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I. INTRODUCTION

Understanding the information encoded in the structures of complex transportation systems is a puzzling challenge in complex systems and statistical physics. Information, energy, or materials circulate through disparate systems, in various effective fashions, and in multiple forms. Vascular systems that spread blood and sap, neural dendrites that transmit signals, and river basins that drain water offer interesting examples. Their evident diversity and complexity mask a striking regularity along simplicity. Their transportation structures actually undergo a scaling law that reveals a simple underlying principle. Vascular systems make their exchange surface areas "maximally fractal" [START_REF] West | The fourth dimension of life: Fractal geometry and allometric scaling of organisms[END_REF], dendritic trees minimize their wirings [START_REF] Cuntz | A scaling law derived from optimal dendritic wiring[END_REF], river networks span minimally [START_REF] Banavar | Size and form in efficient transportation networks[END_REF].

Within this perspective, this paper aims to reveal the scaling principle that drives urban street networks. City related transportation networks had been for complex systems a fruitful source of case studies before the internet age [START_REF] Barabási | Network Science[END_REF][START_REF] Newman | Networks: an Introduction[END_REF][START_REF] Watts | Collective dynamics of 'small-world' netwoks[END_REF][START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Broido | Scale-free networks are rare[END_REF][START_REF] Holme | Rare and everywhere: Perspectives on scalefree networks[END_REF][START_REF] Hillier | The hidden geometry of deformed grids: Or, why space syntax works, when it looks as though it shouldn't[END_REF][START_REF] Turner | Angular analysis, in 3rd International Symposium on Space Syntax Atlanta 2001 (Alfred Taubman College of Architecture and Urban Planning[END_REF][START_REF] Jiang | Integration of space syntax into GIS: New perspectives for urban morphology[END_REF][START_REF] Jiang | Topological analysis of urban street networks[END_REF]. The electrical power grid of the western United States provided evidence for the two instrumental breakthroughs in the renewal of network studies [START_REF] Watts | Collective dynamics of 'small-world' netwoks[END_REF][START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Broido | Scale-free networks are rare[END_REF][START_REF] Holme | Rare and everywhere: Perspectives on scalefree networks[END_REF]. One of them is the discovery of scale-free hierarchies among real-world networks [START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Broido | Scale-free networks are rare[END_REF][START_REF] Holme | Rare and everywhere: Perspectives on scalefree networks[END_REF]. Urban street networks appeared promptly to undergo scale-free behaviours as well [START_REF] Jiang | Topological analysis of urban street networks[END_REF][START_REF] Crucitti | Centrality measures in spatial networks of urban streets[END_REF][START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF]. Keeping focus on their scaling property and adopting approaches from the urban community gradually led us to a tractable scaling model actually driven by a simple conservation principle. In pursuing our goal, we realized that our modelization was shedding a new light on the authoritative urban theory developed by C. Alexander [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Salingaros | Principles of Urban Structure[END_REF]. We will interpret our scaling model accordingly.

If the urban community has looked at urban street networks for additional traits with tools developed for generic networks, it has also investigated for city specific traits with tools and approaches inherited from its own background [START_REF] Hillier | The hidden geometry of deformed grids: Or, why space syntax works, when it looks as though it shouldn't[END_REF][START_REF] Turner | Angular analysis, in 3rd International Symposium on Space Syntax Atlanta 2001 (Alfred Taubman College of Architecture and Urban Planning[END_REF][START_REF] Jiang | Integration of space syntax into GIS: New perspectives for urban morphology[END_REF][START_REF] Jiang | Topological analysis of urban street networks[END_REF][START_REF] Crucitti | Centrality measures in spatial networks of urban streets[END_REF][START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF][START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Salingaros | Principles of Urban Structure[END_REF][START_REF] Masucci | Random planar graphs and the London street network[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF][START_REF] Rosvall | Networks and cities: An information perspective[END_REF][START_REF] Masucci | Robustness and closeness centrality for self-organized and planned cities[END_REF][START_REF] Molinero | The angular nature of road networks[END_REF][START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF]. Interestingly enough, the insightful thought of the urbanist C. Alexander on cities [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Salingaros | Principles of Urban Structure[END_REF] has appeared to resonate with scale-free invariance through the notion of "natural" city [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Alexander | A city is not a tree[END_REF][START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF]. "Natural" cities refer to self-organized-like cities. We must also mention the more mathematically oriented but no less insightful work of R. H. Atking on relation functions as pre-networking functions which led to Q-analysis [START_REF] Atkin | Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[END_REF].

To explain the scale-freeness of the electrical power grid, A.-L. Barabási and R. Albert emphasize in Ref. [START_REF] Barabási | Emergence of scaling in random networks[END_REF] two key features of real-world networks: growth and preferential attachment. They introduce accordingly a model which appeared to be the Yule process [START_REF] Newman | Power laws, Pareto distributions and Zipf's law[END_REF][START_REF] Simon | On a class of skew distribution functions[END_REF]: new nodes attach to old ones with a probability proportional to the valence of the old nodes. Mathematical analysis shows that the Yule process reproduces the scale-freeness behaviour for nodes with high valences [START_REF] Newman | Power laws, Pareto distributions and Zipf's law[END_REF][START_REF] Simon | On a class of skew distribution functions[END_REF], hence the relevance of this seminal approach [START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Newman | Power laws, Pareto distributions and Zipf's law[END_REF]. Yule-like processes for urban street networks have been elaborated [START_REF] Barthélemy | Spatial networks[END_REF][START_REF] Barthélemy | Co-evolution of density and topology in a simple model of city formation[END_REF][START_REF] Courtat | Mathematics and morphogenesis of cities: A geometrical approach[END_REF][START_REF] Rui | Exploring the patterns and evolution of self-organized urban street networks through modeling[END_REF][START_REF] Masucci | Exploring the evolution of London's street network in the information space: a dual approach[END_REF]. For these adapted growthand-preferential-attachment models, the preferential attachment mechanism becomes local algorithms based on street-segments: with respect to some local algorithmic policies, the street-segments are either budding [START_REF] Barthélemy | Co-evolution of density and topology in a simple model of city formation[END_REF][START_REF] Courtat | Mathematics and morphogenesis of cities: A geometrical approach[END_REF][START_REF] Rui | Exploring the patterns and evolution of self-organized urban street networks through modeling[END_REF], fragmenting [START_REF] Masucci | Exploring the evolution of London's street network in the information space: a dual approach[END_REF], connecting [START_REF] Barthélemy | Co-evolution of density and topology in a simple model of city formation[END_REF][START_REF] Courtat | Mathematics and morphogenesis of cities: A geometrical approach[END_REF][START_REF] Rui | Exploring the patterns and evolution of self-organized urban street networks through modeling[END_REF][START_REF] Masucci | Exploring the evolution of London's street network in the information space: a dual approach[END_REF], or a combination of them. These models succeed to reproduce, by vary-Typeset by REVT E X ing their respective parameters, a large variety of the patterns effectively observed among self-organised urban street networks. In particular, they can reproduce scalefreeness. However, the intricate nature of their local algorithmic policies renders them hardly tractable. But still, their success let us think that a simple Yule-like process must exist for self-organised urban street networks. These adaptations implicitly inject into the Yule process the notions of locality and globality to which it is originally blind. The Yule process is neither local nor global in the sense that it involves no typical neighbourhood. In fact, the above adaptations mostly favour a local process over a global one: it is essentially expected that local principles solely drive global behaviours. While this expectation may simply misfit with a model without typical neighbourhood, it may also lead astray by seeking finer and finer tuned local policies that become more and more algorithmic. Statistical physics teaches us that such pitfalls can be addressed by introducing a suitable global principle that promotes pertinent traits over fine details. Finally, besides preferential attachment, real-world networks subject to scale-freeness may also evolve by removing, inserting, or rewiring connections [START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Newman | Power laws, Pareto distributions and Zipf's law[END_REF]. As preferential attachment, these connecting mechanisms involve no typical neighbourhood. So, they may be equally difficult to catch solely through a local policy. In this paper, we present for urban street networks a global principle that features growth, preferential attachment and favourable reattachment, and that ultimately leads to scale-freeness.

