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Where Sobolev interacts with Gagliardo–Nirenberg

Haïm Brezis(1),(2),(3), Petru Mironescu(4),(5)
�

January 15, 2019

Abstract

We investigate the validity of the fractional Gagliardo-Nirenberg-Sobolev inequality

(1) ‖ f ‖Wr,q(Ω) . ‖ f ‖θWs1 ,p1 (Ω)‖ f ‖1−θ
Ws2 ,p2 (Ω), ∀ f ∈W s1,p1(Ω)∩W s2 ,p2(Ω).

Here, s1, s2, r are non-negative numbers (not necessarily integers), 1 ≤ p1, p2, q ≤∞, and

we assume, for some θ ∈ (0,1), the standard relations

(2) r < s := θs1+ (1−θ)s2 and
1

q
=

(
θ

p1
+

1−θ

p2

)
−

s− r

N
.

Formally, estimate (1) is obtained by combining the “pure” fractional Gagliardo-Nirenberg

style interpolation inequality

(3) ‖ f ‖Ws,p (Ω) . ‖ f ‖θWs1 ,p1 (Ω)‖ f ‖1−θ
Ws2 ,p2 (Ω) (with 1/p := θ/p1+ (1−θ)/p2)

with the fractional Sobolev style embedding

(4) W s,p(Ω) ,→W r,q(Ω), 0≤ r < s, 1≤ p < q ≤∞,
1

q
=

1

p
−

s− r

N
, p(s− r)≤ N.

Estimates (3) and (4) are true “most of the time”, but not always; the exact range of

validity of (3) and (4) has been known. Combining these results, we infer that (1) is valid

“most of the time”. However, the validity of (1) when (3) and/or (4) fail was unclear. The goal

of this paper is to characterize the values of s1, s2, r, p1, p2, q,θ, N such that (1) holds.

1 Introduction

This is a follow-up of [5], and we use the same notation as in [5]. There, we have investigated

the validity of the Gagliardo-Nirenberg (GN) interpolation estimate

‖ f ‖W s,p(Ω) . ‖ f ‖θW s1,p1 (Ω)‖ f ‖1−θ
W s2,p2 (Ω), ∀ f ∈W s1,p1(Ω)∩W s2,p2(Ω). (1.1)

Here, the real numbers s1, s2, s≥ 0, 1≤ p1, p2, p ≤∞ and θ ∈ (0,1) satisfy the relations

s1 ≤ s2, s= θs1 + (1−θ)s2 and
1

p
=

θ

p1

+
1−θ

p2

. (1.2)

We say that Ω is a standard domain in R
N if

Ω is either R
N , or a half space, or a Lipschitz bounded domain in R

N . (1.3)

Keywords. Sobolev space; Gagliardo-Nirenberg inequalities; Sobolev embeddings; Gagliardo-Nirenberg-

Sobolev inequalities; Interpolation inequalities
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When all the smoothness exponents, s1, s2 and s, are integers, the validity of (1.1) was estab-

lished by Gagliardo [8] and Nirenberg [12]. For general non-negative exponents, non necessarily

integers, (1.1) may fail. In [5], we gave a necessary and sufficient condition for the validity of

(1.1). This involves the following assumption:

s2 is an integer ≥ 1, p2 = 1 and 0< s2 − s1 ≤ 1−
1

p1
. (1.4)

More specifically, we have proved the following

Theorem A ([5]). Let Ω be a standard domain in R
N .

1. Assume that (1.4) fails. Then (1.1) holds for every θ ∈ (0,1), with s and p given by (1.2).

2. Assume that (1.4) holds. Then (1.1) fails for every θ ∈ (0,1), with s and p given by (1.2).

Let us also recall the following well-known Sobolev style embeddings. Let s, r, p, q satisfy

0≤ r < s<∞, 1≤ p < q ≤∞, r−
N

q
= s−

N

p
. (1.5)

Then we have “most of the time” W s,p(Ω) ,→W r,q(Ω). More specifically, we have the following

result, well-known to experts.

Theorem B. Let Ω be a standard domain in R
N . Let s, r, p, q, N satisfy (1.5). Then we have

W s,p(Ω) ,→W r,q(Ω) (1.6)

with the following exceptions, where (1.6) fails.

1. When

N = 1, s is an integer ≥ 1, p = 1, 1< q <∞ and r = s−1+1/q, (1.7)

we have

W s,1(Ω) 6,→W s−1+1/q,q(Ω). (1.8)

2. When

N ≥ 1, 1< p <∞, q =∞ and s−
N

p
= r ≥ 0 is an integer, (1.9)

we have

W s,p(Ω) 6,→W r,∞(Ω). (1.10)

For the convenience of the reader, we present in the appendix a proof of some special cases

of Theorem B that we could not find in the literature, and give references for the other ones.

