having a kind of a lattice structure, much

more rigid than the structure of graphs in the original N = 4 SYM. This lattice structure is

richer, and more “dynamical” than in the bi-scalar theory where the unique regular square

fishnet structure dominates at any order in perturbation theory. In the full χCFT, due

to the presence of Yukawa interactions and quartic scalar vertices, there are more planar

graphs contributing at each perturbative order, but the chirality still dramatically reduces

their number. We can dubb the structure of full χCFT graphs as “dynamical fishnet”.

2.1 Double-trace interactions and conformal symmetry

The γ-deformed N = 4 SYM theory and its doubly-scaled version are not conformal in a

strict sense, not even in the planar limit [36]. Indeed, the renormalization group calculations

show [41] that the new, scalar double-trace interactions are generated

Ldt =(4π)2
3∑
j=1

[
α2

1,jTr[φjφj ]Tr[φ†jφ
†
j ]+α

2
2,jTr[φjφ

†
j+

]Tr[φ†jφj+ ]+α2
3,jTr[φjφj+ ]Tr[φ†jφ

†
j+

]
]
,

(2.7)

where in our notation j+ = j + 1 with the constraint 3+ = 1. The double-trace couplings

αk,j generically flow with the scale. They are needed to renormalise the 2-point correlators

of the local operators Tr[φjφj ], Tr[φjφ
†
j+

] and Tr[φjφj+ ] respectively. For any of these

planar correlators only one double-trace term contributes, that is the β-function of each

αk,j depends only on couplings {ξ1, ξ2, ξ3} and αk,j itself. Due to permutation symmetry

of flavour indices j = 1, 2, 3 in the Lagrangian (2.1), the functions βαk,j show the same

symmetry in the coupling dependance, namely

βαk,j (αk,j , ξj , ξj+ , ξj−) = βαk,j′ (αk,j′ , ξj′ , ξj′+ , ξj′−) , (2.8)

thus will drop in what follows the specification of subscript j in double-trace couplings.

The double-trace terms (2.7) appear in the theory already at one-loop renormalization and

the β-functions associated to the couplings α2
k are not zero. In γ-deformed N = 4 SYMthe

one-loop β-function associated to the double-trace interaction α2
1 Tr[φjφj ]Tr[φ†jφ

†
j ] of (2.7)

is [41]

βαk =
g4

π2
sin2 γ+

k sin2 γ−k + 43π2α4
k +O(g6, α6

k) , (2.9)

where γ±k are linear combinations of the deformation parameters γj of the theory defined

in (B.3). Let us turn to the theory (2.2) with the double-trace terms (2.7). In contrast to

the bi-scalar theories, where the invariance under exchange{
φj −→ φj+

φj+ −→ φ†j
(2.10)

allows to identify α2 and α3, the presence of Yukawa interactions in χCFT specifically

breaks this symmetry, and operators Tr[φjφ
†
j+

] and Tr[φjφj+ ] show different behaviour.

– 6 –
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When only one αk coupling is running, the corresponding β-function has the following

form

βαk = a(ξ) + b(ξ)α2
k + c(ξ)α4

k , (2.11)

where a, b, c are functions of the couplings ξ = {ξ1, ξ2, ξ3}. This quadratic behavior of

β as a function of α2
k was encounter for the first time in [40] as an example of non-

supersymmetric orbifold theories with double-trace interactions and established in [42]

for a generic deformed theory in the ’t Hooft limit. If the running coupling αk is associated

to the double trace interaction TrOTrO† of length-two scalar operators O, the functions

a, b and c are related to the normalization coefficient of the two-point function of O, the

contribution of the single-traces to the anomalous dimension of O and the coefficient of

the induced double-trace terms.

To make the theory conformal at the quantum level, one needs to tune the double-trace

couplings to a fixed point. In the original γ-deformed N = 4 SYM, the ’t Hooft coupling g2

is not running, so the critical (conformal) point for double-trace couplings can be computed

imposing the vanishing of their β-functions. In the case of a single running coupling, (2.9)

has the following fixed points

α2
k? = ± ig

2

8π2
sin γ+

k sin γ−k +O(g4) . (2.12)

Similarly, the coupling constants ξi of the theory (2.2) are not running in the ’t Hooft

limit and one can fine-tune the double-trace couplings α2
i to critical values in terms of their

ξi dependence, imposing the vanishing of the underlying β-function (2.11) as follows

βαk
!

= 0 ⇒ (4π)2α2
k? = −b±

√
b2 − 4ac

2c
. (2.13)

At the two fixed points (2.13), it is possible to write the anomalous dimension γ? of the

operator O in terms of the discriminant of βαk = 0 [42]

4γ2
O? = b2 − 4ac . (2.14)

At the fixed points for all double-trace couplings (2.7) of γ-deformed N = 4 SYM, the

theory becomes a genuine non-supersymmetric CFT. This conformal theory appears also

to be integrable [9, 10, 12] and its spectrum of anomalous dimensions can be treated by such

a powerful tool as quantum spectral curve (QSC) [4, 5, 10]. The same statements hold for

the double-scaling limit of the 4D χCFT theory (2.2), to which we have to add the double-

trace Lagrangian (2.7). Integrability of the full χCFT is still a conjecture, as it is for the full

γ-deformed N = 4 SYM. It was demonstrated explicitly only for the simplest reduction

of χCFT — the bi-scalar CFT (2.6), where the fishnet planar graphs have an iterative

regular lattice structure [18], shown to be integrable long ago by A.Zamolodchikov [20] (see

also [33]). We extended the proof of integrability to a larger, two-coupling sector of χCFT

in section 2.4, by methods of conformal SU(2, 2) quantum spin chain. In the case of χCFT

we also have good chances to prove full integrability on the level of planar Feynman graphs

since, as we show below, these graphs preserve a certain rigid lattice structure.
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The obvious physical defect of such CFTs is the loss of unitarity. Indeed, as it will be

clear with the explicit example below, the discriminant of the equation βαi = 0 is nega-

tive, inducing complex values for the fixed points (2.13) and anomalous dimension (2.14).

Moreover in the AdS/CFT context, this fact can be interpreted as the presence of true

tachyons in the bulk on the string theory side [42].

The one-loop anomalous dimension of the length-two operator Tr[φjφj ] in γ-deformed

N = 4 SYMat the fixed point is [41]

γφjφj? = ∓ ig
2

2π2
sin γ+

j sin γ−j +O(g4). (2.15)

Notice that both the fixed points (2.12) and the anomalous dimensions (2.15) are complex

conjugate, as expected. Those relations are actually valid in the full γ-deformed N = 4

SYMtheory, but in the double-scaling limit under analysis it is simple to obtain some

predictions for the one-loop β, the associated critical points and the anomalous dimensions.

In particular we have

γφjφj?
DS limit

= ∓2i(ξ2
j+− ξ

2
j−) + . . . and α2

1?
DS limit

= ± i
ξ2
j+
− ξ2

j−

2
+ . . . . (2.16)

In section 4.3 and section 6.2 we will verify these results computing the exact spectrum

of the operator Tr[φjφj ] with the Bethe-Salpeter method, and the first order of the fixed

point α2
1? using Feynman diagrams.

Non-unitary CFTs are usually logarithmic [31], i.e. with an interesting, logarithmic

behavior of certain correlators. The γ-deformed N = 4 SYM and its double-scaled version

— the χCFT (2.2) (and its reductions mentioned above) are not exceptions: they show the

same logaritmic properties due to the non-hermiticity of their dilatation operators [32, 33].

2.2 The bulk structure of large planar graphs

Let us try to describe the general structure of an arbitrarily big Feynman graph in the bulk,

far from the boundaries. The generic picture is illustrated on figure 2. The theory (2.2)

contains 3 complex scalars φi and 3 complex fermions ψi labelled by i = 1, 2, 3. We chose to

represent scalar propagators with thick solid lines and fermionic propagators with dashed

lines (see figure 1), while the label denoting their U(1)⊗3 flavour (see appendix 4) is mapped

into colours: (1, 2, 3) ≡ (black, red, green). In figure 2, coloured dotted lines in a particular

direction represent a generic propagator, both scalar or fermionic. In this framework, a

set of parallel lines represents any combination of fermionic and scalar propagators of a

given flavour.

This system of three dotted lines forms a lattice which combines the features of both

regularity and irregularity. Any such lattice can be obtained from the regular triangular

lattice (or a more general Kagomé lattice) by arbitrary Baxter moves of all lines: displace-

ments in the direction orthogonal to the line, i.e. conserving its direction.

The links of the resulting lattice are propagators while nodes are quartic effective in-

teractions. These interactions are of three kinds, depending on which lines are crossing and

which propagators enter the corresponding crossing (effective vertex). They can represent
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Figure 2. General “dynamical” fishnet bulk structure of a planar graph for 3-coupling chiral

CFT (2.2). Dotted lines represent scalar or fermionic propagators (the rules for the choice of

propagators will be explained below and demonstrated in figure 3) The colors and directions of the

lines stand for the three “flavours” of the particles i = 1, 2, 3 with the same notation as we used in

figure 1. The intersections correspond to six different effective vertices that can be written in terms

of the usual ones following the map given in table 1.

a set of φ4 or various Yukawa vertices, according to the rules listed in table 1. Indeed in

this framework, a quartic vertex involving fermions can be though of as a couple of Yukawa

vertices, or similarly, as a split quartic vertex in which we have added a propagator in the

remaining direction, according to the rules in table 1. The quartic interaction can involve

four scalars, four fermions or two of each. Moreover, we chose the directions of the arrows

to be consistent with the Feynman rules in figure 1. Depending on the orientation of the

mixed interactions we will refer to them as crossing or scattering interactions as in table 1.

Given three sets of parallel lines crossing each other with quartic interactions, the

resulting irregular lattice is formed by a finite set of convex polygons. The smallest possible

n-gon is a triangle and the largest one is a hexagon. Those convex polygons can be

constructed locally by the abovementioned moves of lines in two or three different directions:

• 2 directions (colors): we can discard the lines in one of the directions. The local in-

teraction of lines with only two directions (colors) forms a square lattice as in [18, 20].

Since we are considering three colors, we can have three different squares depending

on their directions.

• 3 directions (colors): in this case there are more possibilities to build convex polygons.

Indeed let’s start with the crossing of three lines with three different directions.

Locally, they form a triangle that can have two different orientations. Adding another

line, parallel to one of the previous three, and cutting the triangle, we will end up with

a square. Since we can add a line of any color and there are two possible triangle

orientations, we can draw 6 different squares. Iterating this cutting procedure by

adding one and two lines we obtain pentagons and the hexagon.

In the following table we recap all the possible n-gons and their multiplicity, that is the

number of different ways (i.e.: not superposable by simple translation and scaling) the
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Effective Real Effective Real Effective Real

4
-S

ca
la

r ξ2
2 ξ2

1 ξ2
3

4
-F

er
m

io
n ξ1ξ3 ξ2ξ3 ξ1ξ2

C
ro

ss
in

g

ξ2ξ3 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ1ξ3 ξ2ξ3

S
ca

tt
er

in
g

ξ2
√
ξ1ξ3 ξ1

√
ξ2ξ3 ξ3

√
ξ1ξ2

ξ2
√
ξ1ξ3 ξ1

√
ξ2ξ3 ξ3

√
ξ1ξ2

Table 1. Substitution rules for the effective vertices appearing in the fishnet bulk structure of

figure 2 in terms of the Feynman rules of figure 1. Any effective vertices is associated with a

combination of the coupling constants ξi with i = 1, 2, 3 of order ξ2.
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Figure 3. One of the possible configurations in terms of effective vertices of table 1 for the bulk

topology represented in figure 2. The diagrams at the two sides of the figure represents the parts of

the graph in the light-blue circles in terms of real vertices of figure 1 according with the rules given

in table 1. We stress that given a set of effective vertices, the translation in real vertices is unique.

same polygon can appear in the graph.

n-gon M 2 D 7
Multiplicity 2 9 6 1

It follows that for a given set of lines, the resulting lattice can be seen as a tiling of the

plane with 18 different tiles.

The structure of the fishnet bulk is very rich, indeed once the topology of the lattice

is defined as in figure 2, some information is lost, as any quartic dotted-vertex can be

associated to six different physical vertices, as listed in table 1. The number of possible

Feynman diagrams Nd which can be associated to a given close n-gon, defined by n quartic

dotted-vertices, can be computed considering first all possible combinations of fermionic

and scalar propagators for the edges of the polygon and then cancel out those vertices

which does not fit in any configuration. After this tedious combinatorics we obtain the

following table

n-gon M 2 D 7
Nd 28 82 244 730

This result can be written in the following compact formula

Nd(n) = 1 + 3n . (2.17)

Now we can estimate the number of Feynman diagrams for a given topology of the dotted-

fishnet bulk. This number has the sum of all the Nd’s for all the polygons as an upper

bound and we can estimate its order of magnitude. Then the number of possible Feynman

diagrams for the topology of the fishnet bulk given in figure 2 is around 1.5×104. Moreover,

since any vertex is associated with a combination of the couplings ξi with i = 1, 2, 3 of order

2, we know that the diagram in figure 2 is of order ξ234. One of those configurations is

represented in figure 3.
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Figure 4. The result of drawing a disc on the lattice of figure 3 can be interpreted as one planar

graph contributing to an n-point functions of the kind (2.18), drawn in terms of effective vertices. In

this example we present Tr[φ1ψ̄3ψ1ψ̄3ψ2φ
†
3ψ̄1ψ2ψ2φ

†
1φ3ψ̄1ψ3ψ̄1φ

†
2ψ3ψ̄2φ1φ

†
2φ1](x1 . . . x20), and the

graph is of order ξ42. As it results from table 1, each effective vertex can be replaced in a univocal

way in terms of structure made of real vertices.

2.3 Single-trace correlation functions

We can realize the above mentioned bulk graphs (with fixed coordinates of external legs)

as a single-trace operator of the form:

K(x1, x2, . . . , xM ) = Tr [χ(x1)χ(x2) . . . χ(xM )] , (2.18)

χ ∈ {φj , φ†j , ψ
α
j , ψ̄

α̇
j }, (j = 1, 2, 3; α, α̇ = 1, 2 ), (2.19)

i.e. each χ(x) under the trace is one of 18 fields of the χCFT model (2.1)–(2.2). Of

course (2.18) must have zero overall R-charge, to have a non-zero answer. This implies a

condition on the elementary fields under trace, namely if we define nj and mj as the differ-

ences between the number of φj , respectively ψj and the conjugated fields, the mentioned

condition reads

nj + 2mj −
∑
k 6=j

nk = 0 , j = 1, 2, 3 . (2.20)

To describe the Feynman graph content of this quantity, let us remind that a similar single-

trace correlator in bi-scalar fishnet CFT [25, 26], consisting only of scalar fields, was given

by a single fishnet graph of the disc topology where the disc was cut out across the edges of

a regular square lattice. The ends of the cut edges represented external fixed coordinates

and the integrals were taken over all vertices inside the disc. Similarly, for each of the

quantities (2.18) there exist a collection of graphs of the disc shape cut out of the lattice of

the type drawn on figure 3. The types of external legs — the cut edges along the boundary

— define the species of fields from the set χ following in the same order under the trace

in (2.18). We present an example in figure 4, where the disc is drawn on the concrete

realization of the lattice as given in figure 3. A big difference w.r.t. the bi-scalar single-

trace correlators is that in the full χCFT such a quantity is defined by the sum of all graphs

with the same order of fields on the boundary (same sequence of external legs) which are

related to each other by the orthogonal moves of three types of parallel lines described in the
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Figure 5. Other possible planar graphs for the same 20-point function of figure 4 at order ξ48. On

the left, the yellow triangles have different edges w.r.t. figure 4. On the right, one red-dashed line

has been moved down-right, changing the topology w.r.t. figure 4 in the highlighted region.

previous subsection (as example, see figure 5 (right)). Furthermore, even at fixed topology,

one can change the interaction vertices inside the graph, namely switching some dashed

(fermionic) lines to solid (scalar) lines and vice-versa (figure 5 (left)). This corresponds

to different realizations of a disc segment of the dotted-lattice in figure 2 with boundary

conditions fixed by the external legs. The number of possible graphs can be estimated

by considerations of the previous subsection. This single-trace correlator can be used to

define the scattering amplitudes via Lehmann-Symanzik-Zimmerman procedure, by going

to the dual momentum space and taking on-shell external momenta, in the spirit of the

papers [25, 26]. It is worth noticing that not all the planar single-trace correlators are

obtained out of this procedure. Indeed certain external states can be cut out only drawing

a circle on the actual Feynman graph (see table 1) where all propagators are explicitly

drawn. Moreover, for a given correlation function, there are lower order graphs in the

coupling which cannot be cut out of the planar lattice, but from two or more sheets of such

lattice as explained in [25].

It would be interesting to show the Yangian invariance of these single-trace correlators,

in the same spirit as it was done in [25, 26] for bi-scalar case. Namely, to define the

monodromy (“lasso”) around the boundary for which each of these graphs, or sum of all

graphs, is an eigenfunction. This is one of the ways to show the integrability of the full

χCFT. In this paper we will limit ourselves by the proof of integrability of the model (2.4)

which will be given in the next subsection.

2.4 Integrability of Wheel graphs in χCFT

A statement of integrability, milder than the lattice integrability of the bulk of large planar

graphs, can be made for the scaling dimension of Tr[φLj ] operators at any L. These oper-

ators, protected in the original N = 4 SYM due to supersymmetry, are described in the

planar limit of bi-scalar theory by a perturbative expansion in globe-like fishnet graphs [18]

with an integrable square-lattice bulk [20]. These graphs can be built up by the action of
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Figure 6. An example of bulk of planar diagram appearing in the perturbative expansion of

〈Tr[φ3j ](x)Tr[φ3j ]
†(y)〉. It mixes together a square lattice structure of quartic scalar interactions and

the “brick-wall” domain made by Yukawa interactions. This case corresponds to the operatorial

expression Ĥ(3)
B (Ĥ(3)

F )2H(3)
B (x1, x2, x3|y1, y2, y3).

an integral “graph-building” kernel Ĥ(L)
B

[Ĥ(L)
B Φ](x1, · · · , xL) =

1

π2L

∫ L∏
k=1

d4yk
(xk − yk)2(yk − yk+1)2

Φ(y1, · · · , yL), yL+1 ≡ y1 .

(2.21)

It represents one of the conserved charges generated by the transfer matrix of the inte-

grable quantum SU(2, 2) spin chain of L sites in the scalar (∆, J1, J2) = (1, 0, 0) represen-

tation [33]. Similarly, in the two-coupling version (2.4) of χCFT the perturbative expansion

can be described by graphs which, in spite of more complicated structure (see figure 6),

can be still built by integrals of motion of the conformal spin chain. Namely, every planar

graph in the ξj expansion is a certain permutation of multiple action of operators Ĥ(L)
B and

Ĥ(L)
F , where the latter operator is responsible for fermionic loops contribution. As we will

see, the order in the permutation doesn’t matter, since any fermionic loop can be moved

through scalar wrappings, due to their commutativity, and this fact lays at the basis of

integrability of these graphs. The action of Ĥ(L)
F reads

[Ĥ(L)
F Φ](x1, · · · ,xL) =

∫ L∏
k=1

d4yk d
4zkH

(L)
F (x1 · · ·xL|y1 · · ·yL)Φ(y1, · · · ,yL) (2.22)

H(L)
F (x1 · · ·xL|y1 · · ·yL) =

tr[σµ1 σ̄ν1 · · ·σµL σ̄νL ]

(4π3)2L

∫ L∏
k=1

d4zk
(xk−zk)2

(zk−yk)µk(yk−zk+1)νk

|zk−yk|4|zk+1−yk|4

and it builds up an integrable “brick-wall” domain [26]. Its commutation with Ĥ(L)
B can

be proven directly by star-triangle relation (C.2), as shown in figure 7.

In order to show that Ĥ(L)
F is a conserved charge of the conformal scalar spin chain,

we should prove its commutation with the transfer matrix at any value of the spectral
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x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3 y1 y2 y3

x1 x2 x3

Figure 7. Proof of the commutation relation [Ĥ(L)
B , Ĥ(L)

F ] = 0 at L = 3. Gray blobs are external

coordinates, black dots are integration points and we denoted lines which coincide due to periodic

b.c. with blue. Left: Ĥ(L)
B H

(L)
F (x1, x2, x3|y1, y2, y3). In the middle: the result of integration over

Yukawa vertices. Right: Ĥ(L)
F H

(L)
B (x1, x2, x3|y1, y2, y3) as result of opening triangles with single yj

vertex in the middle figure.

parameter u,

[Ĥ(L)
F ,T(L)(u)] = 0 . (2.23)

For this purpose, we rewrite the kernel integrating out zk variables

H(L)
F (x1 · · ·xL|y1 · · · yL) =

tr[σµ1 σ̄ν1 · · ·σµL σ̄νL ]

(2π)4L

L∏
k=1

(yk − xk)µk(xk − yk+1)νk

(xk − yk)2(xk − yk+1)2(yk − yk+1)2
,

and we recall the definition of T(L)(u)

T(L)(u) = Tr0[R10(u)R20(u) · · ·RL0(u)], Rj0(u) ∈ End(L2(xj)⊗ L2(x0))

[Rij(u)Φ](xi, xj) =
42u

π4

Γ (u+ 2)2

Γ (−u− 1) Γ (−u+ 1)

∫
d4xi′d

4xj′ Φ(xi′ , xj′)

(x2
ij)
−u−1(x2

ji′)
1+u(x2

ij′)
3+u(x2

i′j′)
−u+1

,

(2.24)

where Rij(u) is the R-operator of the scalar conformal chain. It satisfies the Yang-Baxter

equation [43]

Rij(u)Rik(v)Rjk(v − u) = Rjk(v − u)Rik(v)Rij(u) . (2.25)

Then operator (2.21) coincides with 4−2LT(L) in the limit u→ −1, as pointed out in [33],

since the first propagator under the integral in (2.24) disappears and the last one effectively

becomes a δ-function.