What is original and singular about road networks and urban street networks is that they underlie a unique and unorthodox dual representation. Route networks are primarily made of junctions connected by segments of routes. On the other hand, route networks embed roads connected by these same junctions. The former representation -the primal representation -corresponds to a strict geometrical representation of route networks as planar graphs, while the latter -the dual representation -interprets itself as a topological representation and/or information representation of route networks. It is now well acknowledged that the topological space (or information space) captures the complexity of route networks. This yields the insight that the geometry of route networks is strongly constrained by space and geography whereas their topology reflects social, cultural, and economical activities. For instance, the largest number of junctions for urban street networks have notably a valence of three or four, while by contrast the valence distribution of roads for self-organized urban street networks broadly span to a scale-free power law. The geometrical/topological duality sheds a completely new light on the aforementioned growth-and-preferential-attachment adaptations. These adaptations appear now to add new nodes and connections in the "geometrically constrained space" even though they should rather act in the topological space. This is not intentional. It simply indicates that the geometrical space is easier to apprehend than the topological space. In this paper, we deliberately work in the topological space.

Past results on urban description and modern ideas of quantification and maximum entropy render possible to approach the topological space in a holistic and systematic fashion. First, we emphasize the road-junction incidence relation of urban street networks. A natural road (or road ) denotes here an accepted substitute for a "named" street [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF]. This holistic preamble is adopted from Q-analysis [START_REF] Atkin | Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[END_REF]. Subsequently Q-analysis is applied in its paroxysmal but corrective variant due to Y.-S. Ho [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Macgill | An alternative algorithm for Q-analysis[END_REF], which is nothing but the Formal Concept Analysis (FCA) paradigm [START_REF] Davey | Introduction to Lattices and Order[END_REF]. This paradigm builds from the road-junction incidence relation a one-toone correspondence between the topological space and a partial-order [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]. Partial-orders are equivalent to algebraic structures, known as Galois lattices, which information physics [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF] allows to quantify and measure in a unique and systematic way -the involved measures being information measures. In fine, information physics permits us to unambiguously associate to the topological space a functional entropy whose the two function unknowns are meant to describe the physics of each road or junction and to be a probability function, respectively. This means that the topological space can be interpreted as undergoing a fluctuating equilibrium by virtue of Jaynes's Maximum Entropy principle. Here we envisage urban street networks as evolving social systems subject to an entropic equilibrium comparable to the one effectively observed among cities of a same cultural basin [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Milaković | A Statistical Equilibrium Model of Wealth Distribution[END_REF]. Our approach recovers the discrete Pareto probability distribution (scale-free power law distribution) widely observed for natural roads spreading in "natural" cities [START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF], and foresees a nonstandard bellshaped distribution with a power law tail for their joining junctions found in agreement with observable data extracted from some typical "natural" urban street networks (see Fig. 3). Retrospectively, the cohering (or fluctuating) part of our approach is the Paretian match for the Gaussian model in statistical physics, while the ordering (or structuring) part is a reminiscence of C. Alexander's ideas [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF] (see Fig. 2).

Although our approach is specifically applied to urban street networks, it provides a generic paradigm for the study of complex networks underlying partial-orders. Within this broader perspective, urban street networks become an ideal toy model and C. Alexander's ideas fall into the domain of network theory.

The manuscript is organized as follows. Our paradigm is sketched as the first course (Sec. II). Then a brief survey of the state of the art in urban street networks is given before we proceed forwards (Sec. III). Once the paradigm is applied, we discuss further our results from the perspective of C. Alexander's ideas (Sec. IV). Eventually, we point to future investigations (Sec. V). 'Structure before measure (but without alteration)' is the dominant leitmotif of the present work. It is borrowed from Q-analysis [START_REF] Atkin | Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[END_REF] but with a severe and fundamental constraint (in parenthesis) after a correction [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Macgill | An alternative algorithm for Q-analysis[END_REF] due to Y.-S. Ho [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF]: 'We should not include anything which is not given'. The Q-paradigm as revisited by Y.-S. Ho [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF] leads to plain algebraic ordering structures known as Galois lattices [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF] instead to an insightful but in fine deficient [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Macgill | An alternative algorithm for Q-analysis[END_REF] simplicial geometrical interpretation [START_REF] Atkin | Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[END_REF]. As partially ordered structure, each Galois lattice is equipped with an order relation; as algebraic structure, with a join operator. Two elements are either comparable or not; an element is either join-irreducible or the join of two distinct elements.

In general, a Galois lattice organizes itself in layers with respect to its order relation to give rise to a Hasse diagram [START_REF] Davey | Introduction to Lattices and Order[END_REF]. For finite distributive Galois lattices [START_REF] Davey | Introduction to Lattices and Order[END_REF], which might be considered typical [START_REF] Davey | Introduction to Lattices and Order[END_REF], the joinirreducible elements constitute the smallest nontrivial elements [START_REF] Davey | Introduction to Lattices and Order[END_REF] from which the whole builds itself through the join operator, so that they form the lowest nontrivial layer of their Hasse diagrams. From now on, let us imagine this layer as a network of homogeneous elements that links each pair of them when they can join to generate a greater element. Along this line, each greater element itself belongs to an upper layer envisaged as another network of homogeneous elements arbitrarily bonded with respect to the order relation.