The Gagliardo-Nirenberg-Sobolev (GNS) inequalities are inequalities obtained, at least for-

mally, by combining (1.1) with (1.6). They are of the form

‖ f ‖W r,q(Ω) . ‖ f ‖θW s1,p1 (Ω)‖ f ‖1−θ
W s2,p2 (Ω), ∀ f ∈W s1,p1(Ω)∩W s2,p2(Ω), (1.11)
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where

0≤ s1 ≤ s2, r ≥ 0, 1≤ p1, p2, q ≤∞, (s1, p1) 6= (s2, p2), θ ∈ (0,1),

r < s := θs1 + (1−θ)s2,
1

q
=

(
θ

p1
+

1−θ

p2

)
−

s− r

N
.

(1.12)

[More specifically, (1.11) can be obtained either by using first (1.1), next (1.6), or by applying

first (1.6) in order to obtain the embeddings W s j ,p j ,→ W r j,q j , j = 1,2, next by applying (1.1) to

the couple (W r1,q1 ,W r2,q2), with interpolation parameter θ. Both procedures lead to the same

family of inequalities.]

The conditions (s1, p1) 6= (s2, p2) and r < s are imposed in order to exclude from (1.11) the GN

interpolation inequalities (1.1) and the Sobolev embeddings (1.6). Indeed, let us note that, when

(s1, p1) = (s2, p2) and r < s = s1 = s2, estimate (1.11) amounts to (1.6), whose validity is settled

by Theorem B. On the other hand, when r = s, (1.11) becomes (1.1), and we are in position to

apply Theorem A.

We also note that, in (1.12), the parameter q is determined by all the other ones.

Estimate (1.11) is valid in “many cases”. Indeed, assuming (1.12), by combining Theorems

A and B we obtain a wide range of s1, s2, r, p1, p2, q,θ, N such that (1.11) holds. Here are two

typical “historical” examples.

Ladyzhenskaya’s inequality ([9]). Let Ω⊂R
2 be a bounded Lipschitz domain. Then

‖ f ‖L4 . ‖ f ‖1/2
L2 ‖∇ f ‖1/2

L2 ,∀ f ∈W1,2
0

(Ω). (1.13)

Inequality (1.13) can be obtained as follows. First, Theorem A with s1 = 0, s2 = 1, p1 = 2,

p2 = 2, θ = 1/2 yields

‖ f ‖W1/2,2 . ‖ f ‖1/2
L2 ‖ f ‖1/2

W1,2 ,∀ f ∈W1,2(Ω). (1.14)

Next, Theorem B with N = 2, s= 1/2, p = 2, r = 0, q = 4 gives

‖ f ‖L4 . ‖ f ‖W1/2,2 ,∀ f ∈W1/2,2(Ω). (1.15)

We obtain (1.13) from (1.14)–(1.15). ä

Nash’s inequality ([11]). Let Ω⊂R
2 be a bounded Lipschitz domain. Then

‖ f ‖L2 . ‖ f ‖1/2
L1 ‖∇ f ‖1/2

L2 , ∀ f ∈W1,2
0

(Ω). (1.16)

In order to obtain (1.16), we start, as above, from the GN interpolation style inequality

‖ f ‖W1/2,4/3 . ‖ f ‖1/2
L1 ‖ f ‖1/2

W1,2 , ∀ f ∈W1,2(Ω) (1.17)

and the Sobolev style inequality

‖ f ‖L2 . ‖ f ‖W1/2,4/3 , ∀ f ∈W1/2,4/3(Ω). (1.18)

We obtain (1.16) from (1.17)–(1.18). ä

The above technique works well when estimates (1.1) and (1.6) are valid. However, it may
happen (and it does happen) that (1.11) holds despite the fact that one (or both) of the estimates

(1.1) or (1.6) fails. Here is such an example.

Example 1. Assume that N = 1. We have

‖ f ‖W3/4,3/2 . ‖ f ‖1/2
W2/3,2‖ f ‖1/2

W1,1 , ∀ f ∈W2/3,2(Ω)∩W1,1(Ω). (1.19)
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It is natural to try to derive (1.19) by combining the (formal) GN inequality

‖ f ‖W5/6,4/3 . ‖ f ‖1/2
W2/3,2‖ f ‖1/2

W1,1 , ∀ f ∈W2/3,2(Ω)∩W1,1(Ω) (1.20)

with the Sobolev estimate

‖ f ‖W3/4,3/2 . ‖ f ‖W5/6,4/3 , ∀ f ∈W5/6,4/3(Ω). (1.21)

Here, (1.20) fails, (1.21) holds and, by Theorem 1 below, (1.19) holds.