Now we introduce the transfer matrix for the brick-wall domain2

T(L)
F (u) = Tr0[R̃10(u)R̃20(u) · · ·R̃L0(u)], R̃j0(u)∈End(L2(xj)⊗L2(x0)⊗C2) (2.26)

[(R̃ij)
α
β(u)Φ](xi,xj) =

42u

π4

Γ(u+2)2

Γ(−u)Γ(−u+1)

∫
d4xi′d

4xj′
(σµ)αα̇(σ̄ν)α̇β x

µ
ij′ x

ν
i′j Φ(x′i,x

′
j)

(x2
ij)
−u(x2

ji′)
1+u(x2

ij′)
3+u(x2

i′j′)
−u+1

,

and we check, similarly to the above scalar case, that limu→−1 T
(L)
F (u) = Ĥ(L)

F . The final

step to prove (2.23) is to show that

[T(L)(u),T(L)
F (v)] = 0 ∀u, v , (2.27)

2Here we implicitly mean the trace over spinorial indices of the fermionic loop.
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1

2 3

1'

2'3'

3

1

3'

2'1'

2 3

1'

2'3'

1

2

γ

γ

γ

α

α

α

Figure 8. Graphical representation of relation (2.28) of Yang-Baxter type. The squares represent

the kernels of R(v − u)23 (solid lines) and (R̃12)αβ (u), (R̃13)βγ (v) (solid and dashed lines). Black

dots are integration points, while gray blobs are external coordinates. Figures on the left and on

the right are respectively the L.H.S. and R.H.S. of (2.28). Both sides can be transformed in the

hexagonal object in the middle. First the triangle is opened into a star integral using (C.1) (left

side) or (C.2) (right side). Doing so, each of the three black dots will become the end of only three

lines. Then integration can be performed by (C.1), (C.2) and leads to the hexagon.

which will be done by means of a Yang-Baxter type relation

R̃αij β(u)R̃βik γ(v)Rjk(v − u) = Rjk(v − u)R̃αik β(v)R̃βij γ(u) , (2.28)

graphically represented in figure 8. Indeed (2.27) follows immediately from (2.28). First of

all we can introduce the monodromy operators

Ω̃
(L) α
0 β (u) =

[
R̃01(u) · · · R̃0L(u)

]α
β

and Ω
(L)
0 (u) = R01(u) · · ·R0L(u) , (2.29)

then iterating (2.28) we can write[
R̃00′(u)Ω̃

(L)
0 (v)

]α
β

Ω
(L)
0′ (u− v) = Ω

(L)
0′ (u− v)

[
Ω̃

(L)
0 (v)R̃00′(u)

]α
β
, (2.30)

and we finally trace over space L2(x0)⊗ L2(x0′) and over spinorial indices getting

Tr0,0′

(
Ω̃

(L)
0 (v)Ω

(L)
0′ (v − u)

)
= Tr0,0′

(
R̃00′(u)−1Ω

(L)
0′ (v − u)Ω̃

(L)
0 (v)R̃00′(u)

)
Tr0

(
Ω̃

(L)
0 (v)

)
Tr0′

(
Ω

(L)
0′ (v − u)

)
= Tr0′

(
Ω

(L)
0′ (v − u)

)
Tr0

(
Ω̃

(L)
0 (v)

)
, (2.31)

which is equivalent to (2.27). Our derivation straightforwardly shows that from the point

of view of integrability the regular square lattice and the brick-wall lattice built by Yukawa

vertices can be combined into the same integrable structure and form a mixed lattice. This

concludes the demonstration of integrability of the two-coupling model (2.4). The proof of

integrability of the full χCFT (2.2) is a more tricky exercise and we leave it for the future.

3 Bethe-Salpeter equation for four-point correlators and conformal data

In this and the next sections of this paper, we will exploit conformal symmetry and the

Bethe-Salpeter method to obtain the exact 4-point correlations functions

GO1O2(x1, x2|x3, x4) = 〈Tr[O1(x1)O2(x2)]Tr[O†1(x3)O†2(x4)]〉, (3.1)

– 16 –



J
H
E
P
0
6
(
2
0
1
9
)
0
7
8

where the operators Oi are protected operators in the double-scaled γ-deformed N = 4

SYM theory, the χCFT. Then we will extract from it the OPE data, anomalous dimensions

and structure constants, for length-2 unprotected operators exchanged in the s-channel

of (3.1). In the current section, we present the generalities of conformal Bethe-Salpeter

approach, generalizing the one applied in [12, 21, 24] to the bi-scalar fishnet CFT, to sum

up the Feynman graphs for these quantities in χCFT.

At the fixed point (2.13) and in the planar limit, the correlation function (3.1) is a finite

function of the couplings ξi with i = 1, 2, 3. The correlation functions can be remarkably

written as a geometric sum of primitive divergencies in the perturbative expansion. For

this reason, we will study those diagrams with the help of the Bethe-Salpeter equation.

In the following we will review the Bethe-Salpeter method pointing out how to extract

the spectrum and the OPE data from the four-point functions (3.1). In section 2.2, we

presented the bulk fishnet structure of large planar diagrams in the general double-scaled

γ deformed N = 4 SYM theory. In this section we will focus on the correlation functions

defined by (3.1) for matrix (untraced) operators with bare dimensions ∆O1 and ∆O2 . Since

to preserve the renormalizability of the theory we have to supplement it with double-trace

counter-terms (2.7), diagrams in the perturbative expansion of (3.1) will take the following

chain structure

BB

F F

where the black dots are insertions of the double-trace operator3 and the links of the chain

are periodically repeating configurations of propagators (a special case of the topologies

presented in section 2.2) generated by the kernel of integral operators. We will refer to this

set of operators as Hamiltonian graph-building operators Ĥi. In the family of theories we

are considering, Ĥi Hamiltonians can be of three different kind: the double trace operator

V̂, the bosonic operator ĤB and the fermionic operator ĤF . The operators V̂, ĤB and

ĤF separately produce divergent integrals. However, at the fixed point, their combination

is finite due to conformal symmetry (see section 6). These integral operators commute

among themselves and they are diagonalized by the same basis of conformal triangles —

the 3-point correlators of the protected operators with un protected operator with spin,

described below.

The correlation function (3.1) can be written in general as a geometric series of a linear

combination of the Hamiltonian graph-building operators as follows

ĜO1O2 =

(
cB
x2

34

)∆O1
+∆O2

−D ∞∑
`=0

ĤB(χV V̂ + χBĤB + χF ĤF )`

=

(
cB
x2

34

)∆O1
+∆O2

−D ĤB
1− χV V̂ − χBĤB − χF ĤF

,

(3.2)

3Such insertions should always split a graphs, and its color structure, into two disconnected pieces.
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where cB = 1/(4π2) is the normalization factor of the free scalar propagator, χV , χB an χF
are combinations of the couplings αi and ξi with i = 1, 2, 3, which will be introduced later

(see section 4). The spacetime dimension D in this paper is always taken to be D = 4.4

The correlation function (3.1) can be obtained from the operator ĜO1O2 as follows

GO1O2(x1, x2|x3, x4) = 〈x1, x2|ĜO1O2 |x3, x4〉, (3.3)

where the Hamiltonian operators are represented by the corresponding integration kernels

such that

〈x1, x2|Ĥni |x3, x4〉 =

∫ 2n∏
k=1

d4ykHi(x1, x2|y1, y2)Hi(y1, y2|y3, y4) . . .Hi(y2n−1, y2n|x3, x4).

(3.4)

In order to compute the correlators GO1O2 , given the set of Hamiltonian graph-building

operators Ĥi, we need to compute their eigenvalues and decompose ĜO1O2 over a complete

basis of their eigenfunctions.

To compute the eigenvalues of Ĥi, we can use the fact that these integral operators

transform covariantly with respect to the (1, 0, 0) ⊗ (1, 0, 0) conformal spin chain gen-

erators.5 This property completely fixes their eigenstates to be the conformal triangle

Φ∆,S,x0(x1, x2), the three-point function of two (scalar) operators in x1 and x2 with an

operator O∆,S(x0) with scaling dimension ∆, spin S at the position x0

Φ∆,S,x0(x1,x2) = 〈Tr[O1(x1)O2(x2)]O∆,S(x0)〉

= (x2
12)p−

∆O1
+∆O2
2 (x2

10)
∆O2

−∆O1
2

−p(x2
20)

∆O1
−∆O2
2

−p
(

2(nx02)

x2
02

− 2(nx01)

x2
01

)S
,

(3.5)

where p = ∆−S
2 and nµ an auxiliary light-cone vector. In the case S = 0, the conformal

triangle is composed by simply three scalar propagators that we can graphically represents

as follows

Φ∆,0,x0(x1, x2) ≡

x

1x

2

x021

2 1

1 2

. (3.6)

Finally, given the eigenstate (3.5), we can compute the spectrum of the Hamiltonian oper-

ators Ĥi as follows[
Ĥi Φ∆,S,x0

]
(x1, x2) ≡

∫
d4y1d

4y2Hi(x1, x2|y1, y2) Φ∆,S,x0(y1, y2) = hi∆,S Φ∆,S,x0(x1, x2),

(3.7)

4It is possible to generalize the bi-scalar fishnet theory to any integer dimension D, as in [21], at the

cost of losing locality. It is not evident that such a generalization is possible for the full χCFT.
5In particular, defining the inversion I[xµi ] = xµi /x

2
i , we have, for a conformal triangle Φx0(x1, x2)in

the representation (1, 0, 0) ⊗ (1, 0, 0), I[Φx0(x1, x2)] = Φx0(x1/x
2
1, x2/x

2
2) = UΦx0(x1/x

2
1, x2/x

2
2), and

U = x2
1x

2
2x

∆−S
0 . We can check that for every integral operator: I[Ĥi] = UĤiU−1.
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where hi∆,S is the eigenvalue. More specifically, given the Hamiltonians operators defined

in (3.2), we have [
V̂ Φ∆,S,x0

]
(x1, x2) = hV∆,S Φ∆,S,x0(x1, x2), (3.8)[

ĤB Φ∆,S,x0

]
(x1, x2) = hB∆,S Φ∆,S,x0(x1, x2), (3.9)[

ĤF Φ∆,S,x0

]
(x1, x2) = hF∆,S Φ∆,S,x0(x1, x2). (3.10)

In section 4 and section 5, we will verify that (3.5) diagonalizes these Hamiltonians and

perform a direct computation of the eigenvalues.

The scaling dimension appearing in (3.5) is defined as [44]

∆ = 2 + 2iν , (3.11)

with ν a non-negative real number. For such values of ∆, the state Φ∆,S,x0 belongs to the

principal series of type-I irreducible representations (∆, S, 0) of the conformal group labelled

by ν and the discrete compact spin S and satisfies the orthogonality condition [44, 45]

∫
d4x1d

4x2Φ∆′,S′,x0′
(x1, x2)Φ∆,S,x0(x1, x2)

(x2
12)4−∆O1

−∆O2
= (−1)Sc1(ν, S)δ(ν − ν ′) δS,S′δ(4)(x00′)(nn

′)S

+ (−1)Sc2(ν, S)δ(ν + ν ′)δS,S′((n∂x0)(n′∂x0′ ) lnx2
00′)

S/(x2
00′)

2−2iν−S , (3.12)

where the 4-dimensional coefficients c1 and c2 are given by

c1 =
2S−1 π7

(S + 1)ν2 (4ν2 + (S + 1)2)
,

c2 = −
iπ5(−1)SΓ

(
S+∆O1

−∆O2
2 − iν + 1

)
Γ
(
S−∆O1

+∆O2
2 − iν + 1

)
Γ(S + 2iν + 1)

ν(S + 1)Γ
(
S+∆O1

−∆O2
2 + iν + 1

)
Γ
(
S−∆O1

+∆O2
2 + iν + 1

)
Γ(S − 2iν + 1)

.

(3.13)

The eigenfunction Φ∆,S,x0 forms an orthonormal basis for ν ≥ 0 implying the following

representation for the identity

δ(4)(x13)δ(4)(x24)=

∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

∫ ∞
0

dν

c1(ν, S)

∫
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4),

(3.14)

that, together with the definition (3.7), leads to the diagonalized representation

Hi(x1, x2|x3, x4)=
∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

∫ ∞
0

dν hi∆,S
c1(ν, S)

∫
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4),

(3.15)

whereHi stands for the set of hamiltonians {V,HB,HF } and hi∆,S for the set of eigenvalues

{hV∆,S , hB∆,S , hF∆,S} respectively.
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Plugging the representation (3.15) for the graph-building operators Hi into (3.2), we

obtain the representation of the 4-point function in terms of their eigenvalues hi∆,S

GO1O2(x1, x2|x3, x4) =

∞∑
S=0

(−1)S

(x2
34)4−∆O1

−∆O2

∫ ∞
0

dν

c1(ν, S)
×

×
hB∆,S

1− χVhV∆,S − χBhB∆,S − χFhF∆,S

∫
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4).

(3.16)

The integral over the auxiliary point x0 can be expressed in terms of the four-dimensional

conformal blocks g∆,S [44, 46, 47]∫
d4x0Φ∆,S,x0(x1, x2)Φ∆,S,x0(x3, x4)

=

(
1

x2
12x

2
34

)∆O1
+∆O2
2

(
x2

24

x2
13

)∆O1
−∆O2
2

(
c1(ν, S)

c2(ν, S)
g∆,S(u, v)+

c1(−ν, S)

c2(−ν, S)
g4−∆,S(u, v)

)
,

(3.17)

where the cross-ratios are u = zz̄ = x2
12x

2
34/(x

2
13x

2
24) and v = (1−z)(1−z̄)=x2

14x
2
23/(x

2
13x

2
24)

and we recall from [46] that

g∆,S = (−1)S
zz̄

z − z̄
[k(∆ + S, z)k(∆− S − 2, z̄)− k(∆ + S, z̄)k(∆− S − 2, z)] ,

where k(β,x) = xβ/2 2F1

(
β − (∆1 −∆2)

2
,
β + (∆3 −∆4)

2
, β, x

)
.

(3.18)

Inserting (3.17) into (3.16), we obtain

GO1O2(x1, x2|x3, x4) =

(
c2
B

x2
12x

2
34

)∆O1
+∆O2
2

(
x2

24

x2
13

)∆O1
−∆O2
2

GO1O2(u, v), (3.19)

where we defined

GO1O2(u, v) =
1

c4
B

∞∑
S=0

(−1)S
∫ ∞
−∞

dν

c2(ν, S)

hB∆,S g∆,S(u, v)

1− χVhV∆,S − χBhB∆,S − χFhF∆,S
. (3.20)

Notice that we extended the integral over ν on the full real axis with the change of variable

ν → −ν in the second term of (3.17). This is allowed by the symmetry of eigenvalues

appearing in the spectral equation

hi 4−∆,S = hi∆,S , (3.21)

and can be interpreted as the fact that, for a given spin S, states with dimension ∆ and

4−∆ belong to a unitary equivalent representation of the conformal group. This symmetry

is indeed satisfied for every studied case, (4.14), (4.25) and (5.31).

Before studying the integral in (3.20), we want to focus on the role of the double-

trace Hamiltonian and its eigenvalues in the perturbative and Bethe-Salpeter approaches.

To find the correlation function (3.1), we have to sum up diagrams of the kind shown

at the beginning of this section. These diagrams contain an involved scalar and fermionic
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structure generated by the operators ĤB and ĤF interspersed with the contributions of the

double-trace vertices introduced in (2.7). Since in general the integrals over the positions

of the single-trace vertices develop ultraviolet (UV) divergencies at short distances, one

needs the double-trace interactions to produce other UV divergent contributions which

cancels against them. Therefore, the weak coupling expansion of the four-point correlation

function remains UV finite at any order as expected for protected O1 and O2.

In the context of the Bethe-Salpeter equation the story is slightly different. Indeed

consider the Hamiltonian operator V̂ associated to the double-trace kernel defined as follows[
V̂ Φ

]
(x1, x2) = 2c2

B

∫
d4y1d

4y2

(x1 − y1)2(x2 − y2)2
δ(4)(y12) Φ(y1, y2) , (3.22)

where Φ(y1, y2) is a test function. We have to compute its spectrum by means of (3.8)

that, when applied to (3.5), reads

[
V̂ Φ∆,S,x0

]
(x1, x2) =

δ(4)(ν)δS,0
(4π)2

Φ∆,S,x0(x1, x2) ⇒ hV∆,S =
δ(4)(ν)δS,0

(4π)2
. (3.23)

First of all, due to the form of the eigenvalue, the double-trace term can affect only the

contribution to the sum in (3.20) with spin S = 0. Then we expect that the contribution

to (3.20) given by the Hamiltonian operators ĤB and ĤF are well-defined for S 6= 0 but

in principle we have to take into account the double-trace term for S = 0.

Since we want to write GO1O2 in the standard OPE form, we will consider the limit in

which two of the external points are approaching, i.e. |x12| → 0 (or u→ 0 and v → 1). Since

the conformal block scales as up(1− v)S decaying exponentially for Re(iν)→∞, one can

close the contour in the integral over ν in lower-half plane and then compute it by residues.

At short distances, the eigenstate (3.5) scales as Φ∆,S,x0(x1, x2) ∼ (x2
12)

∆−∆O1
−∆O2

2 and

thus it vanishes in the lower-half plane (which is true in our case, since ∆O1 = ∆O2 = 1

and <(∆) > 2). In this case, the bosonic and fermionic operators do not develop UV

divergencies (one can verify it in the two special cases that we study in detail in section 4

and section 5). Moreover, given the definition (3.22) and the formula (3.23), the double-

trace operator V̂ annihilates Φ∆,S,x0 with Im(ν) < 0 for any S and therefore, it does not

contribute. With this argument, we are able to neglect the double-trace contributions when

we compute the four-point function GO1O2 with the Bethe-Salpeter method. Then we can

rewrite (3.20) as follows

GO1O2(u, v) =
1

c4
B

∞∑
S=0

(−1)S
∮
C−

dν

c2(ν, S)

hB∆,S

1− χBhB∆,S − χFhF∆,S
g∆,S(u, v) , (3.24)

where C− is the close path in the lower-half plane.

In order to compute the integral over ν in (3.24) with residues, we have to identify the

poles of the integrand. The physical poles are given by the zeros of denominator under the

integral, i.e. by solutions of the equation

hB∆,S
−1 − χF hF∆,S hB∆,S

−1 = χB . (3.25)
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We will refer to (3.25) as spectral equation: indeed given the eigenvalues hi∆,S and the

constants χi, solving the equation we will obtain the scaling dimensions ∆ as functions of

the couplings ξi with i = 1, 2, 3 and the spin S. In the integrand of (3.24), two series of

spurious poles are generated by the measure c2 and the conformal block g∆,S . In appendix E

we will prove that the contribution of those poles cancel under the condition

hi 3+S+k,S − hi 3+S,S+k = 0 k = 0, 2, 4 . . . , (3.26)

which happens to be satisfied.

Finally GO1O2 is given by the sum of only the residues at the physical pole (3.25).

Then we can rewrite the correlation function in the standard form of a conformal partial

wave expansion as follows

GO1O2 =
∑

∆,S≥0

C∆,S g∆,S(u, v) , (3.27)

with the OPE coefficients C∆,S defined as

C∆,S =
(−1)S

c4
B

4πRes∆

(
1

c2(ν, S)

hB∆,S

1− χBhB∆,S − χFhF∆,S

)
. (3.28)

The sum over ∆ in (3.27) runs over the solutions of the spectral equation for scaling

dimensions of exchanges operators with Re(∆) > 2.6

In the following sections, we will focus on the computation of the point-split four-point

correlation functions of the operators introduced in (2.3), establishing the Hamiltonian op-

erators Ĥi and the constants χi appearing in (3.1) from their Feynman diagram expansion.

We closely follow in our analysis the logic of [24], but in contrast to this paper which treats

the bi-scalar fishnet CFT, we have to introduce new types of diagrams into the Bethe-

Salpeter procedure, reflecting a richer structure of the full three-coupling χCFT. To write

the correlation function (3.1) in the standard OPE representation requires, as the only dy-

namical input, the knowledge of eigenvalues hi∆,S of the Hamiltonian operators. We will

diagonalize Ĥi to extract the conformal data, i.e. the scaling dimensions of the exchanged

operators and the OPE coefficients. In what follows we consider only single scalar fields as

protected external operators and then we should set ∆O1 = ∆O2 = 1. Since the four-point

correlator constructed from the second operator of (2.3) is trivial (see section 6.1), in the

following two sections we will analyze the remaining two.