Measure

What about 'measure' ? As answer, let us invoke the formal statement that arises from the emerging theory of information physics [START_REF] Knuth | The origin of probability and entropy[END_REF]: 'Measuring is the quantification of ordering'. More precisely, imposing natural algebraic consistency constraints permit us not only to evaluate (or to quantify) Galois lattices but also to recover and generalise contemporary information measures (modulo two successive latticial exponentiations) [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF] -information physics is to structures what Noether's theorem [START_REF] Noether | Invariante variationsprobleme[END_REF] is to symmetries. For finite distributive Galois lattices [START_REF] Davey | Introduction to Lattices and Order[END_REF], the evaluation reduces to the evaluations of their join-irreducible elements, the constraints determining the evaluations of the join-reducible elements. Latticial exponentiations generate distributive Galois lattices.

In other words, we have the freedom to evaluate each join-irreducible element as we wish. Nevertheless, while valuation functions associated to first exponentiations are recognized as probability distributions, further natural consistency constraints dictate linear combinations of the Shannon and Hartley entropies [START_REF] Aczél | Why the Shannon and Hartley entropies are 'natural[END_REF] as valuation functions associated to second exponentiations [START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF]. And, evidently, the valuation of the initial Galois lattice is governed by the underlying physics, viz., the evaluation of each initial join-irreducible element is meant to express its physical state. Meanwhile, the probability distribution might be as plausible as possible with respect to both our lack of comprehensive knowledge for each element on their concealed microscopic details and our macroscopic viewpoints. This is nothing other than Jaynes's Maximum Entropy principle [START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kesavan | Jaynes' maximum entropy principle[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF][START_REF] Jaynes | Where do we stand on maximum entropy[END_REF].

Principle of Maximum Entropy

Thence, the physical content of the paradigm shifts from an algebraic structure to a fluctuating environment, from Galois lattice partial-order to entropic coherence. Our initial ignorance [START_REF] Jaynes | Where do we stand on maximum entropy[END_REF] yielding on the elements of the Galois lattice, the probability distribution is over their number of possible states.

Let Pr(Ω) denote the probability of an element to count Ω configurations and recap: the most plausible realization of Pr(Ω) is the one that maximizes the entropy -Pr(Ω) ln Pr(Ω) [START_REF]Entropies and surprisals are expressed in nat units[END_REF] with suitable moment constraints known as characterizing moments [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kesavan | Jaynes' maximum entropy principle[END_REF]. As characterizing moments, assuming among the elements no typical number of configurations but rather a typical scale, we must discard any classical moment and may consider logarithmic moments instead. Imposing the first logarithmic moment Pr(Ω) ln Ω as the unique characterizing moment appears to lead to the (scale-free) discrete Pareto probability distribution Pr(Ω) ∝ Ω -λ . Since ln Ω measures nothing but our complete ignorance on the state effectively occupied by any element having Ω possible states, this constraint actually forces to preserve on average our complete ignorance on the elements of the Galois lattice -as an analogy, the Maxwell-Boltzmann statistics describing ideal gases can be deduced by solely enforcing a constant mean energy [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF].

The above deus ex machina has been interpreted as some evolutionary based mechanism to maintain some opaque internal order [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Milaković | A Statistical Equilibrium Model of Wealth Distribution[END_REF]. Imposing the second logarithmic moment as an extra characterizing moment leads to a statistics governed by the discrete lognormal probability distribution Pr(Ω) ∝ Ω -λ exp(-(ln Ω -η) 2 /2σ 2 η ); and so on. For now, let us restrict ourselves to our first attempt. In what follows, we will denote the cohering entropic equilibrium governed by the discrete Pareto distribution by Paretian coherence.

B. Overlying networks

The join-irreducible network

Now we shift our attention back to the network formed by the join-irreducible elements of the Galois lattice. As a working hypothesis, let us assume for each node that its number of configurations Ω depends on its valence n; we write Ω(n). Therefrom, in this network, the probability distribution of node valences Pr(n) preserves the scale-free character when the number of configurations Ω(n) grows powerly according to an exponent ν 1 . Then we have Pr(n) ∝ n -λν1 where the exponents λ and ν 1 characterize, respectively, the entropic coherence of the Galois lattice as a whole and the configurational growth of its join-irreducible elements as nodes of an homogeneous network. On the other hand, the number of configurations for every join-reducible element remains algebraically coerced by the Galois lattice, that is, it is obliged to algebraically depend on the number of configurations of its two joining elements through the valuation additive constraint [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF]. Now, let us envisage as a second network the layer that gathers the joins of two join-irreducible elements, two joins with a common generator being bonded.

The join-reducible networks

For the sake of argument, let us pretend that the nodes on the first and second network-layers undergo a powerly configurational growth with exponents ν 1 and ν 2 , respectively. On our second network, we then have Pr(n) ∝ Cn(ν 1 ; n) n -λν2 where Cn(ν 1 ; n) counts the occurrences of nodes of valence n with respect to the valuation additive constraint, so that it might be merely thought as a self-convolution operator acting on the valence probability distribution of our first network. Iterating this process gives for the k-th network-layer Pr(n) ∝ Cn(ν 1 , ν 2 , . . . , ν k ; n) n -λν k with obvious notations. Thence, under the rather favourable assumption that node configurations grow powerly with valences, the valence probability distribution for every reducible network-layer inherits a power tail from the underlying scale-free behaviour, whereas the irreducible networklayer plainly reveals it, and a mass function from the underlying Galois lattice algebraic structure. Notice that when the Galois lattice is flattened or ignored, the valence probability distribution sees its tail dominated by the strongest power tail and its mass function becoming a linear combinations of powerly weighted mass functions.

Misleading claim

So, within this scheme, we will observe no scale-free network if the underlying ordering structure is disregarded, if the involved network is not an irreducible one, or if the node configurations do not grow powerly with valences. However, the claim that these networks are not subjected to scale-freeness would be misleading here since the system as a whole is effectively driven by a scale-free power law probability distribution, while the scale-free behaviour could possibly be observed only for the first network-layer.

III. URBAN STREET NETWORKS AS TOY MODEL

A. Geometry versus topology

Trivial versus nontrivial complexities

As pedestrians, cyclists, or drivers, we tend to envision at first glance the junctions and street-segments of our cities as the natural nodes and edges, respectively, of urban street networks (see Fig. 1d). Their complexity is nonetheless trivial: three or four links for most street junctions [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF]. Indeed, in situ, any city-adventurer knows that at each street-segment-end (or junction) they would have in most case only two alternatives: continue along or the other way. This occurs independently of the city they explore or where they are in the city. Unsurprisingly, the geometrical representation (also called primal representation) has appeared too naive to embody the complexity of urban street networks [START_REF] Jiang | Topological analysis of urban street networks[END_REF][START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF][START_REF] Masucci | Random planar graphs and the London street network[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF][START_REF] Rosvall | Networks and cities: An information perspective[END_REF].