On the other hand, it may happen that (1.11) fails (despite the fact that (1.12) holds). Here

is such an example.

Example 2. Assume that N = 1. Then, as a consequence of Theorem 1 below, the following

estimate fails.

‖ f ‖W2/3,3 . ‖ f ‖1/2

W1/2,2‖ f ‖1/2
W1,1 , ∀ f ∈W1/2,2(Ω)∩W1,1(Ω). (1.22)

In this case, the analogues of (1.20) and (1.21) are

‖ f ‖W3/4,4/3 . ‖ f ‖1/2

W1/2,2‖ f ‖1/2
W1,1 , ∀ f ∈W1/2,2(Ω)∩W1,1(Ω), (1.23)

respectively

‖ f ‖W2/3,3 . ‖ f ‖W3/4,4/3 , ∀ f ∈W3/4,4/3(Ω). (1.24)

This time, (1.23) fails, (1.24) holds, and (1.22) fails.

Our main result provides a complete answer to the question of the validity/failure of (1.11).

Theorem 1. Let Ω be a standard domain in R
N . Let s1, s2, r, p1, p2, q,θ, N satisfy (1.12). Then

the GNS inequality (1.11) holds with the following exceptions, when it fails.

1. N = 1, s2 is an integer ≥ 1, 1< p1 ≤∞, p2 = 1, s1 = s2 −1+
1

p1
,

[1< p1 <∞, r = s2 −1] or

[
s2 +

θ

p1
−1< r < s2 +

θ

p1
−θ

]
.

2. N ≥ 1, s1 < s2, s1−
N

p1
= s2−

N

p2
= r is an integer, q =∞, (p1, p2) 6= (∞,1) (for every θ ∈ (0,1)).

In the special case where

s1 ≤ r ≤ s2, (1.25)

which is a traditional assumption, considered for example in the seminal work of Nirenberg

[12], Theorem 1 takes the following form.

Corollary 1. Let Ω be a standard domain in R
N . Let s1, s2, r, p1, p2, q,θ, N satisfy (1.12) and

(1.25). Then the GNS inequality (1.11) holds with the following exceptions, when it fails.

1. N = 1, s2 is an integer ≥ 1, 1< p1 <∞, p2 = 1, s1 = s2 −1+
1

p1

,

s2 +
θ

p1

−1< r < s2 +
θ

p1

−θ and r ≥ s1.

2. N ≥ 1, p1 =∞, 1< p2 <∞, q =∞, s1 = r ≥ 0 is an integer, s2 = r+
N

p2

(for every θ ∈ (0,1)).
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Remark 1. Assume that 0≤ s1 ≤ r ≤ s2 are integers and that (1.12) holds. By Corollary 1, (1.11)

holds except when

N ≥ 1, p1 =∞, 1< p2 <∞, q =∞, s1 = r ≥ 0 is an integer, s2 = r+
N

p2

(for every θ ∈ (0,1)).

(1.26)

This corresponds to the framework of Nirenberg’s paper [12]. [As observed by a number of

people, the exceptional case (1.26) had been overlooked in [12].]

Remark 2. Let us note a striking phenomenon. Let N ≥ 2, s1 = 1, s2 = N, r = 0, p1 = N, p2 = 1,

q =∞, θ ∈ (0,1). Then W1,N (RN)∩WN,1(RN) ,→ L∞(RN) (since WN,1(RN) ,→ L∞(RN)). Therefore,

we have the additive inequality

‖ f ‖L∞ . ‖ f ‖W1,N +‖ f ‖WN,1 , ∀ f ∈W1,N (RN)∩WN,1(RN). (1.27)

However, by Theorem 1 item 2, there is no multiplicative version of (1.27), i.e., there is no

θ ∈ (0,1) such that

‖ f ‖L∞ . ‖ f ‖θ
W1,N‖ f ‖1−θ

WN,1 , ∀ f ∈W1,N(RN )∩WN,1(RN ) (1.28)

(see Case 5.4; for an alternative proof, see [6, Appendix]). This in sharp contrast with the GN

situation, where additive and multiplicative versions are equivalent.