4 Exact four-point correlations function for O1(x) = O2(x) = φ1(x)

In this section we consider the four-point correlators associated to the first operator of (2.3),

namely when O1(x) = O2(x) = φj(x) with j = 1, 2, 3. Since the computation of the

correlators is the same for any j, we will consider the case j = 1 and then the four-point

function we want to study takes the following form

Gφ1φ1(x1, x2|x3, x4) = 〈Tr[φ1(x1)φ1(x2)]Tr[φ†1(x3)φ†1(x4)]〉. (4.1)

6This condition in the OPE is equivalent to the restriction Re(iν) > 0 in the contour integral in (3.24).
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Figure 9. A Feynman diagram contributing to the perturbative expansion G
(`)
φ1φ1

. The black

dots stand for double-trace vertices and tick and dashed lines correspond to bosonic and fermionic

propagators respectively. The colors represent different flavors j of the particles φj and ψj : in

particular black for j = 1, red for j = 2 and green for j = 3. The propagators are not crossing and

are curved to stress the fact that they have a cylindrical topology.

This correlation function was extensively studied in [12] in the simplest case of the family

of theories we are inspecting, i.e. the bi-scalar theory (2.6).

In the planar limit Nc →∞, once chosen j = 1, the weak coupling expansion of (4.1)

in terms of Feynman diagrams is given by a combination of the following bosonic vertices

(4π)2ξ2
3Tr[φ†1φ

†
2φ2φ2](x) , (4π)2ξ2

2Tr[φ†3φ
†
1φ3φ1](x) ,

(4π)2α2
1 Tr[φ1φ1](x) Tr[φ1φ1]†(x) ,

(4.2)

and the following Yukawa vertices

4πi
√
ξ2ξ3 Tr[ψ3φ

†
1 ψ2](x) , 4πi

√
ξ2ξ3 Tr[ψ3φ1 ψ2](x) . (4.3)

In the following we will study the correlation function (4.1) with the Bethe-Salpeter method.

4.1 The Bethe-Salpeter method for the correlator Gφ1φ1

The perturbative expansion of (4.1) can be written in the following form

Gφ1φ1(x1, x2|x3, x4) =
∞∑
`=0

(4π)4`G
(`)
φ1φ1

(x1, x2|x3, x4), (4.4)

where G
(`)
φ1φ1

at any perturbative order ` contains contributions from the bosonic and

fermionic integrals with different coupling dependencies. In figure 9, we present an ex-

ample of an arbitrary Feynman diagram contributing to G
(`)
φ1φ1

. The black dots represents

insertions of the double-trace vertex in the last line of (4.2) that in the Bethe-Salpeter

picture are associated with the operator V̂ defined in (3.22). Then it is straightforward to

fix the normalization of its coupling constant in (3.2) as follows

χV = (4π)2 α2
1 . (4.5)

In section 3, we discussed the role of the double-trace terms in the computation of the four-

point function, discovering that they are not contributing to the spectral equation. Then,

similarly to observations of [12, 24], as far as we consider the perturbative expansion (4.4)
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x1

x2

x3

x4

(a) ξ0
1ξ

0
2ξ

0
3

x1

x2

x3

x4

y1

y2

(b) ξ4
3

x1

x2

x3

x4

y1

y2

(c) ξ4
2

x1

x2

x3

x4

y1

y2

y

y

1

2

’

’

(d) ξ2
2ξ

2
3

Figure 10. First contribution to the four-point functions Gφ1φ1 .

in the point-splitting x1 6= x2 and x3 6= x4, we need only to sum over the single trace

contributions, namely the diagrams inside the chain link of figure 9. In section 6 we will

present in detail how the relation between single- and double-trace terms is crucial for the

setting of the fixed point (2.13).

The first two orders of the perturbative expansion are given by the diagrams repre-

sented in figure 10 and they can be written as follows

G
(0)
φ1φ1

=
c2
B

x2
13x

2
24

,

G
(1)
φ1φ1

= c6
B(ξ4

2 + ξ4
3)

∫
d4y1d

4y2

(x1 − y1)2(x2 − y2)2(y2
12)2(y1 − x3)2(y2 − x4)2

− c4
Bc

4
F ξ

2
2ξ

2
3

∫ ∏2
i=1d

4yid
4yi′ Tr [σµσρσησν ] yµ22′y

ρ
2′1y

η
11′y

ν
1′2

(x1 − y1′)2(x2 − y2′)2y4
22′y

4
2′1y

4
11′y

4
1′2(y1 − x3)2(y2 − x4)2

,

(4.6)

where each scalar propagator brings in the factor cB/x
2
ij and each fermionic propagator

the factor cF /xij/x
4
ij , where /x can be σµx

µ or σ̄µx
µ. Since the fermionic propagator can

also be written as cB /∂xi1/x
2
ij we conclude that cF = −2cB = −1/(2π2). These functions

can be expressed in terms of a combination of the Hamiltonian graph-building operators

Ĥi. Indeed defining the following kernels

HB(x1, x2|x3, x4) =
c4
B

x2
13x

2
24x

4
34

,

HF (x1, x2|x3, x4) = −c2
B c

4
F

∫
d4x3′d

4x4′ Tr [σµσρσησν ] xµ44′x
ρ
4′3x

σ
33′x

ν
3′4

x2
13′x

2
24′x

4
44′x

4
4′3x

4
33′x

4
3′4

,

(4.7)

represented in figure 11, we can rewrite (4.6) as follows

G
(0)
φ1φ1

=
x4

34

c2
B

HB(x1, x2|x3, x4) ,

G
(1)
φ1φ1

=
x4

34

c2
B

∫
d4y1d

4y2

[
(ξ4

2 + ξ4
3) HB(x1, x2|y1, y2) HB(y1, y2|x3, x4)

+ ξ2
2ξ

2
3 HF (x1, x2|y1, y2) HB(y1, y2|x3, x4)

]
,

(4.8)

The kernels (4.7) transform covariantly under conformal transformations,7 then the cor-

responding Hamiltonian integral operators commute with the generators of the conformal

group.

7The easiest way to prove it is to apply the inversion operator to (4.7). For the fermionic Hamiltonian

it is convenient to use its representation after the two integrations will be performed later in (4.16).
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3

42

1

(a) HB(x1, x2|x3, x4)

4

3

2

1
3

4

’

’

(b) HF (x1, x2|x3, x4)

Figure 11. The kernels associated to the Hamiltonian graph-building operators ĤB and ĤF
involved in the computation of the four-point function Gφ1φ1 with j = 1, 2, 3. White dots represent

external points and black dots integration over the full space R4.

When carrying on the perturbative expansion, it becomes clear that an arbitrary dia-

gram at order ` is given by

Ĝ
(`)
φ1φ1

=
x4

34

c2
B

ĤB
[
(ξ4

2 + ξ4
3)ĤB + ξ2

2ξ
2
3ĤF

]`
. (4.9)

Then the correlator (4.4) can be presented in the following operatorial form

Ĝφ1φ1 =

∞∑
`=0

(4π)4`Ĝ
(`)
φ1φ1

=
x4

34

c2
B

ĤB
1− (4π)4(ξ4

2 + ξ4
3)ĤB − (4π)4ξ2

2ξ
2
3ĤF

. (4.10)

Comparing it with the definition (3.2) we fix the values of the constants χi (in this case V̂
is not contributing)

χB = (4π)4(ξ4
2 + ξ4

3) , χF = (4π)4ξ2
2ξ

2
3 . (4.11)

4.2 Eigenvalues of the Hamiltonian graph-building operators

Writing the four-point correlation function in the standard OPE form, as presented in detail

in section 3, involves the computation of the spectrum of the graph-building operators (4.7).

The eigenstate that diagonalize the Hamiltonians is defined in (3.5) for ∆O1 = ∆O2 = 1

and the eigenvalues are defined by means of equations (3.9) and (3.10). Substituting in the

latter the kernels (4.7) and using the definition (3.7), we will end up with a set of integrals

that can be computed with the help of the star-triangle relations presented in appendix C

(also known as uniqueness method). The fact that all the integrals that we have to compute

can be computed by means of the star-triangle relations is a consequence of the underlying

conformal symmetry.

Bosonic eigenvalue. The bosonic eigenvalue hB∆,S is defined in (3.9). Using the bosonic

Hamiltonian (4.7), this relation can be written in the following integral form

c4
B

∫
d4y1d

4y2

(x1 − y1)2(x2 − y2)2y4
12

Φ∆,S,x0(y1, y2) = hB∆,SΦ∆,S,x0(x1, x2) . (4.12)
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In the case of S = 0, the function Φ∆,S,x0 reduces to (3.6) and the computation is straight-

forward. Indeed, one needs to apply the star-triangle relations two times as follows8

��������

STR
=⇒ ��������

STR
=⇒ �������� ,

to obtain

hB∆,0 =
16π4c4

B

∆(∆− 2)2(∆− 4)
. (4.13)

The eigenvalue at S 6= 0 can be computed in the same way, using the generalization of star-

triangle relation to any-spin case (C.3) derived in [50]. The computation can be otherwise

done in a more tedious and explicit way as presented in detail in [24]. The result reads [12]

hB∆,S =
16π4c4

B

(∆ + S)(∆ + S − 2)(∆− S − 2)(∆− S − 4)
. (4.14)

The eigenvalue is invariant under ∆→ 4−∆, as expected from (3.21).

Fermionic eigenvalue. The fermionic eigenvalue hF∆,S is defined in (3.10). This is a

new object, absent in the similar correlator of bi-scalar model treated in [12]. First of

all we can simplify the fermionic Hamiltonian in (4.7) integrating the primed variables by

means of the Yukawa star-triangle identity (C.2) as follows (red lines are spin-1/2 fermionic

propagators)

��������

STR
=⇒ ��������

STR
=⇒ ��������

where the computation and figures are made with the STR package (see footnote 8). We

obtain the following kernel

HF (x1, x2|x3, x4) = −π4c2
B c

4
F

Tr [σµσρσησν ] xµ42x
ρ
23x

η
31x

ν
14

x2
42x

2
23x

2
31x

2
14x

4
34

. (4.15)

Using the formula for the trace of four σ-matrices (A.11) and simplifying the scalar products

by means of (A.4), we can rewrite the fermionic hamiltonian in the following form

HF (x1, x2|x3, x4) = π4c2
B c

4
F H̃F (x1, x2|x3, x4)− 2HB(x1, x2|x3, x4) , (4.16)

where we used the symmetry HB(x1, x2|x3, x4) = HB(x2, x1|x3, x4) of the bosonic hamil-

tonian studied in the previous paragraph, and H̃F is defined by

H̃F (x1, x2|x3, x4) ≡ x2
12

x2
42x

2
23x

2
31x

2
14x

2
34

. (4.17)

8It is convenient to perform this and other similar computations, together with the pictures, with the

STR package [48, 49].
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Then the fermionic eigenvalue hF∆,S consists of the bosonic eigenvalue (4.14) and the

eigenvalue of H̃F defined as follows[
ˆ̃HF Φ∆,S,x0

]
(x1, x2) = h̃F∆,S Φ∆,S,x0(x1, x2) , (4.18)

such that

hF∆,S = π4c2
B c

4
F h̃F∆,S − 2hB∆,S . (4.19)

Let’s focus on the relation (4.18). It can be written in the following integral form∫
d4y1d

4y2 x
2
12

(y2−x2)2(x2−y1)2(y1−x1)2(x1−y2)2y2
12

Φ∆,S,x0(y1, y2) = h̃F∆,SΦ∆,S,x0(x1, x2). (4.20)

In order to simplify the computation, we consider the limit in which x0 →∞ on both sides

of (4.20). In this limit the eigenvalue h̃F∆,S is given by the following integral

h̃F∆,S =

∫
d4y1d

4y2 (n y12)S

(y2−x2)2(x2−y1)2(y1−x1)2(x1−y2)2(y2
12)2−p , (4.21)

where p = ∆−S
2 and we put x2

12 = (nx12) = 1 for convenience. Notice that the integrand is

antisymmetric in the exchange y1 ↔ y2 for odd S, then the eigenvalue h̃F∆,S is non-zero

only for even S.

In the S = 0 case, the integral (4.21) is known as a massless two-loop self-energy

Feynman integral, or kite. Its value is known for any power of the propagator 1/y2
12 in

terms of an hypergeometric function [51], then

h̃F∆,0 =−2π4Γ

(
∆

2
−1

)
Γ

(
1−∆

2

)[
3F2(1,2, ∆

2 ; ∆
2 +1, ∆

2 +1|1)

∆/2Γ(∆
2 +1)Γ(2−∆

2 )
+π cotπ

(
4−∆

2

)]
, (4.22)

where ∆ = 2 + 2iν. Expanding (4.22) around ν = 0, one can notice that the cotangent

cancels all the odd terms of the hypergeometric functions. The analytic properties of (4.22)

are more clear when writing it in the following equivalent form

h̃F∆,0 = π4ψ
(1)
(

∆
4

)
− ψ(1)

(
∆
4 −

1
2

)
2−∆

+ (∆→ 4−∆) , (4.23)

where ψ(1)(x) = dψ(x)/dx and ψ(x) is the digamma function.

When S 6= 0, we can appeal to a similar computation made in [24]. In fact, the same

integral of (4.21) appears in the study of the spectrum of the graph-building operator

associated to the 2-magnon correlation function. The 2-magnon Hamiltonian isH2-magnon =

x2
34/x

2
12H̃F but, when applied to the eigenstate Φ∆,S,x0 , that has in this case ∆O1 =∆O2 =2,

it leads to an eigenvalue with the same integral representation as (4.21). The strategy to

compute the eigenvalue is to write the following recursion relation for the integrals

h̃F∆,S =
1− S
1 + S

h̃F∆,S−2 +
64π4S

(S + 1)[S2 − (∆− 2)2]2
. (4.24)

Solving the recurrence with the eigenvalue h̃F∆,S=0, given by (4.23), as initial condition,

we obtain

h̃F∆,S = π4ψ
(1)
(

∆+S
4

)
− ψ(1)

(
∆+S

4 + 1
2

)
(2−∆)(S + 1)

+ (∆→ 4−∆) . (4.25)

We can conclude that the eigenvalue (4.19) is manifestly invariant under ∆ → 4 − ∆, as

expected from (3.21).
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4.3 Spectrum of exchanged operators of Gφ1φ1(u, v)

In this section we will use the eigenvalues (4.14) and (4.19) to compute the scaling dimen-

sions of the operators contributing to the correlation function (3.27) for O1 = O2 = φ1.

The spectrum of the exchanged operators is defined by the solutions of the equation for

the physical poles (3.25). Substituting in (3.25) the definition of bosonic and fermionic

eigenvalues (4.14) and (4.19) and the constants χi computed in (4.11), we can rearrange

the spectral equation in the following form

hB∆,S
−1 − (4π2)4 c2

B c
4
F κ

4 h̃F∆,S hB∆,S
−1 = (4π)4 ω4 , (4.26)

where we defined the new couplings

κ4 = ξ2
2ξ

2
3 , and ω4 = (ξ2

2 − ξ2
3)2 . (4.27)

Plugging (4.14) and (4.25) into (4.26), we obtain the following spectral equation(
S2

4
+ν2

)(
(2+S)2

4
+ν2

)[
1+

iκ4

2ν(S+1)

(
ψ(1)

(
1

2

(
1+

S

2
−iν

))
−ψ(1)

(
1

2

(
2+

S

2
−iν

))
+

+ψ(1)

(
1

2

(
2+

S

2
+iν

))
−ψ(1)

(
1

2

(
1+

S

2
+iν

)))]
=ω4, (4.28)

with the additional constraint Im ν < 0. This equation can be studied perturbatively, for

each individual anomalous dimension, expanding in ν around the value ν0 corresponding

to a bare dimension ∆0 = 2 + 2iν0 at weak coupling, and in 1/ν at strong coupling.

Weak coupling expansion. The small coupling limit suggests that the equation has

solutions with bare dimensions 2 + S and 4 + S, in analogy with the same quantity in the

bi-scalar theory [12, 24]. There are six such solutions, but only half satisfies the physical

requirement Re ∆ ≥ 2: one of them corresponds to the scaling dimensions of exchanged

operator with bare dimension ∆0 = 2+S and two — to the scaling dimensions of operators

with bare dimensions ∆0 = 4 + S. The remaining three solutions are related to the first

ones b the transformation ∆ → 4 −∆ and describe shadow operators, with Re ∆ < 2. In

addition to that, there is an infinite series of physical solutions around the bare dimensions

∆0 = t + S with t = 6, 8, . . ., due to the non algebraic eigenvalue hF∆,S , similarly to the

two-magnon case studied in [24]. For each value of the twist t there are two solutions; they

describe the exchange of an infinite tower of local primary operators in the OPE of 4.5.

Writing ν as a function of the two couplings (4.27) and expanding around the physical pole

ν = −iS/2 at weak coupling κ, ω → 0, we obtain the following expansion for the twist-two

operator

∆(2) = 2+S− 2ω4

S(S + 1)
+

2ω4

3S3(S+1)3

[
3(S(S−1)−1)ω4−6S(S+1)κ4[2H

(2)
S −H

(2)
S/2]

]
+ . . .

(4.29)
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and, around the physical pole ν = −i(S + 2)/2, the twist-four operators.

∆(4) = 4 + S +
4κ2√

(S + 1)(S + 2)
+

(S + 2)ω4 − 8κ4

(S + 1)(S + 2)2
+

+
3ω

8

κ2 − 48 (6+S(S+6))
(S+1)(S+2)κ

2ω4 − 96κ6
[
2H

(2)
S+2−H

(2)
S/2−

12
(S+2)2

]
24(S + 1)3/2(S + 2)3/2

+ . . .

∆(4′) = 4 + S − 4κ2√
(S + 1)(S + 2)

+
(S + 2)ω4 − 8κ4

(S + 1)(S + 2)2
+

−
3ω

8

κ2 − 48 (6+S(S+6))
(S+1)(S+2)κ

2ω4 − 96κ6
[
2H

(2)
S+2−H

(2)
S/2−

12
(S+2)2

]
24(S + 1)3/2(S + 2)3/2

+ . . .

(4.30)

where H
(2)
k are Harmonic numbers of order 2. Remarkably, the expressions in square

brackets in (4.29), (4.30) are in fact rational numbers. In both cases, we present only

the first few terms since the following ones are cumbersome. We notice that the weak

coupling expansions of ∆(4), ∆(4′) are divergent but, as it will be pointed out later in the

analysis of section 4.5, the sum of the two corresponding OPE contributions has a well

defined expansion.9 Similar considerations can be made for the solutions at higher twist

t = ∆0 − S = 6, 8, . . .

∆
(t)
± = t+ S ± 4i

t
2κ2√

(S + 1)(S + t− 2)
− (−1)

t
2 8κ4

(S + 1)(S + t− 2)2
+ . . . . (4.31)

The twist-2 solution corresponds to the operator

Tr[φ1 ∂
Sφ1] + permutations , (4.32)

namely the traceless symmetric S-tensor obtained by insertion of light cone derivatives

∂ = nµ∂
µ, n2 = 0 into the operator Tr[φ2

1]. At twist-4 the matter content of the theory

allows to find several S-tensor operators satisfying the condition ∆0 − S = 4 and having

the right U(1)⊗3 quantum numbers (e.g. for i = 1, j = 2: (2, 0, 0)). Twist-4 operators

start mixing with each other. We perform an introductory analysis of this phenomenon

for the simple scalar case S = 0 in appendix F.1. At this stage the log-CFT effects [31]

due to chiral interaction vertices in (2.2) show up. The analysis suggests the presence at

twist-4 of only two non-protected physical operators, which should be identified with the

two solutions ∆(4) and ∆(4′) at S = 0, in contrast to the bi-scalar fishnet CFT where only

one type of twist-4 operators appears [12].Similar considerations apply to the higher twist

operators ∆
(t)
± . Indeed also for value of twist t > 4 it is possible to find several S-tensor

primary operators with the correct set of Cartan’s charges. The detailed study of these

operators and their mixing would be an interesting insight in the structure of operator

algebra of χCFT. We will restrict from here on most of our analysis to solution of twist

two and four, whose contribution to the OPE expansion appears to be enough for complete

description of the first non-trivial order of the weak coupling expansion, confirmed by direct

computations in terms of Feynman diagrams.

9We are grateful to G. Korchemsky for the enlighting discussion about this point.
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Recalling the definition (4.27), the weak coupling expansion (4.29) for the twist-two

operator goes in powers of ξ4 of the original couplings which is exactly the expected behavior

considering that the perturbative expansion in figure 10 alternates bosonic and fermionic

wheels attached to the diagrams with two quartic or four Yukawa single-trace vertices.

On the contrary, the weak coupling expansions (4.30) for the twist-four operators goes in

power of ξ2 of the original coupling. This fact can be understood looking at the expansion

of (4.28) around the physical pole located at ν = −i(S+2)/2. Indeed this expansion starts

from κ4/(ν + i(S + 2)/2)2 and as a consequence the four-point correlation function (4.10)

is convergent when ν → −i(S + 2)/2 if κ is finite while it produces a divergence when we

consider the weak coupling limit κ, ω → 0 such that Gφ1φ1 ∼ ±κ2.

The zero-spin case presents some peculiar behaviours. Indeed, expanding (4.28) for

S = 0 around the physical poles ν = 0,−i at weak coupling, we obtain the following

expansions for the solutions of (4.26)

∆(2)
∣∣
S=0

= 2− 2iω + iω2[ω4− 6κ4ζ3] +
i

4
ω2[7ω8 − 12ω4κ4(3ζ3 + 5ζ5) + 108κ8ζ2

3 ] + . . .