A second thought may lead us to realize that we rather reason in terms of streets than of street-segments -and possibly in terms of junctions. Indeed, from townsmen we expect concise directional answers shaped as follows: "To go to Oasis office from Amethyst area: take Sunshine street, then Seaport street -at Jade junctionand, finally, Sunset street -at Jonquil junction." Even though colourful, this typical directional answer implicitly reveals precious information: (i) neither position nor distance is expected; (ii) each junction in itself plays a secondary role; (iii) each pair of successive streets critically shares a common junction -whichever it is. To wit, we expect topological responses. The topological representation (or dual representation) maps streets to nodes and links each pair of them that shares a common junction (see Fig. 1e). In contrast to geometrical networks, topological networks exhibit small-world and scale-free properties, that is, complex network behaviours [START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF][START_REF] Masucci | Random planar graphs and the London street network[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF][START_REF] Rosvall | Networks and cities: An information perspective[END_REF][START_REF] Masucci | Robustness and closeness centrality for self-organized and planned cities[END_REF]. Note that topological networks can be viewed as encodings of distanceless information which are useful for navigating through urban street networks. For this reason the topological representation is also referred to as the information space.

Data extraction overview

Thus far we have neglected to ask ourselves how to define streets. This question should seem preposterous for most of us living in towns for which a cadaster has been scrupulously maintained over decades or centuries, but certainly not for the globetrotters among us. Even if perfect cadasters must exist, "named" streets essentially remain the result of intricate social processes where the underlying social physics likely interferes with local customs, past or present agency struggles between social groups, and so forth. Actually, the question "What is a street ?" has been addressed by introducing the notion of natural road.

A natural road [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF] is an exclusive sequence of successive street-segments paired according to some behavioural based join principle (see Fig. 1c). Besides the de facto cadastral join principle, three geometrical join principles based on deflection angles [START_REF] Hillier | The hidden geometry of deformed grids: Or, why space syntax works, when it looks as though it shouldn't[END_REF][START_REF] Turner | Angular analysis, in 3rd International Symposium on Space Syntax Atlanta 2001 (Alfred Taubman College of Architecture and Urban Planning[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Rosvall | Networks and cities: An information perspective[END_REF][START_REF] Molinero | The angular nature of road networks[END_REF] are mainly used. The every-best-fit join principle is a junction-centric one which only binds with respect to the deflection-angle-ordering of each junction, so that it is almost deterministic because of its local character. The self-best-fit and self[-random]-fit join principles are both path-centric ones which recursively append new street-segments, respectively, with respect to the deflection-angle-ordering of the end-street-segments and randomly. Unsurprisingly, the self join principles have appeared more realistic against relevant cadasters due to their global nature -the random variant being generally the best fit. Here we use the self[-random]-fit join principle, unless specified otherwise. Basically, our 'raw material' is geometrical networks extracted from map data fetched from well-known comprehensive archives (see Fig. 1a).

B. Galoisean hierarchy

Concealed Galois lattice

To knit a topological network we may first establish the incidence relation I that gathers for each natural road all junctions through which it passes, then infer its reciprocal I -1 that gathers for each junction all natural roads which it joins [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF]: the composition of the former with the latter I • I -1 gives the road-road topological network encountered above, whereas the alternative composition I -1 • I leads to its dual the junction-junction topological network. This constructive duality easily combines with the geometrical/topological duality as exemplified in Fig. 1. Both networks are non-injective representation of I, and so of the involved urban street network.

Let us now interpret any incidence relation I as an object/attribute relation where each natural road acts as an object and each junction as an attribute [START_REF] Atkin | Combinatorial Connectivities in Social Systems: An Application of Simplicial Complex Structures to the Study of Large Organizations[END_REF][START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]. Thereby, relying on FCA, we can bijectively represent any incidence relation I as an ordered algebraic structure known as Galois lattice [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]. As shown in the constructive proof provided by Y.-S. Ho [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF], this paradigm combines objects and attributes into pairs of subsets of them to form without loss of information a Galois lattice. To achieve the emerging structure, the one-to-many relation I is naturally extended to a many-to-many relation by stating that the attributes of two objects are their common attributes [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF].

Fortunately, for urban street networks, incidence rela-tions essentially maps to Galois lattices with two nontrivial layers. The natural roads form the lower layer while the junctions compose the upper one -the 'imply' ordering relation is "passing through". In the rare event that two natural roads cross to each other more than once, the resulting loop renders the Galois lattice more intricate. For the sake of presentation, we will assume that such loops are very rare or forcedly open. Furthermore, when every junction joins only two natural roads For the four abstract networks (d-g) the size of each node is proportional to its valence. Among them, (e) appears as the pertinent one since its valence distribution is subject to scale-free power laws [START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF] (see Fig. 3) whereas the ones of (d) and (f) are very narrow and the one of (g) is more intricate. For abstract networks (d), the largest number of junctions has a valence of three or four [START_REF] Cardillo | Structural properties of planar graphs of urban street patterns[END_REF][START_REF] Lämmer | Scaling laws in the spatial structure of urban road networks[END_REF][START_REF] Buhl | Topological patterns in street networks of self-organized urban settlements[END_REF][START_REF] Chan | Urban road networks -spatial networks with universal geometric features ? a case study on Germany's largest cities[END_REF]; so that, for abstract networks (f), the largest number of segments has a valence of four, five, or six [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF].
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the Galois lattice becomes distributive. While mostly all junctions join only two natural roads, we observe that any junction that joins more than two natural roads can be replaced by a roundabout so that it remains only junctions joining at most two natural roads. For these reasons, we will qualify as canonical any urban street network whose junctions effectively join only two natural roads. In short, for urban street networks, incidence relations map in a one-to-one fashion to essentially distributive Galois lattices with two nontrivial layers, while their canonicalization renders their Galois lattices plainly distributive.

Arguably this is nothing new, except that the complexity of urban street networks can now be holistically and The natural roads r * are singletons, the junctions j * are intersecting sets of natural roads, and the urban street network , the top element [START_REF] Davey | Introduction to Lattices and Order[END_REF], is the total union of the subsets. That is, natural roads r * join to form junctions j * , while we have to be somewhere in the urban street network . In this work, the inclusion-exclusion principle for evaluations is reduced to its simplest nontrivial form [START_REF] West | The fourth dimension of life: Fractal geometry and allometric scaling of organisms[END_REF]. (b) The Hasse diagram [START_REF] Davey | Introduction to Lattices and Order[END_REF] emphasizes the partial-order relation. For urban street networks, Hasse diagrams simplify in two nontrivial homogeneous layers -natural roads r * and junctions j * composing, resp., the lower and upper layers. That is, natural roads r * "pass through" (or imply) junctions j * . The bottom element ⊥ is the absurd counterpart of the top element , i.e., emptiness.

unambiguously measured within the information physics framework. The detailed treatment of this subject is well outside the scope of this paper; thus, beyond the material formerly sketched (see Section II), we simply refer to the work of K. H. Knuth [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF], and we will content ourselves with presenting the pertinent consequences for road/junction Galois lattices to elaborate further.

