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A kinetic theory model describing physisorption and chemisorption of gas particles on a crystal
surface is introduced. A single kinetic equation is used to model gas and physisorbed particles
interacting with a crystal potential and colliding with phonons. The phonons are assumed to be
at equilibrium and the physisorbate/gas equation is coupled to similar kinetic equations describing
chemisorbed particles and crystal atoms on the surface. A kinetic entropy is introduced for the
coupled system and the H theorem is established. Using the Chapman-Enskog method with a fluid
scaling, the asymptotic structure of the adsorbate is investigated and fluid boundary conditions are
derived from the kinetic model.

I. INTRODUCTION

The interaction of gases with solid surfaces is of
paramount importance in science and engineering with
applications in hypersonic reentry [1–6], combustion [7],
ablation [8], condensation and evaporation [9–11], chem-
ical deposition [12], catalysis [13], or corrosion [14]. This
is a strong motivation for investigating kinetic models
of adsorption processes, at a scale intermediate between
molecular simulation [15–17] and fluid models [18–20],
as well as deriving fluid boundary conditions at reactive
surfaces by using the Chapman-Enskog method.
The interaction of gas particles with solid walls has

been the object of various studies in a kinetic framework.
Models assuming chemical equilibrium at the boundary
may be investigated by using Maxwell type boundary
conditions with boundary partial densities obtained from
equilibrium conditions, avoiding the complexities of gas
surface interaction. More refined models of gas-solid in-
terfaces involve kinetic equations for gas particles inter-
acting with a crystal potential and colliding with phonons
that describe the fluctuating part of the surface potential
[21–33]. These models have led to important advances in
the knowledge of condensation and evaporation, particle
trapping, phonon drag, surface homogenization, or scat-
tering kernels [21–33]. Only gas particles have been con-
sidered in such studies, in other words, only physisorp-
tion phenomena [21]. However, chemical bonds may also
be formed between particles and the surface and these
chemisorbed species have to be considered as other chem-

ical species compared to their parents gas phase. Such
chemisorbed species play a fundamental role in surface
chemistry, notably as active intermediate species in het-
erogeneous reaction mechanisms [1–14].
A kinetic theory model describing physisorption and

chemisorption of gas particles on a solid surface is pre-
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sented in this work. Such a kinetic model was not pre-
viously available to the best of the authors’ knowledge
and is an attempt to fill the gap between molecular dy-
namics [15–17] and macroscopic fluid models of reactive
surfaces [18–20]. A single monatomic gas interacting with
a monatomic crystal is considered, the situation of poly-
atomic gases or that of multicomponent mixtures with
heterogenous chemical reactions other than adsorption
laying beyond the scope of the present work.
A unique kinetic equation is used to describe gas par-

ticles and physisorbed particles interacting with the sur-
face. Using a single equation is natural since gas particles
contacting with a surface should continuously transform
into a layer of physisorbed particles. These particles in-
teract with a potential field generated by fixed crystal
particles and collide with phonons describing the fluctu-
ating part of the surface potential. A kinetic equation
for volume or surface phonons could also be introduced
[21, 34–36] but it is assumed in this work for the sake of
simplicity that phonons are at equilibrium [22, 24, 26, 27].
Using classical heterogeneous reaction formalism [18–

20], the adsorption surface reaction may be written in
the form

A + C(s) ⇄ A(s) + C(b), (1)

where A denotes the monatomic physisorbed/gas parti-
cle, A(s) the chemisorbed particle on the surface, C the
crystal atom, C(s) the crystal molecule on the surface
that is a free site, and C(b) the bulk crystal molecule, that
is, a crystal molecule bonded to a chemisorbed molecule.
New kinetic equations for the chemisorbed species A(s)
and the crystal surface species C(s) and C(b) are intro-
duced and coupled to the physisorbed/gas kinetic equa-
tion. The transition between physisorbed/gas particles
A and chemisorbed particles A(s) is described by surface
chemistry terms in the kinetic equations and it is as-
sumed that surface chemistry is slow in such a way that
the crystal surface essentially remains at physical equi-
librium [37]. A modified kinetic entropy is introduced for
the coupled system and the H theorem is established.
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A Chapman-Enskog type expansion is next investi-
gated with a fluid scaling of the kinetic equations. A
multiscale asymptotic analysis is performed and the fluid
Stefan velocity associated with adsorption is naturally
assumed to be small. The inner structure of the ph-
ysisorbate, the chemisorbate, and the free atom layer are
analyzed at zeroth order and closely related to interaction
potentials. The zeroth order species boundary conditions
are obtained and the Stefan gas flow issuing from the
adsorbate layer results from the physisorbed/gas parti-
cle production by adsorption/desorption of the chemisor-
bate. The dynamic boundary conditions associated with
the pressure tensor and the heat flux at the interface are
also addressed.
The inner structure of the physisorbate, the chemisor-

bate, and the free site layer are next analyzed at first
order. The linearized equations governing the perturbed
distribution functions are differential-integral equations
involving interaction potentials and phonon collision op-
erators that differ from traditional Knudsen layer equa-
tions as well as the corresponding boundary conditions.
The resulting first order surface species boundary con-
ditions also involve tangential diffusion—due to the in-
teraction with phonons—that is investigated in a molar
framework. The first order gas Stefan flow issuing from
the adsorbate finally involves a robin type boundary con-
dition with mixed derivatives.
The kinetic model is presented in Section II and the

asymptotic framework in Section III. Zeroth order ex-
pansions and mass boundary conditions are investigated
in Section IV, momentum and thermal boundary con-
ditions in Section V and first order expansions in Sec-
tion VI.

II. A KINETIC MODEL

The kinetic equations modeling gas adsorption on a
solid surface are presented in this section. These equa-
tions typically describe particles interacting with a po-
tential field and colliding with phonons [21, 22, 25]. The
chemisorbate equation as well as the kinetic description
of the crystal species appear to be new to the authors’
knowledge [37].

A. Kinetic equations for the adsorbate

We consider a single monatomic gas governed by the
Boltzmann equation [21, 22, 25]

∂tfp + cp ·∂xfp −
1

m p
∂xwp·∂cp

fp =

Jp,p(fp, fp) + Jp,ph(fp) + Cp, (2)

where ∂t stands for the time derivative operator, ∂x

the space derivative operator, fp(t,x, cp) the physisor-
bate/gas particle distribution function, cp the ph-

ysisorbed/gas particle velocity, m p the particle mass that
is the mass m A of atom A, wp the interaction potential
between fixed crystal particles and physisorbed/gas parti-
cles, ∂cp

the velocity derivative operator, Jp,p the gas-gas
collision operator, Jp,ph the gas-phonon collision opera-
tor, and Cp the chemistry source term. The solid surface
is assumed to be planar and located at z = 0 with the
spatial coordinates written x = (x, y, z)t and ez denotes
the base vector in the normal direction oriented towards
the gas.
The gas-gas collision operator Jp,p is in the traditional

form [38–41]

Jp,p(fp, f̃p) =
∫(
fp(c

′
p)fp(c̃

′
p)− fp(cp)fp(c̃p)

)
Wp,pdc̃p dc

′
pdc̃

′
p, (3)

where in a direct collision c̃p denotes the velocity of

the collision partner, c′p and c̃
′
p the velocities after colli-

sion, and Wp,p the transition probability for gas-gas col-
lisions. Only binary collisions are considered and the
transition probability Wp,p satisfies the reciprocity re-

lation Wp,p(cp, c̃p, c
′
p, c̃

′
p) = Wp,p(c

′
p, c̃

′
p, cp, c̃p) associ-

ated with microreversibility. The collision term Jp,p may
equivalently be written in terms of collision cross sections
[38–41].
The phonon collision operators will be investigated in

Section II E and the reactive operators in Section II F.
These collision operators Jp,ph and Cp both vanish far
from the surface as well as the potential wp in such a
way that letting z → ∞ in equation (2) yields the kinetic
equation in the gas phase

∂tfg + cp ·∂xfg = Jp,p(fg, fg), (4)

where fg(t,x, cp) denotes the gas particle distribution
function and the gas particle velocity cp may equivalently
be denoted by cg. The kinetic equation (4) is the stan-
dard Boltzmann equation for a single monatomic gas and
there is thus a single kinetic framework describing both
gas and physisorbed particles, the gas equation being re-
covered far from the surface.
Chemisorption involves the formation of a chemical

bond between the adsorbate and the adsorbent [17]. The
particles of the chemisorbate A(s) are localized on the
solid surface Σ and have to be considered as differ-
ent chemical species. The distribution function of the
chemisorbate is governed by the kinetic equation

∂tfc + cc ·∂xfc −
1

m c
∂xwc·∂cc

fc = Jc,ph(fc) + Cc, (5)

where fc(t,x, cc) denotes the chemisorbed particle dis-
tribution function, cc the particle velocity, wc the in-
teraction potential between fixed crystal particles and
chemisorbed particles, m c = mA the particle mass, Jc,ph

the chemisorbed particles/phonon collision term and Cc
the reactive source term. This equation is analogous to
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that used for the physisorbed species—with the physisor-
bate potential wp replaced by the chemisorbate potential
wc—with a similar physical interpretation. It is also in
the form derived by Bogoliubov and Bogoliubov [42] and
similar to kinetic equations describing lattice gases intro-
duced by Bogdanov et al. [25].

B. Kinetic equations for the surface layer

The distribution function for the free sites C(s) on the
surface Σ is assumed to be governed by the kinetic equa-
tion

∂tfs + cs ·∂xfs −
1

m s
∂xws·∂cs

fs = Js,ph(fs) + Cs, (6)

where fs(t,x, cs) denotes the free site particle distribu-
tion function, cs the particle velocity, ws the interaction
potential between fixed interior crystal particles (not on
the surface layer) and free site crystal surface particles,
m s the particle mass that is the mass m C of atom C,
Js,ph the crystal particle/phonon collision operator and
Cs the reactive source term. The phonon collision opera-
tors will be investigated in Section II E and the reactive
operators in Section II F. Equation (6) is naturally simi-
lar to the chemisorbate kinetic equation since for crystal
growth phenomena the chemisorbed layer is also a crystal
layer. Equation (6) is also in the general form derived by
Bogoliubov and Bogoliubov [42] as well as in the form
of a one-particle equation obtained form the BBGKY
hierarchy. The equilibrium distribution associated with
(6) is a Maxwellian distribution constrained by the crys-
tal potential ws in agreement with statistical physics at
equilibrium [43–46]. In other words, the free site parti-
cles are moving at velocity cs but trapped by the crys-
tal potential ws. In previous work, it was assumed that
the crystal species distributions remain Maxwellian [37]
but this simplifying assumption—valid at zeroth order—
is not anymore feasible at first order since surface dif-
fusion of chemisorbed species naturally involves surface
diffusion of free sites.
A similar kinetic equation may be written to describe

the distribution fb of the bulk species C(b) located on
the surface Σ in the form

∂tfb + cb ·∂xfb −
1

m b
∂xwb·∂cb

fb = Jb,ph(fb) + Cb,

(7)

where fb(t,x, cb) denotes the bulk particle—of the crys-
tal surface—distribution function, cb the particle veloc-
ity,wb = ws the interaction potential between fixed inner
crystal particles and crystal surface particles, m b = m C

the particle mass, Jb,ph the bulk crystal particle/phonon
collision operator and Cb the reactive source term. Essen-
tially macroscopic moments of this equation will be used,
in order notably to establish links with traditional fluid
boundary conditions. This equation is analogous to the
free site equation with a similar physical interpretation.

The phonon collision term may also be interpreted as an
overall relaxation operator encompassing phenomena of
different origins.
The surface layer Σ is the last layer of atoms of the

crystal located around z = 0 and constituted by free
site particles C(s) as well as bulk crystal particles C(b).
The unperturbed or standard surface layer distribution
function f e

σ is solution of the kinetic equation

∂tf
e
σ + cσ ·∂xf

e
σ −

1

m σ
∂xwσ ·∂cσ

f e
σ = Jσ,ph(f

e
σ), (8)

where wσ = ws denotes the interaction potential be-
tween fixed interior crystal particles and crystal surface
particles, m σ = m C, and Js,ph = Jσ,ph the crystal parti-
cle/phonon collision operator. The standard surface dis-
tribution function f e

σ may be seen as that of a physically
unperturbed crystal surface. The probability 1−θ to find
an open site C(s) on the surface layer Σ is then defined
as the ratio

1− θ =
fs
f e
σ

, (9)

so that fs(cs) =
(
1−θ(cs)

)
f e
σ(cs). The quantity θ is usu-

ally termed the coverage and represents the probability
that a crystal site is occupied by a particle A(s) in the
monolayer chemisorbate whereas 1− θ is the probability
that a crystal site is free. A kinetic equation governing
the probability 1 − θ is easily obtained from (6) and (8)
but will not be needed in the following. The probability
of free sites 1−θ is obtained here as a kinetic variable and
will be shown to only depend on time t and tangential
coordinate x at zeroth order as was assumed in previous
work [37].

C. Summed potentials

wp
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FIG. 1. Typical surface interaction potentials as function of
the distance from surface in arbitrary units; ws = wσ;

wp; wc.
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The interaction potentials—summed over fixed crys-
tal particles—wp, wc, and ws = wb = wσ are assumed
to only depend on the normal coordinate z in order to
simplify the algebra involved in the solution of the ki-
netic equations. These potentials are written in the form
wp = wp(z/δ), wc = wc(z/δ), and wσ = wσ(z/δ),
where δ is a characteristic range of the surface potential
also characteristic of the range of gas-phonons interac-
tion and ζ = z/δ is the corresponding rescaled normal
coordinate. The potentials are such that

lim
ζ→0

wp(ζ) = +∞, lim
ζ→+∞

wp(ζ) = 0, (10)

lim
ζ→ζ−

c

wc(ζ) = +∞, lim
ζ→ζ+

c

wc(ζ) = +∞, (11)

lim
ζ→ζ−

σ

ws(ζ) = +∞, lim
ζ→ζ+

σ

ws(ζ) = +∞, (12)

where chemisorbed particles are localized over (ζ−c , ζ
+
c )

and the crystal surface layer over (ζ−σ , ζ
+
σ ) with typically

ζ−σ < ζ−c = 0 < ζ+σ < ζ+c . These interaction potentials
usually involve an attractive zone and a repulsing zone
as Lennard-Jones potentials integrated over all crystal
particles as illustrated in Figure 1.

0 1

ζ

ξ

wp wc

FIG. 2. Contour plots of a potential energy surface as func-
tion of the distance from surface ζ and the reaction coordinate
ξ in arbitrary units. The slice ξ = 0 corresponds to the ph-
ysisorbed/gas particles potential wp and the slice ξ = 1 to
the chemisorbed particles potential wc.