∆(4)
∣∣
S=0

= 4 + 2
√

2κ2 +
1

2
[ω4 − 4κ4] +

16κ6 − 48κ2ω4 + ω8

κ2

16
√

2
+ . . . (4.33)

∆(4′)
∣∣
S=0

= 4− 2
√

2κ2 +
1

2
[ω4 − 4κ4]−

16κ6 − 48κ2ω4 + ω8

κ2

16
√

2
+ . . . (4.34)

∆
(t)
±
∣∣
S=0

= t± 4i
t
2κ2√

(t− 2)
− (−1)

t
2 8κ4

(t− 2)2
+ . . . t = 6, 4, 8 . . . , (4.35)

where the one-loop order of the scaling dimension ∆(2)
∣∣
S=0

is in agreement with the predic-

tion (2.16). This twist-2 solution is the scaling dimension of the operator Tr[φ1φ
†
2], while

the two solutions of twist-4 arise from the operatorial mixing in a similar way as to S = 0

case analysed in appendix F.1.

Notice that the weak-coupling expansion of the twist-two operator is drastically differ-

ent as compared to the S 6= 0 case, indeed it goes in powers of ξ2. The same behavior was

noticed in [24] and the reason is similar to the one explained above. We observe that, ex-

panding around the physical pole ν = 0, the spectral equation (4.28) goes as ω4/ν2. Then,

when ν → 0, the correlation function (4.10) is convergent if µ is finite, but it produces a

square-root divergence when we expand at weak coupling, as in the previous case. The fact

that the weak-coupling and S → 0 limits are not commutative is related to this divergence.

The divergence in the expansion of the scaling dimension of the twist-two operator is

not a surprise. In fact, as noticed also in some different contexts in [12], in order to write

the correlation function in the OPE form as in (3.27), we assumed that in the integral (3.24)

no physical poles are located on the real ν-axes. However the poles that at weak coupling

and when S 6= 0 are situated at ν = ∓iS/2 pinch the integration contour at the origin

when S = 0, thus producing a divergence. Hence, the contribution of the double-traces is

needed in this case to produce a non-vanishing term that cancels this divergence at weak

coupling. Again, we stress that at finite couplings the solutions of (4.28) are well-defined

even at zero spin.
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Strong coupling expansion. At strong coupling, κ , ω → ∞, we consider the four

solutions of eq. (4.28) of lowest twist. The solutions are related to the physical poles of

the spectral equation located at ν = eiπ
k
2

4
√
ω4 + 2κ4 + . . . with k = 0, 1, 2, 3 but only two

of them satisfy the condition Im ν < 0, the remaining solutions being associated to the

shadow operators. However we stress that we are neglecting all the infinite non-algebraic

solutions of higher twist, purely generated by hF∆,S . Then we have

∆∞ = 2eiπ
k
2

4
√
ω4 + 2κ4 + 2 +

[S(S + 2) + 2]ω4 + 2[S(S + 2)− 2]κ4

4eiπ
k
2

[
4
√
ω4 + 2κ4

]5 + . . . (4.36)

Notice that, if all couplings scale as ξj ∼ ξ � 1, the strong coupling expansion (4.36)

is growing linearly with ξ. This becomes clear if one expands the eigenvalues appearing

in (4.26). Indeed both of them decay at large ν as hB∆,S , h̃F∆,S ∼ 1/ν4 then, since in the

spectral equation the couplings appear in power of ξ4, it is evident that the expansion will

contain terms linear in ξ. The S → 0 limit is not singular at strong coupling and one can

compute ∆∞
∣∣
S=0

directly from (4.36).

The spectrum of exchanged operators in reductions of χCFT. In section 2.2,

we presented the γ-deformed N = 4 SYM theory in the double-scaling limit as a family

of theories. In fact, playing with the three couplings ξj with j = 1, 2, 3 it is possible

to describe different Lagrangians with different matter contents and symmetries. Thus

we want to obtain the spectrum of exchanged operators for each theory of this family

simply taking the limit on the couplings in the spectral equation (4.28) of the most general

doubly-scaled theory. First of all, we recall the well-known result for the spectrum for the

simplified Lagrangian (2.6) also known as 4D bi-scalar fishnet CFT. In this theory the only

non-trivial four-point correlation function is Gφ1φ1 , and it can be written in the same OPE

form as the one we are considering as (3.27). By the Bethe-Salpeter method it is possible

to compute the correlator at all-loops, since its perturbative expansion is generated only by

a bosonic graph-building operator HB of (4.7), then we can extract the non-perturbative

scaling dimension of the exchanged operators in the OPE s-channel. The corresponding

spectral equation is the same of (4.28) with ω4 = ξ4 and κ4 = 0 (indeed the bi-scalar

theory has only one coupling ξ2) and it has two solutions corresponding to the twist-two

and -four operators with the following scaling dimensions

∆
(2)
bi (ξ4) = 2 +

√
(S + 1)2 + 1− 2

√
(S + 1)2 + 4ξ4 ,

∆
(4)
bi (ξ4) = 2 +

√
(S + 1)2 + 1 + 2

√
(S + 1)2 + 4ξ4 ,

(4.37)

together with two shadow solutions with ∆ = 4−∆ for Re ∆ < 2. The analytic properties

of those solution and their weak- and strong- coupling expansions have been studied in

detail in [24].

The scaling dimensions of the exchanged operators in the correlation function Gφ1φ1

for theories defined as a reduction of χCFT as in section 2.2, can be computed as solutions

of the spectral equation (4.28) in which we are applying some limits on the couplings, or
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limit ∆(2) ∆(4) ∆(4′) ∆
(t)
±

χ0CFT
ξ1 → 0 ∆(2)(κ, ω) ∆(4)(κ, ω) ∆(4′)(κ, ω) ∆

(t)
± (κ, ω)

ξ2 ∨ ξ3 → 0 ∆
(2)
bi (ξ4

3 ∨ ξ4
2) ∆

(4)
bi (ξ4

3 ∨ ξ4
2) t+ S

bi-scalar
ξ1 ∧ (ξ2 ∨ ξ3)→ 0 ∆

(2)
bi (ξ4

3 ∨ ξ4
2) ∆

(4)
bi (ξ4

3 ∨ ξ4
2) t+ S

ξ2 ∧ ξ3 → 0 2+S 4+S t+ S

β-deformed ξ1 =ξ2 =ξ3 =ξ 2+S ∆(4)(ξ4, 0) ∆(4′)(ξ4, 0) ∆
(t)
± (ξ4, 0)

Table 2. In this table we summarize the operator and dimension content of exchange operators in

three reductions of χCFT.

even directly on the weak- and strong-coupling expansions. In the table 2 we present the

summary of our results.

• χ0CFT: since the spectrum of the exchanged operators for the four-point function

Gφ1φ1 doesn’t depend on ξ1, the limit in which one of the couplings of the full χCFT

is going to zero (reducing the theory to the χ0CFT) is not unique. Indeed if we set

ξ1 = 0, the scaling dimensions of the exchanged operators in the χ0CFT are the same

of the full χCFT. On the contrary, if we set ξ2 or ξ3 to zero, the spectrum reduces

to that of the bi-scalar theory (4.37) depending on a single coupling. Notice that in

this case the number of solution of twist-four operators reduces to a single one, while

the higher-twist operators get protected.

• bi-scalar theory: the reduction to bi-scalar theory corresponds to the limit in which

two couplings of χCFT vanish. If one of the vanishing couplings is ξ1, the spectrum

is the usual one of the bi-scalar theory (4.37) while if ξ2 = ξ3 = 0 the operators are

protected because the only remaining interaction vertex is not contributing.

• β-deformed theory: when all the couplings are equal we reduce the full theory to its β-

deformation. In this case, due of the restoration of one supersymmetry, the operator

of twist-two is protected as pointed out in [19] and confirmed by our computation

(this reduction in terms of the new couplings κ and ω corresponds to κ → ξ and

ω → 0). The symmetry doesn’t constrain the operators of twist-four to be protected,

as well as for higher twist t > 4. Indeed, their spectrum can be easily read applying

the limit, for example at weak coupling, to the expansions (4.30), (4.31).

4.4 The structure constant of the exchanged operators

Once the spectrum of the exchanged operators is computed, in order to obtain the full set of

conformal data for the four point function Gφ1φ1 , one has to compute the OPE coefficients.

From their definition (3.27), we get

C∆,S =
π

c4
B

(−1)S+1

c2(ν, S)R∆,S
, (4.38)
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where

R∆,S =
d

d∆

(
hB∆,S

−1 − κ4

π4
h̃F∆,S hB∆,S

−1

)
. (4.39)

Here c2 is given in (3.13) and one puts ∆O1 = ∆O2 = 1. The eigenvalues hB∆,S and h̃F∆,S

are presented in (4.14) and (4.25), and the constants cF = −2cB = −1/(2π2). Plugging

these eigenvalues into (4.39) and performing the derivative, we obtain a rather cumbersome

result that we will present in the next paragraph.

Weak coupling expansion. Performing the derivative in (4.39) and substituting the

weak coupling expansions of the scaling dimensions computed in (4.29) and (4.30), we

obtain the following expansions for the structure constants associated to the exchanged

operators for S 6= 0

C∆(2),S =
S!2

(2S)!

1+
2κ4[2H

(2)
S −H

(2)
S/2]−2ω4[ 1

S(S+1)+HS−1−H2S−2]

S(S+1)
+. . .


C∆(4),S =

(S+1)!2√
(S+1)(S+2)(2S+2)!

−κ2

2
−
ω4−8κ4[ 9+S(11+3S)

2(S+1)(S+2)+H2S+2−HS+1]

4
√

(S+1)(S+2)
+. . .


C∆(4′),S =

(S+1)!2√
(S+1)(S+2)(2S+2)!

κ2

2
−
ω4−8κ4[ 9+S(11+3S)

2(S+1)(S+2)+H2S+2−HS+1]

4
√

(S+1)(S+2)
+. . .


C

∆
(t)
± ,S

=
π it 2−2(t−4+S)Γ

(
t
2−2

)
Γ
(
t
2−1+S

)
(t−2)(t+2S)Γ

(
t−3

2

)
Γ
(
t−1

2 +S
) κ4+. . . ,

(4.40)

where t = 6, 8, 10, . . . and Hk, H
(2)
k are harmonic numbers. Again, the expressions in square

brackets are in fact rational numbers. Similarly to the expansion of the scaling dimension,

the OPE coefficient of the twist-two operator is singular for S = 0. Indeed, as discussed in

section 4.3, due to the singularity arising at zero spin, the weak coupling and S → 0 limits

don’t commute. In order to obtain the correct weak coupling expansion for the twist-two

operator, one has to set S = 0 in (4.38) and then expand it in the coupling. The zero spin

expansion the OPE coefficients of exchanged operators reads

C∆(2),0 = 1 + 2iω2 − 2[ω4− 3κ4ζ3] + iω2[ω4(4ζ3 − 5) + 18κ4ζ3] + . . .

C∆(4),0 = − κ2

4
√

2
+

22κ4 − ω4

16
−

3[ω
8

κ2 − 120κ2ω4+ 912κ6]

256
√

2
+ . . .

C∆(4′),0 =
κ2

4
√

2
+

22κ4 − ω4

16
+

3[ω
8

κ2 − 120κ2ω4+ 912κ6]

256
√

2
+ . . .

C
∆

(t)
± ,0

=
π it 2(8−2t)Γ

(
t
2 − 2

)
Γ
(
t
2 − 1

)
(t− 2)tΓ

(
t−3

2

)
Γ
(
t−1

2

) κ4 + . . . t = 6, 8, 10, . . . .

(4.41)

In analogy with the spectrum analysis, the power counting shows that the twist-two oper-

ator goes in power of ξ4 as expected if S 6= 0. In the S = 0 case it is going in powers of ξ2,

suggesting that the weak coupling expansion is sensitive to the double trace counterterms.
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Moreover in both cases (4.40) and (4.41), the twist-four OPE coefficients are suppressed

by a factor of order ξ2 as compared to those of the twist-2.

Strong coupling expansion. Since we know from the expansion at strong coupling of

the scaling dimension (4.36) that the scaling dimension becomes large, we can expand (4.38)

in the limit ∆→∞ and obtain

C∆,S =
25−2∆ (S+1)

∆
tan

(
π

∆−S
2

)[
1+

3

2∆
+

4(S+1)2+25

8∆2
+

36(S+1)2+133

16∆3
+O

(
1

∆4

)]
,

(4.42)

where we have to substitute ∆ from the strong coupling spectrum ∆∞ computed in (4.36)

for low-twist operators. Naively, the expansion (4.42) looks the same as the one of the

structure constant of the bi-scalar model [24], but actually it is not. Indeed, one can notice

from the definition (4.38) that the OPE coefficient in our model depends explicitly on the

coupling. Then in the expansion (4.42) some coefficients at higher order will start to depend

on κ4. The first contribution different from the bi-scalar expansion appear as κ4/∆6 which,

after the substitution ∆∞, contributes at order O(1/ξ2) in the inverse coupling expansion.

Hence, it is convenient to write (4.42) as follows

C∆∞,S = 25 S+1

22∆∞∆∞
tan

(
π

∆∞−S
2

)[
1 +

3

4eiπk/2(ω4 + 2κ4)1/4
+

+

(
4(S + 1)2 + 1

32eiπk(ω4 + 2κ4)1/2
− 2(S + 5)(2S + 5)κ4

eiπk(S + 1)(ω4 + 2κ4)3/2

)
+ . . .

]
,

(4.43)

where k = 0, 1, 2, 3 labels the four solutions of the spectral equation (4.28) and dots stand

for higher orders in 1/κ and 1/ω. Thus, given the scaling dimension ∆∞ (4.36), the OPE

coefficient is exponentially small at strong coupling due to the factor 1
22∆∞ . The S → 0

limit is not singular at strong coupling and one can compute C∆∞,0 directly from (4.43).

4.5 The four-point correlation function

Once the conformal data in sections 4.3 and 4.4 is computed, one can determine the four-

point function (4.1) by means of (3.19). In the case O1 = O2 = φ1 we obtain

Gφ1φ1(x1, x2|x3, x4) =
c2
B

x2
12x

2
34

Gφ1φ1(u, v), (4.44)

with the cross-ratios defined as u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24) and ∆φ1 = 1.

The function Gφ1φ1(u, v) can be written in terms of the OPE representation (3.27) as a

sum over the non-negative integer Lorentz spin S and the states with scaling dimensions

∆. From the study of the spectrum of exchanged operators in section 4.3 it turns out that

infinitely many operators are exchanged in the OPE channel. Then we have

Gφ1φ1(u, v) =
∞∑
S=0

[
C∆(2),S g∆(2),S + C∆(4),S g∆(4),S + C∆(4′),S g∆(4′),S

]
+

+
∑

t=6,8,...

∞∑
S=0

[
C

∆
(t)
+ ,S

g
∆

(t)
+ ,S

+ C
∆

(t)
− ,S

g
∆

(t)
− ,S

]
,

(4.45)
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where the scaling dimensions ∆(i) are defined by the spectral equation (4.28) and computed

at weak coupling in (4.29), (4.30) and (4.31), and for low twist t = 2, 4 at strong coupling

in (4.36). The structure constants C∆(i),S associated to the exchanged operators are defined

by (4.38) are computed at weak coupling in (4.40) and for low twist and strong coupling

in (4.43). The four-dimensional conformal blocks g∆,S are defined in (3.18).

The proper definition of the four-point correlation function Gφ1φ1 takes into account

the symmetrization x3 ↔ x4. Under this symmetry, the cross-ratios transform as u→ u/v

and v → 1/v. Correspondingly, from the definition (3.18) the conformal blocks obey the

symmetry g∆,S(u/v, 1/v) = (−1)Sg∆,S(u, v). Combining together this relation with (4.45),

it’s easy to see that, imposing the symmetry x3 ↔ x4, the terms in (4.45) with odd S

cancel out whereas those with even S get doubled.

Despite of the presence of singularities in the weak-coupling expansions of scaling

dimensions and OPE coefficients, their combination in (4.45) is well-defined. Indeed, plug-

ging the conformal data into (4.45), we obtain an expansion in powers of the couplings

that is compatible with the interpretation of the correlation function as a sum of Feynman

diagrams in perturbation theory (see section 6.2 for an explicit example). In particular,

since the first non-trivial order is fixed by the S = 0 conformal data, it is easy to write the

very first contributions to Gφ1φ1 in terms of the known functions, as follows

Gφ1φ1(u, v) = u− iκ2 uΦ(1)(u, v) + . . . , (4.46)

where Φ(L) is the ladder three-point function [52] that in the case L = 1 is given by the

Bloch-Wigner dilogarithm function

Φ(1)(u, v) =
1

θ

[
2(Li2(−ρu) + Li2(−ρv)) + log

v

u
log

1 + ρv

1 + ρu
+ log ρu log ρv +

π2

3

]
, (4.47)

with

θ(u, v) ≡
√

(1− u− v)2 − 4uv and ρ(u, v) ≡ 2

1− u− v + θ
. (4.48)

5 Exact four-point correlations function for O1(x) = φ1(x) and

O2(x) = φ†
2(x)

In this section we consider the four-point correlators associated to the last operator of (2.3),

namely whenO1(x) = φj(x) andO2(x) = φ†k 6=j(x) with j, k = 1, 2, 3. Since the computation

of the correlators is the same for any j and k, we will consider the case j = 1 and k = 2

and then the four-point function we want to study takes the following form

G
φ1φ
†
2
(x1, x2|x3, x4) = 〈Tr[φ1(x1)φ†2(x2)]Tr[φ†1(x3)φ2(x4)]〉. (5.1)

This correlation function was trivial in the bi-scalar model [12] but in the general double-

scaled theory (2.2) it has a rich diagrammatic structure. Indeed a generic Feynman diagram

in the weak coupling expansion of (5.1) in the planar limit Nc → ∞ is given by a combi-

nation of all the single-trace vertices in (2.2) and the following double-trace vertex

(4π)2α2
2 Tr[φ1φ

†
2](x) Tr[φ†1φ2](x), (5.2)
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Figure 12. A Feynman diagram contributing to the perturbative expansion G
(`)

φ1φ
†
2

. The black

squares and dots stand for single- and double-trace vertices respectively. Tick lines are bosonic

propagators and dashed lines fermionic ones. The colors represent different flavors j of the particles

φj and ψj : in particular black for j = 1, red for j = 2 and green for j = 3. The propagators are

not crossing and are curved to stress the fact that they have a cylindrical topology.

coming from the counterterm Lagrangian (2.7). In the following we will compute the

conformal data of (5.1) with the Bethe-Salpeter method.

5.1 The Bethe-Salpeter method for the correlator G
φ1φ

†
2

The perturbative expansion of (5.1) can be written in the following form

G
φ1φ
†
2
(x1, x2|x3, x4) =

∞∑
`=0

G
(`)

φ1φ
†
2

(x1, x2|x3, x4), (5.3)

where G
(`)

φ1φ
†
2

at any perturbative order ` contains contributions from the bosonic and

fermionic integrals, with different dependence on couplings. In figure 12, we present an

example of a generic Feynman diagram contributing to (5.3). As in the previous case, the

Feynman diagrams of this four-point correlation function have a cylindric topology and, at

arbitrary order `, they take an iterative form allowing us to write the full expansion as an

infinite geometric sum of the primitive divergencies, as in (3.2). In contrast to the previous

case, the nodes of the chain diagrams in the expansion of G
φ1φ
†
2

are not only insertions of

double-trace vertices but also of the single-trace vertex

(4π)2 ξ2
3 Tr[φ†1φ

†
2φ1φ2](x) . (5.4)

In the Bethe-Salpeter procedure, both vertices enter only as insertions of the operator V̂
defined in (3.22). Then it’s easy to conclude, as it was done in [24] for the biscalar fishnet

model, that the coefficient of this operator in (3.2) is

χV = (4π)2α̃2
2 where α̃2

2 = α2
2 + ξ2

3 . (5.5)

In section 3, we discussed the role of the operator V̂ in the computation of the four-point

function, arguing that it is not contributing to the spectral equation for finite coupling

or S. Then, as far as we consider the perturbative expansion (5.3) in the point-splitting

x1 6= x2 and x3 6= x4, we need only to resum the single trace contributions appearing inside

the chain links of figure 12. The contribution given by vertices (5.2) and (5.4) is crucial to

calculate the fixed point (2.13). In section 6 we will present this computation in detail.

– 36 –



J
H
E
P
0
6
(
2
0
1
9
)
0
7
8

x1

x2

x3

x4

(a) ξ0
1ξ

0
2ξ

0
3

x1

x2

x3

x4

y1

y2

(b) ξ2
1ξ

2
2

x1

x2

x3

x4

y3

y2

y

y

1

4

(c) ξ1ξ2ξ
2
3

x1

x2

x3

x4

y5

y2

y

y

1

6

y

y

3

4

(d) ξ2
1ξ

2
2ξ

2
3

Figure 13. First contributions to the four-point functions Gφ1φ
†
2
.