Complexity measurement

Without loss of generality, we may canonicalize urban street networks so that their Galois lattices are distributive. Henceforth, natural roads constitute their joinirreducible elements, viz., we have the freedom to evaluate each natural road as we desire while the Galois lattice algebraic structure dictates to evaluate each junction as the sum of the evaluation of their two joining natural roads. Thusly, for every junction j(r, s) joining the pair of natural roads (r, s), we are compelled to write Va(j(r, s)) = Va(r) + Va(s) [START_REF] West | The fourth dimension of life: Fractal geometry and allometric scaling of organisms[END_REF] where Va stands for the yet unknown valuation function.

Further consistency requirements oblige to recognize any valuation function associated to the first exponentiation of each Galois lattice as a probability distribution. This probability distribution is the composition of a yet unknown weight function w with the above valuation function Va; we read

Pr = w • Va (2)
with Pr the probability distribution of the system. Meanwhile we may choose w as we want. Finally, same and further demanded consistency constraints force to identify the evaluation of the central element of the second exponentiation of the Galois lattice as the entropy H[Va, w] of the system which thusly expresses as a functional of the valuation and weight functions, Va and w, respectively. For canonical urban street networks, the functional structure entropy H[Va, w] takes the form

H[Va, w] = r (h • w) (Va(r))+ j(r,s) (h • w) (Va(r)+Va(s))
(3) where the first summation runs over the natural roads r and the second one over the junctions j(r, s) joining the pair of natural roads (r, s), while h : x → -x ln x is the Shannon entropy function [START_REF]Entropies and surprisals are expressed in nat units[END_REF].

By reverting addition rule (1) in the right summation and then composing according to (2), the reader will readily recover the 'flat' expression of the functional entropy H[Va, w], namely H[Pr] = e (h • Pr) (e) where the summation occurs indiscriminately over all natural roads and junctions e.

Therefore, in our context, the novelty brought by information physics theory sums up as follows: it enables us to measure the complexity of our heterogeneous system as a whole by taking its ordering hierarchy into account. In detail, it articulates as follows: locally, it reveals how the natural roads r impose their arbitrary valuations Va(r) to the junctions j; globally, it unveils how an arbitrary weight function w cements the whole. Notice the slight abuse of language used in the article's title: entropy ( 3) is qualified with structure to highlight this novelty.

C. Paretian coherence

Assumed complete ignorance

In any case, from their city, most dwellers do not perceive the underlying Galoisean hierarchy per se but rather the resulting emergent Paretian coherence. This passage from algebraic structure to organic arrangement appears to take place in our context as a consequence of Jaynes's maximum entropy principle as outlined early (see Section II).

Formally, we assume our complete ignorance on what phenomena drive each natural road or junction; so that, the most we can state is that each one possesses a finite number of equally likely configurations. Thence, the system mean entropy H writes where the first and second constraints impose the conservation of the system mean entropy and the normalization condition satisfied by Pr, respectively, while H 0 stands for the constant mean entropy at which the system evolves. Resolving (5) readily gives the power law distribution

Pr(Ω e ) = Ω -λ e Z (λ) with Z (λ) = e Ω -λ e ( 6 
)
as Zustandssumme. Explicit computation of the mean entropy (4) yields the equation of state

H = - ∂ ∂λ ln Z (λ) ( 7 
)
whose exploitation is deferred. In this way, our complete ignorance helps us to discern a Paretian coherence, yet not plainly perceivable, among urban street networks.

Conceded partial knowledge

In fact we have feigned our complete ignorance, at least partially: we have blithely dismissed the underlying Galoisean hierarchy and that natural roads and junctions are likely driven by social interactions. It is time now to decompose accordingly the probability distribution [START_REF] Watts | Collective dynamics of 'small-world' netwoks[END_REF] with respect to composition (2) and addition rule [START_REF] West | The fourth dimension of life: Fractal geometry and allometric scaling of organisms[END_REF].

To this purpose, it appears convenient to adopt an agent model [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Parunak | Universality in multi-agent systems[END_REF]. Let us adapt the network of intraconnected agents model introduced in Ref. [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF] for the distribution of cities in countries, since the involved social behaviours might be similar -if not the same. As agents, we consider the inhabitants that somehow participate to the live activity of urban street networks [START_REF] Alexander | A city is not a tree[END_REF]: drivers, cyclists, pedestrians, suppliers, institutional agents, residents, and so forth. Thusly, each natural road (or junction) is a hive whose very existence relies on the ability for each of its agents to maintain a crucial number of intraconnections which is presumed crudely equal to a constant number υ r (or υ j ), called the number of vital connections for natural roads (or junctions), that characterizes the urban street network. The layout of theses intraconnections is implicitly associated to the internal order within each natural road (or junction), while the total number of possible layouts is simplistically considered as its number of states.

Suppose, for each natural road r, the number of agents to be asymptotically proportional to the number of junction n r through which r passes -the ratio A being constant and sufficiently large. This hypothesis is founded upon the extensive property of natural roads. Then the number of states Ω r for every natural road r yields

Ω r = Ω r (n r ) 1 2 A n r (A n r -1) υ r A 2υr 2 υr υ r ! n 2υr r (8a)
where the generalized binomial bracket is employed. As concerns each junction, the involved agents are merely the agents of the two joining natural roads combined together; hence the same crude maneuvers give

Ω j(r,s) = Ω j (n j = n r + n s ) A 2υj 2 υj υ j ! n 2υj j (8b)
along with some abuse of notation. Therefrom, the valuation function Va arises clearly as assigning to each natural road or junction the number of associated agents while the weight function w asymptotically counts the number of possible vital intraconnection layouts (modulo normalization) in the involved natural road or junction then envisioned as an intranetwork.

Cascade of information

We can now express the probability for natural roads and junctions in a more specific, perceivable fashion. Substituting (8a) into (6), we readily obtain for natural roads

Pr(n r ) ∝ n -2λυr r (9a)
which is a scale-free power law distribution. For the junction counterpart, inserting instead (8b) into (6), then gathering and counting with respect to the precedent probability distribution (9a) yields

Pr(n j ) ∝   j(r,s) [n j = n r + n s ] (n r n s ) 2λυr   n j -2λυj (9b)
where Iverson bracket convention is used; the summation in parentheses is simply the self-convolution of the natural road probability distribution (9a). Given a natural road r, its number of junctions n r is nothing but essentially its degree in the involved road-road topological network: valence distribution (9a) has been empirically observed in self-organized cities [START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF]. The same argument dually applies for junctions: nonetheless, to the best of our knowledge, valence distribution (9b) can be neither confirmed nor refuted by the current literature.