The potentials wp and wc may also be interpreted
as slices wp = W(0, ζ) and wc = W(1, ζ) of a poten-
tial energy surface W(ξ, ζ) where ξ denotes a reaction
coordinate. The potential wp then corresponds to the
gas/physisorbed slice ξ = 0 and wc to the chemisorbed
slice ξ = 1 as illustrated in Figure 2.
The summed potentials being functions of z, periodic

potential variations parallel to Σ are not taken into ac-
count for surface species neither lateral interactions be-
tween chemisorbed species. The surface potential wp,
wc, and wσ are also assumed to be independent of the
coverage θ. These simplifications are notably feasible

when the chemisorbed species are of relatively small size
and the coverage of the surface θ is low. In the same
vein, dense gas effects between physisorbed species are
not considered in the kinetic model as well as sublima-
tion of C atoms in the physisorbate.

D. Maxwellians

We denote by m i the mass of the ith species, ei the
formation energy of the ith species and ni the number
of particles per unit volume of the ith species. The wall
Maxwellian distribution of the ith species is given by

mi(ci) =
(

m i

2πkBTw

)3/2
exp
(
−

m i|ci|
2

2kBTw

)
, (13)

where Tw denotes the wall temperature, kB the Boltz-
mann constant, and i ∈ {p, c, s, b, σ}. It will later be
established that the equilibrium distributions f e

i , i ∈
{p, c, s, b, σ}, are Maxwellian f e

i = nimi in agreement
with statistical physics [35, 36, 43–46].
We introduce for convenience the modified Maxwellian

distributions

mi = mi exp(−wi/kBTw), i ∈ {p, c, s, b, σ}, (14)

that may be written

mi =
(

m i

2πkBTw

)3/2
exp
(
−

m i|ci|
2

2kBTw
−

wi

kBTw

)
. (15)

These modified Maxwellian distributions will play an im-
portant role in the analysis of the adsorbate layer. With
the inclusion of the interaction potential wi in the distri-
bution mi, i ∈ {p, c, s, b, σ}, it is indeed obtained that

ci·∂xmi −
1

m i
∂xwi·∂ci

mi = 0, (16)

as well as

∂tmi = 0, Ji,ph(mi) = 0. (17)

The relations ∂tmi = 0 and ci·∂xmi−
1

m i

∂xwi·∂ci
mi = 0

are direct consequences of (15) keeping in mind that the
system is isothermal whereas the relation Ji,ph(mi) = 0
will be established in the next section. The modified
Maxwellian distributions mi, i ∈ {p, c, s, b, σ}, thus ap-
pear as natural solutions of isothermal thin layer kinetic
equations in a potential field with phonon interactions
or equivalently as natural steady solutions of the corre-
sponding kinetic equations. Decomposing between par-
allel and normal directions with respect to Σ, we may
further write

∂ mi = 0, ciz ∂zmi −
1

m i
∂zwi ∂c

iz
mi = 0, (18)

where ∂ denotes the tangential spatial derivative oper-
ator, ciz the normal velocity of the ith species, ∂z the
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normal spatial derivative, and ∂c
iz

the differential oper-
ator with respect to ciz . The modified distributions will
also play a key role in the expression of the reactive col-
lision term and in the kinetic entropy as investigated in
the following sections.
Considering further the standard or unperturbed sur-

face layer distribution f e
σ, we have

f e
σ = nσmσ, (19)

where nσ denotes the—standard—number density of the
surface layer and mσ the Maxellian distribution (13). The
number density nσ is given by

nσ = nσ exp
(
−

wσ

kBTw

)
, (20)

where nσ is a constant characteristic of the crystal and its

orientation. The distribution f e
σ defined by the relations

(19)(20) is indeed an exact solution of (8) since we have
f e
σ = nσmσ. We will later recover (20) when investigating
the structure of the adsorbate at zeroth order. One may
further define

ñσ =

∫
nσ dz, (21)

that represents the number of surface atoms per unit sur-
face and is also characteristic of the surface. A similar
notation is also introduced for all surface species

ni =

∫
fi dci, ñi =

∫
ni dz, i ∈ {c, s, b}, (22)

where ñi represents the number of particules of species i
per unit surface.

E. Phonon collision operators

The collision term Ji,ph between particles of species
i ∈ {p, c, s, b, σ} and phonons involve operators in the
general form [21, 34–36]

Ji,ph =

∫ ((
fph(q)+ 1

)
fi(c

′
i)− fph(q)fi(ci)

)
Wi,ph dc

′
idq,

(23)
where fph(q) denotes the phonon distribution function,
i ∈ {p, c, s, b, σ} the species index, q the phonon wave
vector or quasi-momentum, ci and c′i the particle veloci-

ties before and after the interaction, and Wi,ph a transi-
tion probability. The dilute approximation has been used
for fi in order to simplify (23) and the appearing of the
additional factor 1 in the gain term is a typical quantum
effect [21, 34–36]. The operator (23) corresponds to colli-
sions such that m ici = m ic

′
i+q+b where b is a vector of

the reciprocal crystal lattice. There is another operator
associated with collisions such that m ici + q = m ic

′
i + b

that leads to the same type of simplified source term and
the corresponding details are omitted.

The equilibrium relation between distribution func-
tions corresponding to (23) reads

(
f e
ph(q) + 1

)
f e
i (c

′
i) =

f e
ph(q)f

e
i (ci) where the superscript e stands for phys-

ical equilibrium. The equilibrium distribution for the
phonons f e

ph is the Bose-Einstein distribution, f e
i is the

wall Maxwellian of the ith species, and the equilib-
rium relation may be rewritten for convenience in the
form

(
f e
ph(q) + 1

)
mi(c

′
i) = f e

ph(q)mi(ci). Dividing then

the integrands in the collision term (23) by the factor(
f e
ph(q) + 1

)
mi(c

′
i) = f e

ph(q)mi(ci) and further assuming

that phonons are at equilibrium f e
ph = fph, it is obtained

that

Ji,ph(fi) =

∫( fi(c′i)
mi(c′i)

−
fi(ci)

mi(ci)

)
Wi,phdc

′
i, (24)

where Wi,ph = mi(ci)
∫
f e
ph(q)Wi,phdq denotes the

resulting transition probability. This assumption of
phonons at equilibrium is frequently introduced in the lit-
erature and eliminates the phonon distribution function
fph that is governed by kinetic equations [22, 24, 26, 27].
The transition probability Wi,ph satisfies the reciprocity
relation Wi,ph(ci, c

′
i) = Wi,ph(c

′
i, ci) and is nonzero only

in the neighborhood of the surface [21, 22]. This term
Ji,ph may further be simplified as −(fi − nimi)/τi,ph
where τi,ph denotes a relaxation time [22] as will be as-
sumed in Section VI.

F. Reactive collision operators

The typical geometry of gas/crystal interactions is de-
picted in Figure 3 where a physisorbed/gas particle de-
noted by A is approaching the surface Σ and may col-
lide with a free site crystal species C(s). The particle
A may then be transformed into a chemisorbed particle
A(s) and the crystal species into C(b), that is, into a sur-
face layer particle bonded with a chemisorbed particle.
The chemisorbed species A(s) may move on the surface
and is not bonded to a fixed crystal particle C(b) be-
cause of surface diffusion [47, 48]. The chemisorbed par-
ticles A(s) may also collide with the surface layer Σ of
the crystal and desorb. In order to keep notation short,
in the following, the subscript p is associated with ph-
ysisorbed/gas particles A, the subscript c to chemisorbed
particles A(s), the subscript s to free site crystal species
C(s), the subscript b to bulk crystal species C(b) that are
on the surface layer Σ and the subscript σ to the surface
layer particles. In summary, the subscripts {p, c, s, b, σ}
correspond respectively to A, A(s), C(s), C(b), and Σ.
The adsorption chemical reaction may be written as (1)

when using the ‘atomic site convention’ of heterogeneous
chemistry [18–20]. With the atomic site convention, the
crystal molecules C(s) and C(b) are included in the re-
action description and the number of active site ’s’ as
well as both atomic elements A and C are conserved in
(1). The atomic site convention is more complete than
the open site convention that would corresponds to the
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adsorption reaction written in the variant form [18, 19]

A + O(s) ⇄ A(s), (25)

where O(s) is the symbol of an open site—a free site—
on the surface Σ. The open site symbolic species O(s) is
massless and contains no elements and only the number
of active sites ’s’ and the number of element A are con-
cerned and conserved in (25). The properties of the open
site O(s) symbol in (25) may generally be determined by
using the atomic site convention, so that for instance the
formation energy of O(s) is es − eb [19]. These two sym-
bolic descriptions are equally valid in order to describe
macroscopically heterogeneous chemical reaction mecha-
nisms but the atomic site convention is more convenient
in order to describe molecular reactive collisions.

ζ A

A(s)

C(s) C(s) C(s) C(s) C(s) Σ

C(b) C(b)C(b)C(b)C(b)C(b)

C(b)

FIG. 3. Geometry of the particle-solid interaction.

The reactive collision term Cp associated with (1) may
be written

Cp =

∫(
fσ(cb)fc(cc)− fs(cs)fp(cp)

)
W+dcb dccdcs,

(26)
where W+ denotes a reactive transition probability. The
collision term (26) is typical of reactive terms associated
with gas phase chemical reactions [40, 41, 49] and natu-
rally involves collisions between particles A and free sur-
face sites C(s) in the forward direction and collisions be-
tween the particles A(s) and surface crystal atoms in the
backward direction. The operator Cp is local in space as
typical collision operators and the distribution functions
are considered to be three dimensional in space. The
surface distribution fσ is used in the desorbing backward
direction since the chemisorbed molecule A(s) may col-
lide with any particle of the crystal surface that then be-
comes a bulk species. The desorption rate depends only
linearly in particular on the surface concentration of the
chemisorbed species ñc, with a crystal surface having a
constant surface number density ñσ. The activity coeffi-
cient of single bulk species C(b) is consistently taken to
be unity in heterogeneous chemistry models [18].

In order to simplify the reactive source term, we fur-
ther observe that, at chemical equilibrium, the statistical
equilibrium relation holds

f ce
σ f

ce
c = f ce

s f
ce
p , (27)

with equilibrium distributions given by f ce
i = nce

i mi,
where the superscript ce denotes chemical equilibrium,
the superscript e denotes physical equilibrium, nce

i the
chemical equilibrium value of ni for i ∈ {p, c, s} and
f ce
σ = f e

σ = nσmσ since nce
σ = ne

σ = nσ remains constant
in time.
In order to simplify the reactive source term, using the

equilibrium relation (27), one may write

Cp =

∫( fσ
f ce
σ

fc
f ce
c

−
fs
f ce
s

fp
f ce
p

)
f ce
s f

ce
p W+dcbdccdcs, (28)

and assuming that the surface remains at physical equi-

librium fσ = f e
σ the chemical production rate is found in

the form

Cp =

∫( fc
f ce
c

−
fs
f ce
s

fp
f ce
p

)
f ce
s f

ce
p W+dcbdccdcs. (29)

The assumption that fσ = f e
σ means that surface chem-

istry is slow and that the surface is essentially not mod-
ified by chemistry. It is also consistent with the assump-
tion that the phonons are at equilibrium.
On the other hand, at chemical equilibrium, we have

equality of the chemical potentials µce
b + µce

c = µce
s + µce

p

according to the chemical reaction (1). These chemical
potentials, that must take into account the interaction
potentials wi, are in the form

µi = µin
i +

wi

kBTw
, (30)

where µin
i is the intrinsic chemical potential of the ith

species [44, 45, 50]. The intrinsic chemical potential is
given by the usual formula µin

i = gi/kBT = log(ni/zi)
where gi denotes the Gibbs function of the ith species, zi
the partition function per unit volume and ni the local
value with the influence of the force field for i ∈ {c, s, p}
[44, 45, 50]. For the bulk species we also have the chem-
ical potential µin

b = log(nσ/zb) since collision may occur
with any crystal particle on the surface. This chemical
potential µb yields an activity coefficient for the bulk
species C(b) equal to unity in agreement with heteroge-
neous surface chemistry [18]. The partition functions are
in the form zi = z

tr
i z

int
i where z

tr
i is the translational

partition function of the ith species par unit volume and
z
int
i the internal energy partition function. The transla-
tional partition functions are given by z

tr
b = z

tr
s = Λ−3

C

and z
tr
p = z

tr
c = Λ−3

A where ΛA = hp/(2πkBmATw)
1/2

and ΛC = hp/(2πkBm CTw)
1/2 are the species thermal

de Broglie wavelengths and hp the Planck constant. On
the other hand, the internal partition function of the ith
species is given by z

int
i = exp(−ei/kBTw).
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The equilibrium relation between chemical potentials
µce
b + µce

c = µce
s + µce

p implies that

nσ

zb exp
(
− wσ

kBTw

) nce
c

zc exp
(
− wc

kBTw

) =

nce
s

zs exp
(
− ws

kBTw

) nce
p

zp exp
(
−

wp

kBTw

) . (31)

Combining (29) with (31), letting W+ = W+
zpzsmpms,

and noting that nσ/ exp
(
− wσ

kBTw

)
= nσ we obtain that

Cp =

∫(nσ

zb

fc(cc)

zcmc(cc)
−

fs(cs)

zsms(cs)

fp(c)

zpmp(c)

)
dcbdccdcs.

(32)
Since we have

fs(cs)

zsms(cs)
=

(1− θ)nσ

zs
,

the fraction of available sites 1 − θ = fs/f
e
σ is the only

nonequilibrium part remaining from the crystal species
distributions in the production rate. Further letting for
the sake of notational simplicity

γk =
fk

mkzk
, k ∈ {p, c, s}, γb =

nσ

zb
, (33)

the following simplified expression is obtained for the
source term

Cp =

∫(
γbγc − γsγp

)
W+dcbdccdcs. (34)

The source terms for the other species are then obtained
in a similar form

Cc =

∫(
γsγp − γbγc

)
W+dcbdcsdcp, (35)

Cs =

∫(
γbγc − γsγp

)
W+dcbdccdcp, (36)

Cb =

∫(
γbγc − γsγp

)
W+dccdcsdcp, (37)

and may be used in the corresponding species kinetic
equations.
Incidentally, during a reactive collision with the sur-

face, the work done by the fixed crystal on the particles
is the difference wp −wc and thus the work received by
the fixed crystal reads wc − wp. The work received by
the fixed crystal must be equal to the difference of to-
tal energy of fixed crystal particles that have no kinetic
energy so that during a reactive collision we must have
wc − wp = eb − es which represents the energy of the
chemical bond.