Remark 3. As we will see in the course of the proof of Theorem 1, the following condition plays

a crucial role in the arguments:

s1 −
N

p1
= s2 −

N

p2
. (1.29)

If (1.29) holds, the equality

r−
N

q
= θ

(
s1 −

N

p1

)
+ (1−θ)

(
s2 −

N

p2

)

holds for every θ ∈ (0,1). Therefore, in Theorem 1 item 2, every θ ∈ (0,1) is admissible, while in

item 1, there exists a non-empty open interval of admissible θ ∈ (0,1).

Our paper is organized as follows. Section 3 is devoted to the proof of Theorem 1. The proof

relies heavily on the identification of most of the Sobolev spaces with Triebel-Lizorkin spaces

(see e.g. [17, Section 2.3.5], [14, Section 2.1.2]). This approach turned out also to be effective in

the proof of Theorem A in [5], and we refer the reader to [5, Sections 2 and 5] for a collection of

properties and tools useful in this context. For the convenience of the reader, an initial Section

2 gathers the minimal material related to Sobolev and Triebel-Lizorkin spaces that we need in

order to prove Theorem 1. The appendix is devoted to a proof of Theorem B.
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2 Basic properties of Sobolev spaces

To start with, let us define a convenient norm on the Sobolev space W s,p(Ω), with Ω ⊂ R
N a

standard domain. Given s> 0 and 1≤ p ≤∞, let m= ⌊s⌋ be the integer part of s and and set

| f |W s,p(Ω) =






‖Dm f ‖Lp(Ω), if s= m
(ˆ

Ω

ˆ

Ω

|Dm f (x)−Dm f (y)|p

|x− y|N+(s−m)p
dxd y

)1/p

, if m< s< m+1
(2.1)

(with the obvious modification when p =∞). Then (see e.g. [17, Section 2.3.8])

Lemma 1. Let Ω⊂R
N be a standard domain. Let s> 0 and 1≤ p ≤∞. Then

f 7→ ‖ f ‖W s,p = ‖ f ‖W s,p(Ω) :=‖ f ‖Lp(Ω) +| f |W s,p(Ω) (2.2)

is equivalent to the “usual” norms on W s,p(Ω).

We endow W s,p(Ω) with this norm.

Definition 1. Let ψ ∈C∞
c (RN) be such that ψ= 1 in B1(0) and suppψ⊂ B2(0). Define ψ0 =ψ and,

for j ≥ 1, ψ j(x) :=ψ(x/2 j)−ψ(x/2 j−1). Set ϕ j := F
−1ψ j ∈ S . [Equivalently, we have ϕ0 = F

−1ψ

and, for j ≥ 1, ϕ j(x) = 2N jϕ0(2 jx)−2N( j−1)ϕ0(2 j−1x).] Then for each tempered distribution f in

R
N we have

f =
∑

j≥0

f j in S
′
=S

′(RN), with f j := f ∗ϕ j. (2.3)

f =
∑

j≥0 f j is “the” Littlewood-Paley decomposition of f ∈S
′.

Note that F f j =ψ jF f is compactly supported, and therefore f j ∈C∞ for each j.

Definition 2. Starting from the Littlewood-Paley decomposition, we define the Triebel-Lizorkin
spaces Fs

p,q = Fs
p,q(RN) as follows. We let

‖ f ‖F s
p,q

:=

∥∥∥∥

∥∥∥∥
(
2 js f j(x)

)

j≥0

∥∥∥∥
lq(N)

∥∥∥∥
Lp(RN )

, 0< p ≤∞, 0< q ≤∞, (2.4)

Fs
p,q := { f ∈S

′; ‖ f ‖F s
p,q

<∞}, 0< p <∞, 0< q ≤∞. (2.5)

The space Fs
∞,∞ is still defined as in (2.5), with p = q =∞.

Note that we do not define the spaces Fs
∞,q when q < ∞; this is a delicate matter (see [17,

Section 2.3.4, p. 50]).

Most of the Sobolev spaces can be identified with Triebel-Lizorkin spaces [17, Section 2.3.5],

[14, Section 2.1.2].

Lemma 2. The following equalities of spaces hold, with equivalence of norms:

1. If s> 0 is not an integer and 1≤ p ≤∞, then W s,p(RN)= Fs
p,p.

2. If s≥ 0 is an integer and 1< p <∞, then W s,p(RN)= Fs
p,2

.

When s ≥ 0 is an integer and either p = 1 or p =∞, the Sobolev space W s,p cannot be identified

with a Triebel-Lizorkin space.