In practical recognitions [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF], we need to assume that the number of junctions per natural road spans from some minimal value n r 1. Then, the normalizing constants for probability distributions (9) can be effortlessly computed in terms of natural generalizations of known (very) special functions. While we readily have

Pr(n r ) = n -2λυr r ζ (2λυ r ; n r ) (10a) 
where

ζ (α; n) = ∞
n=n n -α is the generalized (or Hurwitz) zeta function [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF][START_REF]NIST Hand Book of Mathematical Functions[END_REF], we find that

Pr(n j ) = nj -n r n=n r [n (n j -n)] -2λυr n j -2λυj W (2λυ r , 2λυ r , 2λυ j ; n r ) (10b) 
where

W (α, β, γ; n) = m,n n m -α n -β (m + n) -γ is
the two-dimensional generalized (or Hurwitz-) Mordell-Tornheim-Witten zeta function [START_REF] Borwein | Derivatives and fast evaluation of the Tornheim zeta function[END_REF]. The former probability distribution (10a) is known as the discrete Pareto distribution and is a shifted (or Hurwitz) version of the better known Zipf distribution [START_REF] Newman | Power laws, Pareto distributions and Zipf's law[END_REF][START_REF] Clauset | Powerlaw distributions in empirical data[END_REF]; the latter (10b) is a nonstandard bell-shaped distribution with a power law tail asymptotic to n j -2λ(υr+υj) , as far as we can tell, and we have found it convenient to name it the Schwitten distribution [START_REF]Schwitten stands for Self-Convoluted Hurwitz Witten[END_REF].

D. Case studies

We checked the statistical pertinence of the foreseen junction valence distribution (10b) for five urban street networks for which the predicted natural road valence distribution (10a) is a plausible hypothesis with respect to the state-of-the-art statistical method for power law distributions [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF] which is based on Maximum Likelihood Estimations (MLE). A sixth urban street network which is recognized as planned was taken as counter-case study. A validation of the junction valence distribution (10b) along the lines of the state of the art [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF] could not be managed because fast evaluation of the normalizing function W has yet to be found; meanwhile a crude data analysis based on Nonlinear Least-Squares Fittings (NLSF) was performed.

Figure 3 exhibits the Relative Anti-Cumulative Frequency Distributions (RACFD) for the valence of the road-road and junction-junction topological networks of the six urban street networks along with goodness-offit quantifiers (or p-values), the estimated parameters, and the fitting probability distributions. Note that the goodness-of-fit quantifiers are estimated against the predicted natural road valence distribution (10a). The 'raw material' (see Fig. 1a) was extracted from the Open Street Map (OSM) comprehensive archive [64]. The cities were chosen to have distinct cultural backgrounds and to feature an identifiable unremodeled historical urban street network; we picked: (a) London (United Kingdom), (b) Ahmedabad (India), (c) Xi'an (China), (d) Harar (Ethiopia), (e) Taroudant (Morocco), and (f) Levittown (Pennsylvania, United States). The boundary is either the innermost ring road (London), the city wall (Ahmedabad, Xi'an, Harar, Taroudant), or a consistent encircling series of connected roads (Levittown). The natural roads (see Fig. 1c) were joined with respect to the self[-random]-fit join principle [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF]. For each skeleton, we generated one hundred natural road setups, and then we selected, among the setups with a relatively smooth RACFD for the valence of their junctionjunction topological network, the one with the highest goodness-of-fit quantifier. Observed that for the first five urban street networks (a-e) the predicted natural road valence distribution (10a) is effectively a plausible hypothesis, since their goodness-of-fit quantifiers p r are greater than 0.1, while for the sixth one (f) it must be clearly 3. Relative Anti-Cumulative Frequency Distributions (RACFD) for five "natural" urban street networks (a-e) of cities with distinct cultural backgrounds and for an "artificial" urban street network (f) of a planned city: circles represent relative anti-cumulative frequencies for the valences of their respective road-road topological networks (see Fig. 1e); crosses represent relative anti-cumulative frequencies for the valences of their respective junction-junction topological networks (see Fig. 1g).

The red fitted curves for the natural road statistics describe the Maximum Likelihood Estimates (MLE) for the discrete Pareto probability distribution (10a) estimated according to the state of the art [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF][START_REF] Gillespie | Fitting heavy tailed distributions: The poweRlaw package[END_REF] (250 000 samples). The green fitted curves for the junction statistics show the Nonlinear Least-Squares Fittings (NLSF) for the nonstandard bell-shaped discrete probability distribution (10b) with n r and 2λυr fixed to their respective MLE values; no MLE approach can be computationally envisaged for the time being. The MLE goodness-of-fit qualifier pr allows us to qualify the urban street networks as "natural" when it is greater than 0.1, otherwise as "artificial" [START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Clauset | Powerlaw distributions in empirical data[END_REF]; therefore, our choice of urban street networks is justified a posteriori.

On the other hand, for now, the ad hoc NLSF data analysis prevents us from grossly rejecting the foreseen junction valence distribution (10b).

rejected [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF]. So, as expected, the first five are "natural" while the sixth is "artificial". Our ad hoc crude data analysis appears promising in the sense that it forbids one from grossly rebutting the foreseen junction valence distribution (10b). Interestingly, the case studies reveal that the number of vital connections υ j is negative, to wit that the associated generalized binomial combination number is smaller than one. We interpret this result as follows: the number of agent intraconnections for junctions is relatively much smaller than the one for natural roads.

IV. ALEXANDER'S IDEAS AS GUIDE A. Retro-recapitulation

In summary, we can take for granted that our partial ignorance permits us to recognize a hierarchical Paretian coherence among urban street networks. More precisely, within the framework of information physics [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF], the emerging Paretian coherence that characterizes self-organized (or "natural") urban street networks [START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF] has not only been predicted but also shown to reveal the underlying Galoisean hierarchy that describes any of them, either planned or self-organized. The passage to the Paretian coherence -organic by nature -from the Galoisean hierarchy -in essence algorithmic -occurs by imposing a logarithmic maximum-entropy constraint with complete ignorance as the initial knowledge condition [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kesavan | Jaynes' maximum entropy principle[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF][START_REF] Jaynes | Where do we stand on maximum entropy[END_REF].

Our partial knowledge hangs on the "passing through" partial-ordering that ties natural roads with junctions and on the "pairing" that typifies any social system. The former bijectively transforms urban street networks into Galois lattices whose algebraic structure, in turn, leads (modulo some natural algebraic constraints [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF]) to a set of functional relations and equations meant to measure complexity; the latter furnishes a hint to figure out the two involved functional unknowns, namely the weight and the evaluation functions.