G. Collisional invariants

Collision invariants of integral operators in kinetic
equations are closely related with macroscopic conserva-
tion laws. The collisional invariants of the gas collision

operator Jp,p are classically associated with particle num-
ber ψ1

p = 1, momentum ψ1+ν
p = m pcpν , ν ∈ {1, 2, 3}, as

well as energy ψ5
p = 1

2m p|cp|
2+ep. The macroscopic gov-

erning equations are then obtained by taking moments of
(2) using the scalar product

〈〈ξ, ζ〉〉 =

∫
ξ ⊙ ζ dcp,

where ξ ⊙ ζ is the contracted product between tensors ξ
and ζ. The macroscopic properties naturally associated
with the gas read 〈〈fg, ψ

1
p〉〉 = ng, 〈〈fg, ψ

1+ν
g 〉〉 = ρgvg ν ,

〈〈fg, ψ
5
p〉〉 = 1

2ρg|vg|
2 + Eg where Eg = ng(

3
2kBTg + ep)

denotes the internal energy per unit volume and vg ν the
component in direction ν of the mass average gas veloc-
ity vg. Considering the surface species, analogous scalar
products may be introduced as well as the corresponding
collisional invariants. The reactive collision operators Ci,
for i ∈ {p, c, s, b}, that are collision operators between

particles, also conserve mass, momentum and total en-
ergy including the potential energy.
Contrarily to particle-particle collision operators, mo-

mentum and energy are not conserved by the collision
operators with phonons Ji,ph since they may be given to
phonons that are assumed to be at equilibrium. The op-
erators Ji,ph only conserve the number of particles with
the invariant ψ1

i = 1 for i ∈ {p, c, s, b, σ}. When kinetic
equations are used to describe the phonons, energy is con-
served during collisions between phonons and particles
but not necessarily momentum because of the umklapp
process [34].

H. Kinetic entropy

The kinetic entropies compatible with the phonon col-
lision operators Ji,ph are slightly different from the tradi-
tional expressions. The origin of this modification is that
phonons are supposed to be at equilibrium and the col-
lision terms Ji,ph for i ∈ {p, c, s, b, σ} have been simpli-
fied accordingly. However, since phonons are interacting
with gas particles as well as chemisorbed particles, there
should be a phonon entropy increase associated with this
interaction. Such an increase of phonon entropy hav-
ing been discarded, it is natural that the corresponding
terms are missing in the total entropy production. In
order to solve this technical difficulty, modified entropies
have to be introduced [51, 52]. The modified entropies
are generally not anymore required when phonons kinetic
equations are taken into account [35, 36]. These entropies
are further modified in this work in order to take into ac-
count the interaction potentials as well as the entropy
associated with the surface species.
The kinetic entropies per unit volume associated with

the physisorbed/gas particles, chemisorbed particles, and
free sites are defined by

Skin
i = −kB

∫
fi
(
log(fi/zimi)− 1

)
dci, i ∈ {p, c, s}.

(38)
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On the other hand, taking into account the simplifica-
tions associated with the source terms, the entropy asso-
ciated with the bulk species is defined as

Skin
b = −kB

∫
fb log(nσ/zb) dcb, (39)

and the total entropy by

Skin = Skin
p + Skin

c + Skin
s + Skin

b . (40)

Similarly, we define the entropy fluxes by

F
kin
i = −kB

∫
cifi

(
log(fi/zimi)− 1

)
dci, i ∈ {p, c, s},

(41)
and for the bulk species

F
kin
b = −kB

∫
cbfb log(nσ/zb) dcb. (42)

Multiplying the Boltzmann equation (2) by
log(fp/zpmp), using (16) and (17), integrating with
respect to dcp, proceeding similarly for fc and fs, mul-
tipying the equation (7) by log(nσ/zb) and integrating
with respect to dcb, and adding the resulting balance
laws, we obtain a balance equation for Skin in the form

∂tS
kin + ∂x·F

kin = v
kin, (43)

where F
kin is the kinetic entropy flux

F
kin = F

kin
p +F

kin
c +F

kin
s +F

kin
b ,

and v
kin the kinetic entropy source term. The entropy

source term v
kin may be split as v

kin = vp,p + vp,ph +
vc,ph + vs,ph + v

r
p + v

r
c + v

r
s + v

r
b, where

vp,p = −kB

∫
Jp,p(fp, fp) log(fp/zpmp) dcp, (44)

vi,ph = −kB

∫
Ji,ph(fi) log(fi/zimi) dci, i ∈ {p, c, s},

(45)

v
r
i = −kB

∫
Ci log(fi/zimi) dci, i ∈ {p, c, s}, (46)

and

v
r
b = −kB

∫
Cb log(nσ/zb) dcb. (47)

Noting that log(zpmp) is a collisional invariant and may
be eliminated from (44) and using standard arguments
from kinetic theory, it is obtained after some algebra that

vp,p =
kB
4

∫
Υ
(
fpf̃p, f

′
pf̃

′
p

)
Wp,p dcp dc̃p dc

′
pdc̃

′
p, (48)

where Υ denotes the nonnegative function Υ(x, y) =
(x − y)(log x − log y). Similarly, noting that log(zi) is

independent of ci and may be eliminated from (45), it is
obtained for i ∈ {p, c, s} that

vi,ph =
kB
2

∫
Υ
(
fi/mi, f

′
i/m

′
i

)
Wi,ph dci dc

′
i. (49)

The bulk species contribution vb,ph vanishes because the
surface is assumed to be at physical equilibrium. Fi-
nally, using analogous arguments for reactive collisions,
and keeping the notation of (33), it is also obtained that

v
r
p + v

r
c + v

r
s + v

r
b = kB

∫
Υ
(
γpγs, γbγc

)
W+dcσdccdcsdcp.

(50)
Since the function Υ only takes nonnegative values, we
conclude that all quantities vp,p, vi,ph, i ∈ {p, c, s}, and
v
r
p + v

r
c + v

r
s + v

r
b appearing in v

kin are nonnegative. All
collisions, nonreactive or reactive, thus lead to nonneg-
ative entropy production. The Boltzmann equations (2)
and (5) are thus compatible with Boltzmann H-theorem
and lead to a dissipative structure at the molecular level.

III. MULTISCALE FRAMEWORK

In order to investigate reactive fluid boundary condi-
tions, a fluid scaling of the kinetic equations is introduced
along with a multiscale framework. Introducing a kinetic

scaling would be of high scientific interest but lay beyond
the scope of the present work.

A. Fluid scaling

We introduce characteristic quantities that are marked
with the ⋆ superscript. We denote by T ⋆ a characteris-
tic temperature, n⋆ a characteristic number density, m⋆

a particle mass, and τ⋆p a characteristic collision time.

We write v⋆ = (kBT
⋆/m⋆)1/2 the corresponding charac-

teristic thermal velocity, f⋆ = n⋆/v⋆3 the characteris-
tic particle distribution, λ⋆ = τ⋆pv

⋆ the mean free path,

W⋆
p,p = 1/(n⋆τ⋆pv

⋆6) a characteristic transition proba-

bility, w
⋆ = m

⋆v⋆2 a characteristic potential and τ⋆f
a characteristic fluid time with l⋆ = τ⋆f v

⋆ the corre-
sponding fluid length. We also introduce a characteris-
tic time for phonon interaction τ⋆ph that is easily related
to the characteristic transition probabilities W⋆

i,ph with

1/τ⋆ph = W⋆
i,phv

⋆6 for i ∈ {p, c, s, b, σ}, as well as a typical
length δ⋆ characteristic of the range of the surface poten-
tial, that is, the distance normal to the surface where the
quantities wp, wc, Wp,ph, and Wc,ph, are significant.
Dividing the kinetic equations by n⋆/τ⋆f v

⋆3, the re-
sulting rescaled kinetic equations involve—after some
algebra—the dimensionless parameters

ǫp =
τ⋆p
τ⋆f

=
λ⋆

l⋆
, ǫph =

τ⋆ph
τ⋆f
, ǫ =

δ⋆

l⋆
. (51)
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The characteristic times and lengths at the solid/gas
interface are generally such that τ⋆ph ≤ τ⋆p ≪ τ⋆f and

δ⋆ ≤ λ⋆ ≪ l⋆ and ǫp represents the Knudsen number [22].
Since our aim is to derive fluid boundary conditions, it is
assumed in this work that the small parameters ǫp, ǫph,
and ǫ are of the same asymptotic order of magnitude in
the sense

ǫp = αp ǫ ǫph = αph ǫ, (52)

where αph and αp are positive constants. From a phys-
ical point of view, it means that particle collisions and

phonons interactions are considered to be fast in com-
parison with fluid time and that both the mean free path
λ⋆ and the surface potential characteristic range δ⋆ are
considered to be small in comparison with the fluid length
l⋆. This scaling may be seen as the simplest fluid scaling

of the adsorbate layer model. Of course, other scaling
may further be introduced as for instance a kinetic scal-
ing upon using τ⋆p instead of τ⋆f for rescaling the kinetic
equations [31, 32].
Keeping in mind that the potential wi only depends

on z, the kinetic equation governing fi is obtained in the
form

∂tfi + ci ·∂ fi + ciz ∂zfi −
1

m i
∂zwi ∂c

iz
fi =

δip
αpǫ

Jp,p(fp, fp) +
1

αphǫ
Ji,ph(fi) + Ci, (53)

where i ∈ {p, c, s, b, σ} denotes the species index, fi the
distribution function, ci the tangential velocity of the
ith species, ∂ the tangential spatial derivative opera-
tor, ciz the normal velocity of the ith species, ∂z the
normal spatial derivative, ∂c

iz
the differential operator

with respect to ciz , δij the Kronecker symbol, Jp,p the
gas-gas collision operator, Ji,ph the phonon collision op-
erator and Ci the chemistry source term. The tangential
velocity ci is a two-dimentional vector and the particle
velocity reads ci = (ci , ciz)

t. In this kinetic equation,
the chemistry operator Ci is assumed to be slow in com-
parison with the inert collision operators Jp,p and Ji,ph.
These equations may be interpreted either as rescaled
equations with rescaled quantities denoted as unscaled
quantities, or, equivalently, as original unscaled equa-
tions where ǫ is a formal expansion parameter numeri-
cally equal to unity [38, 39]. These two asymptotic proce-
dures are equivalent and the second interpretation, used
in particular by Ferziger and Kaper [39], is often more
convenient.

B. Standard expansion in the gas

The kinetic equation in the gas, obtained from (53) by
letting i = p, wp = 0, Jp,ph = 0, and Cp = 0, reads

∂tfg + cg ·∂ fg + cgz ∂zfg =
1

αpǫ
Jp,p(fg, fg), (54)

where the gas particle velocity is denoted by cg = cp.
This equation coincides with the traditional scaling of
the Chapman-Enskog method with the formal expansion
parameter αpǫ. The standard Enskog expansion of the
distribution function valid in the gas is then in the form

fg(t,x , z, cg) =f̂
(0)
g (t,x , z, cg)

+ αpǫ f̂
(1)
g (t,x , z, cg) +O(ǫ2). (55)

The expansion (55) of the distribution function fg then
yields the outer expansion of the physisorbate distribu-
tion fp. At zeroth order, it is obtained that

Jp,p(f̂
(0)
g , f̂ (0)

g ) = 0, (56)

and from the H theorem, it is found that log f̂
(0)
g is a

collisional invariant so that f̂
(0)
g is a Maxwellian distri-

bution. The Maxwellian distribution in the gas phase is
in the form

f̂ (0)
g = ng

(
m g

2πkBTg

) 3
2

exp
(
−

m g|cg − vg|
2

2kBTg

)
, (57)

where ng is the local gas number density, m g the particle
mass equal to m A, vg the local gas velocity, and Tg the
local gas temperature with

ng =

∫
fg dcg, ngvg =

∫
cgfg dcg, (58)

ng
3
2kBTg =

∫
1
2m g|cg − vg|

2fg dcg. (59)

At first order, it is obtained that φ̂
(1)
g = f̂

(1)
g /f̂

(0)
g is

the solution of the Boltzmann linearized integral equation
[38–40]

Îg(φ̂
(1)
g ) = −

(
∂t log f̂

(0)
g + cg·∂x log f̂ (0)

g

)
, (60)

completed by the Enskog constraints 〈〈f̂
(0)
g φ̂

(1)
g , ψl

p〉〉 = 0

for 1 ≤ l ≤ 5. Here Îg denotes the linearized collision
operator

Îg(ψ) = −
1

f̂
(0)
g

(
Jp,p(f̂

(0)
g , f̂ (0)

g ψ) + Jp,p(f̂
(0)
g ψ, f̂ (0)

g )
)
,

(61)

and the time derivative term ∂tf̂
(0)
g in (60) is evaluated

with Euler equations [38–40].
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After lengthy algebra, φ̂
(1)
g is found in the form

φ̂(1)g = −φ̂
η
:∂xvg − φ̂

λ
·∂x(1/kBTg), (62)

where φ̂
η
is a traceless symmetric matrix and φ̂

λ
a vector.

The coefficients φ̂
η
and φ̂

λ
are solutions of the tensorial

integral equations

Îg(φ̂
η
) =

m g

kBTg

(
(cg−vg)⊗(cg−vg)−

1
3 |cg−vg|

2I
)
, (63)

Îg(φ̂
λ
) =

(5kBTg
2

− 1
2m g|cg − vg|

2
)
(cg − vg), (64)

with the Enskog constraints 〈〈f̂
(0)
g φ̂

η
, ψl

p〉〉 = 0 and

〈〈f̂
(0)
g φ̂

λ
, ψl

p〉〉 = 0 for 1 ≤ l ≤ 5, where I denotes the
three dimensional identity tensor. The fluid shear vis-
cosity η and the thermal conductivity λ may then be

expressed in terms of the perturbed distributions φ̂
η
and

φ̂
λ
[38–40].

C. Corrected expansion near the surface

Since we investigate a fluid interacting with a solid
surface, it is natural to assume for the sake of simplicity
that the gas tangential velocity vanishes at the interface
vg = vg − vgzez = 0 and that the normal fluid veloc-
ity vgz is of first order in ǫ near the interface. The gas
velocity due to the Stefan flow is thus in the form

vg = ǫvg = ǫvgzez, (65)

where vgz denotes the normal component of the rescaled
velocity vg. When a surface exchanges mass with a
fluid, there exits indeed an induced normal velocity—
termed the Stefan velocity—generated in order to com-
pensate for fluid production. Assuming that such a ve-
locity vg = vgzez is small near a solid interface is natural
and assuming that vg = vg − vgzez vanishes at the in-
terface is the classical adherence condition [53, 54]. The
model could be generalized by taking into account a first
order slip vg = O(ǫ) but such an extension is beyond
the scope of the present work.
The fluid convection velocity near the planar surface

vg being of first order in ǫ, the outer expansion (55) need
to be corrected near the surface. All terms proportional
to the velocity vg must be shifted by one order in the
outer expansion near z = 0. The corrected expansion of
the distribution function fg valid in the gas phase near
the surface is denoted in the form

fg(t,x , z, cg) =f
(0)
g (t,x , z, cg) + ǫf (1)

g (t,x , z, cg)

+ ǫ2f (2)
g (t,x , z, cg) +O(ǫ3). (66)

The corrected expansion (66) of the distribution function
fg then yields the proper outer expansion of the physisor-
bate distribution fp.