The first few orders of the perturbative expansion are given by the diagrams represented

in figure 13. They can be written as follows

G
(0)

φ1φ
†
2

=
c2
B

x2
13x

2
24

,

G
(1)

φ1φ
†
2

= c6
B(4π)4ξ2

1ξ
2
2

∫
d4y1d

4y2

(x1 − y1)2(x2 − y2)2(y2
12)2(y1 − x3)2(y2 − x4)2

− c4
Bc

4
F (4π)4ξ1ξ2ξ

2
3

∫ ∏4
i=1d

4yi tr [σµσρσησν ] yµ34y
ρ
42y

η
21y

ν
13

(x1 − y3)2(x2 − y4)2y4
34y

4
42y

4
21y

4
13(y1 − x3)2(y2 − x4)2

,

G
(2)

φ1φ
†
2

=−c5
Bc

6
F (4π)6ξ2

1ξ
2
2ξ

2
3

∫
(4π)6

∏6
i=1d

4yi tr [σµσρσησνσλσσ]yµ56y
ρ
64y

η
42y

ν
21y

λ
13y

σ
35

(x1−y5)2(x2−y6)2y4
56y

4
64y

4
42y

4
21y

4
13y

4
35(y1−x3)2(y2−x4)2

,

(5.6)

where each scalar propagator brings in the factor cB/x
2
ij and each fermionic propagator —

the factor cF /xij/x
4
ij , where /x can be σµx

µ or σ̄µx
µ and cF = −2cB = −1/(2π2).

These diagrams can be expressed in terms of a combination of the Hamiltonian graph-

building operators Ĥi. Indeed, considering the bosonic part of (5.6), the bosonic kernel is

HB(x1, x2|x3, x4) =
c4
B

x2
13x

2
24x

4
34

, (5.7)

that is clearly the same as studied in the previous case (see section 4). The fermionic kernel

is more involved. Considering the diagrams in figure 13(c) and 13(d) and their integral rep-

resentation (5.6), it is clear that they are not generated by the same repeated Hamiltonian

operator. In fact, going on with the perturbative expansion of G
φ1φ
†
2
, one can notice that

at any order ` for ` > 1, at least one fermionic diagram with the following ladder topology

appears

Since any of them carries a ξ2 power of the coupling, the maximum number of bosonic

rungs in the ladder depends on the perturbative order, in particular is `− 2. However for

` > 3, also the superpositions of ladders with less rungs contribute. For these reasons it is
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x

3x

4x2

x1

_ .

(a) (Hb)α̇α

x

3x

4x2

x1

.

.

(b) (Hr)αα̇;ββ̇

x

3x

4x2

x1

._

.

_ .

(c) (Ht)α̇α

Figure 14. The kernels associated to the Hamiltonian graph-building operators ĤF involved in

the computation of the four-point function Gφ1φ
†
2

with j = 1, 2, 3. White dots represent external

points and black dots — integration over the full space R4.

convenient to write the fermionic Hamiltonian as a product of sub-kernels associated to the

top and bottom parts of the ladder interspersed by n copies of a rungs-building Hamiltonian

H(n)
F (x1, x2|x3, x4) =

∫ 2n+2∏
i=1

d4yi Hb(x1, x2|y2n+1, y2n+2)×

×
n∏
j=1

Hr(y2j+1, y2j+2|y2j−1, y2j)Ht(y1, y2|x3, x4),

(5.8)

where the fermionic sub-kernels Hb, Hr and Ht are contracted in the spin indices in order

to recompose the trace of σ-matrices. In our convention, when n = 0 the rung-building

operator Hr is not contributing to HF . These Hamiltonians, graphically represented in

figure 14, are defined as follows

(Hb)α̇α(x1, x2|x3, x4) = −c2
BcF

(σ̄µ)α̇α xµ43

x2
24x

4
43x

2
31

,

(Hr)αα̇;ββ̇(x1, x2|x3, x4) = cBc
2
F

(σµ)αα̇(σν)ββ̇ x
µ
24x

ν
31

x4
24x

2
43x

4
31

,

(Ht)α̇α(x1, x2|x3, x4) = c3
F

(σ̄µσν σ̄ρ)
α̇α xµ24x

ν
43x

ρ
31

x4
24x

4
43x

4
31

,

(5.9)

and they can be used to rewrite the expansion (5.6) obtaining

G
(0)

φ1φ
†
2

=
x4

34

c2
B

HB(x1, x2|x3, x4) ,

G
(1)

φ1φ
†
2

=
x4

34

c2
B

(4π)4

∫
d4y1d

4y2

[
ξ2

1ξ
2
2 HB(x1, x2|y1, y2) HB(y1, y2|x3, x4)+

+ ξ1ξ2ξ
2
3 H

(0)
F (x1, x2|y1, y2) HB(y1, y2|x3, x4)

]
,

G
(2)

φ1φ
†
2

=
x4

34

c2
B

(4π)6ξ2
1ξ

2
2ξ

2
3

∫
d4y1d

4y2 H(1)
F (x1, x2|y1, y2) HB(y1, y2|x3, x4) ,

(5.10)
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where, using the definition (5.8), we have

H(0)
F (x1, x2|x3, x4) =

∫
d4y1d

4y2 Hbαα̇(x1, x2|y1, y2)H α̇α
t (y1, y2|x3, x4) (5.11)

H(1)
F (x1, x2|x3, x4) =

∫ 4∏
i=1

d4yiH β̇β
b (x1, x2|y3, y4)Hrβα̇;αβ̇(y3, y4|y1, y2)H α̇α

t (y1, y2|x3, x4) .

The kernels (5.7) and (5.8) transform covariantly under conformal transformations,

then the corresponding Hamiltonian integral operators commute with the generators of

the conformal group. The fermionic sub-kernels (5.9) have spinorial indices carried by the

σ-matrices and transform as two-components spinors. Following the conventions we are

using for the raising and lowering of spin indices, as explained in appendix A, we have the

following transformations

(Hb)ββ̇ = εβαεβ̇α̇(Hb)α̇α , (Hr)γ̇γ;δ̇δ = εδβεδ̇β̇εγαεγ̇α̇(Hr)αα̇;ββ̇ , (Ht)ββ̇ = εβαεβ̇α̇(Ht)α̇α,
(5.12)

which corresponds to the exchange σ ↔ σ̄. The rung-building operator Hr contains a

couple of un-contracted σ-matrices, then it appears with two pairs of indices. In order to

build the general fermionic diagram, one has to contract the fermionic sub-kernels with

the only constraint to obtain the trace of all the σ-matrices around the fermionic loop

alternating σ’s with σ̄’s. Once chosen if the top sub-kernel Ht contains the combination

σσ̄σ or σ̄σσ̄, the first rung sub-kernel Hr has to have the right combination of indices to

be contracted, in particular σ̄σ̄ and σσ respectively. Then the other Hr kernels have to

alternate upper and lower indices. Depending on parity of the number of rungs of the ladder

n, the bottom sub-kernel Hb can carry σ or σ̄. Indeed, we can distinguish two different

index structures, for odd or even number, of repeated applications of Hr as follows

Hnr =

(H2`
r )β̇ β

α̇;α = (Hr)β̇γ`;δ̇`β(Hr)γ`γ̇`−1;δ`−1δ̇`
. . . (Hr)γ2γ̇1;δ1δ̇2

(Hr)γ̇1γ1;δ̇1δ1(Hr)γ1α̇;αδ̇1

(H2`+1
r )βα̇;αβ̇ = (Hr)βγ̇`;δ`β̇(H2`

r )γ̇` δ`
α̇;α

(5.13)

where ` = 0, 1, . . . ,∞.

Carrying on in the perturbative expansion, one can find that for example the pertur-

bative order ` = 3 is given by the sum of same combinations of kernels appearing at order

` = 1, namely H3
B, H(0)

F

2
HB and H(0)

F H2
B, plus the new kernel H(2)

F and so on. For this mo-

tivation, the `-th perturbative order G
(`)

φ1φ
†
2

cannot be written as the contribution for ` = 1

to the power ` as in the case studied in section 4, but its sum takes the following form

∞∑
`=0

Ĝ
(`)

φ1φ
†
2

=
x4

34

c2
B

∞∑
k=0

[
(4π)4ξ2

1ξ
2
2ĤB + (4π)4ξ1ξ2ξ

2
3

∞∑
n=0

(4π)2nξn1 ξ
n
2 Ĥ

(n)
F

]k
ĤB . (5.14)

Since the operatorial form of the fermionic Hamiltonian (5.8) in terms of the sub-

kernels (5.9) is

Ĥ(n)
F = Ĥb Ĥnr Ĥt , (5.15)
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one can sum the two geometric series in (5.14). Then the correlator (5.3) can be written

as follows

Ĝ
φ1φ
†
2

=
∞∑
`=0

Ĝ
(`)

φ1φ
†
2

=
x4

34

c2
B

1

1− (4π)4ξ2
1ξ

2
2ĤB − (4π)4ξ1ξ2ξ2

3ĤF
ĤB , (5.16)

where

ĤF =
∞∑
n=0

(4π)2nξn1 ξ
n
2 Ĥ

(n)
F = Ĥb

1

1− (4π)2ξ1ξ2Ĥr
Ĥt . (5.17)

Finally, comparing (4.10) with the definition (3.2), we can fix the value of the remaining

constants χi

χB = (4π)4ξ2
1ξ

2
2 , χF = (4π)4ξ1ξ2ξ

2
3 . (5.18)

5.2 Eigenvalues of the Hamiltonian graph-building operators

In order to compute the four-point correlation function with the operator method presented

in section 3, one has to obtain the spectrum of the graph-building operators (5.7) and (5.8)

as was done in section 4.2 for another four-point correlator. The eigenstate that diagonalizes

all these Hamiltonians is defined in (3.5) for ∆O1 = ∆O2 = 1 and the eigenvalues are defined

by means of equations (3.9) and (3.10). Substituting in the latter the kernels (5.7) and (5.9)

and using the definition (3.7), we will end up with a set of integrals that can be computed

with the help of the star-triangle relations (C.2). The fact that all the integrals that we

have to compute can be solved by means of the star-triangle relations is a strong evidence

of the underlying conformal symmetry.

Bosonic eigenvalue. Since the bosonic Hamiltonian (5.7) is the same as studied in the

previous case, its eigenvalue is already computed: it is given by (4.14) for any S and

by (4.13) in the case of S = 0.

Fermionic eigenvalue. The fermionic eigenvalue is defined in (3.10). In the case we

are studying, the Hamiltonian operator (5.8) depends on the number of rungs n, thus its

eigenvalue will be also a function of n, as follows[
Ĥ(n)
F Φ∆,S,x0

]
(x1, x2) = hF

(n)
∆,S Φ∆,S,x0(x1, x2) . (5.19)

The computation of the fermionic spectrum is simpler if we consider the Hamiltonian

H(n)
F in terms of the sub-kernels Hb, Hr and Ht, as in (5.15). While the full fermionic

Hamiltonian is diagonalized by the state Φ∆,S,x0 , the sub-kernels are not. Indeed, due to

their fermionic structure, individually they will turn the scalar conformal eigenfunction into

a fermionic state. However, compatibly with (5.19), their combination (5.8) will leave the

state Φ∆,S,x0 unchanged. For instance, at S = 0 when the state is given by the conformal
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triangle (3.6), we have

ĤbĤnr Ĥt︸ ︷︷ ︸
Ĥ(n)
F

1−p

p

p
y

1y

2

x0 =



Ĥbββ̇(Ĥ2`
r )β̇ β

α̇;α Ĥα̇αt 1−p

p

p
y

1y

2

x0 = ht Ĥbββ̇(Ĥ2`
r )β̇ β

α̇;α 3/2−p

p

p

x

y

1y

2

_
0

Ĥβ̇βb (Ĥ2`+1
r )βα̇;αβ̇Ĥ

α̇α
t 1−p

p

p
y

1y

2

x0 = ht Ĥβ̇βb (Ĥ(2`+1)
r )βα̇;αβ̇ 3/2−p

p

p

x

y

1y

2

_
0

= h2`
r ht Ĥbββ̇ 3/2−p

p

p

x

y

1y

2

_
0 = hb h

2`
r ht 1−p

p

p
y

1y

2

x0

= h2`+1
r ht Ĥβ̇βb 3/2−p

p

p

x

y

1y

2

0 = hb h
2`+1
r ht 1−p

p

p
y

1y

2

x0


= hb h

n
r ht︸ ︷︷ ︸

hF
(n)
∆,S

1−p

p

p
x

1x

2

x0

(5.20)

where ` is a non-negative integer, p = ∆/2, black and white dots are positions with and

without integrations over R4, and we defined the state

3/2−p

p

p

x

x

1x

2

_
0 =

(σ̄µ)α̇αxµ21

x2
12

Φ∆,0,x0(x1, x2),
3/2−p

p

p

x

x

1x

2

0 =
(σµ)αα̇x

µ
21

x2
12

Φ∆,0,x0(x1, x2) .

(5.21)

In (5.20) we consider the action of an even and odd number of rung-building operators

separately. Indeed, while the top sub-kernel is changing the conformal triangle into a

fermionic object and the bottom sub-kernel is turning it back to the original state, the

n copies of the operator Ĥr are exchanging σ ↔ σ̄ in the states (5.21) depending on the

parity of n, according to (5.13).

These arguments hold also in the case of S 6= 0, then we have to solve the following

equations [
Ĥ α̇α
t Φ∆,S,x0

]
(x1, x2) = ht∆,S

(σ̄µ)α̇α xµ21

x2
12

Φ∆,S,x0(x1, x2) ,[
Ĥβ̇α;α̇β
r

(σµ)αα̇ y
µ
21

y2
12

Φ∆,S,x0

]
(x1, x2) = hr∆,S

(σ̄µ)β̇β xµ21

x2
12

Φ∆,S,x0(x1, x2) ,[
Ĥ β̇β
b

(σµ)ββ̇ y
µ
21

y2
12

Φ∆,S,x0

]
(x1, x2) = hb∆,S Φ∆,S,x0(x1, x2) ,

(5.22)

and the same for the transformed kernels by means of (5.12). Considering the first two

equations of (5.22) and the definitions (5.9), we have[
Ĥ α̇α
t Φ∆,S,x0

]
(x1, x2) = c3

F

∫
d4y1d

4y2
(σ̄µσν σ̄ρ)

α̇α(x2 − y2)µyν21(y1 − x1)ρ

(x2 − y2)4y4
12(y1 − x1)4

Φ∆,S,x0(y1, y2)

=
cF
cB

[
Ĥβ̇α;α̇β
r

(σµ)αα̇y
µ
21

y2
12

Φ∆,S,x0

]
(x1, x2) , (5.23)
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then, looking at (5.22), we can conclude that

hr∆,S =
cB
cF

ht∆,S . (5.24)

Moreover, focusing on the last equation of (5.22) and the definition of bottom sub-kernel

given in (5.9), we have[
Ĥ β̇β
b

(σµ)ββ̇ y
µ
21

y2
12

Φ∆,S,x0

]
(x1, x2) = −2c2

BcF

∫
d4y1d

4y2
Φ∆,S,x0(y1, y2)

(x2 − y2)2y4
12(y1 − x1)2

, (5.25)

where we used equation (A.10) to simplify the fermionic structure. The integral in the

right-hand side of the equation is the same as appearing in the computation of the bosonic

eigenvalue related to the operator ĤB given by (4.12). Then eq. (5.25) together with (5.22)

and (4.12) leads to

hb∆,S = −2
cF
c2
B

hB∆,S , (5.26)

where hB∆,S corresponds to (4.14) for any S and (4.13) in the S = 0 case. With these argu-

ments it is clear that, in order to compute the fermionic eigenvalue of the operator (5.15),

we need only to compute the eigenvalue ht∆,S defined by the first equation in (5.22).

In the S = 0 case the computation of ht∆,S can be performed using only star-triangle

relation (C.2). Indeed starting from the integral (5.23) together with the first equation

of (5.22) and performing two fermionic star-triangle integrations, as follows (see footnote 8)

��������

STR
=⇒ ��������

STR
=⇒ �������� ,

we obtain

ht∆,0 =
4 c3

F π
4

∆(∆− 4)
. (5.27)

Plugging (5.26), (5.24) and (5.27) in the definition (5.19) we have

hF
(n)
∆,0 = hb∆,0 (hr∆,0)n ht∆,0 = −8

(4π4cBc
2
F )n+2

∆n+2(∆− 2)2(∆− 4)n+2
. (5.28)

The computation of the eigenvalue ht∆,S for S 6= 0 is more involved. Without any loss

of generality, we can consider the limit x0 → 0 in both sides of the first equation of (5.22)

in order to simplify the spin structure. In this limit we are able to compute the resulting

integral going to momentum space. We leave the details of the computation in appendix D.

Going through the calculation we obtain (D.7). Notice that also this eigenvalue can be

written in terms of the bosonic one as follows

ht∆,S =
c3
F

c4
B

(∆− S)2 + S(S + 2)

4
hB∆,S , (5.29)
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where hB∆,S is given in (4.14). Substituting (5.26), (5.24) and (5.29) into the defini-

tion (5.19) we have

hF
(n)
∆,S = hb∆,S (hr∆,S)n ht∆,S = −8

(
c2
F

4c3
B

)n+2

[(∆− 2)2 + S(S + 2)]n+1 hB∆,S

= −8(4π4cBc
2
F )n+2 [(∆− 2)2 + S(S + 2)]n+1

[(∆ + S)(∆ + S − 2)(∆− S − 2)(∆− S − 4)]n+2
,

(5.30)

where in the last line we used the definition (4.14). Notice that setting S = 0 we ob-

tain (5.28) as expected. Finally, using the definition (5.17), we can resum the fermionic

eigenvalue obtaining

hF∆,S = −
c4
F [(∆− 2)2 + S(S + 2)]hB∆,S

2

2c6
B − 8c3

Bc
2
Fπ

2[(∆− 2)2 + S(S + 2)]ξjξj+hB∆,S
. (5.31)

We can conclude that the eigenvalue (5.31) is manifestly invariant under ∆ → 4 − ∆, as

expected from (3.21).

5.3 Spectrum of exchanged operators of G
φ1φ

†
2
(u, v)

In this section we will use the eigenvalues (4.14) and (5.31) to compute the scaling di-

mensions of the operators contributing to the correlation function (3.27) for O1 = φ1 and

O2 = φ†2. The spectrum of the exchanged operators is defined by the solutions of the

equation for the physical poles (3.25). Substituting in (3.25) the definition of bosonic and

fermionic eigenvalues (4.14) and (5.31) and the constants χi computed in (5.18), we can

rearrange the spectral equation in the following form

hB∆,S
−1 +

(4π)4c4
F [(∆− 2)2 + S(S + 2)]λ2µ2hB∆,S

2c6
B − 8c3

Bc
2
Fπ

2[(∆− 2)2 + S(S + 2)]λ2hB∆,S
= (4π)4 λ4 , (5.32)

where we defined the new couplings

λ2 = ξ1ξ2 µ2 = ξ2
3 . (5.33)

Plugging (4.14) into (5.32), we obtain the following equation

[S2+4ν2][(S+2)2+4ν2]+
128[S(S+2)−4ν2]λ2µ2

S(S+2)[S(S+2)−4λ2]+8[2+S(S+2)+2λ2]ν2+16ν4
= 16λ4 ,

(5.34)

with the additional constraint Im ν < 0 (i.e. Re ∆ ≥ 2) for physical, exchange operators.

Equation (5.34) has 8 solutions for S 6= 0. Four of them correspond to the scaling di-

mensions of physical operators satisfying this constraint. Indeed, they are two couple of

solutions with bare dimension 2 + S and 4 + S. The remaining four solutions are related

to the first ones by the transformation ∆ → 4 − ∆ and describe shadow operators with

Re ∆ < 2. In the S = 0 case (5.34) has 6 solutions. One corresponds to the operator

with bare dimension 2 and two — to the one with bare dimension 4. The remaining three

solutions are their shadow operators. This 4th order equation in ν2 can be solved exactly,
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but instead of these bulky formulas we prefer to present their perturbative expansions at

weak and strong coupling.

The equation (5.34) can be viewed as defining an algebraic curve of 8th degree in terms

of ν, or of the corresponding dimension ∆ = 2 + 2iν as a complex variable. In terms of ν2

variable it is a 4th order algebraic curve whose branches — the four sheets of the related

Riemann surface — describe directly the four physical dimensions as functions of couplings.

Changing the couplings we can pass from one sheet to another, observing the transitions

between various dimensions. The branch points correspond to the collisions of physical

dimensions. In contrast to this case, the spectral equation for the previous four-point

function (4.28) is not algebraic and its Riemann surface contains infinitely many sheets.

Weak coupling expansion. Expanding around the physical pole ν = −iS/2 at weak

coupling λ, µ→ 0, we obtain the following expansions of dimensions for the two twist-two

operators

∆(2) = 2 + S − λ

2

[
λ− ζ√

S(S + 1)

]
+

λ2

4S2(S + 1)2ζ

[
S(S + 1)λ2[(S(S + 1)− 5)ζ

−
√
S(S+1)(S(S+1)+3)λ]+8µ2[ζ(1−S2)+

√
S(S+1)(S(2S+1)−2)λ]

]
+ . . .

∆(2′) = 2 + S − λ

2

[
λ+

ζ√
S(S + 1)

]
+

λ2

4S2(S + 1)2ζ

[
S(S + 1)λ2[(S(S + 1)− 5)ζ

+
√
S(S+1)(S(S+1)+3)λ]+8µ2[ζ(1−S2)−

√
S(S+1)(S(2S+1)−2)λ]

]
+ . . . .

(5.35)

Expanding around the physical pole ν = −i(S + 2)/2, we get for the two remaining, twist-

four operators

∆(4) = 4 + S +
λ

2

[
λ+

τ√
(S+1)(S+2)

]
− λ2

4(S + 1)(S + 2)2

[
(S + 2)(S(S + 3)− 3)λ2

− 8(S+3)µ2+

√
S + 2

S + 1

λ

τ
[(S+1)(S+2)(S(S+3)+5)λ2−8(S(2S+7)+4)µ2]

]
+ . . .