In the words of C. Alexander [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF], the prepassage part is "mechanical"; we have used Galoisean instead. The Formal Concept Analysis (FCA) algorithmic transformation [START_REF] Ho | The planning process: Structure of verbal descriptions[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF] is simply a prerequisite to apply information physics [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF]. The hint was translated to a crude asymptotic binomial paired-agent model, which is compatible with the social machinery taking place "in Berkeley at the corner of Hearst and Euclid" in Ref. 20.

B. Alexander's conjecture

Convinced that nature does not like trees, C. Alexander informally introduced the notion of "semilattice" [START_REF] Alexander | A city is not a tree[END_REF]: whoever has seen their hand-representations is stuck by the resemblance between their line renderings and Hasse diagrams before they realize that the round ones swimmingly illustrate addition rule (1) (see Fig. 2). We believe that he intuitively grasped the idea of the partialordering relation reduction to Galois lattices -plainly apprehended and rigorously established earlier by Ø. Ore [START_REF] Ore | Mathematical relations and structures[END_REF][START_REF] Ore | Galois connexions[END_REF] -along the concomitant algebraic structure [START_REF]Alexander's semilattices are not Galois lattices: the notional semilattice illustrated in diagram B [20, col. 5is[END_REF].

Even so C. Alexander did not attempt to put numbers on "semilattices", he nonetheless claimed that for "natural" cities their elements holistically arrange according to a "living" coherence: it is his legacy as urban architect.

In the literature, it takes the form of straight lines on loglog plots of the natural road valence distribution; here, for urban street networks, it has been shown to emerge from Jaynes's maximum entropy principle invoked with the first logarithmic moment as sole characterizing moment. Thus, in this work, we have established the statistical physics foundation for the "living" coherence occurring among "natural" cities, at least for their urban street networks; instead of "living" we have used Paretian.

Adopting, as C. Alexander might have done, the more intuitive approach that interprets entropy as the average amount of surprisal [START_REF] Tribus | Thermostatics and Thermodynamics[END_REF], the Alexander's conjecture becomes: "natural" cities evolve by maintaining their amount of surprisal constant on average. This conjecture applies to cities as a whole, from habitations to transportation.

C. Surprise

Besides giving an intuitive macroscopic physical content, stating Alexander's conjecture in terms of surprisal implicitly gives to C. Alexander's ideas a microscopic physical content. Surprisal (or surprise) Su = -ln • Pr was introduced by M. Tribus as a measure that quantifies our astonishment and indecision when we face an arbitrary event [START_REF]Entropies and surprisals are expressed in nat units[END_REF][START_REF] Tribus | Thermostatics and Thermodynamics[END_REF]. Along this line, Alexander's conjecture expresses nothing but the conservation on average of the astonishment and indecision of dwellers when they perceive their own city. To draw an analogy from statistical physics, particles of an ideal gas conserve on average their motion, which is quantified in terms of linear momentum [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF]. So, from a statistical physics perspective, astonishment and indecision of dwellers of an Alexander city appears then to be for natural roads and junctions -and any other similar urban itemswhat motion is for particles of an ideal gas.

Carrying on the analogy between our system and an ideal gas as a parallel between a Paretian system and a Gaussian system is relevant as well. The distribution of number of states would be a discrete Gaussian distribution instead of a discrete Pareto distribution, for the elements of the Galois lattice, if Jaynes's maximum entropy principle was invoked with the first and second moments rather than with the first logarithmic moment as characteristic moments. Then the nature of the underlying discrete Gaussian distribution might be almost preserved for both the natural road and the junction distributions provided that the numbers of vital connections are both equal to 1/2. We used the fact that the convolution of two discrete Gaussian distributions is almost a discrete Gaussian distribution [START_REF] Szab Lowski | Discrete Normal distribution and its re-lationship with Jacobi Theta functions[END_REF]. The noteworthy point is that the junction valence distribution would then appear similar to the natural road valence distribution. That is, a Gaussian physics would mainly dissolve the underlying Galois lattice of our system, while the Paretian physics presented in this paper reveals it.

In brief, we are facing a Galoisean Paretian statistical physics that goes beyond our conventional Gaussian way of thinking [START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF][START_REF] Sattin | Non-Gaussian probability distribution functions from maximum-entropy-principle consider-ations[END_REF]; C. Alexander might have used "mechanical" instead [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF].

V. CONCLUSION

We have investigated scale-free networking in urban street networks. Natural-road-based connectivity graphs have been widely observed to realize scale-free networks in self-organized cities [START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF] -a natural road (or road) is an accepted substitute for a "named" street [START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF]. Our approach emphasizes in a holistic and systematic way the road-junction hierarchy of urban street networks. This approach leads to a one-to-one correspondence between urban street networks and algebraic structures known Galois lattices, so that it fits with the mindset of information physics [START_REF] Knuth | Information physics: The new frontier[END_REF][START_REF] Knuth | The origin of probability and entropy[END_REF][START_REF] Knuth | Lattice duality: The origin of probability and entropy[END_REF][START_REF] Knuth | Information-based physics: An observercentric foundation[END_REF]. Ultimately, this switch to a different framework allows us to envisage urban street networks as evolving social systems subject to an entropic equilibrium [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Milaković | A Statistical Equilibrium Model of Wealth Distribution[END_REF]. We have shown that the passage from the underlying Galoisean (or road-junction) hierarchy to an underlying Paretian (or scale-free) coherence can be achieved by invoking Jaynes's Maximum Entropy principle with the first logarithmic moment as the sole characterizing constraint and our complete ignorance as initial knowledge [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Milaković | A Statistical Equilibrium Model of Wealth Distribution[END_REF][START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kesavan | Jaynes' maximum entropy principle[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF][START_REF] Jaynes | Where do we stand on maximum entropy[END_REF]. Eventually the underlying Paretian coherence must be decomposed with respect to the underlying Galoisean hierarchy within the framework of information physics. Our decomposition envisions natural roads and junctions as hives of social agents [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF][START_REF] Parunak | Universality in multi-agent systems[END_REF]. Social interactions are typified by a binomial paired-agent model taken at the asymptotic limit [START_REF] Dover | A short account of a connection of power laws to the information entropy[END_REF]. We have recovered the discrete Pareto probability distribution widely observed for natural roads evolving in self-organized cities [START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF]. What is more interesting, however, is that we have also been able to foresee a nonstandard bell-shaped distribution with a power law tail for their junctions.