After some algebra, it is obtained from (55)–(64) that

f
(0)
g is the zero velocity Maxwellian distribution

f (0)
g = ng

(
m g

2πkBTg

) 3
2

exp
(
−

m g|cg|
2

2kBTg

)
, (67)

and the first order term f
(1)
g is in the form

f (1)
g =

(
m gcgzvgz

kBTg
+ αpφ

(1)
g

)
f (0)
g , (68)

with φ
(1)
g given by

φ(1)g = −φη
:∂xvg − φλ·∂x(1/kBTg). (69)

The vector function φλ is the solution of the integral
equation

Ig(φ
λ) =

(5kBTg
2

− 1
2m g|cg|

2
)
cg, (70)

with the Enskog constraints 〈〈f
(0)
g φλ, ψl

p〉〉 = 0, 1 ≤ l ≤ 5,
whereas the tensor function φη is solution of the equation

Ig(φ
η) =

m g

kBTg

(
cg⊗cg −

1
3 |cg|

2I
)
,

with the constraints 〈〈f
(0)
g φη, ψl

p〉〉 = 0, 1 ≤ l ≤ 5. The
modified integral operator Ig is also the linearized colli-
sion operator

Ig(ψ) = −
1

f
(0)
g

(
Jp,p(f

(0)
g , f (0)

g ψ) + Jp,p(f
(0)
g ψ, f (0)

g )
)
,

(71)

around the zero velocity Maxwellian f
(0)
g . Using Enskog

constraint 〈〈f
(0)
g φ

(1)
g ,m gcgz〉〉 = 0, we note in particular

the useful relation
∫
cgf

(1)
g dcg = ngvgzez = ngvg. The

second order term f
(2)
g will play no role but need to be

taken into account formally in some of the expansions.
Since the tangential component vanishes vg = 0 we

also have ∂ vg = 0 and similarly since vgz = O(ǫ) near
the interface we deduce that ∂zvgz = O(ǫ) as well as
∂ vgz = O(ǫ). Therefore, only possibly ∂zvg remain in
the gradient ∂xvg at zeroth order. From the gas mass
conservation equation

∂tng + ∂x·(ngvg) = ∂tng + ∂z(ngvgz) = 0,

we also deduce that

∂tng(0) = O(ǫ), (72)

so that ng(0) is slowly varying in time.

D. Multiscale expansion

The surface interaction potentials wp, wc and ws de-
pend on the adsorbate layer coordinate denoted by

ζ =
z

ǫ
. (73)
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The problem thus appears as multiscale since it involves
the normal coordinate z as well as the inner layer coor-
dinate ζ = z/ǫ. The physisorbed/gas distribution is thus
expanded in the multiscale form

fp(t,x , z, ζ, cp) =
∑

j

ǫjf (j)
g (t,x , z, cp)

+
∑

j

ǫjf
(j)
lc (t,x , ζ, cp), (74)

where
∑

j ǫ
jf

(j)
g (t,x , z, cp) is the outer expansion and

∑
j ǫ

jf
(j)
lc (t,x , ζ, cp) the layer corrector expansion. The

adsorbate layer correctors f
(j)
lc (t,x , ζ, cp), j ≥ 0, have to

converge to zero as ζ → ∞ in such a way that the gas
expansion is recovered in the gas phase. The proper outer
expansion of the distribution function in the gas phase
(66) has been evaluated independently in Section III C.

The inner expansion fg of fg =
∑

j ǫ
jf

(j)
g (t,x , z, cp) is

next deduced by expanding fg around z = 0 with z = ǫζ.
The inner expansion fg(t,x , ζ, cp) = fg(t,x , ǫζ, cp) of
fg is a function ζ and is obtained in the form

fg(t,x , ζ, cp) =
∑

j

ǫjf(j)g (t,x , ζ, cp), (75)

with notably

f(0)g =f (0)
g (0), f(1)g = f (1)

g (0) + ζ∂zf
(0)
g (0), (76)

f(2)g =f (2)
g (0) + ζ∂zf

(1)
g (0) + 1

2ζ
2∂2zf

(0)
g (0). (77)

The inner expansion fp of the distribution fp is then
given by

fp(t,x , ζ, cp) =
∑

j

ǫjf(j)p (t,x , ζ, cp), (78)

with

f(j)p = f(j)g + f
(j)
lc , j ≥ 0. (79)

The term f
(j)
g is a polynomial in ζ of the jth degree re-

sulting from the inner expansion fg of fg and f
(j)
lc is the

jth layer corrector that goes to zero as ζ → ∞.

The chemisorbate, free site, bulk and surface distribu-
tions are expanded in the simpler form

fi = fi =
∑

j

ǫjf
(j)
i (t,x , ζ, ci), i ∈ {c, s, b, σ}, (80)

since such distributions are localized in the adsorption
layer and only involve the inner layer coordinate ζ.

E. Inner layer kinetic equations

Since ζ is the proper normal coordinate of the adsor-
bate layer, the rescaled equations governing the inner ex-
pansions fi, i ∈ {p, c, s, b, σ}, and obtained from (53), are
in the form

∂tfi + ci ·∂ fi +
1

ǫ
ciz ∂ζ fi −

1

ǫ

1

m i
∂ζwi ∂c

iz
fi =

δip
αpǫ

Jp,p(fp, fp) +
1

αphǫ
Ji,ph(fi) + Ci. (81)

On the other hand, since fg satisfies the Boltzmann equa-
tion (4), we may perform the change of variable from z
to ζ in (4) so that the inner expansion fg of fg satisfies
the rescaled kinetic equation

∂tfg + cp ·∂ fg +
1

ǫ
cpz ∂ζ fg =

1

αpǫ
Jp,p(fg, fg), (82)

that naturally contains no force term, phonon collision
term or reactive term. Substituting the inner expansion
fg of fg into (82) and equating the powers of ǫ yields the
kinetic equations satisfied by the expansion coefficients

f
(j)
g for j ≥ 0. At the order ǫ−1, we obtain that

cpz ∂ζ f
(0)
g =

1

αp
Jp,p(f

(0)
g , f(0)g ), (83)

and each term of (83) indeed vanishes since f
(0)
g = f

(0)
g (0),

Jp,p
(
f
(0)
g (0), f

(0)
g (0)

)
= 0 and ∂ζ

(
f
(0)
g (0)

)
= 0. At the

order ǫ0, letting Φ
(1)
g = f

(1)
g /f

(0)
g we obtain that

∂tf
(0)
g + cp ·∂ f(0)g + cpz f

(0)
g ∂ζΦ

(1)
g + f(0)g Ig(Φ

(1)
g )/αp = 0,

(84)

and using f
(1)
g = f

(1)
g (0) + ζ∂zf

(0)
g (0) where f

(1)
g =(

m gcgzvgz

kBTg
+ αpφ

(1)
g

)
f
(0)
g yields

Φ(1)
g = ζ∂z log f

(0)
g (0) +

m gcgzvgz

kBTg
+ αpφ

(1)
g . (85)

Defining the operator

Hg(ϕ) = cpz ∂ζϕ+
1

αp
Ig(ϕ),

the first order linearized system (84) then reads

Hg(Φ
(1)
g ) = Ψ(1)

g , (86)
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where

Ψ(1)
g = −∂t log f

(0)
g − cp ·∂ log f(0)g . (87)

Since Ig vanishes for collision invariants, we observe that

Ig
(
m gcgz

)
= 0, Ig

(
∂z log f

(0)
g (0)

)
= 0,

so that Ig(Φ
(1)
g )/αp = Ig

(
φ
(1)
g

)
. Moreover, using

∂ζΦ
(1)
g = ∂z log f

(0)
g we obtain that cpz ∂ζΦ

(1)
g =

cpz ∂z log f
(0)
g in such a way that (86) exactly coincides

with the linearized Boltzmann equation

Ig
(
φ(1)g

)
= −∂t log f

(0)
g − cp ·∂ log f (0)

g − cpz ∂z log f
(0)
g ,

written at the origin z = 0.
Subtracting finally equation (82) from that governing

the inner expansion of the physisorbate (81) with i = p,
we obtain a kinetic equation for the difference fp − fg

∂t(fp − fg) + cp ·∂ (fp − fg) +
1

ǫ
cpz ∂ζ(fp − fg)−

1

ǫ

1

m p
∂ζwp ∂cpz fp =

1

αpǫ

{
Jp,p(fp, fp)− Jp,p(fg, fg)

}
+

1

αphǫ
Jp,ph(fp) + Cp. (88)

This equation as well as (81) will be convenient in the
following in order to investigate the inner structure of
the adsorbate. The advantage of (88) is that all terms
go to zero when ζ goes to infinity.

IV. ZEROTH ORDER EXPANSIONS IN THE

ADSORBATE

Zeroth order expansions are investigated in the adsor-
bate layer and next the corresponding species mass fluid
boundary conditions.

A. Zeroth order expansion in the physisorbate

In the physisorbate, using the kinetic equation (81)
with i = p, it is found that

cpz ∂ζ f
(0)
p −

1

m p
∂ζwp ∂cpz f

(0)
p =

1

αp
Jp,p(f

(0)
p , f(0)p )

+
1

αph
Jp,ph(f

(0)
p ). (89)

Multiplying (89) by log(f
(0)
p /mp), making use of (16)

and ∂A
(
A(logA − 1)

)
= logA, letting for short sp =

f
(0)
p

(
log(f

(0)
p /mp)− 1

)
it is obtained that

∂ζ(cpzsp)− ∂cpz

(∂ζwp

m p
sp

)
=

1

αp
Jp,p(f

(0)
p , f(0)p ) log

( f(0)p

mp

)

+
1

αph
Jp,ph(f

(0)
p ) log

( f(0)p

mp

)
. (90)

We integrate this equation over ζ ∈ (0,∞) and cp ∈ R
3

and use that f
(0)
p → 0 as ζ → 0 since the surface repulsive

potential repels all physisorbed/gas particles, and f
(0)
p →

f
(0)
g (0) as ζ → ∞ since the corrector f

(0)
lc goes to zero as

ζ → ∞. The first term in the left hand side of (90) yields
after integration a null contribution since

lim
ζ→∞

∫
cpzf

(0)
p

(
log(f(0)p /mp)− 1

)
dcp =

∫
cpzf

(0)
g

(
log(f (0)

g /mp)− 1
)
dcg = 0,

keeping in mind that f
(0)
g is even in the normal velocity,

and moreover

lim
ζ→0

∫
cpzf

(0)
p

(
log(f(0)p /mp)− 1

)
dcp = 0,

because f
(0)
p = 0 for ζ = 0. The second term in

the left hand side of (90) also yields a null contribu-
tion after integration since it is in divergence form and

sp = f
(0)
p

(
log(f

(0)
p /mp)−1

)
goes to zero as |cp| → ∞. We

have thus established that

1

αp

∫
Jp,p(f

(0)
p , f(0)p ) log(f(0)p /mp) dcpdζ

+
1

αph

∫
Jp,ph(f

(0)
p ) log(f(0)p /mp) dcpdζ = 0.

Such terms have been investigated up to the scaling factor
−kB when investigating entropy production in (48)(49)

and are nonpositive. Using Jp,p(f
(0)
p , f

(0)
p ) = 0, we first

deduce that f
(0)
p is locally Maxwellian with a local tem-

perature and average velocity. Using Jp,ph(f
(0)
p ) = 0, we

further obtain that the local temperature is the wall tem-
perature Tw and the average velocity vanishes. Writting
this Maxwellian for convenience as

f(0)p = np exp
(
−

wp

kBTw

)
mp, (91)
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where mp is given by (13), and substituting this identity
in (89), it is next obtained that cpz∂ζnp mp = 0 so that
∂ζnp = 0 and np is independent of ζ. This constant np

is identified by letting ζ → ∞ in (91) and it is obtained
that

np = ng(0), (92)

where ng(0) denotes the gas number density along the
surface ng(t,x , 0). It has thus been established that

f(0)p = npmp, (93)

where the number of physisorbed/gas particles per unit
volume np reads

np(ζ) = ng(0) exp
(
−

wp

kBTw

)
. (94)

This expression of np(ζ) establishes that the physisor-
bate is naturally distributed like exp

(
−wp/kBTw

)
as was

expected based on physical grounds [22, 45]. Moreover
the physisorbate is at equilibrium with the bath of gas
particles having number density ng(0) coming from the

gas phase. Since f
(0)
lc = f

(0)
p − f

(0)
g (0) where

f (0)
g (0) = ng(0)

(
m p

2πkBTw

)3/2
exp
(
−

m p|cp|
2

kBTw

)

it is also obtained that

f
(0)
lc = f (0)

g (0)
{
exp
(
−

wp

kBTw

)
− 1
}
. (95)

The layer corrector f
(0)
lc thus converges to zero as ζ → ∞

as the potential wp, and the excess molecular density in
the physisorbate np − ng(0) is naturally distributed as
the positive values of the function exp

(
−wp/kBTw

)
− 1.

By identifying the Maxwellian distributions, we have
recovered that

Tg(0) = Tw, vg(0)·ex = vg(0)·ey = 0, (96)

and these kinematic boundary conditions [53, 54] have
been established by writting that the gas Maxwellian dis-
tribution is at equilibrium with phonons. In contrast, the
dynamic boundary conditions for mass, momentum or
energy will be obtained as moments of the kinetic equa-
tions. The model could incidentally be generalized by
taking into account a first order slip temperature differ-
ence Tg−Tw = O(ǫ) but such an extension is beyond the
scope of the present work.

B. Zeroth order expansion in the chemisorbate

In the chemisorbed layer, using the kinetic equation
(81) with i = c, it is found that

ccz ∂ζ f
(0)
c −

1

m c
∂ζwc∂ccz f

(0)
c =

1

αph
Jc,ph(f

(0)
c ). (97)

Multiplying by log(f
(0)
c /mc), letting for short sc =

f
(0)
c

(
log(f

(0)
c /mc)−1

)
, and proceeding as for the physisor-

bate, it is obtained that

∂ζ
(
cczsc

)
−∂ccz

(∂ζwc

m c
sc

)
=

1

αph
Jc,ph(f

(0)
p ) log(f(0)c /mc).

Integrating over ζ ∈ (ζ−c , ζ
+
c ) and cc ∈ R

3, and since f
(0)
c

goes to zero as ζ → ζ−c and as ζ → ζ+c , it is obtained
that

1

αph

∫
Jc,ph(f

(0)
c ) log(f(0)c /mc) dccdζ = 0.

From Jc,ph(f
(0)
c ) = 0 and the expression of the entropy

source (49) established for the H theorem, it is deduced

that f
(0)
c is a Maxwellian at temperature Tw and with

zero average velocity. Writting this Maxwellian for con-
venience in the form

f(0)c = nc exp
(
−

wc

kBTw

)
mc, (98)

where mc is given by equation (13), and substituting this
identity in (97), it is obtained that cz∂ζncmc = 0 so that
∂ζnc = 0 and nc is independent of ζ.
The number density in the chemisorbate is thus in the

form

nc = nc exp
(
−

wc

kBTw

)
, (99)

where nc = nc(t,x ) so that the chemisorbate is dis-
tributed as exp

(
−wc/kBTw) as was expected based on

physical grounds and is localized since wc goes to in-
finity as ζ → ζ−c as well as ζ → ζ+c . We may next
introduce the number of chemisorbed particles per unit

surface ñc(t,x ) =
∫
nc dz that is related to nc via a

configuration integral

ñc = nc

∫
exp
(
−

wc

kBTw

)
dz.