∆(4′) = 4 + S +
λ

2

[
λ− τ√

(S+1)(S+2)

]
+

λ2

4(S + 1)(S + 2)2

[
(S + 2)(S(S + 3)− 3)λ2

− 8(S+3)µ2+

√
S + 2

S + 1

λ

τ
[(S+1)(S+2)(S(S+3)+5)λ2−8(S(2S+7)+4)µ2]

]
+ . . .

(5.36)

where we introduced the following short-hand notation

ζ =
√
S(S + 1)λ2 − 16µ2 and τ =

√
(S + 1)(S + 2)λ2 − 16µ2 . (5.37)

In both cases we presented only the first few terms of the expansions since the following

ones are quite cumbersome. Moreover, we notice that the weak coupling expansions of the
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solutions are divergent but, as we point out later, by the analysis of section 5.5 the sum of

the corresponding OPE contributions has a well defined expansion (see footnote 9).

Taking into account the quantum numbers of the external state Tr[φ1φ
†
2] we can list the

operators of twist-2 and -4 which mix, obtaining the expression for the exchanged operators

in the OPE from the diagonalization of the mixing matrix. At ∆0 − S = 2 we recognize

that Tr[φ1 ∂
S
+φ
†
2] and Tr[ψ1 ∂

S−1
+ (n · σ)ψ̄2], where n · n = 0 and ∂+ = (n · ∂), operators can

mix if S > 0. Interestingly, due to trace ciclicity, at twist-2, the mixing transitions are

symmetric and then there are no logarithmic operators despite chiral interactions of (2.2)

(see appendix F.2). On the other hand, at ∆0 − S = 4 many more operators can realise

the U(1)⊗3 quantum numbers (1,−1, 0), building up a large mixing matrix. As pointed

out in appendix F.2, already for S = 0 the anomalous dimension matrix is not diagonal-

izable. We conjecture there that its canonical Jordan form presents several logarithmic

multiplets (Jordan blocks) of various ranks, together with two non-zero diagonal elements,

corresponding to solutions (5.36) (or (5.39) and S = 0).

The zero-spin case presents some peculiar behaviors. Indeed, expanding (5.34) for

S = 0 around the physical poles ν = 0 at weak coupling, we obtain the following expansion

for the twist-two operator

∆(2)
∣∣
S=0

= 2− 2iλ
√
λ2 + 2µ2 +

2iλ3µ2√
λ2 + 2µ2

+
iλ3(λ6 + 6λ4µ2 + 17λ2µ4 + 16µ6)

(λ2 + 2µ2)3/2
+ . . .

(5.38)

and around the pole ν = −i — the following twist-four operators

∆(4) = 4 +
λ

2

[
λ+

√
λ2 − 8µ2

]
+
λ2

8

[
3λ2 + 12µ2 − 5λ3 − 16λµ2√

λ2 − 8µ2

]
+ . . .

∆(4′) = 4 +
λ

2

[
λ−

√
λ2 − 8µ2

]
+
λ2

8

[
3λ2 + 12µ2 +

5λ3 − 16λµ2√
λ2 − 8µ2

]
+ . . .

(5.39)

The fact that at S = 0 there is only one solution corresponding to operators of length-two

is not surprising: the only scalar operator which has twist-2 and the correct quantum num-

bers is indeed Tr[φ1φ
†
2], that is the one exchanged in the OPE channel (see appendix F.2).

Moreover, similarly to the case of the spectrum of the length-two operator in the correlation

function computed in section 4.3, the limit S → 0 and the weak-coupling limit are not com-

mutative, thus the scaling dimension ∆(2) for S = 0 presents a different expansion in power

of the coupling w.r.t. the case S > 0. The explanation is the same of the previous case.

Indeed, since the physical pole is situated at ν = −iS/2, and the mirror pole at ν = +iS/2,

at weak coupling, when S → 0, they pinch the integration contour of (3.24) at the origin

producing a divergence. Hence, the contribution of the double-traces is needed in this case

to produce a non-vanishing term that cancels this divergence at weak coupling. Again we

stress that at finite couplings the solutions (5.34) are well-defined even at zero spin.

Strong coupling expansion. Equation (5.34) has 6 solutions at strong coupling i.e.

for λ, µ → ∞. The explanation of the fact that we have a different number of solutions
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limit ∆(2) ∆(2′) ∆(4) ∆(4′)

χ0CFT
ξ1 ∨ ξ2 → 0 2 + S 4 + S

ξ3 → 0 ∆
(2)
bi (λ4) ∆

(4)
bi (λ4)

bi-scalar ξi ∧ ξk → 0 ∀i, k 2 + S 4 + S

β-deform ξ1 =ξ2 =ξ3 =ξ ∆(2)(ξ) ∆(2′)(ξ) ∆(4)(ξ) ∆(4′)(ξ)

Table 3. In this table we summarize the operator and dimension content of exchange operators in

three reductions of χCFT for the correlator Gφ1φ
†
2
. In our notation ∆(i)(ξ) = ∆(i)(λ → ξ, µ → ξ)

and ∆
(i)
bi is defined in (4.37).

w.r.t. the weak coupling case can be identified by the analysis of the exchanged operators

in appendix F.2. In particular when λ, µ → ∞ the two operators O′± defined in (F.10)

collapse to a single operator. Then the resulting physical solutions are

∆(2)
∞ =−2iλ+2+

i[(2+S(S+2))λ2−2µ2]

4λ3 +
i[(S2−2)(2+S(S+4))λ4+4S(S+2)λ2µ2+20µ4]

64λ7 +. . .

∆(4)
∞ = 2λ+2+

iµ

λ
+

(3+2S(S+2))λ2+2µ2

4λ3 − i[(S2+1)4λ4+2(5S(S+2)+7)λ2µ2+13µ4]

32λ5µ
+. . .

∆(4′)
∞ = 2λ+2− iµ

λ
+

(3+2S(S+2))λ2+2µ2

4λ3 +
i[(S2+1)4λ4+2(5S(S+2)+7)λ2µ2+13µ4]

32λ5µ
+. . .

(5.40)

and the remaining solutions are associated to the shadow operators. Notice that, doing

simply the power counting in terms of the original couplings all the strong coupling expan-

sions are growing linearly with ξ. The S → 0 limit is not singular at strong coupling, then

one can compute ∆∞
∣∣
S=0

directly from (5.40).

The spectrum of exchanged operators in reductions of χCFT. The scaling di-

mensions of the exchanged operators in the correlation function G
φ1φ
†
2

for the reductions

of χCFT introduced in section 2.2, can be computed as solutions of the spectral equa-

tion (5.34) in which we are applying the limits on the couplings, or even directly on the

weak- and strong-coupling expansions. In table 3 we summarize our results.

• χ0CFT: sending one of the couplings to zero we perform the reduction from the full

χCFT to the χ0CFT. In this case, the reduction doesn’t give a unique spectrum.

Indeed, setting ξ1 or ξ2 to zero, or equivalently λ→ 0, we obtain two protected oper-

ators. This is clear when considering the spectral equation (5.34) in which only the

first term on the left-hand side will contribute and clearly it describes two protected

solutions (plus the shadow operators associated to them). If we consider ξ3 to vanish,

or equivalently µ→ 0, and again referring to the spectral equation (5.34), it is clear

that the second term in the left-hand side vanishes but, in contrast to the previous

case, in the right-hand side of the equation the dependence on the coupling is still

present. The resulting equation is the same as describing the spectrum of exchanged
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operators for the four-point function Gφ1φ1 in the bi-scalar theory. Then we obtain

2 solutions with the spectrum given by (4.37) where ξ = λ.

• bi-scalar theory: the reduction to bi-scalar theory consists of the limit in which two

couplings of χCFT vanish. For the correlator we are considering, any choice of the

vanishing couplings leads to protected solutions, as expected. Indeed, in the bi-scalar

theory the lack of interaction vertices doesn’t develop an anomalous dimension for

exchanged operators with external states given by φ1 and φ†2 as previously noticed

in [12, 24].

• β-deformed theory (all three couplings are equal): in this case, the restoration of

one supersymmetry is not sufficient to constrain any of the solutions. Then their

spectrum can be easily read off applying the equal couplings limit, for example at

weak coupling, to the expansions (5.35) and (5.36).

5.4 The structure constant of the exchanged operators

Once the spectrum of the exchanged operators is computed, in order to obtain the full set of

conformal data for the four point function G
φ1φ
†
2
, one has to compute the OPE coefficients.

Their definition is given by (3.27) or, equivalently, by (4.38) where

R∆,S =
d

d∆

(
1

hB∆,S
+

(4π)8λ2µ2 [(∆− 2)2 + S(S + 2)]hB∆,S

2− 8(2π)4λ2 [(∆− 2)2 + S(S + 2)]hB∆,S

)
, (5.41)

where the eigenvalues hB∆,S is defined in (4.14) and the constants cF = −2cB = −1/(2π2).

Plugging the eigenvalues into (5.41) and performing the derivative, we obtain explicit but

rather cumbersome result that we will not present here. In the following paragraphs we

will consider its weak- and strong- coupling expansions.

Weak coupling expansion. Substituting the weak coupling expansions of the scaling

dimensions computed in (5.35) into (4.38), (5.41), we obtain the following weak coupling

expansions for the structure constants associated to the twist-two operators for S 6= 0

C∆(2),S =

√
πΓ(S + 1)

2SΓ(S + 1/2)

(ζ +
√
S(S + 1))2

[(ζ +
√
S(S + 1))2 − 16µ2]

+ . . .

C∆(2′),S =

√
πΓ(S + 1)

2SΓ(S + 1/2)

(ζ −
√
S(S + 1))2

[(ζ −
√
S(S + 1))2 − 16µ2]

+ . . . ,

(5.42)

and a similar substitution of (5.36) for the twist-four operators at any S gives

C∆(4),S =

√
πλΓ(S+2)(τ−

√
(S+1)(S+2)λ)2(τ+

√
(S+1)(S+2)λ)

22S+5Γ(S+3/2)
√

(S+1)(S+2)[(τ−
√

(S+1)(S+2)λ)2−16µ2]
+. . .

C∆(4′),S =−
√
πλΓ(S+2)(τ−

√
(S+1)(S+2)λ)(τ+

√
(S+1)(S+2)λ)2

22S+5Γ(S+3/2)
√

(S+1)(S+2)[(τ+
√

(S+1)(S+2)λ)2−16µ2]
+. . . .

(5.43)

where the functions ζ and τ are defined in (5.37). Similarly to the expansion of the scaling

dimensions, the OPE coefficients of the twist-two operators are singular for S = 0. Indeed,
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as discussed in section 5.3, due to the singularity arising at zero spin, the weak coupling

and S → 0 limits don’t commute. In order to obtain the correct weak coupling expansion

for the twist-two operators, one has to set S = 0 in (5.41) and then expand in the couplings.

In the S = 0 case we found that the spectral equation (5.32) has 6 solutions instead of

8, as expected from the operator mixing analysis in appendix F.2 for twist-2 solutions.

In particular the zero spin expansion of the structure constant related to the twist-two

operator is

C∆(2),0 =1 + 2iλ
√
λ2 + 2µ2 − λ2

[
2λ2 + 6µ2 +

2iλµ2√
λ2 + 2µ2

]
+ . . . . (5.44)

Since the S → 0 singularity is not arising for the twist four operators, one can read off the

spinless OPE coefficients for the twist-four operators directly setting S = 0 in (5.43), thus

obtaining

C∆(4),0 =
−λµ2

4
√
λ2−8µ2

−λ
2[2λ5−19λ3µ2+72λµ4−(2λ4−5λ2µ2−88µ4)

√
λ2−8µ2]

32(λ2−8µ2)3/2
+. . .

C∆(4′),0 =
λµ2

4
√
λ2−8µ2

+
λ2[2λ5−19λ3µ2+72λµ4+(2λ4−5λ2µ2−88µ4)

√
λ2−8µ2]

32(λ2−8µ2)3/2
+. . . .

(5.45)

In analogy with the analysis of spectrum, the divergence arising at S = 0 for the twist-

two operators suggests that the weak coupling expansion is sensitive to the double trace

counterterms. Moreover, for any S the twist-four OPE coefficients are suppressed by a

factor of order ξ3/2 as compared to the twist-two ones.

Strong coupling expansion. In section 5.3 we studied the strong coupling spectrum

of the exchanged operator for the four-point function G
φ1φ
†
2
. Since the scaling dimensions

are growing linearly with the coupling λ, the OPE coefficients can be computed expand-

ing (4.38) and (5.41) in ∆ → ∞ and then plugging the strong coupling asymptotics of

scaling dimensions in the resulting expansion. Since in this limit the coefficient c2(∆, S)

in (4.38) is dominant w.r.t. the one of (5.41), the first terms of the expansion are exactly

the same as in (4.42). Obviously at higher orders in 1/∆, (5.41) starts contributing and

then we obtain

C
∆

(2)
∞ ,S

=
25(S+1)

22∆
(2)
∞ ∆

(2)
∞

tan

(
π

∆
(2)
∞ −S

2

)[
1+

3i

4λ
− [5+4S(S+2)]λ2+32µ2

32λ4
+. . .

]

C
∆

(4)
∞ ,S

=
25(S+1)

22∆
(4)
∞ ∆

(4)
∞

tan

(
π

∆
(4)
∞ −S

2

)[
1+

3

4λ
+

[5+4S(S+2)]λ2−12iλµ+32µ2

32λ4
+. . .

]

C
∆

(4′)
∞ ,S

=
25(S+1)

22∆
(4′)
∞ ∆

(4′)
∞

tan

(
π

∆
(4′)
∞ −S

2

)[
1+

3

4λ
+

[5+4S(S+2)]λ2+12iλµ+32µ2

32λ4
−. . .

]
.

(5.46)

Thus, given the linear growth of the scaling dimensions ∆∞ with coupling, the OPE coeffi-

cients are exponentially small at strong coupling. The S → 0 limit is not singular at strong

coupling, thus one can compute C∆∞,0 directly from expansion (5.46), setting there S = 0.
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5.5 The four-point correlation function

Once we computed the conformal data in section 5.3 and section 5.4, we can determine the

four-point function (5.1) by means of (3.19). In the case O1 = φ1 and O2 = φ†2 we obtain

G
φ1φ
†
2
(x1, x2|x3, x4) =

c2
B

x2
12x

2
34

G
φ1φ
†
2
(u, v) . (5.47)

The cross-ratios are defined as u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24) and ∆φi = 1.

The function Gφ1φ1(u, v) can be written in terms of the OPE representation (3.27) as a

sum over the non-negative integer Lorentz spin S and the states with scaling dimensions

∆. From the study of the spectrum of exchanged operators in section 5.3 it turns out that

in the OPE channel two operators of length-two for S 6= 0 are exchanged, but only one

when S = 0. Thus, in order to write the four point function in a compact form, we set

C∆(2′),S to vanish at S = 0, or equal to (5.42) otherwise, then we have

G
φ1φ
†
2
(u, v) =

∞∑
S=0

[C∆(2),S g∆(2),S + C∆(2′),S g∆(2′),S + C∆(4),S g∆(4),S + C∆(4′),S g∆(4′),S ] ,

(5.48)

where the scaling dimensions are defined by the spectral equation (5.32). At weak coupling

they are computed in (5.35) and (5.36), and at strong coupling — in (5.40). The structure

constants are defined by (4.38) and (5.41). They are computed at weak and strong coupling

in (5.42), (5.43) and (5.46) respectively. The four-dimensional conformal blocks g∆,S are

defined (3.18).

As already pointed out for the four-point correlator Gφ1φ1 , the proper definition of

the four-point correlation function G
φ1φ
†
2
, takes into account the symmetrization x3 ↔ x4.

Under this symmetry, the cross-ratios transform as u→ u/v and v → 1/v and correspond-

ingly, from the definition (3.18), the conformal blocks g∆,S(u/v, 1/v) = (−1)Sg∆,S(u, v).

Combining together this relation with (5.48), it’s easy to see that including the symmetry

x3 ↔ x4 means that the terms in (5.48) with odd S cancel out whereas those with even S

get doubled.

Despite the presence of singularities in the weak-coupling expansions of scaling dimen-

sions and OPE coefficients, their sum in (5.48) is well-defined and non-singular. Indeed

plugging the conformal data into (5.48), we obtain an expansion in powers of the couplings

that is compatible with the interpretation of the correlation function as a sum of Feynman

diagrams in perturbation theory (see section 6.3 for an explicit example). In particular,

since the first non-trivial order is fixed by the S = 0 conformal data, it is easy to write the

two leading contributions to G
φ1φ
†
2

in terms of known functions as follows

G
φ1φ
†
2
(u, v) = u+ iλ

√
λ2 + 2µ2 uΦ(1)(u, v) + . . . , (5.49)

where Φ(1) is the Bloch-Wigner dilogarithm function defined in (4.47). Expanding (5.48) at

higher order in the couplings we obtain a cumbersome result. However, we notice that the

maximum transcendental weight of the involved functions grows linearly with the order.
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This suggest, together with the presence of the Bloch-Wigner dilogarithm at the first non-

trivial order, the possibility to interpret the four-point function (5.48) as a combination

of a class of special iterated integrals, the so-called harmonic polylogarithms [53] following

the same idea as of [24].

6 Correlation functions at weak coupling from Feynman diagrams

In section 4 and section 5, we have analyzed two different four-point functions computing

their conformal data by means of the Bethe-Salpeter method. With this procedure we were

able to diagonalize the graph-building operators and write exact equations for the spectrum

of exchanged operators even though we ignored on the way the contribution of the double-

trace interactions (2.7). The double-trace counterterms are necessary in the action to have

a consistent description of the double-scaled theory (2.2) in the perturbative regime and

in particular for the restoration of conformal symmetry.

In this section, we will study the weak coupling expansions of the four-point functions

related to the operators (2.3) and clarify the role of the double-trace terms for this expan-

sion. As we already mentioned, bosonic and fermionic wrappings in the related Feynman

graphs develop UV divergencies at short distances. Adding the double-trace vertices in

the perturbative expansion we will be able to determine the conformal fixed points (2.13)

canceling divergencies generated by the single trace terms. However, they will not affect

the finite coupling solutions computed in the section above.

The double-trace counterterms are given by the Lagrangian (2.7). In general, this

action contains 9 terms but, due of the cylindric topology of Feynman diagrams for the

observables we are computing. For any four-point function only one double-trace term is

contributing generating a new local four-scalar vertex (see for instance figure 9). This fact

is crucial to ensure that conformal symmetry is restored. Indeed, in this case we know that

the β-function can be written as (2.11) and it admits two fixed points α2
j? as in (2.13).

If we focus on the Feynman diagram expansion of the four point-functions we have to

deal with divergent integrals. Then we have to introduce dimensional regularization setting

D = 4−2ε. One important observation is that the diagrams containing fermionic contribu-

tions produce the same divergence as the bosonic ones. In other words the fermionic kernels

contains the divergent part of the bosonic one plus a remainder function that is finite in

D = 4 which therefore does not require regularization. Then the divergent operator can

be written as

[
V̂ Φ

]
(x1, x2) = 2c2

B

∫
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y2)2]1−ε
δ(4−2ε)(y12) Φ(y1, y2)[

ĤB Φ
]
(x1, x2) = c4

B

∫
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y2)2y4
12]1−ε

Φ(y1, y2) ,

(6.1)

where Φ(x1, x2) is a test function.
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Given the Hamiltonians (6.1) and the definition (3.2), the four-point correlation func-

tion is defined as follows

G(x1, x2|x3, x4) = lim
ε→0

(
cB
x2

34

)∆O1
+∆O2

−D
〈x1, x2|

ĤB
1− χ?V V̂ − χBĤB − χF ĤF

|x3, x4〉 ,

(6.2)

where the effective coupling χ?V = χV |α2
j=α

2
j?

, i.e. it is taken at the fixed point α2
j = α2

j?.

It is clear that for ε 6= 0 conformal symmetry is broken. However, expanding (6.2) at

weak-coupling in terms of Feynman diagrams, one can demonstrate order-by-order how

conformal symmetry is restored. In the following sections, we present some examples of

this mechanism for the four-point correlation functions associated to the operators (2.3).