Beyond urban street networks, we have argued that our paradigm reflects C. Alexander's ideas on cities [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF]. From the viewpoint of statistical physics, the passage from Galoisean hierarchy to Paretian coherence looks like a missing piece of his ideas. This passage has given place to a concise eponymous conjecture expressed in terms of surprisal [START_REF] Tribus | Thermostatics and Thermodynamics[END_REF]. Surprisal quantifies the astonishment and indecision of city-dwellers, which are for Paretian statistical physics of "natural" cities what motion is for Gaussian statistical physics of ideal gases [START_REF] Jaynes | Information theory and statistical mechanics II[END_REF][START_REF] Kapur | Entropy optimization principles and their applications[END_REF]. Ultimately we are facing a Galoisean Paretian statistical physics that challenges our "mechanical" and Gaussian ways of thinking [START_REF] Alexander | A city is not a tree[END_REF][START_REF] Alexander | The Nature of Order: an Essay on the Art of Building and The Nature of the Universe (Center for Environmental Structure[END_REF][START_REF] Jiang | A complex-network perspective on Alexander's wholeness[END_REF][START_REF] Sattin | Non-Gaussian probability distribution functions from maximum-entropy-principle consider-ations[END_REF].

We have also shed a new light on how power law phenomena can emerge from complex systems that underlie a Galoisean hierarchy. Here urban street networks constitute an ideal toy model as they mainly reduce to intuitive two-layer Galois lattices. In this regard we believe that scale-free networks are omnipresent in nature but also that neither their underlying partial-order nor the logarithmic character of their statistics have been plainly taken into account.

FIG. 1 .

 1 FIG.1. State-of-the-art representations for urban street networks[START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Rosvall | Networks and cities: An information perspective[END_REF] through a notional example[START_REF]Inspired by the 'notional road network[END_REF]. (a) The top row displays the mimicked 'raw material' as it could be extracted from any comprehensive archive. The left column shows the three variants of the geometrical (or segment-based) representation: (b) artificially colored 'raw material' graph displaying street extended-junctions (impasses i * and effective junctions j * ) and segments s * in grey and pallid colors, resp.; (d) junction-based connectivity graph, namely the concrete network without artifices; (f) segment-based connectivity graph dual to graph (d). The right column shows the three variants of the topological (or natural-road-based) representation for a same natural road setup: (c) revamped 'raw material' graph exhibiting original junctions and natural roads in grey and vivid colors, resp.; (e) natural-road-based connectivity graph; (g) junction-based connectivity graph dual to graph (e). For the four abstract networks (d-g) the size of each node is proportional to its valence. Among them, (e) appears as the pertinent one since its valence distribution is subject to scale-free power laws[START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Topological structure of urban street networks from the perspective of degree correlations[END_REF] (see Fig.3) whereas the ones of (d) and (f) are very narrow and the one of (g) is more intricate. For abstract networks (d), the largest number of junctions has a valence of three or four[START_REF] Cardillo | Structural properties of planar graphs of urban street patterns[END_REF][START_REF] Lämmer | Scaling laws in the spatial structure of urban road networks[END_REF][START_REF] Buhl | Topological patterns in street networks of self-organized urban settlements[END_REF][START_REF] Chan | Urban road networks -spatial networks with universal geometric features ? a case study on Germany's largest cities[END_REF]; so that, for abstract networks (f), the largest number of segments has a valence of four, five, or six[START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Jiang | Street-based topological representations and analyses for predicting traffic flow in GIS[END_REF].

FIG. 2 .

 2 FIG. 2. Illustration à la C. Alexander[20, col. 5] for the Galois lattice related to the notional urban street network in Fig.1. (a) The subset representation is for evaluations of Galois lattices what a Venn diagram is for the cardinality of sets. The natural roads r * are singletons, the junctions j * are intersecting sets of natural roads, and the urban street network , the top element[START_REF] Davey | Introduction to Lattices and Order[END_REF], is the total union of the subsets. That is, natural roads r * join to form junctions j * , while we have to be somewhere in the urban street network . In this work, the inclusion-exclusion principle for evaluations is reduced to its simplest nontrivial form[START_REF] West | The fourth dimension of life: Fractal geometry and allometric scaling of organisms[END_REF]. (b) The Hasse diagram[START_REF] Davey | Introduction to Lattices and Order[END_REF] emphasizes the partial-order relation. For urban street networks, Hasse diagrams simplify in two nontrivial homogeneous layers -natural roads r * and junctions j * composing, resp., the lower and upper layers. That is, natural roads r * "pass through" (or imply) junctions j * . The bottom element ⊥ is the absurd counterpart of the top element , i.e., emptiness.
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  Pr(Ω e ) ln Ω e (4) whenever every natural road or junction e has reached an equilibrium; the summation happens indiscriminately over all natural roads and junctions e, Pr(Ω e ) expresses the probability for the natural road or junction e to have Ω e states, and ln Ω e its Boltzmann entropy. Then, using the same notation, Jaynes's maximum entropy principle invoked with the first logarithmic moment as unique characterizing moment literally holds the Shannon Lagrangian expression L ({Pr(Ω e )} ; λ, ν) =e Pr(Ω e ) ln (Pr(Ω e )) -λ e Pr(Ω e ) ln Ω e -H 0 -(ν -1) e Pr(Ω e ) -1 (5)

  FIG.3. Relative Anti-Cumulative Frequency Distributions (RACFD) for five "natural" urban street networks (a-e) of cities with distinct cultural backgrounds and for an "artificial" urban street network (f) of a planned city: circles represent relative anti-cumulative frequencies for the valences of their respective road-road topological networks (see Fig.1e); crosses represent relative anti-cumulative frequencies for the valences of their respective junction-junction topological networks (see Fig.1g). The red fitted curves for the natural road statistics describe the Maximum Likelihood Estimates (MLE) for the discrete Pareto probability distribution (10a) estimated according to the state of the art[START_REF] Clauset | Powerlaw distributions in empirical data[END_REF][START_REF] Gillespie | Fitting heavy tailed distributions: The poweRlaw package[END_REF] (250 000 samples). The green fitted curves for the junction statistics show the Nonlinear Least-Squares Fittings (NLSF) for the nonstandard bell-shaped discrete probability distribution (10b) with n r and 2λυr fixed to their respective MLE values; no MLE approach can be computationally envisaged for the time being. The MLE goodness-of-fit qualifier pr allows us to qualify the urban street networks as "natural" when it is greater than 0.1, otherwise as "artificial"[START_REF] Porta | The network analysis of urban streets: A primal approach[END_REF][START_REF] Porta | The network analysis of urban streets: A dual approach[END_REF][START_REF] Jiang | A topological pattern of urban street networks: Universality and peculiarity[END_REF][START_REF] Jiang | Self-organized natural roads for predicting traffic flow: A sensitivity study[END_REF][START_REF] Clauset | Powerlaw distributions in empirical data[END_REF]; therefore, our choice of urban street networks is justified a posteriori. On the other hand, for now, the ad hoc NLSF data analysis prevents us from grossly rejecting the foreseen junction valence distribution (10b).