The number density of the chemisorbate per unit surface
ñc(t,x ) thus arises naturally from the kinetic framework
and is often used in macroscopic fluid models. Finally,
both nc and ñc are independent of the gas phase value
ng(0) at variance with the physisorbate that is at equi-

librium with the bath of gas.

C. Zeroth order expansion at the surface

Using the kinetic equation (81) with i = s, the zeroth

order distribution of free site f
(0)
s is governed by the ki-

netic equation

csz ∂ζ f
(0)
s −

1

m s
∂ζws∂csz f

(0)
s =

1

αph
Js,ph(f

(0)
s ). (100)
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Proceeding as for the chemisorbate, it is found that

f(0)s = nsms, ns = ns exp
(
−

ws

kBTw

)
, (101)

where ns = ns(t,x ) and ms is given by equation (13).
The quantity ns is also directly related to the number
of free site per unit surface ñs(t,x ) =

∫
ns dz. The

free site atoms are spatially distributed as the func-
tion exp

(
−ws/kBTw) as was expected based on physical

grounds and are of course localized since ws goes to infin-
ity as ζ → ζ−σ or as ζ → ζ+σ . This Maxwellian structure
that was assumed to hold in [37] is established here from
the governing kinetic equation. Such a Maxwellian struc-
ture (100) constrained by the localized potentialws is ex-
actly that given by statistical mechanics at equilibrium
[43–46].
Proceeding similarly for the standard surface distri-

bution, it is also recovered that f
(0)
σ = f e

σ is given by
(19) with a number density of the surface layer nσ in
the form (20) and the surface atoms are spatially dis-
tributed as exp

(
−wσ/kBTw). The zeroth order solution

f
(0)
σ = f e

σ is furthermore the exact solution f e
σ = nσmσ

of the thin layer equation since it is an exact solution of
the full kinetic equation (8). The quantities nσ and nσ

are characteristic of the crystal surface and its orienta-
tion and are related to the number of surface atoms per
unit surface ñσ =

∫
nσ dz.

From the structure of the free site distribution f
(0)
s and

that of the crystal layer standard distribution f
(0)
σ = f e

σ

given by (19), we deduce that at zeroth order the proba-

bility of free site 1− θ = f
(0)
s /f

(0)
σ simplifies into

1− θ =
f
(0)
s

f
(0)
σ

=
ns

nσ
=
ñs

ñσ
, (102)

and therefore only depends on time and tangential coor-

dinate θ = θ(t,x ). This structural property θ = θ(t,x )
was assumed to hold in previous work [37] and is es-
tablished here from the asymptotic analysis of the ki-
netic equations. The number of free site per unit sur-
face ñs may also be written ñs = (1 − θ)ñσ and since
the chemisorbate is assumed to be monolayer we have
ñs + ñc = ñσ and

ñc = θ ñσ, ñs = (1− θ) ñσ. (103)

The monolayer relation ñs + ñc = ñσ is naturally associ-
ated with surface densities whereas the volume distribu-
tions of C(s) and A(s) are not located at the same reduced
normal coordinate ζ.

D. Species mass boundary conditions

The zeroth order mass conservation equations are ob-
tained by taking the scalar product of the kinetic equa-
tions (81) or (88) by the mass collisional invariants—
which is equivalent to integrating with respect to the ve-
locity variable—and keeping only zeroth order terms.

In the physisorbate, using the difference equation (88)
for convenience, it is obtained that

∂t

∫
(f(0)p − f(0)g ) dcp+∂ζ

∫
cpz(f

(1)
p − f(1)g )dcp =

∫
C(0)
p dcp, (104)

where C
(0)
p denotes the chemical production term eval-

uated with the zeroth order adsorbate layer distribu-

tions f
(0)
i , i ∈ {p, c, s}. We have used here that∫

cp f
(0)
p dcp =

∫
cp f

(0)
g dcg = 0 and that the collisional

invariant ψ1
p = 1 is orthogonal to Jp,p and Jp,ph. More-

over, since ∂tng(0) = O(ǫ) from (72), the first term

∂t
∫
(f

(0)
p −f

(0)
g ) dcp vanishes at zeroth order and we obtain

that

∂ζ

∫
cpz(f

(1)
p − f(1)g )dcp =

∫
C(0)
p dcp. (105)

Using that f
(1)
p − f

(1)
g = f

(1)
lc goes to zero as ζ → ∞,

that f
(1)
p goes to zero as ζ → 0, since there are not

anymore particles when ζ → 0, that f
(1)
g = f

(1)
g (0) +

ζ∂zf
(0)
g (0), that ζ∂zf

(0)
g (0) go to zero as ζ → 0, and that∫

czf
(1)
g (0)dcg = ng(0)vgz(0), we obtain by integrating

(105) over ζ ∈ (0,∞) the relation

ng(0)vgz(0) =

∫
C(0)
p dcpdζ. (106)

The Stefan flux ng(0)vgz(0) is thus expressed in terms
of the zeroth order physisorbate/gas production rate by
chemistry in the layer. This relation may be rewritten in
the form

ng(0)vgz(0) =

∫
C(0)
p dcpdz, (107)

where the integral of the production term C
(0)
p is now

performed over z rather than ζ. In particular, the dy-
namics of the physisorbate does not play a role and the
mass flux towards the gas phase np(0)vpz(0) is entirely
due to the production of physisorbed/gas species by ad-
sorption/desorption of the chemisorbate.
On the other hand, the integrated mass conservation

equation in the chemisorbate may be obtained with a
similar procedure and yields that

∂tnc

∫
exp
(
−

wc

kBTw

)
dζ =

∫
C(0)
c dccdζ, (108)

where C
(0)
c denotes the production of chemisorbed species

by the surface chemistry in the layer and evaluated with
zeroth order distributions. This equation may be rewrit-
ten

∂tñc =

∫
C(0)
c dccdz, (109)
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where ñc(t,x ) = nc

∫
exp
(
−wc/kBTw

)
dz represents the

total amount of chemisorbate available in the layer per

unit surface and may be interpreted as the natural surface
number density of the chemisorbate.
Proceeding similarly for the free sites and bulk species

we obtain finally that

ng(0)vgz(0) =

∫
C(0)
p dcpdz, ∂tñc =

∫
C(0)
c dccdz,

(110)

∂tñs =

∫
C(0)
s dcsdz ∂tñb =

∫
C
(0)
b dcbdz,

(111)

with ñc = ñb = θ ñσ and ñs = (1 − θ)ñσ and it is easily
checked that

∫
C(0)
p dcpdz =

∫
C(0)
s dcsdz =

−

∫
C(0)
c dccdz = −

∫
C
(0)
b dcbdz.

We have thus recovered the traditional mass fluid bound-
ary conditions at a surface with adsorption including the
equation for the gas, the chemisorbed species and the
coverage [18–20, 40].

E. Surface chemical reaction

The integrated surface chemistry term
∫
C
(0)
p dcpdz

evaluated with the zeroth order adsorbate layer distri-

butions f
(0)
i , i ∈ {p, c, s}, is found in the form

∫
C(0)
p dcpdz = K

(nσ

zb

nc

zc
−
ns
zs

ng(0)

zp

)
, (112)

where K is the surface reaction overall constant

K =

∫
W+dcσdcsdccdcpdz. (113)

This rate (112) may then be rewritten using number den-
sities per unit surface. Defining the partition function of
the surface species with a configuration integral [55]

z̃i = zi

∫
exp
(
−

wi

kBTw

)
dz, i ∈ {c, s, b}, (114)

letting zg = zp and noting that

ni

zi
=
ñi

z̃i
, i ∈ {c, s, b}, (115)

it is indeed obtained that
∫
C(0)
p dcpdz = K

( ñσ

z̃b

ñc

z̃c
−
ñs

z̃s

ng(0)

zg

)
. (116)

This expression of the chemical production rate is com-
patible with the atomic site description of the surface

adsorption reaction since it involves the same species as
well as the surface number densities and the gas density
at the interface z = 0.
Another expression of the surface reaction rate consists

in eliminating the bulk crystal species and reducing the
site species to a simple coverage probability 1 − θ. To
this aim, letting

z̃
′
c =

z̃cz̃b

z̃s
= z̃c exp

(
−
eb − es

kBTw

)
,

that is a partition function for the chemisorbed surface
species taking into account the crystal bonding energy
eb − es, and letting K′ = Kñσ/z̃s, we obtain

∫
C(0)
p dcpdz = K′

( ñc

z̃
′
c

− (1− θ)
ng(0)

zg

)
. (117)

This rate is compatible with the open site description of
the surface adsorption reaction, with the opensite O(s)
simply taken into account with a probability factor 1− θ
and the bonding energy taken into account in the modi-
fied surface partition function z̃

′
c. The traditional macro-

scopic species balances as well as the surface chemical
production rates for both the atomic and open site con-
ventions have thus been recovered from the kinetic model.
The surface production rate may also be rewritten by

completely eliminating all surface crystal species. To this
aim, we may define a new chemical potential

µ̃c = log
( ñc

z̃
′
c

1

1− θ

)
= log

( ñσ

z̃
′
c

θ

1− θ

)
,

that involves the 1 − θ factor coming from the free site
density, in agreement with the statistical mechanics of
adsorption at low coverage that excludes crystal species

[44, 55]. Keeping in mind that the chemical potential in
the gas is µg = log(ng/zg), the surface source term is then
obtained in the general form associated with statistical
mechanics [40, 56, 57]

∫
C(0)
p dcpdz = K′′

(
exp(µ̃c)− exp

(
µg(0)

))
, (118)

where K′′ = K′(1 − θ). At chemical equilibrium, we fi-
nally have µ̃c = µg(0) in such a way that θ/(1 − θ) is
proportional to ng(0) and the Langmuir isotherm [19] is
recovered.
The various expressions of the production rate∫
C
(0)
p dcpdz derived with the atomic site formalism (116),

the open site formalism (117), and the adsorption mecha-
nistic formalism (118) thus gradually eliminate the crys-
tal surface species. The atomic site formalism still seems
to be the relevant one in order to describe reactive col-
lisions. In addition, even though the saturation factor
1− θ may be integrated into a chemical potential for the
chemisorbed species µ̃c, it still originates from the surface
crystal species C(s).
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V. MOMENTUM AND THERMAL BOUNDARY

CONDITIONS

We investigate in this section the normal momen-
tum, tangential momentum, and energy dynamic bound-
ary conditions at zeroth order, completing the dynamic
mass boundary conditions obtained in previous sections.
These dynamic boundary conditions are obtained by tak-
ing appropriate moments of the kinetic equations whereas
the kinematic boundary conditions are generally obtained
by identifying Maxwellian distributions.

A. Normal momentum boundary conditions

We multiply by m pcpz and ǫ the difference equation
(88), integrate with respect to the particle velocity and
keep all terms of order ǫ0 or ǫ1. Keeping in mind that

both f
(0)
p and f

(0)
g are even with respect to cpz, as well as

with respect to cp , the resulting equation is in the form

∂ζ

∫
m pc

2
pz(f

(0)
p + ǫf(1)p − f(0)g − ǫf(1)g ) dcp −

∫
∂ζwp cpz∂cpz(f

(0)
p + ǫf(1)p ) dcp

−
1

αph

∫
m pcpzJp,ph(f

(0)
p + ǫf(1)p ) dcp = ǫ

∫
m pcpzC

(0)
p dcp.

Integrating with respect to ζ, keeping in mind that f
(0)
lc = f

(0)
p − f

(0)
g and f

(1)
lc = f

(1)
p − f

(1)
g go to zero as ζ → ∞, that

f
(0)
p → 0 and f

(1)
p → 0 as ζ → 0, and that f

(0)
g and f

(1)
g go respectively to f

(0)
g and f

(1)
g as ζ → 0, yields that

∫
m pc

2
pz(f

(0)
g +ǫf (1)

g ) dcp −

∫
∂ζwp cpz∂cpz(f

(0)
p + ǫf(1)p ) dcpdζ

−
1

αph

∫
m pcpzJp,ph(f

(0)
p + ǫf(1)p ) dcpdζ = ǫ

∫
m pcpzC

(0)
p dcpdζ. (119)

A direct calculation yields
∫

m pc
2
pzf

(0)
g dcp = ngkBTg = pg,

where pg = ngkBTg denotes the pressure is the gas. Us-
ing the definition of the viscosity coefficient η and the
isotropy of Jp,p, it is established that

ǫm p

∫
cp⊗cpf

(1)
g dcp =− ǫm p

∫
cp⊗cpαpφ

η dcp

= −ǫη S = Π , (120)

where

S = ∂xvg + (∂xvg)
t − 2

3∂x·vgI,

denotes the symmetric traceless strain rate tensor and
Π = −ǫηS the viscous tensor in the gas. Use has been

made that the term proportional to cpzf
(0)
g as well as that

associated with φλf
(0)
g in f

(1)
g yield null contributions in

m p

∫
cp⊗cpf

(1)
g dcp. Defining the pressure tensor in the

gas by

P
g = pgI +Π , (121)

and considering in particular the zz components of (120),
we obtain that∫

m pc
2
pz(f

(0)
g + ǫf (1)

g ) dcp = pg +Πzz = P
g
zz ,

where Πzz is the zz component of Π and P
g
zz the zz

component of Pg.
In order to eliminate the reactive source term in the

right hand side of (119), we form the normal momen-
tum balance of surface species that are similar except for
the absence of flux coming from the gas. The resulting
equations are obtained in the form

−

∫
∂ζwi ciz∂ciz(f

(0)
i + ǫf

(1)
i ) dcidζ

−
1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ =

ǫ

∫
m icizC

(0)
i dcidζ.

Adding the momentum equations of all species, using mo-
mentum conservation in chemical reactions, and integrat-
ing by parts with respect to the normal velocity variable
the potential term, it is obtained that

pg +Πzz =−
∑

p,c,s,b

∫
∂ζwi (f

(0)
i + ǫf

(1)
i ) dcidζ

+
∑

p,c,s,b

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ.

The solid crystal pressure tensor—opposite of the crystal
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Cauchy tensor—at the surface is then defined as

P
so
zz =− σso

zz = −
∑

p,c,s,b

∫
∂ζwi (f

(0)
i + ǫf

(1)
i ) dcidζ

+
∑

p,c,s,b

1

αph

∫
m icizJi,ph(f

(0)
i + ǫf

(1)
i ) dcidζ,

and may be simplified—using that the zeroth order po-
tential terms of surface species are eliminated after inte-
gration with respect to ζ—in the form

P
so
zz =−

∫
∂ζwpf

(0)
p dcpdζ −

∑

p,c,s,b

ǫ

∫
∂ζwif

(1)
i dcidζ

+
∑

p,c,s,b

ǫ

αph

∫
m icizJi,ph(f

(1)
i ) dcidζ.