6.1 Four-point function of O1(x) = φ1(x) and O2(x) = φ2(x)

Let’s start from this simplistic example. Consider O1(x) = φj(x) and O2(x) = φk 6=j(x)

with j, k = 1, 2, 3. Since the correlators are the same for any j and k, we choose j = 1 and

k = 2. Then the four-point function we want to study is as follows

Gφ1φ2(x1, x2|x3, x4) = 〈Tr[φ1(x1)φ2(x2)]Tr[φ†1(x3)φ†2(x4)]〉 . (6.3)

In the planar limit Nc → ∞, the weak coupling expansion of (6.3) in terms of Feynman

diagrams is given by a combination of the following vertices

(4π)2α2
3 Tr[φ1φ2](x) Tr[φ1φ2]†(x) , (4π)2ξ2

3 Tr[φ†1φ
†
2φ1φ2](x) , (6.4)

and it can be written as follows

Gφ1φ2(x1, x2|x3, x4) =

∞∑
`=0

(4π)2`(α2
3 + ξ2

3)`G
(`)
φ1φ2

(x1, x2|x3, x4) , (6.5)

where ` represents the perturbative order. It is straightforward to see that Feynman

diagrams at any order ` form a chain structure alternating groups of single- and double-

trace vertices. These vertices insert into the graphs identical primitive divergencies. Then

at the conformal critical point α2
3? = −ξ2

3 the graphs cancel each other except for the ` = 0

term, namely

G
(0)
φ1φ2

(x1, x2|x3, x4) =
c2
B

x2
13x

2
24

. (6.6)

Restoring the two point function in the limit x1 → x2 and x3 → x4 we notice that the

spectrum of the operator Tr[φ1φ2] is not affected by quantum corrections. Indeed, its

scaling dimension is protected and equal to the bare one

∆(2) = 2 . (6.7)

6.2 Four-point function of O1(x) = O2(x) = φ1(x)

In section 4 we studied the contribution to the four-point function Gφ1φ1 of diagrams

generated by the bosonic and fermionic Hamiltonians ĤB and ĤF but ignored the double-

trace vertices, which works well for finite couplings. Since any diagram in figure 10 (except
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1
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4

(a) α2
1

x

x

y
1

2

1 y2
x

x4

3

(b) α4
1

Figure 15. First two contributions of the double trace vertex Tr[φ1φ1]Tr[φ†1φ
†
1] to the four-point

functions Gφ1φ1
.

for the trivial leading order diagram) is UV divergent, we will re-introduce in this section

the double-trace counterterms in the perturbative expansion in order to make the weak-

coupling expansion UV finite and to restore conformal symmetry.

Let’s compute the first few orders of the weak coupling expansion of Gφ1φ1 . In terms

of Feynman diagrams, we have to compute the graphs given in figures 10 and 15. Defining

a function G
(a,b,c)
φ1φ1

where a counts the number of double-trace vertices, b the number of

bosonic vertices (4.2) and c the number of fermionic vertices (4.3), we have

Gφ1φ1 = G
(0,0,0)
φ1φ1

+(4π)2α2
1G

(1,0,0)
φ1φ1

+(4π)4
[
α4

1G
(2,0,0)
φ1φ1

+ (ξ4
2 + ξ4

3)G
(0,2,0)
φ1φ1

+ ξ2
2ξ

2
3G

(0,0,4)
φ1φ1

]
+. . . .

(6.8)

The leading order G
(0,0,0)
φ1φ1

is already defined in (4.6), thus G
(0,0,0)
φ1φ1

= G
(0)
φ1φ1

. The first

correction is given by the diagram in figure 15(a). This contribution is finite and it can be

written as follows

G
(1,0,0)
φ1φ1

=
2π2c4

B

x2
12x

2
34

uΦ(1)(u, v) , (6.9)

where Φ(L) is the ladder three-point function [52] that in the case L = 1 is given by the

Bloch-Wigner dilogarithm function

Φ(1)(u,v) =
1

θ

[
2(Li2(−ρu)+Li2(−ρv))+log

v

u
log

1+ρv

1+ρu
+logρu logρv+

π2

3

]
, (6.10)

with

θ(u, v) ≡
√

(1− u− v)2 − 4uv and ρ(u, v) ≡ 2

1− u− v + θ
. (6.11)

The cross-ratios are u = x2
12x

2
34/(x

2
13x

2
24) and v = x2

14x
2
23/(x

2
13x

2
24) and the constant

cB = 1/(4π2).

The bosonic part of the two-loop correction given by G
(2,0,0)
φ1φ1

and G
(0,2,0)
φ1φ1

comes from

the diagrams in figures 15(b), 10(b) and 10(c). The corresponding integrals are divergent

and they need dimensional regularization, then we have

G
(2,0,0)
φ1φ1

= 4c6
BI(x1, x2|x3, x4) , and G

(0,2,0)
φ1φ1

= c6
BI(x1, x3|x2, x4) , (6.12)

where we defined the short-hand notation

I(x1, x2|x3, x4) =

∫
d4−2εy1d

4−2εy2

[(x1 − y1)2(x2 − y1)2y4
12(y2 − x3)2(y2 − x4)2]1−ε

. (6.13)
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This integral is UV divergent at short distances y2
12 → 0. Using the identity 1/(y2

12)2−2ε =

π2δ4−2ε(y12)/ε + O(ε0), one can compute the divergent part of the integral (6.13) that is

proportional to the same one-loop function found in (6.9), as follows

α4
1G

(2,0,0)
φ1φ1

+ (ξ4
2+ ξ4

3)G
(0,2,0)
φ1φ1

=
π4c6

B

x2
12x

2
34

(
4α4

1 + ξ4
2+ ξ4

3

ε

)
uΦ(1)(u, v) + finite , (6.14)

where for the purpose of this section we are not interested in the finite part.

Let us finally consider the fermionic contribution G
(0,0,4)
φ1φ1

. This term corresponds to

the Feynman diagram in figure 10(d) and its integral representation in four dimensions

is given in the last line of (4.6). Since we are only interested in the computation of the

UV divergent part of the diagram, we can avoid computing the whole integral (4.6) in

dimensional regularization and proceed in a more naive way. Indeed, representing the

integral as in the last line of (4.8) and considering that the fermionic Hamiltonian can be

written as a combination of the bosonic one and some finite reminder function as in (4.16),

we know that all the UV divergence is arising from HB. Then we can write

G
(0,0,4)
φ1φ1

= −
2π4c6

B

x2
12x

2
34

1

ε
uΦ(1)(u, v) + finite . (6.15)

Combining this result with (6.14) and (6.9), we obtain that the expansion (6.8) takes the

expected form (3.19) with the function Gφ1φ1(u, v) given by

Gφ1φ1(u, v) = u+ 2α2
1 uΦ(1)(u, v) +

4α4
1 + ω4

ε
uΦ(1)(u, v) + finite(κ4, ω4) + . . . , (6.16)

where the new couplings κ and ω are defined in (4.27) and finite(κ4, ω4) stands for the finite

part of Gφ1φ1 at two-loop. Finally, imposing the UV finiteness of the correlation function

we obtain the first order of the fixed point as follows

α2
1? = ± i ω

2

2
+ . . . , (6.17)

and notice that it matches exactly the prediction given in (2.16). Replacing the double-

trace coupling in (6.16) with its value10 α2
1? = − i ω2

2 we obtain the one-loop expansion of

the correlation function as follows

Gφ1φ1(u, v) = u− iω2 uΦ(1)(u, v) + . . . . (6.18)

This perfectly matches the same quantity computed via OPE, with conformal data fixed

by the Bethe-Salpeter method (4.46).

6.3 Four-point function of O1(x) = φ1(x) and O2(x) = φ†
2(x)

In section 5, we studied the four-point function G
φ1φ
†
2

by the Bethe-Salpeter method,

considering the diagrams generated by bosonic and fermionic Hamiltonians ĤB and Ĥ(n)
F ,

but ignoring the operator V̂, which is valid at any finite couplings. Since we want to analyze

10This choice is coherent with the sign convention used in section 4.3.

– 53 –



J
H
E
P
0
6
(
2
0
1
9
)
0
7
8

x

x x

x
y

1

2

1

3

4

(a) α2
1

x

x

y
1

2

1 y2
x

x4

3

(b) α4
1

Figure 16. First two contributions of the double- and single-trace vertices Tr[φ1φ
†
2]Tr[φ†1φ2] and

Tr[φ†1φ
†
2φ1φ2] to the four-point functions Gφ1φ

†
2
.

the weak coupling perturbative expansion of the correlator using Feynman diagrams, the

graphs generated by this operator are needed in order to cancel the UV divergencies arising

from the diagrams in figure 13. There is here a substantial difference w.r.t. the case of

Gφ1φ1 studied in section 4: indeed the diagrams generated by V̂ are not only produced

by the double-trace vertex Tr[φ1φ
†
2]Tr[φ†1φ2] but also by the single-trace Tr[φ†1φ

†
2φ1φ2].

For this reason, we redefine the double-trace coupling as (5.5) taking into account both

contributions.

Let’s compute the first few orders of the weak coupling expansion of G
φ1φ
†
2
. In terms

of Feynman diagrams, we have to compute the first three graphs given in figure 13 and the

ones in figure 16. Defining the function G
(a,b,c)

φ1φ
†
2

where a counts the number of double- and

single-trace vertices contributing with coupling α̃2
2 and b and c the number of bosonic and

fermionic vertices, respectively, we have

G
φ1φ
†
2

= G
(0,0,0)

φ1φ
†
2

+ (4π)2α̃2
2G

(1,0,0)

φ1φ
†
2

+ (4π)4

[
α̃4

2G
(2,0,0)

φ1φ
†
2

+ λ4G
(0,2,0)

φ1φ
†
2

+ λ2µ2G
(0,0,4)

φ1φ
†
2

]
+ . . .

(6.19)

where the new couplings λ and µ are defined by (5.33) and α̃2
2 = α2

2 + µ2.

The leading order G
(0,0,0)

φ1φ
†
2

is already defined in (5.6) then G
(0,0,0)

φ1φ
†
2

= G
(0)

φ1φ
†
2

. The first

correction is given by the diagram in figure 16(a) that is a half11 of the one computed in the

previous section in (6.9). The bosonic part of the two-loop correction given by G
(2,0,0)

φ1φ
†
2

and

G
(0,2,0)

φ1φ
†
2

comes from the diagrams in figure 16(b) and figure 13(b) and they are divergent.

Their integral representation is exactly the same as in the previous case, namely (6.12),

and then we can write their sum as follows

α̃4
2G

(2,0,0)

φ1φ
†
2

+ λ4G
(0,2,0)

φ1φ
†
2

=
π4c6

B

x2
12x

2
34

(
α̃4

2 + λ4

ε

)
uΦ(1)(u, v) + finite . (6.20)

Let’s finally consider the fermionic contribution G
(0,0,4)

φ1φ
†
2

. This term corresponds to

the Feynman diagram in figure 13(c) and its integral representation in four dimensions is

given in the next-to-the-last line of (5.6). In this case, our goal is also to identify the UV

divergent part of the diagram. Thus we will not compute the whole integral in (5.6) in

dimensional regularization but we will rather proceed following the method of the previous

section. Performing two integrations by means of the star-triangle relation (C.2) and then

11The two diagrams have a different symmetry factor given by the Wick contractions.
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simplifying the spin structure with the help of (A.11) and (A.4), one can identify a divergent

integral of the same kind as in (6.13), together with a finite remainder integral. Computing

the integral I for small distances y12 → 0, we can extract the following pole

G
(0,0,4)

φ1φ
†
2

=
2π8c4

Bc
4
F

x2
12x

2
34

1

ε
uΦ(1)(u, v) + finite . (6.21)

Combining all this results, we obtain that the expansion (6.19) takes the expected

form (3.19) with the function G
φ1φ
†
2
(u, v) given by

G
φ1φ
†
2
(u,v) =u+α̃2

2uΦ(1)(u,v)+
α̃4

2+λ4+2λ2µ2

ε
uΦ(1)(u,v)+finite(λ4,µ4)+. . . (6.22)

where finite(λ4, µ4) stands for the finite part of G
φ1φ
†
2

at two-loop. Finally, imposing the

UV finiteness of the correlation function and recalling the definition (5.5), we obtain the

first order of the fixed point as follows

α2
2? = −µ2 ± iλ

√
λ2 + 2µ2 + . . . . (6.23)

Replacing the effective coupling in (6.22) with its value α̃2
2? = iλ

√
λ2 + 2µ2,12 we obtain

the one-loop expansion of the correlation function in the following form

G
φ1φ
†
2
(u, v) = u+ iλ

√
λ2 + 2µ2 uΦ(1)(u, v) + . . . , (6.24)

that perfectly matches the same quantity computed via OPE with conformal data fixed by

the Bethe-Salpeter method (5.49).

7 Conclusion and discussion

This paper represents an attempt of a deeper understanding of physical properties and

analytic structure of the four-dimensional, three-coupling chiral CFT — the χCFT13 —

proposed by Ö. Gürdŏgan and one of the authors in [18] as a double scaling limit of γ-

deformed N = 4 SYMtheory, combining the weak coupling with the strong imaginary

γ-twist. We study here two aspects of this χCFT with three effective couplings, given

by the Lagrangian (2.2): i) the explicit description of the Feynman graph content of the

perturbative expansion, partially uncovering their integrability properties; ii) the exact

computation, via conformal symmetry, of two four-point correlation functions of shortest

protected scalar operators of the theory.

As concerns the planar Feynman graphs content of the theory, we found here the com-

plete description of possible Feynman graphs in the “bulk” — inside a generic big Feynman

graph, far from its boundaries defined by a particular studied physical quantity. These

graphs can be dubbed as “dynamical fishnet”, since, unlike the usual regular fishnet of the

bi-scalar model (2.6) they have a certain dynamics (summation over many of such graphs)

preserving at the same time a kind of irregular fishnet structure shown on figures 2, 3.

12This choice is coherent with the sign convention used in section 5.3.
13The name χCFT was suggested in [19].
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Interestingly, this bulk structure is neatly realized as Feynman graphs describing arbitrary

single-trace correlation functions of all elementary fields, as shown on figures 4, 5. It would

be very interesting to find the realisation of the Yangian symmetry of these correlators, and

of the related planar amplitudes (with disc topology), generalizing the results of [25, 26]

for the bi-scalar CFT. It would be the neatest demonstration of the integrability of the full

model. In section 2 we demonstrate such integrability in the two-coupling reduction of the

full χCFT, having a much simpler fishnet structure (combination of regular “brick wall”

graphs with Yukawa vertices and regular square lattice fishnets). A considerably more

involved analysis of the integrability of the full dynamical fishnet of χCFT, in particular,

via the Yangian symmetry of single-trace correlators, is underway. We believe that it will

be another important step to the understanding of integrability of the mother theory —

the N = 4 SYM. It is worth noticing here that γ-deformation represents a rather mild,

“topological” modification of the planar graphs of original N = 4 SYM, altering only the

boundaries of these graphs, and not the bulk.

In the second part of our paper, we managed to compute two non-trivial four point

correlation functions of elementary fields of the full three coupling χCFT, generalizing

the bi-scalar fishnet CFT results of [12, 24]. As in these papers, we employed the Bethe-

Salpeter method and the conformal symmetry to do the computations, but the procedure is

more complicated and the corresponding analytic structures, both in coordinate and in the

coupling spaces, are considerably richer, due to a more “dynamical” nature of the involved

Feynman graphs. A new phenomenon presented in the correlators of the full theory is the

non-perturbative behavior of certain individual OPE data — anomalous dimensions and

structure constants of exchange operators, in the weak coupling limit. But the perturbative

behavior of the four point correlator is restored in the sum over all OPE terms. The

equations on the anomalous dimensions, obtained from the pole structure of integrands in

spectral decomposition of these correlators, appear to have a few interesting singularities

in the coupling space, whose physical significance for the theory is left to understand. We

also demonstrate the relevance of the double-trace terms for the correct Feynman graph

interpretation of our results obtained via Bethe-Salpeter conformally symmetric procedure.

To get a further insight to these intereting chiral CFTs, we have to compute more

complicated correlation functions, involving the exchanged operators of higher R-charges,

such as trφL1 , or even more complicated multi-magnon operators. For the moment, only

the exact anomalous dimensions of L = 3 case of such operators and of some related

operators with the same R-charge have been computed for bi-scalar fishnet CFT in [33]14

via the double-scaling limit of the QSC equations. Similar results on L = 4, 5 and magnon

operators will be reported in [23]. Not much is yet done in this direction for the full χCFT,

apart from the ABA approach of [19] to long operators L� 1 and the one-loop study of [30],

as well as the results of the current paper on the shortest exchange operators. As concerns

the study of the structure constants, the first all-loop results for multi-magnon operators in

bi-scalar fishnet CFT have been obtained in the very recent paper [54]. The generalization

14In the sense that the exact Baxter equation, together with its quantisation condition was obtained and

studied perturbatively, to many loops, and numerically, to a veryally arbitrary precision.
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to four-point functions and to more complicated operators, and to the full χCFT, will

necessitate a considerable new insight into integrability properties of these models.

The generalization of bi-scalar fishnet CFT to any dimension D [21] poses a natural

question whether the D-dimensional generalization of the full 3-coupling χCFT exists. A

related question: can we generalize the Basso-Dixon type fishnet integrals — the four-point

single-trace correlators of scalar fields in bi-scalar CFT, explicitly computed in D = 4 [55]

and D = 2 [56], to the case of dynamical fishnets of χCFT?

It would be also interesting to understand the behavior of large Feynman graphs in

the full χCFT, in-line with the early results of [20] and the recent observations of [57]

for the fishnet reduction of the χCFT. In particular, if the σ-model interpretation of the

latter paper can be generalized to the full χCFT, it could be a big step in the explicit

construction of the AdS dual of this chiral CFT, if such one exists at all after the double

scaling limit of γ-deformed N = 4 SYM theory.

As a final comment: it would be interesting to find a realisation of these non-unitary

theories in physical systems, if not in the fundamental quantum field theory (at least as

an effective theory) than my be for certain statistical-mechanical and, presumably non-

equilibrium, condensed matter models. The beautiful mathematical structures behind the

χCFT promises more of such applications in the future.
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A Notation and conventions

In this paper, the metric tensor of the four dimensional Euclidean space is taken to be

gµν = δµν = diag( 1, 1, 1, 1 ) , (A.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. The massless scalar propagators are

defined in configuration and momentum space as follows

1

(x2
12)α

=
1

4απD/2
Γ (2− α)

Γ (α)

∫
dDk

eik·x12

(k2)D/2−α
, (A.2)

and the same for the fermionic propagators

/x12

(x2
12)α+1/2

=
−i

4απD/2
Γ
(

5
2 − α

)
Γ
(

1
2 + α

) ∫ dDk
eik·x12/k

(k2)D/2−α+1/2
, (A.3)
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where /x stands for the position x contracted with the spin structure matrix, and the same

for /k. The positions satisfies the following identity

xij · xkl =
1

2
(x2
il + x2

jk − x2
ik − x2

jl) . (A.4)

We can represent the four-dimensional gamma-matrices to have the off-block diagonal

form

γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, (A.5)

by introducing the 2× 2 Euclidean σ matrices

σµ = (−i~σ, I2×2) and σ̄µ = (i~σ, I2×2) , (A.6)

where ~σ are the Pauli matrices. We use the standard convention for raising/lowering of

two-component spinor indices α, α̇

ψα = εαβψ
β , ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄

β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ , (A.7)

where we introduced the tensors ε as

εαβ = εα̇β̇ = iσ2 , εαβ = εα̇β̇ = −iσ2 , (A.8)

and the following relations hold

(σ̄µ)α̇α = εα̇β̇εαβσµ
β̇β
, εα̇β̇εβ̇γ̇ = δα̇γ̇ εαβεβγ = δαγ . (A.9)

The σ matrices satisfy

σ̄µσν + σ̄νσµ = 2δµνI2×2 and σµσ̄ν + σν σ̄µ = 2δµνI2×2 , (A.10)

and the trace identities are

tr(odd number of σ’s) = 0

tr(σµσ̄ν) = tr(σ̄µσν) = 2δµν

tr (σµσρσησν) = 2 (δµρδην − δµηδρν + δµνδρη − εµρηη)
tr (σµσρσησν) = 2 (δµρδην − δµηδρν + δµνδρη + εµρηη) .

(A.11)

B The γ-deformed N = 4 SYM theory

The Lagrangian of γ-deformed N = 4 SYM reads (see e.g. [36])

L = NcTr

[
−1

4
FµνF

µν − 1

2
Dµφ†iDµφ

i + iψ̄α̇ AD
α̇αψAα

]
+ Lint , (B.1)

where i = 1, 2, 3 A = 1, 2, 3, 4, Dα̇α = Dµ(σ̄µ)α̇α and

Lint = Ncg Tr

[
g

4
{φ†i , φ

i}{φ†j , φ
j} − g e−iεijkγkφ†iφ

†
jφ
iφj

− e−
i
2
γ−j ψ̄jφ

jψ̄4 + e+ i
2
γ−j ψ̄4φ

jψ̄j + iεijke
i
2
εjkmγ

+
mψkφiψj

− e+ i
2
γ−j ψ4φ

†
jψj + e−

i
2
γ−j ψjφ

†
jψ4 + iεijke

i
2
εjkmγ

+
mψ̄kφ

†
i ψ̄j

]
.

(B.2)
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φ1 φ2 φ3 ψ1 ψ2 ψ3

Q1 +1 0 0 +1
2 −1

2 −1
2

Q2 0 +1 0 −1
2 +1

2 −1
2

Q3 0 0 +1 −1
2 −1

2 +1
2

Table 4. Charges of scalar and fermionic fields under the Cartan charges of R-symmetry SU(4).

These charges generate the symmetry group U(1) ⊗ U(1) ⊗ U(1) left over after the breaking of

R-symmetry by twisting.

where the summation is assumed w.r.t. doubly and triply repeating indices. We suppress

the Lorentz indices of fermions, assuming the contractions ψαi ψj,α and ψ̄i,α̇ψ̄
α̇
j . We also use

the notations

γ±1 = −γ3 ± γ2

2
, γ±2 = −γ1 ± γ3

2
, γ±3 = −γ2 ± γ1

2
. (B.3)

The parameters of the γ-deformation qj = e−
i
2
γj j = 1, 2, 3 are related to the Cartan

subalgebra u(1)3 ⊂ su(4) ∼= so(6) and the related field charges are represented in table 4.