The first two terms represent the total force per unit sur-
face acting on the physisorbate, chemisorbate, and sur-
face layer, whereas the second sum represents the gain
in momentum by the species due to the interaction with
phonons per unit surface and time and also represents
a force per unit surface. Since all zeroth order terms

vanish except that acting on the physisorbate, it appears
that the dominant term represents the action of the solid
on the physisorbate. We may finally write the resulting
boundary condition in the form

P
g
zz = P

so
zz = −σso

zz , (122)

that is the traditional momentum boundary condition,
the contribution of the normal velocity term being of
higher order.

B. Tangential momentum boundary conditions

We multiply by m pcp and ǫ the difference equation
(88), integrate with respect to the particle velocity and
keep all term of order ǫ−1 and ǫ0. On the other hand,
it will be established in Section VIB that ∂ ng = O(ǫ)

in such a way that ∂ f
(0)
p = O(ǫ) and ∂ f

(0)
g = O(ǫ).

Keeping in mind that both f
(0)
p and f

(0)
g are even with

respect to cpz and cp , and since ∂ f
(0)
p = O(ǫ) and

∂ f
(0)
g = O(ǫ), the resulting equation is in the form

∂ζ

∫
m pcpzcp (f(0)p + ǫf(1)p − f(0)g − ǫf(1)g ) dcp −

1

αph

∫
m pcp Jp,ph(f

(0)
p + ǫf(1)p ) dcp = ǫ

∫
m pcp C(0)

p dcp.

Integrating with respect to ζ yields that

ǫ

∫
m pcpzcp f (1)

g dcp −
ǫ

αph

∫
m pcp Jp,ph(f

(1)
p ) dcpdζ

= ǫ

∫
m pcp C(0)

p dcpdζ.

The first term may be evaluated as Π z by using (120)
in the z directions. Moreover, in order to eliminate the
reactive source term, we may form the overall layer tan-
gential momentum balance of the surface species. The
resulting equations are obtained in the form

0 =
ǫ

αph

∫
m ici Ji,ph(f

(1)
i ) dcidζ + ǫ

∫
m icizC

(0)
i dcidζ.

Adding all the species tangential momentum balance and
using the conservation of momentum in the chemical col-
lision operators yields

Π z =
∑

p,c,s,b

ǫ

αph

∫
m ici Ji,ph(f

(1)
i ) dcidζ.

It is then natural to define the tangential component of

the normal stress in the solid as

P
so
z = −σso

z =
∑

p,c,s,b

ǫ

αph

∫
m ici Ji,ph(f

(1)
i ) dcidζ,

since it represents the gain in tangential momentum by
the surface species due to interaction with phonon per
unit surface and time and thus represents a tangential
force per unit surface. We thus finally obtain the equal-
ity of the tangential component of the normall stress or
pressure tensor

P
g
z = Π z = P

so
z = −σso

z, (123)

and only first order term remain.

C. Thermal boundary condition

We multiply by 1
2m p|cp|

2 + ep +wp and ǫ the kinetic

equation (81) for i = p, multiply by 1
2m p|cp|

2 + ep and
ǫ the gas kinetic equation (82), and form the difference
equation. Integrating then with respect to the particle
velocity, and keeping all term of order ǫ0 and ǫ1, it is
obtained that
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∂ζ

∫
cpz

{
(12m p|cp|

2 + ep +wp)(f
(0)
p + ǫf(1)p )− (12m p|cp|

2 + ep)(f
(0)
g + ǫf(1)g )

}
dcp =

1

αph

∫
(12m p|cp|

2 + ep +wp)Jp,ph(ǫf
(1)
p ) dcp + ǫ

∫
(12m p|cp|

2 + ep +wp)C
(0)
p dcp.

Use has been made that ∂tng = O(ǫ), in order to sup-

press the time derivative term. In addition, since f
(0)
p and

f
(0)
g are even in cp , the integrals containing f

(0)
p and f

(0)
g

on the left hand side vanish, and since constants are or-
thogonal to the collision operators, the term containing
ep + wp in the first integral on the right-hand side has
vanishing contribution. Then, integrating this equation
with respect to ζ, it is obtained that

ǫ

∫
cpz(

1
2m p|cp|

2 + ep)f
(1)
g dcp =

ǫ

αph

∫
1
2m p|cp|

2Jp,ph(f
(1)
p ) dcpdζ

+ ǫ

∫
(12m p|cp|

2 + ep +wp)C
(0)
p dcpdζ. (124)

Using the definition of the thermal conductivity coeffi-
cient λ and the isotropy of Jp,p, it is established that

ǫ

∫
cpz

1
2m p|cp|

2αpφ
λf (0)

g dcp = −ǫλ ∂zTg = Qz,

where Q = −ǫλ∂xTg denotes the heat flux in the gas.

The moment associated with f
(1)
g is then evaluated as

ǫ

∫
cpz(

1
2m p|cp|

2+ep)f
(1)
g dcp =

(
5
2kBTg+ep

)
ngvgz+Qz.

In order to eliminate the reactive source term in the
right hand side of (124), proceeding as for the momentum
balance equations, we may use the thermal balance of the
surface species. The resulting equations are in the form

ǫ∂t

∫
(12m i|ci|

2 + ei +wi)f
(0)
i dcidζ =

ǫ

αph

∫
1
2m i|ci|

2Ji,ph(f
(1)
i ) dcidζ

+ ǫ

∫
(12m i|ci|

2 + ei +wi)C
(0)
i dcidζ.

Letting then

w̃i =

∫
wi exp

(
−wi/kBTw

)
dζ
/ ∫

exp
(
−wi/kBTw

)
dζ,

and

ẽi = ei + w̃i, (125)

adding the energy balance of all the species and using the
conservation of energy in chemical reactions yields

(
5
2kBTg + ep

)
ngvgz +Qz +

∑

c,s,b

∂t
(
(32kBTg + ẽi)ñi

)
=

∑

p,c,s,b

ǫ

αph

∫
1
2m i|ci|

2Ji,ph(f
(1)
i ) dcidζ.

The solid heat flux at the surface is defined as

Qso
z =

∑

p,c,s,b

ǫ

αph

∫
1
2m i|ci|

2Ji,ph(f
(1)
i ) dcidζ,

since it represents the gain in kinetic energy of the species
due to interaction with phonons per unit surface and time
and represents a heat flux. Using then the governing
equations for the surface species, we have established that

(
5
2kBTg + ep

)
ngvgz +Qz +

∑

c,s,b

(32kBTg+ẽi)

∫
C
(0)
i dcidz

= Qso
z . (126)

Finally letting hi =
3
2kBTg + ẽi for i ∈ {c, s, b} and hp =

5
2kBTg + ep, we may write (126) in the form

Qz +
∑

p,c,s,b

hi

∫
C
(0)
i dcidz = Qso

z . (127)

This relation corresponds to the usual thermal flux bal-
ance at a reactive surface where the temperature is fixed
[19, 40].

The resulting dynamics boundary conditions
(122)(123) and (127) completes the species mass
boundary conditions obtained in Section IV. There are
nevertheless limitations for such boundary conditions
that originate from various assumptions used in the
model. The system is first isothermal so that the surface
and bulk temperature gradients cannot properly be
taken into account. The surface is also constrained to
have the same temperature as the gas and the solid
body and thus has no thermal degrees of freedom. The
phonons are also assumed to be at equilibrium and the
heat flux in the solid cannot be expressed in terms of
the temperature gradient in the solid.
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VI. FIRST ORDER EXPANSIONS IN THE

ADSORBATE

First order expansions are investigated in the adsor-
bate layer as well as the corresponding species fluid
boundary conditions.

A. Simplified phonon interaction operator

It is assumed in the following that the phonon collision
operators are in the relaxation form

1

αph
Ji,ph(ϕi) = −

1

τi,ph

(
ϕi − 〈ϕi〉mi

)
, (128)

for i ∈ {p, c, s, b, σ}, where the relaxation times τi,ph are
independent of the velocity ci and 〈ϕi〉 denotes for short
the integral over the corresponding velocity space

〈ϕi〉 =

∫
ϕi dci, i ∈ {p, c, s, b, σ}.

This assumption introduced by Borman et al. simplifies
the analysis of the adsorbate layer [21–24, 31]. For the
physisorbate species, keeping in mind that there is no
interaction with phonons far from the surface, we must
also have limζ→∞ τp,ph(ζ) = +∞.
A further simplifying assumption concerning the

chemisorbed and surface species is that the relaxation
times τc,ph, τs,ph and τb,ph are also independent of ζ

τc,ph = Cte, τs,ph = Cte τb,ph = Cte. (129)

This assumption seems natural since the surface and
chemisorbed layers are thin layers. The relaxation times
are then given by τi,ph in the relevant zones (ζ−i , ζ

+
i ),

i ∈ {c, s, b}, and are +∞ outside of these zones. Diffusion
processes on surfaces or in solids being due to thermal ag-
itation, we will naturally find that collisions with phonons
lead to surface diffusion and in particular to diffusion of
the chemisorbed species. Since the bulk species denote
crystal atoms bonded with chemisorbed particles A(s),
they must naturally have the same macroscopic surface

diffusion velocity and this will yield a constraint express-
ing τb,ph in terms of τc,ph established in the following.

B. Orders of magnitude

Prior to investigating higher order equations, we need
to estimate the asymptotic order of various quantities.
The gas momentum equation at the origin z = 0 is first
in the form

m gng∂tvg + m gngvg·∂xvg + ∂x(kBngTg) + ∂xΠg = 0,

where Πg = −ǫηS denotes the viscous tensor. Since the
velocity vg is O(ǫ) near the surface and also necessarily

its time derivative ∂tvg = ǫ∂tvg, this equation implies
that the pressure gradient is ∂x(ngTg)(0) = O(ǫ). Using
this relation in the tangential direction, and since Tg(0) =
Tw is constant along the surface, we obtain that

∂ ng(0) = O(ǫ). (130)

This estimate (130), deduced ∂x(ngTg) = O(ǫ), will
eliminate surface diffusion effects in the physisorbate.
This is natural since the physisorbate is a single species

fluid and there is no term proportional to the num-
ber density gradient in such a single species fluid per-
turbed distribution function. The integral equation for

the perturbed distribution function φ̂
(1)
g indeed reads

Îg(φ̂
(1)
g ) = −(∂t log f̂

(0)
g + cg·∂x log f̂

(0)
g ) and in the ex-

pression of the right hand side, the ∂xng term com-

ing from cg·∂x log f̂
(0)
g is exactly compensated by the

∂xng term arising from the pressure gradient term of

the momentum equation obtained from (∂vg
log f̂

(0)
g )∂tvg

through ∂t log f̂
(0)
g .

We have already seen in Section III C that ∂ vg = 0
and ∂xvgz = O(ǫ) so that only ∂zvg may remain in the
gradient ∂xvg at zeroth order. However, assuming that
the crystal is free of tangential stress σ z = 0, we ob-
tain from the zeroth order dynamic boundary condition
(123) at the interface that ∂zvg = O(ǫ). Using previ-
ous velocity gradient estimates we thus have ∂xv = O(ǫ)
and of course ∂xT = O(ǫ) since the system is isothermal.
The number densities ns, nc, nσ, and Wp,c are also natu-
rally assumed to be O(1) and by integrating through the
adsorbate layer it is obtained that ñs, ñc, and ñσ, are
O(ǫ). One thus observes a reduction of the asymptotic
order of surface concentrations due to the lower surface

dimension since the adsorbate layer has thickness O(ǫ).
In the following sections, we will further assume that

the surface chemistry is slow in such a way that

W+ = O(ǫa), (131)

where a = 1. This is a feasible assumption since surface
chemistry is generally slow in comparison with homoge-
neous chemistry and we have also seen that ∂tng(0) =
O(ǫ) and vg = O(ǫ) so that the main adsorption reactant
is slowly transported to the surface. This assumption
(131) with a = 1 corresponds in the case of homogeneous
reactions to that of Maxwellian chemistry [40].

The assumption (131) implies that C
(0)
i = O(ǫa), for

i ∈ {p, c, s, b} and that the reaction constant K de-
fined in (113) is O(ǫ1+a) since W+ = O(ǫa) and the
integration variable is z. This notably implies that∫
C
(0)
i dcidz = O(ǫ1+a) as well as ∂t

∫
C
(0)
i dcidz = O(ǫ1+a)

for i ∈ {p, c, s, b}. It is then obtained from (109) that
∂tñc = O(ǫ1+a) and from ñc = θñσ that ∂tθ = O(ǫa).
We also obtain from the expression of the Stefan flux
that vgz(0) = O(ǫ1+a) and using the mass conservation
equation that ∂zvgz(0) = O(ǫ1+a). In this situation, both

expansion coefficients φ
(1)
g and φ

(2)
g are O(ǫ) as well as
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f
(1)
g and f

(2)
g and these orders of magnitude will be used

in the next sections.

C. First order expansion in the physisorbate

From equation (81) and the inner expansion (78), the
first order equation in the physisorbate is obtained in the

form

∂tf
(0)
p + cp ·∂ f(0)p + cpz ∂ζ f

(1)
p −

1

m p
∂ζwp ∂cpz f

(1)
p +

1

αp
f(0)p Ip(f

(1)
p /f(0)p ) +

1

τp,ph

(
f(1)p − 〈f(1)p 〉mp

)
= C(0)

p , (132)

where Ip denotes the linearized collision operator around

the zeroth order inner distribution f
(0)
p

Ip(ψ) = −
1

f
(0)
p

(
Jp,p(f

(0)
p , f(0)p ψ) + Jp,p(f

(0)
p ψ, f(0)p )

)
.

(133)

We introduce Φ
(1)
p = f

(1)
p /f

(0)
p as well as the operator

Hp(ϕ) = cpz ∂ζϕ−
1

m p
∂ζwp ∂cpzϕ+

1

αp
Ip(ϕ)

+
1

τp,ph

(
ϕ− 〈ϕmp〉

)
,

and we note that 〈Φ
(1)
p f

(0)
p 〉mp = 〈Φ

(1)
p mp〉f

(0)
p . The first

order linearized system then reads

Hp(Φ
(1)
p ) = Ψ(1)

p , (134)

where

Ψ(1)
p =

C
(0)
p

f
(0)
p

− ∂t log f
(0)
p − cp ·∂ log f(0)p .

Moreover, keeping in mind that C
(0)
p = O(ǫ) with a = 1,

that ∂tf
(0)
p = O(ǫ) and ∂ f

(0)
p = O(ǫ), it is then found

that Ψ
(1)
p vanishes at zeroth order. On the other hand,

with f
(1)
p decomposed into f

(1)
p = f

(1)
g + f

(1)
lc the boundary

conditions for f
(1)
p are

lim
ζ→0

f(1)p = 0, lim
ζ→∞

(f(1)p − f(1)g ) = 0, (135)

since there are no physisorbed particles as ζ → 0 and the

corrector f
(1)
lc goes to zero as ζ → ∞.

D. First order expansion of surface species

Proceeding similarly for the chemisorbate and surface
species, the first order equations obtained form (81) are

in the form

∂tf
(0)
i +ci ·∂ f

(0)
i + ciz ∂ζ f

(1)
i −

1

m i
∂ζwi ∂c

iz
f
(1)
i

+
1

τi,ph

(
f
(1)
i − 〈f

(1)
i 〉mi

)
= C

(0)
i , (136)

where i ∈ {c, s, b}. We Introduce Φ
(1)
i = f

(1)
i /f

(0)
i for the

surface species i ∈ {c, s, b} as well as the operator Hi

naturally associated with (136)

Hi(ϕ) = ciz ∂ζϕ−
1

m i
∂ζwi ∂c

iz
ϕ+

1

τi,ph

(
ϕ− 〈ϕmi〉

)
,

and we note that 〈Φ
(1)
i f

(0)
i 〉mi = 〈Φ

(1)
i mi〉f

(0)
i . The inte-

gral equation for the ith species is then in the form

Hi(Φ
(1)
i ) = Ψ

(1)
i , i ∈ {c, s, b}, (137)

where

Ψ
(1)
i =

C
(0)
i

f
(0)
i

−∂t log f
(0)
i −ci ·∂ log f

(0)
i , i ∈ {c, s, b}.

(138)
Moreover, the boundary conditions read

lim
ζ→ζ−

i

f
(1)
i = 0, lim

ζ→ζ+
i

f
(1)
i = 0. (139)

It is further natural to impose an Enskog type constraint

for the perturbed distribution Φ
(1)
i in the form

∫
f
(0)
i Φ

(1)
i dcidζ = 0, i ∈ {c, s, b}, (140)

in order to determine the average value of Φ
(1)
i . Denoting

by 1I the function equal to unity, we indeed have Hi(1I) =

0 with limζ→ζ−

i

f
(0)
i = 0 and limζ→ζ+

i

f
(0)
i = 0 so that

any constant could otherwise be added to Φ
(1)
i . This

contrasts with the physisorbate where the only function

φp such that Hp(φp) = 0 with limζ→0 f
(0)
p φp = 0 and
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limζ→+∞ f
(0)
p φp = 0 is the zero function. Indeed, it is

found—as in the study of the zeroth order physisorbate

layer—that f
(0)
p φp is then proportional to f

(0)
p so that φp

must be a constant. But this constant must then be zero

since limζ→+∞ f
(0)
p = f

(0)
g , keeping in mind that wp goes

to zero as ζ → ∞ and that f
(0)
g is nonzero.

The right hand side of (138) may then be decomposed
in the form

Ψ
(1)
i = Ψ

(1)
i,ev +Ψ

(1)
i,od, i ∈ {c, s, b}.

where

Ψ
(1)
i,ev =

C
(0)
i

f
(0)
i

− ∂t log f
(0)
i , Ψ

(1)
i,od = −ci ·∂ log f

(0)
i ,

are respectively even and odd functions of the tangential

velocity ci . The solution Φ
(1)
i may thus be written

Φ
(1)
i = Φ

(1)
i,ev +Φ

(1)
i,od, i ∈ {c, s, b}. (141)

where

Hi(Φ
(1)
i,ev) = Ψ

(1)
i,ev, Hi(Φ

(1)
i,od) = Ψ

(1)
i,od. (142)

The distributions f
(1)
i,ev = f

(0)
i Φ

(1)
i,ev and f

(1)
i,od = f

(0)
i Φ

(1)
i,od are

respectively even and odd in the tangential velocity ci

and the Enskog constraint reduces to
∫
f
(0)
i Φ

(1)
i,ev dcidζ =

0 since that for Φ
(1)
i,od is automatically satisfied. Moreover,

at both sides ζ = ζ−i and ζ = ζ+i the distributions f
(1)
i,ev

and f
(1)
i,od must go to zero.

E. Tangential surface diffusion

We investigate in this section the species molar fluxes
associated with surface tangential diffusion

F̃i = ǫ

∫
f
(1)
i ci dcidζ = ǫ

∫
f
(0)
i Φ

(1)
i,od ci dcidζ,

where i ∈ {c, s, b}. These fluxes are required prior to
investigating surface species fluid boundary conditions.
We consider the coupled system of equations associated
with the chemisorbate and free site species and denote by
S the corresponding indexing set S = {c, s}. The bulk
species—constrained to follow the chemisorbed species—
uncouples and will be examined separately later.
A remarkable point of monolayer crystal surfaces is

that the total species number per unit surface is constant∑
i∈S

ñi = ñσ from the lattice structure of the crystal.
There is then a corresponding constraint stating that the
total surface molar flux vanish [59, 60]

∑

i∈S

F̃i = ǫ
∑

i∈S

∫
f
(0)
i Φ

(1)
i,od ci dcidζ = 0. (143)

This constraint is analogous to the usual mass conserva-
tion constraint between mass fluxes in a multicomponent
mixture and is naturally associated here to the fixed total
number of crystal atom on the surface. It is thus natu-

ral to define diffusion velocities W̃i with respect to the
molar velocity

W̃i =
ǫ

ñi

∫
f
(0)
i Φ

(1)
i,odci dcidζ

−
ǫ

ñ

∑

j∈S

∫
f
(0)
j Φ

(1)
j,odcj dcjdζ, (144)

and the diffusion fluxes as F̃i = ñiW̃i . We may then
use the formalism developped by Waldmann for molar
based diffusion transport presented in Appendix A and
adapted to the situation of thin layers mutatis mutandis.
The kinetic equations are written using the vector op-

erator

H = (Hc,Hs)
t, (145)

acting on pairs of perturbed distribution functions Φ
(1)
od =

(Φ
(1)
c,od,Φ

(1)
s,od)

t. The right hand side is in the form Ψ
(1)
od =

(Ψ
(1)
c,od,Ψ

(1)
s,od)

t and from f
(0)
i = ñi m̃i where ñi is the

surface concentration of the ith species, we obtain that

Ψ
(1)
i,od = −ci ·∂ log f

(0)
i =

− ci ·∂ log ñi = −ci ·∂ log p̃i,

where p̃i = ñikBTw denotes the surface partial pressure
of the ith species. Denoting by p̃ =

∑
l∈S

p̃l the total
surface pressure—that remains constant—and x̃i = p̃i/p̃
the surface mole fraction of the ith species, we may then
write that

Ψ
(1)
i,od = −p̃

∑

l∈S

1

p̃i
ci ·d̃l δil,

where the species surface diffusion driving forces are given
by

d̃i = ∂ x̃i, i ∈ S, (146)

and are constrained by the relation

∑

l∈S

d̃l = 0.

Adapting the formalism of Waldmann, the right hand
side is rewritten in the form

Ψ
(1)
od = −p̃

∑

l∈S

Ψ(1),l·d̃l,

where Ψ(1),l = (Ψ
(1),l
i )i∈S and

Ψ
(1),l
i =

1

p̃i
(δil − x̃i)ci .
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Denoting by Φ(1),l the solution to the integral equations

H(Φ(1),l) = Ψ(1),l,

with the boundary conditions limζ→ζ−

i

f
(0)
i Φ

(1),l
i = 0 and

limζ→ζ+
i

f
(0)
i Φ

(1),l
i = 0, the molar diffusion velocities are

then obtained in the form

W̃i = −
∑

l∈S

{ ǫp̃
ñi

∫
f
(0)
i ci ⊗Φ

(1),l
i dcidζ −

∑

j∈S

ǫp̃

ñ

∫
cj f

(0)
j ⊗Φ

(1),l
j dcjdζ

}
d̃l. (147)

The particle tangential velocities ci being two-

dimensional vectors, the right hand sides Ψ
(1),l
i , the per-

turbed distributions Φ
(1),l
i , the tangential fluxes F̃i and

velocities W̃i are also two-dimensional vectors. We may
now use the tangential isotropy of the operator H to de-

duce that the vector Φ
(1),l
i is necessarily proportional to

the vector ci with a coefficient that is scalar function of
the scalar invariant |ci |2 and this implies the isotropy
relation

∫
f
(0)
i ci ⊗Φ

(1),l
i dci =

1

2

∫
f
(0)
i ci ·Φ

(1),l
i dciĨ,

where Ĩ is the identity tensor in the two-dimensional tan-
gential plane. This relation is analogous to that tradi-
tionally obtained for isotropic gas mixtures in three di-
mensional velocity spaces [9, 38, 39]. We thus obtain the
diffusion velocities in the form

W̃i = −
∑

l∈S

ǫD̃ild̃l, (148)

where the surface multicomponent diffusion coefficients
are given by

D̃il =
p̃

2ñi

∫
f
(0)
i Φ

(1),l
i ·ci dcidζ

−
p̃

2ñ

∑

j∈S

∫
f
(0)
j Φ

(1),l
j ·cj dcjdζ, i, l ∈ S.

Since the relaxation times τi,ph are independent of ζ

and of ciz, the solutions Φ(1),l, l ∈ S, are further found
in the explicit form

Φ
(1),l
i = τi,ph

1

p̃i
(δil − x̃i)ci , i, l ∈ S. (149)

After some algebra, the surface tangential diffusion ma-

trix D̃ = (D̃il)i,l∈S is found to be

D̃ = D

(
x̃s/x̃c −1

−1 x̃c/x̃s

)
, (150)

with an effective molar diffusion coefficient D of the sur-
face binary mixture D given by

D = x̃cDs + x̃sDc , (151)

where Di denotes the surface diffusion coefficient of the
ith species associated with phonon interactions

Di =
kBTw
m i

τi,ph, i ∈ {c, s, b}, (152)

that is directly proportional to the relaxation time τi,ph.

The matrix D̃ is symmetric D̃ = D̃t and such that D̃ x̃ =
0 where x̃ = (x̃c, x̃s)

t denotes the mole fraction vector, in

agreement with the theory. The relation D̃ x̃ = 0 implies
in particular the natural constraint (143) between the

tangential fluxes
∑

i∈S
F̃i =

∑
i∈S

ñiW̃i = 0.
In addition, since the bulk species C(b) is by defi-

nition following the chemisorbed species, we must also
have Dc = Db and this yields the natural constraint
τb,ph/m b = τc,ph/m c. Considering the system consti-
tuted by the chemisorbed species and the bulk species
also yields that the bulk species is diffusing exactly like

the chemisorbed species with x̃b = x̃c and W̃b = W̃c .
The advantage of the preceeding formalism is that

it fully applies to multicomponent mixtures. However,
since we are considering a binary mixture, the diffusion
fluxed may be further simplified by using ∂ x̃c = −∂ x̃s
and ∂ x̃b = −∂ x̃s. From (148) and (150), the resulting

effective tangential mass fluxes F̃i = ñiW̃i are finally
in the form

F̃i = ǫ

∫
ci f

(1)
i dcidζ = −ǫD ∂ ñi, i ∈ {c, s, b},

(153)
with D given by (151). Incidentally, the diffusion veloc-
ity of the chemisorbate may also be expressed in terms
of the gradient of the modified surface chemical potential
µ̃c since ∂ µ̃c is proportional to ∂ x̃c.
The relations (153), (151), and (152) expressing the

diffusion fluxes and the surface diffusion coefficients show
that surface diffusion is due to the interaction with
phonons. This is a natural results since surface diffu-
sion and volume diffusion in solids are consequences of
thermal agitation [47, 48] and thermal agitation is repre-
sented by the interaction with phonons in the model.

F. Layer-averaged kinetic equation

We investigate in this section layer-averaged or par-

tially integrated kinetic equations for the surface species.
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The layer-averaged zeroth order densities are defined by

f̃
(0)
i =

∫
f
(0)
i dcizdζ, i ∈ {c, s, b},

and the layer-averaged odd perturbed distributions Φ
(1)
i,od

as

Φ̃
(1)
i,od =

1

f̃
(0)
i

∫
f
(0)
i Φ

(1)
i,oddcizdζ, i ∈ {c, s, b}.

Since the relaxation times for the surface species are in-
dependent of ciz and ζ, we may then define the ith layer-

averaged kinetic operator H̃i as

H̃i(ϕ̃) =
1

τi,ph

(
ϕ̃−

∫
ϕ̃ m̃idci

)
, i ∈ {c, s, b},

where m̃i is the tangential two-dimentional Maxwellian
of the ith species, and the layer-averaged perturbed dis-

tributions Φ̃
(1)
i,od then satisfy the kinetic equations

H̃i(Φ̃
(1)
i,od) = Ψ̃

(1)
i,od, i ∈ {c, s, b}, (154)

where

Ψ̃
(1)
i,od = −ci ·∂ log f̃

(0)
i , i ∈ {c, s, b}.

These equations are directly obtained by multiplying

Hi(Φ
(1)
i,od) = Ψ

(1)
i,od by f

(0)
i , partially integrating the re-

sulting kinetic equations with dcizdζ, and then dividing

by f̃
(0)
i . Letting then Φ̃

(1)
od = (Φ̃

(1)
i,od)i∈S, H̃ = (H̃i)i∈S,

and Ψ̃
(1)
od = (Ψ̃

(1)
i,od)i∈S, we obtain H̃(Φ̃

(1)
od ) = Ψ̃

(1)
od .

These layer-averaged kinetic equation (154) may be
used whenever one wants to obtain the layer-averaged

distribution Φ̃
(1)
i,od or any of its moment with respect

to the tangential velocity ci . The tangential diffusion
fluxes in particular may be expressed as

F̃i = ǫ

∫
f̃
(0)
i Φ̃

(1)
i,od ci dci , i ∈ {c, s, b}.

TheWaldmann formalism for the surface kinetic equation
also leads to

Ψ̃
(1)
od = −p̃

∑

l∈S

Ψ̃
(1),l
od ·d̃l,

where Ψ̃
(1),l
od = (Ψ̃

(1),l
i,od )i∈S and

Ψ̃
(1),l
i,od =

1

p̃i
(δil − x̃i)ci .

The solutions Φ̃
(1),l
od to the integral equations

H̃(Φ̃
(1),l
od ) = Ψ̃

(1),l
od ,

are found in the explicit form

Φ̃
(1),l
i,od = τi,ph

1

p̃i
(δil − x̃i)ci , i, l ∈ S.

The tangential velocities may also be written

W̃i =
ǫ

ñi

∫
f̃
(0)
i Φ̃

(1)
i,odci dci −

ǫ

ñ

∑

j∈S

∫
f̃
(0)
j Φ̃

(1)
j,odcj dcj ,

(155)
and from the isotropy of the layer-averaged operator, we
recover the molar diffusion velocities from (148) and the
diffusion coefficients

D̃il =
p̃

2ñi

∫
f̃
(0)
i Φ̃

(1),l
i,od ·ci dci

−
p̃

2ñ

∑

j∈S

∫
f̃
(0)
j Φ̃

(1),l
j,od ·cj dcj ,

and all the results of the previous section are elegantly
recovered with the layer-averaged kinetic equations.
It is then possible to introduce a surface bracket opera-

tor acting on pairs Φ̃ = (Φ̃i)i∈S and Φ̃′ = (Φ̃′
i)i∈S, where

Φ̃i and Φ̃′
i are functions of ci , in the form

⌊⌊Φ̃, Φ̃′⌋⌋ =
∑

i∈S

∫
f̃
(0)
i H̃i(Φ̃i)⊙ Φ̃′

idci . (156)

The surface bracket operator is also symmetric ⌊⌊Φ̃, Φ̃′⌋⌋ =

⌊⌊Φ̃′, Φ̃⌋⌋, positive semi-definite ⌊⌊Φ̃, Φ̃⌋⌋ ≥ 0, and its kernel
is spanned by constants. It is then obtained after some
algebra that

D̃il =
kBTwp̃

2
⌊⌊Φ̃

(1),i
od , Φ̃

(1),l
od ⌋⌋,

so that the two-dimensional surface formalism for layer
averaged quantities is entirely similar to that of gas mix-
tures in three dimensions mutatis mutandis.