C The uniqueness relations

We present here some useful formulas for integrals of the star-type, namely three propa-

gators of various types linked in one integration point. Under the condition of conformal

invariance, the integrals considered below can be reduced to the computation of simple

convolutions.

If the three propagator are scalar, the well-known formula (star-triangle relation) [58,

59] reads∫
d4y

(x1 − y)2α(x3 − y)2β(x2 − y)2γ
= π2 Γ(α′)Γ(β′)Γ(γ′)

Γ(α)Γ(β)Γ(γ)

1

(x2
13)γ′(x2

32)α′(x2
21)β′

, (C.1)

where a′ = 2 − a, and the scale-invariance condition α + β + γ = 4 should be fulfilled.

Another well-known identity is the star-triangle relation for Yukawa-like vertices, involving

two propagators of spin 1
2 :∫

d4y(x1−y)µ(σ̄µσν)α̇α(y−x2)ν

((x1−y)2)α((x3−y)2)β((x2−y)2)γ
=π2 Γ(1+α′)Γ(β′)Γ(1+γ′)

Γ(α)Γ(β)Γ(γ)

xµ13(σ̄µσν)α̇αxν32

(x2
13)1+γ′(x2

32)1+α′(x2
21)β′

,

(C.2)

under the condition α+ β + γ = 5, and being.

Such formulas are actually particular reductions of a more general one derived in [50].

This generalization involves two propagators in the representation of traceless symmetric

tensors of integer rank S, namely

GS(x− y) =
[nµ(x− y)µ]S

(x− y)2α
with nµ n

µ = 0 .
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Remarkably, the null vector nµ in 4 dimensions can be realized in terms of Pauli matrices

and two 2-spinors as nµ = λσµλ̃ or nµ = η̃ σµη. In such a context two S-tensor propagators

can be contracted to form a tensorial loop as follows:

Gα,S(x1 − x2) ∗Gγ,S(x2 − x3) =
(xµ12Aµν x

ν
23)S

(x12)2α(x23)2γ
where Aµν ≡ (λσµσ̄νη) .

Under the condition α+ β + γ = 4 + S we can write∫
d4y((x1−y)µAµν(y−x2)ν)S

[(x1−y)2]α[(x3−y)2]β [(x2−y)2]γ
=π2 Γ(S+α′)Γ(β′)Γ(S+γ′)

Γ(α)Γ(β)Γ(γ)

(xµ13Aµνx
ν
32)S

(x2
13)S+γ′(x2

32)S+α′(x2
21)β′

,

(C.3)

which for S = 0 reduces to (C.1) and for S = 1 is equivalent to (C.2). In the same formalism

we can encode the tensor structure of (3.6), that is
[
nµ

(
xµ10

x2
10
− xµ20

x2
20

)]S
in the expression

[
(λσµσ̄νσρλ̃)xµ10x

ν
12x

ρ
20

x2
10x

2
20

]S
,

allowing the application of formula (C.3) to the direct computation of (4.14).

D Eigenvalue of the fermionic graph-building operator Ĥt

In this section, we compute the relevant part of the fermionic eigenvalue Ĥ(n)
F defined

in (5.15) which is involved in the computation of the four-point function G
φ1φ
†
2

(5.1).

The eigenfunction of the fermionic operator is determined, as usual, by the conformal

representation of external fields, thus it corresponds to (3.5). As shown in section 5.2, the

action of the sub-kernels Ĥt, Ĥr and Ĥb transforms the conformal triangle to a new one,

adding a factor /x/x2, with chirality depending on the number n of sub-kernels we apply.

Moreover, since the spectrum of Ĥb is the same as of the bosonic operator (5.26) and the

spectrum of Ĥr is expressed through the one for Ĥt (5.24), the latter is the only operator

we have to study.

The goal of this appendix is to compute the eigenvalue ht∆,S defined by the first

equation of (5.22) at any S. First we send x0 → ∞ in order to simplify the spin struc-

tures in both sides of the equation. In this limit the state (3.5) is Φ∆,S,x0(x1, x2) →
(n · x12)S/(x2

12)1−p where p = (∆− S)/2. Using the integral representation given in (5.23)

and contracting both sides of the equation with (ση)αα̇x
η
12 we obtain

ht∆,S = −
c3
F

2

∫
d4y1d

4y2
tr(σησ̄µσν σ̄ρ)x

η
12(x2 − y2)µyν12(y1 − x1)ρ

(x2 − y2)4(y2
12)3−p(y1 − x1)4

(n · y12)S , (D.1)

where we used (A.10) to compute the trace of two σ’s and we set x2
12 = (n · x12) = 1 for

simplicity. The dependence on y12 in (D.1) can be written as follows

yν12(n · y12)S

(y2
12)3−p =

1

2(p− 2)

[
∂νy1

(n · y12)S

(y2
12)2−p − S

nν(n · y12)S−1

(y2
12)2−p

]
. (D.2)
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Using the Fourier transform (A.2), one can rewrite the combinations of propagators ap-

pearing in (D.2) in the following way

(n · y12)S

(y2
12)2−∆−S

2

=
(−1)S

42−∆
2 π2

Γ
(

∆+S
2

)
Γ
(
2− ∆−S

2

) (n · ∂y1)S
∫
d4k

eik·y12

(k2)
∆+S

2

(n · y12)S−1

(y2
12)2−∆−S

2

=
(−1)S−1

4
5−∆

2 π2

Γ
(

∆+S
2 − 1

)
Γ
(
2− ∆−S

2

) (n · ∂y1)S−1

∫
d4k

eik·y12

(k2)
∆+S

2
−1

.

(D.3)

Substituting (D.2) together with (D.3) into (D.1) and transforming the integrals in mo-

mentum space by means of (A.3), one can compute the trivial integrations obtaining

ht∆,S = c3
F

(−i)S+1π2

42−∆
2

[
Γ
(

∆+S
2

)
Γ
(
3− ∆−S

2

) ∫ d4keik·x21
tr(σησ̄µσν σ̄ρ)x

η
12k

µkνkρ

(k2)2+ ∆+S
2

(n · k)S

−S
2

Γ
(

∆+S
2 − 1

)
Γ
(
3− ∆−S

2

) ∫ d4keik·x21
tr(σησ̄µσν σ̄ρ)x

η
12k

µnνkρ

(k2)1+ ∆+S
2

(n · k)S−1

]
.

(D.4)

Let’s focus on the integral in the first line of (D.4). Using the trace of four σ-matrices

given in (A.11) and transforming the integral back to position space by means of (A.2),

we have∫
d4keik·x21

tr(σησ̄µσν σ̄ρ)x
η
12k

µkνkρ

(k2)2+ ∆+S
2

(n · k)S

= i−S−14
3
2
−∆+S

2 π2 Γ
(
1− ∆+S

2

)
Γ
(
1 + ∆+S

2

) (x12 · ∂y2)(n · ∂y2)S
1

(x2
12)1−∆+S

2

.

(D.5)

Repeating the same procedure for the second line of (D.4) we obtain∫
d4keik·x21

tr(σησ̄µσν σ̄ρ)x
η
12k

µnνkρ

(k2)1+ ∆+S
2

(n · k)S−1 =
42−∆+S

2 π2

iS+1

[
Γ
(
1− ∆+S

2

)
Γ
(
1 + ∆+S

2

)
× (x12 · ∂y2)(n · ∂y2)S

1

(x2
12)1−∆+S

2

+ 2
Γ
(
2− ∆+S

2

)
Γ
(

∆+S
2

) (n · ∂y2)S−1 n · x12

(x2
12)2−∆+S

2

]
.

(D.6)

Finally, plugging the integrals (D.5) and (D.6) into (D.4) and performing the derivatives

we arrive at the following expression for the eigenvalue

ht∆,S = 4π4c3
F

(∆− S)2 + S(S + 2)

(∆ + S)(∆− S − 4)(∆− S − 2)(∆ + S − 2)
, (D.7)

where we set x2
12 = (n · x12) = 1. Notice that setting S = 0 we find (5.27), as expected.

E Cancellation of the spurious poles

In order to confirm the validity of equation (3.27) we should show that the physical poles

given by the zeroes of the spectral equation (3.25) are the only contributions to the four-

point correlators under study. This fact, well known for the bi-scalar reduction of our
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theory (see appendix B in [24]), needs a proof for the full χCFT. It appears that additional

possible contributions could come from the extra poles in g∆,S(u, v) and the measure factor

1/c2(∆, S). In this appendix we will show that these contributions cancel each other thanks

to a symmetry relation fulfilled by the eigenvalues hi∆,S of the Bethe-Salpeter kernels.

The conformal block g∆,S(u, v) has simple poles at ∆S−n = S + 3 − n (with n =

1, 2, . . . , S), namely 2iνn = S + 1 − n. Its residue at the pole ν = νn is given by

rn gS+3,S−n(u, v) where (see for example appendix B in [60]):

rn = (−1)n
inΓ2

(
1
2 (n−∆1 + ∆2 + 1)

)
2Γ(n+ 1)2Γ2

(
1
2 (−n−∆1 + ∆2 + 1)

) . (E.1)

This results in the following extra contribution to (3.27):

RgS,m =

(
rm

c2(∆S−m,S)

hb∆S−m,S

1−χbhb∆S−m,S−χfhf∆S−m,S

)
gS+3,S−m(u,v) , 1≤n≤S <∞ .

(E.2)

In addition to that, the measure factor 1/c2(∆, S) develops poles at ∆ = S + 3 + k,

k = 0, 1, 2, . . . . The corresponding contribution can be expressed as

Rc2S,k = −
(

rk
c2(∆S , S + k)

hb∆S+k,S

1− χbhb∆S+k,S − χfhf ∆S+k,S

)
gS+3+k,S(u, v) , 0 ≤ S, k <∞ .

(E.3)

The overall contribution of these terms is the sum over all non-negative integers S, k of the

generic term

Rc2S,k +RgS+k,k = −
(

rk
c2(∆S , S + k)

gS+3+k,S(u, v)

)
× (E.4)

×
[

hb∆S+k,S

1− χbhb∆S+k,S − χfhf ∆S+k,S
−

hb∆S ,S+k

1− χbhb∆S ,S+k − χfhf ∆S ,S+k

]
.

A possible vanishing condition for the full contribution is then

rk[hb∆S+k,S(1− χbhb∆S+k,S − χfhf ∆S+k,S)− hb∆S+k,S(1− χbhb∆S+k,S − χfhf ∆S+k,S)] = 0

(E.5)

for any k ∈ N. We can actually verify in both sectors under study that the following set

of stronger conditions is fulfilled

rk(hb 3+S+k,S − hb 3+S,S+k) = 0 , k = 0, 1, 2, . . . (E.6)

rk(hf 3+S+k,S − hf 3+S,S+k) = 0 , k = 0, 1, 2, . . . . (E.7)

It is easy to check that plugging (E.6) into (E.5), one is left with the condition (E.7), which

means that (E.6) together with (E.7) are a sufficient condition for (E.5). To prove these

equations hold, we notice first of all that at ∆1 = ∆2 = 1 (E.1) vanishes at odd n, so it

would be sufficient to prove (E.6), (E.7) at even k ∈ 2N. Moreover, equation (E.6) has

been checked in [24], where it was enough to state the cancelation of spurious poles in

Tr[φ2
1] sector. Let us verify the second condition (E.7) at even integer k. Starting from the

sector Tr[φ2
1] it is equivalent to

h̃f 3+S+k,S − h̃f 3+S,S+k = 0 , (E.8)
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where we recalled the definition of h̃f ∆,S (5.31). Equation (E.8) actually coincides with

the vanishing condition for spurious contribution in the “one-magnon” Tr[φ2
1φ2] sector of

bi-scalar theory, and is verified in [24]. We can finally check (E.7) for the sector Tr[φ1φ
†
2].

Recalling that in this case

hF∆,S = −
c4
F [(∆− 2)2 + S(S + 2)]hB∆,S

2

2c6
B − 8c3

Bc
2
Fπ

2[(∆− 2)2 + S(S + 2)]ξjξj+hB∆,S
, (E.9)

and that hB3+S+k,S = hB3+S,S+k, as we already know from [24], we are left to verify that

[(∆− 2)2 + S(S + 2)]∆=3+s+k, S=s = [(∆− 2)2 + S(S + 2)]∆=3+s, S=s+k , (E.10)

which is trivially true for any integer k.

F Operator mixing and logarithmic multiplet

In both sectors Tr[φ2
1] and Tr[φ1φ

†
2] of our theory the exchanged physical operators in the

OPE s-channel of the 4-point correlators under analysis present mixing. Namely, due to

the wide matter content of the theory, the renormalized operators are not just rescaled

and normal-ordered monomials of elementary fields and derivatives, but linear coupling-

dependant combination of several such terms which share the same symmetries. Concretely,

in our theory we deal with single trace primary operators as

O1(x) = tr[χi1χi2 · · ·χiL ](x) ,

made up of elementary fields of the theory χik(x) eventually dressed by tensor structures

and derivatives. Given the quantum numbers of such a term O1, that is Cartan’s U(1)⊗3

charge, twist and tensor rank S, it is usually possible to write a few other conformal

primaries with the same numbers, say {O2, O3 . . . }. This allows in general some of the two-

point functions 〈Oi(x)Oj(0)†〉 to not vanish at i 6= j, that is to have transitions Oi → Oj .
We define the anomalous dimension matrix γij as

−µ d

dµ
ZOi = γij ZOj , (F.1)

being ZOi the renormalization of operator Oi and µ the scale. In absence of transitions,

namely γij = δijγi, mixing does not happen and each operator Oi has anomalous dimension

γi. Otherwise, one has to bring the mixing matrix γij into diagonal form via a rotation

over the basis of local primaries {O1, O2 . . . }. The operators of the new basis are linear

combinations of the kind

O′i(x) = c1,i(ξ)O1 + c2,i(ξ)O2 + . . . (F.2)

and they do not mix among each other. The anomalous dimension of O′i(x) is the corre-

sponding eigenvalue of the matrix, namely γ′i. The existence of a basis of eigenvectors for

γij-matrix is ensured by its hermiticity in unitary theories. The absence of invariance under
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hermitian conjugation of (2.2) prevent to come to similar conclusions for χCFT theory. In

particular, performing the planar limit can lead to “one-way” transitions

〈Oi(x)Oj(0)†〉 6= 0 〈Oi(x)Oj(0)†〉 = 0 , (F.3)

and the correspondent mixing matrix can be only brought into Jordan canonical form, e.g.

for the mixing of four primaries:

γij −→ (SγS−1)ij =


0 1 0 0

0 0 0 0

0 0 γ′3 0

0 0 0 γ′4

 . (F.4)

The matrix (F.4) contains a 2 × 2 Jordan block, together with two diagonal terms γ′3
and γ′4, corresponding to two renormalized operators with such anomalous dimensions.

The physical interpretation of Jordan blocks leads to the formulation of logarithmic CFT

(see [31, 61]). In the example (F.4) the block corresponds to a rank-2 logarithmic multi-

plet. This means that the corresponding operators of the new basis, O′1,O′2 show 2-point

functions of the kind

〈O′1(x)O
′†
1 (0)〉 =

k ln(µ2x2)

(x)2∆0
〈O′1(x)O2

′†(0)〉 =
k

(x)2∆0

〈O′2(x)O
′†
1 (0)〉 =

k

(x)2∆0
〈O′2(x)O

′†
2 (0)〉 = 0 ,

where ∆0 is the bare dimension of Oi operators, and µ the energy scale. This phenomenon,

the presence of log-multiplets in χCFT has first be noticed by J.Caetano [32] for its bi-scalar

reduction (2.6) and some examples of its occurance in the context of Fishnet CFT have been

presented in [33]. Despite such logarithmic operators appear in our theory, we are mostly

interested in selecting the non-logarithmic ones: indeed these are the only exchanged in the

OPE of the correlators under study, as the solutions of spectral equations (4.26) and (5.32)

correspond to non-protected operators ∆(ξ) 6= ∆0.

F.1 tr[φ2
1] sector

This first sector is characterized by the Cartan R-charge of two φ1 fields (2, 0, 0). The

equation (4.26) shows physical solutions for every even twist. In particular there is only

one solution at twist-2 (4.29), and two at twist-4 (4.30) and higher (4.31) both for spin

S = 0 and S > 0. The twist-2 solution is easily interpreted as the scaling dimension of

tr[φ1(n · ∂)Sφ1] + permutations S = 0, 2, . . . , (F.5)

indeed for any S there is no other twist-2 conformal primary with charge (2, 0, 0). On

the other hand for ∆0 − S = t ≥ 4 we can list several primaries with the right set of

Cartan’s charges. Let us concentrate on the scalar case S = 0 of twist four; we find 9

scalar conformal primaries which have the right set of charges

O1 = tr[φ3
1φ
†
1] Oj = tr[φ2

1φjφ
†
j ] O2+j = tr[φ2

1φ
†
jφj ] O4+j = tr[φ1φjφ1φ

†
j ]

O8 = tr[ψ̄2ψ̄3φ1] O9 = tr[ψ̄3ψ̄2φ1], j = 2, 3.
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As also the structure of (4.1) shows, this sector is fully described in terms of the χ0CFT,

thus the mixing transitions are realized by the vertices of (2.4). At any coupling O1 shows

no planar transitions, and we deal with a set of 8 conformal primaries which at non-zero

couplings ξ2, ξ3 mix among themselves. This fact is apparently in contrast with the presence

of only two twist-4 exchanged operators in the OPE expansion of section 4.5, and can be

explained with the arising of logarithmic multiplets of operators with ∆ = ∆0 = 4, not

being solutions of (4.26). Indeed, for instance, the following planar transitions

O4+j −→ O2,O5 O8 −→ O4,O3, (F.6)

can happen respectively starting from order ξ2 and ξ3, while they lack the hermitian

conjugate due to chirality of (2.4). One can actually check that there is no conjugate

transition to (F.6) at any order. This suggest that matrix γij won’t be diagonalizable and

presents Jordan blocks in its canonical form, i.e. logarithmic operators.

F.2 tr[φ1φ
†
2] sector

In this sector the Cartan’s U(1)⊗3 charge is the difference between those of φ1 and φ2,

that is (1,−1, 0). The solutions of equation (5.32) are three in the scalar case S = 0, one

of twist-2 (5.38) and two of twist-4 (5.39). Interestingly, for tensors S > 0 there is an

additional solution of twist-2 (5.35). The explanation of such difference is that there is

a unique way to realize a scalar ∆0 = 2 operator with (1,−1, 0) charge, that is tr[φ1φ
†
2],

while for higher rank tensors S > 0 two operators can mix up. Starting from S = 1 we find

that in addition to Tr[φ1(n · ∂)φ†2], the operator Tr[ψ1(n · σ)ψ̄2] = −Tr[ψ̄2(n · σ̄)ψ1] satisfy

the constraint of quantum numbers and behave as an SO(4) vector. Therefore operator

mixing happens among two conformal primaries

O1 = tr[φ1(n · ∂)Sφ†2] and O2 = tr[ψ1(n · σ)(n · ∂)S−1ψ̄2] , (F.7)

at any S ∈ 2N+. Indeed, being interested in symmetric traceless tensors (type I [44]), no

other bilinear covariant made of fermions can enter the game at higher S. The allowed

planar transitions are:

O1 −→ O2 O2 −→ O1 , (F.8)

together with the “diagonal” terms 〈Oi(x)O†i (0)〉, for i = 1, 2. Dealing with single trace

operators made of two elementary fields the effect of chiral interaction is cancelled by

the trace cyclicity. The resulting transitions are symmetric and the anomalous dimension

matrix is diagonalizable. Recalling the couplings redefinition (5.33) and (5.37), its first

perturbative order ξ2 should coincide with:

γ′ij = (SγS−1)ij =

−
λ
2

[
λ− ζ√

S(S+1)

]
0

0 λ
2

[
λ+ ζ√

S(S+1)

]
 . (F.9)
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As a result the two physical operators exchanged in the OPE of 5 have the form

O′± = ±c1,S(µ, λ)O1 +

(
1

2
± c2,S(µ, λ)

)
O2 , (F.10)

and correspond to solutions (5.35).

At twist-4, there are already for the scalar case S = 0 several local operators satisfying

the constraints of bare dimension ∆0 = 4 and Cartan’s charge (1,−1, 0). We can compactly

list them

Oj = tr[φ1φ
†
2φjφ

†
j ] Oj+3 = tr[φ1φ

†
2φ
†
jφj ] Oj+6 = tr[φ†2φ1φjφ

†
j ] j = 1, 2, 3

O10 = tr[φ1φ3φ
†
2φ
†
3] O11 = tr[φ1φ

†
3φ
†
2φ3] O12 = tr[φ†2φ1φ

†
3φ3]

O13 = tr[ψ̄2ψ̄3φ
†
1] O14 = tr[ψ̄3ψ̄2φ

†
1] O15 = tr[ψ1ψ3φ1] O16 = tr[ψ3ψ1φ1] .

At non-zero couplings {ξ1, ξ2, ξ3} these 16 operators mix into linear combinations obtained

by the analysis of their transitons. As it happens in the first sector F.1, one can check

that the effect of chiral interaction breaks the hermiticity of γij matrix, preventing its

diagonalization. Its associated Jordan canonical form γ′ij will contain several log-multiplets

of various rank, together with two diagonal elements, the anomalous dimensions (5.39).
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