G. Physisorbate mass boundary condition

The first order accurate mass conservation equation,
obtained by taking the scalar product of the difference
kinetic equation (88) with the mass collisional invariant
ψ1
p = 1 and keeping zeroth and first order terms, is in

the form
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∂t

∫
(f(0)p − f(0)g )dcp + ∂t

∫
ǫ(f(1)p − f(1)g )dcp + ∂ ·

∫
ǫcp (f(1)p − f(1)g )dcp

+ ∂ζ

∫
cpz(f

(1)
p + ǫf(2)p − f(1)g − ǫf(2)g )dcp =

∫
C(0)
p dcp.

Use has been made of
∫
cp f

(0)
p dcp =

∫
cp f

(0)
g dcp = 0 and

that the chemical term C
(0)
p is already of first order since

a = 1. The order of magnitude of the contributions in the
above equation must be investigated in order to obtain
the effective boundary condition.
The zeroth time derivative term is in the form

∂t

∫
(f(0)p − f(0)g )dcp = ∂tng(0)

{
exp
(
−

wp

kBTw

)
− 1
}
,

and may be rewritten using the total mass conservation
equation in the gas. Since it has been established that
∂tng(0) is O(ǫ) this term is already of first order in ǫ.

Concerning the other time derivative term ǫ∂t
∫
(f

(1)
p −

f
(1)
g )dcp we note that

∂t(f
(1)
p − f(1)g ) =f(0)p ∂t(Φ

(1)
p − Φ(1)

g ) + (f(0)p − f(0)g )∂tΦ
(1)
g

+ ∂t logn
(0)
g (f(1)p − f(1)g ),

where f
(1)
g and Φ

(1)
g are associated with the gas distribu-

tion inner expansion fg and have been defined in Section

III E. Moreover, we have ∂t logn
(0)
g = O(ǫ), and since

a = 1 we also have vgz = O(ǫ), φ
(1)
g = O(ǫ) so that

∂tvgz = O(ǫ), ∂tφ
(1)
g = O(ǫ), and ∂tΦ

(1)
g = O(ǫ). In

order to establish that ∂t(f
(1)
p − f

(1)
g ) = O(ǫ), it is thus

sufficient to establish that ∂tΦ
(1)
p − ∂tΦ

(1)
g = O(ǫ). To

this aim, we first note that

Hp(Φ
(1)
p − Φ(1)

g ) = Ψ(1)
p −Ψ(1)

g − (Hp −Hg)(Φ
(1)
g ),

where Ψ
(1)
g and Hg have been defined in Section III E.

Differentiating this relation with respect to time, we ob-
tain that

Hp(∂tΦ
(1)
p −∂tΦ

(1)
g ) = ∂tΨ

(1)
p −∂tΨ

(1)
g −(Hp−Hg)(∂tΦ

(1)
g ),

(157)
keeping in mind that the adsorbate is isotherm. However

we have ∂tΨ
(1)
p = O(ǫ) and ∂tΨ

(1)
g = O(ǫ) since ∂tC

(0)
p =

O(ǫ), ∂tf
(0)
p = O(ǫ), ∂ f

(0)
p = O(ǫ), ∂2t f

(0)
p = O(ǫ) and

∂t∂ f
(0)
p = O(ǫ). Moreover, ∂tΦ

(1)
p − ∂tΦ

(1)
g goes to zero

as ζ → ∞ and its limit as ζ → 0 is −∂tΦ
(1)
g that is also

O(ǫ). Therefore, as the solution of (157), the difference

∂tΦ
(1)
p − ∂tΦ

(1)
g is also O(ǫ) and ǫ∂t

∫
(f

(1)
p − f

(1)
g )dcp is

thus of second order.
The zeroth order tangential flux vanish

∫
cp (∂ f(0)p − ∂ f(0)g )dcp = 0,

and concerning the first order tangential flux

ǫcp (∂ f
(1)
p − ∂ f

(1)
g )dcp we note that

Hp(∂ Φ(1)
p − ∂ Φ(1)

g ) = ∂ Ψ(1)
p − ∂ Ψ(1)

g

− (Hp −Hg)(∂ Φ(1)
g ),

and we may argue in a similar way as for time derivative

terms, using that ∂ Ψ
(1)
p = O(ǫ), ∂ Ψ

(1)
g = O(ǫ), and

∂ Φ
(1)
g = O(ǫ) from ∂ C

(0)
p = O(ǫ), ∂ vgz = O(ǫ), and

∂ Tg = ∂ Tw = O(ǫ), in order to establish that ∂ f
(1)
p −

∂ f
(1)
g = O(ǫ) so that the term ǫ∂

∫
cp (f

(1)
p − f

(1)
g )dcp is

of second order.

We next have to investigate the contributions arising

from the normal derivative terms ∂ζ
∫
cpz(f

(1)
p + ǫf

(2)
p −

f
(1)
g − ǫf

(2)
g )dcp that may directly be integrated over

(0,∞) and yields the integral

∫
cpz
(
f (1)
g (0) + ǫf (2)

g (0)
)
dcp,

since the integrand goes to zero as ζ → +∞, goes to

−
(
f
(1)
g (0) + ǫf

(2)
g (0)

)
as ζ → 0. We then note that ǫf

(2)
g

is of higher order and that so that only f
(1)
g contributes

as for the zeroth order situation.

Collecting previous results, and integrating over dz =
ǫdζ, the first order accurate fluid boundary condition for
the physisorbate is finally obtained in the form

∂z
(
ngvgz

)
(0)

∫ {
1− exp

(
−

wp

kBTw

)}
dz

+
(
ngvgz

)
(0) =

∫
C(0)
p dcpdz. (158)

The difference with the less accurate version (110) is thus
in the normal derivative term of the Stefan flux. We
have therefore obtained a robin—mixed derivative—law
for the Stefan normal flux ngvgz at z = 0 that is new
to the best of the authors’ knowledge. This law may
be termed Navier-Stefan law since it uses a Navier type
relation in order to express the Stefan flux.
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H. Surface species mass boundary conditions

For the surface species, it is obtained at first order
accuracy that

∂t

∫
(f

(0)
i + ǫf

(1)
i )dci + ∂ ·

∫
ci (f

(0)
i + ǫf

(1)
i )
)
dci

+ ∂ζ

∫
ciz(f

(1)
i + ǫf

(2)
i )dci =

∫
C
(0)
i dci,

where i ∈ {c, s}. The first time derivative term yields the
contribution

∂t

∫
f
(0)
i dci = ∂tni exp

(
−

wi

kBTw

)
, i ∈ {c, s, b},

and the other time derivative term ∂t
∫
f
(1)
i dci yields a

zero contribution when integrated over ζ from the natural

Enskog constraint
∫
f
(1)
i dcidζ = 0.

For the tangential derivative terms, we first note that∫
ci f

(0)
i dci = 0 whereas at first order, we may use

(153) to get that ǫ
∫
ci f

(1)
i dcidζ = −ǫD ∂ ñi where

D = x̃sDc + x̃cDs is the effective binary tangential sur-
face diffusion coefficient. On the other hand, the normal
derivatives terms do not contribute to the integral over
ζ since there are no particles at the limits ζ → ζ−σ and
ζ → ζ+σ .
The overall mass conservation equation in the

chemisorbate is obtained in the form

∂tñi − ǫ∂ ·
(
D ∂ ñi

)
=

∫
C
(0)
i dcidz, i ∈ {c, s, b},

(159)
and is the first order accurate version of (111). We have
thus obtained a surface diffusion term due to the inter-
action with phonons. This is in agreement with statisti-
cal mechanics of surface diffusion or surface diffusion in
solids that can be directly related to atom fluctuations
and atom jumps of the crystal lattice [47, 48].
The overall mass conservation equation summed over

the chemisorbed and the free sites then yields

∂t(ñc + ñs)− ǫ∂ ·
(
D ∂ (ñc + ñs)

)
= 0, (160)

since
∫
C
(0)
c dccdz +

∫
C
(0)
s dcsdz = 0. We thus recover

that the local number of surface particles is the constant
solution ñc + ñs = ñσ.
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VII. CONCLUSION

The kinetic model describing physisorption and
chemisorption of gas particles on a solid surface intro-
duced in this work may be extended is various directions.
Adding bulk and surface phonon kinetic equations would
allow to take into account variations of temperature in
the crystal. Using a different scaling would also allow
the surface to have its own temperature. The situation
of polyatomic gases or mixtures of gases with complex
surface reactions mechanisms that are commonly used in
practical applications is also of high scientific interest.
The linearized first order equations associated with the

physisorbate and the chemisorbate also lead to new half
space integro-differential equations that have not been
investigated. Multitemperature flows as well as state
to state models also involve gas surface interactions of
paramount importance for reentry and may be investi-
gated using similar models and techniques. Finally, using
a kinetic scaling instead of the fluid scaling used in this
paper is also of high scientific interest.

Appendix A: Molar multicomponent diffusion

Multicomponent diffusion fluxes and coefficients de-
fined with respect to the molar averaged velocity have
been investigated by Waldmann [58]. We summarize in
this Appendix Waldmann’s analysis and adapt it to the
situation of tangential surface diffusion.
We consider a gas mixture constituted by n species and

denote by w the molar average velocity

w =
1

n

∑

i∈S

∫
ficidci, (A1)

where S = {1, . . . ,n} denotes the species indexing set,
n the number of species, ni the number density of the
ith species, n =

∑
i∈S

ni the mixture number density,
Ci = ci − v the reduced velocity, and v the usual mass
average mixture velocity. The species diffusion velocities
with respect to the mass average velocity v are defined
as

V i =
1

ni

∫
ficidci − v =

1

ni

∫
fiCidci, i ∈ S,

(A2)
and those with respect to the mole average velocity w as

W i =
1

ni

∫
ficidci −w, i ∈ S. (A3)

Denoting by xi = ni/n the mole fraction of the ith
species, m i the particle mass of the ith species, ρi = m ini

the partial density of the ith species, ρ =
∑

i∈S
ρi the

total density of the mixture, yi = ρi/ρ the mass frac-
tion of the ith species, the following relations are easily
established [58]

w = v +
∑

i∈S

xiV i = v +
1

n

∑

i∈S

∫
fiCidci, (A4)
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W i = V i −
∑

l∈S

xlV l

=
1

ni

∫
fiCidci −

1

n

∑

l∈S

∫
flCldcl, (A5)

V i = W i −
∑

l∈S

ylW l. (A6)

On the other hand, the system of integral equations
associated with multicomponent diffusion may be written
in the vector form [58]

I(φ(1)) = Ψ(1), (A7)

where I = (Ii)i∈S denotes the linearized collision vector
operator, Ii the linearized collision operator of the ith

species, φ = (φ
(1)
i )i∈S the family of perturbed distribu-

tion functions, φ
(1)
i the perturbed distribution function

of the ith species, Ψ(1) = (Ψ
(1)
i )i∈S the right hand side

with

Ψ
(1)
i = −

1

xi
Ci·di,= −

∑

l∈S

1

xi
Ci·dlδil, (A8)

and di the diffusion driving force of the ith species

di = ∂xxi + (xi − yi)∂x log p. (A9)

The solution φ = (φ
(1)
i )i∈S must also be orthog-

onal to the collision invariants of the multicompo-
nent gas 〈〈f (0)φ, ψl〉〉 = 0 for 1 ≤ l ≤ n + 4
where 〈〈f (0)ξ, ζ〉〉 denotes the natural scalar product

〈〈f (0)ξ, ζ〉〉 =
∑

i∈S

∫
f
(0)
i ξi ⊙ ζi dci, f

(0)
i the Maxwellian

distribution of the ith species, ψl = (δil)i∈S for l ∈ S,
ψn+ν = (m icνi)i∈S for 1 ≤ ν ≤ 3, ψn+4 = (12m i|ci|

2 +
ei)i∈S where ei is the formation energy of the ith species.
The diffusion driving forces (dl)l∈S are linearly depen-

dent with
∑

l∈S
dl = 0 and are decomposed in the form

dl = dIl − xl
∑

k∈S

dIk, l ∈ S, (A10)

where (dIl)l∈S are unconstrained diffusion driving forces.
A typical choice may be for instance dIl = ∂xxl −
yl∂x log p and

∑
k∈S

dIk = −∂x log p. The right hand
side is then decomposed in the form

Ψ(1) = −p
∑

l∈S

Ψ(1),l·dIl, (A11)

where

Ψ(1),l = (Ψ
(1),l
i )i∈S, Ψ

(1),l
i =

1

pi
(δil − xi)Ci.

We may then write

φ
(1)
i = −p

∑

l∈S

φ
(1),l
i ·dIl,

where φ(1),l = (φ
(1),l
i )i∈S is the solution of the integral

equation system

I(φ(1),l) = Ψ(1),l, (A12)

with the Enskog constraints 〈〈f (0)φ(1),l, ψl′〉〉 = 0 for
1 ≤ l′ ≤ n + 4. The molar diffusion velocities are then
obtained in the form

W i = −
∑

l∈S

Dmol
il dIl = −

∑

l∈S

Dmol
il dl, (A13)

where

Dmol
il =

p

3ni

∫
f
(0)
i φ

(1),l
i ·cidci

−
p

3n

∑

j∈S

∫
f
(0)
j φ

(1),l
j ·cjdcj ,

where we have used the isotropy of the Boltzmann lin-
earized collision operator [9, 38–40, 58]. Letting Dmol =
(Dmol

ij )i,j∈S and x = (x1, . . . , xn)
t we then have the rela-

tions [58]

Dmol = (Dmol)t, Dmolx = 0, (A14)

that are analogous to that obtained with the mass based
diffusion coefficients D = Dt and Dy = 0 mutatis mu-

tandis.

Adapting the molar diffusion formalism of Waldmann
developped for multicomponent gases in three dimensions
to the situation of two-dimensional tangential surface dif-
fusion, the tangential diffusion velocities with respect to
the molar average mixture velocity are obtained in the
form

W̃i =
1

ñi

∫
fici dcidζ −

1

ñ

∑

j∈S

∫
fjcj dcjdζ. (A15)

These velocities may then be used in order to investigate
the surface tangential fluxes. Finally, for multicomponent
gases, the mole average velocity w is generally nonzero—
although it is often neglected for practical applications—
but it is exactly zero on a crystal surface.
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