Definition 3. A regular Sobolev space is a space W s,p = W s,p(RN) which can be identified with

a Triebel-Lizorkin space. Equivalently, W s,p is regular if and only if either [s is not an integer

and 1≤ p ≤∞] or [s is an integer and 1< p <∞]. The remaining Sobolev spaces, Wk,1 and Wk,∞

with k ≥ 0 an integer, are exceptional.
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Lemma 3. Let 0 < r1 < r2 < ∞ and 1 ≤ p ≤ q ≤ ∞ be fixed. Then for every integer k ≥ 0,

u ∈ Lp(RN) and R > 0 we have the direct Nikolskiı̆’s estimates

supp û ⊂ B(0,R) =⇒ ‖Dku‖Lq(RN ) . Rk+N(1/p−1/q)
‖u‖Lp(RN ) (2.6)

and the reverse Nikolskiı̆’s estimates

supp û ⊂ B(0, r2R)\ B(0, r1R)⇒‖u‖Lp(RN ) .R−k
‖Dku‖Lp(RN ). (2.7)

See e.g. [16, Chapter 5, Lemma 3.14] for the first result, and [7, Lemma 2.1.1] for the second

one.

In particular, let f j be as in the Littlewood-Paley decomposition. Then the direct estimates

apply to u := f j, with j ≥ 0 and R := 2 j+1. The reverse estimates apply to u := f j with j ≥ 1,

R := 2 j, r1 := 1/2, r2 := 2.

Another useful tool is the following.

Lemma 4. Let s1, s2, s ∈ R, 0 < p1, p2, p ≤ ∞ and θ ∈ (0,1) satisfy s1 < s2 and (1.2). Then for

every 0< q1, q2, q ≤∞ we have

‖ f ‖F s
p,q

. ‖ f ‖θ
F

s1
p1,q1

‖ f ‖1−θ

F
s2
p2,q2

,∀ f ∈S
′. (2.8)

The above result is due to Oru [13] (unpublished); for a proof, see [4, Lemma 3.1 and Section

III].

We emphasize the fact that the values of N, q1, q2, q are irrelevant for the validity of (2.8),

and that the essential assumptions are s1 6= s2 and the proportionality relations (1.2).

We next establish various estimates needed in the proof of Theorem 1.

Lemma 5. Let −∞< s<∞, 1≤ p ≤∞ and 0< t ≤∞. Then

‖ f ‖
F s−N/p
∞,∞

. ‖ f ‖F s
p,t

, ∀ f ∈S
′(RN). (2.9)

Proof. When p = ∞, the conclusion is clear. Assume that p < ∞. Let f =
∑

j≥0 f j be the

Littlewood-Paley decomposition of f ∈S
′(RN). We may assume that ‖ f ‖F s

p,t
<∞. Set

g(x) :=

∥∥∥∥
(
2 js f j(x)

)

j≥0

∥∥∥∥
ℓt

,

so that ‖ f ‖F s
p,t

= ‖g‖Lp <∞.

We have 2 js| f j(x)| ≤ g(x), ∀ x, ∀ j. By the direct Nikolskiı̆’s estimates (2.6) (with q :=∞), we

have

‖ f j‖L∞ . 2 jN/p
‖ f j‖Lp ≤ 2 jN/p− js

‖g‖Lp = 2 jN/p− js
‖ f ‖F s

p,t
,

so that

‖ f ‖
F s−N/p
∞,∞

= sup
j

2 j(s−N/p)
‖ f j‖L∞ . ‖ f ‖F s

p,t
.

Lemma 6. Let s≥ 0 and 1≤ p ≤∞. Then

‖ f ‖
F s−N/p
∞,∞

. ‖ f ‖W s,p , ∀ f ∈W s,p(RN ). (2.10)

7



Proof. We start with a preliminary remark. Let f ∈ Lp(RN) and let f =
∑

j≥0 f j be its Littlewood-

Paley decomposition. With ϕ j as in Definition 1, we have

‖ f j‖Lp ≤ ‖ f ‖Lp‖ϕ j‖L1 ≤ C‖ f ‖Lp , (2.11)

for some C > 0 independent of f , p and j.

We now proceed with the proof of the lemma. Its conclusion follows from Lemmas 5 and 2,

except when s ≥ 0 is an integer and p = 1 or p =∞. For s ≥ 0 integer and p = 1 or p =∞, let

f ∈W s,p(RN) and let f =
∑

j≥0 f j be its Littlewood-Paley decomposition.

When p =∞, (2.7) and (2.11) yield, for j ≥ 1,

‖ f j‖L∞ . 2−s j
‖Ds f j‖L∞ = 2−s j

‖(Ds f ) j‖L∞ . 2−s j
‖Ds f ‖L∞ ≤ 2−s j

‖ f ‖W s,∞. (2.12)

Since, on the other hand, we have, by (2.11), ‖ f0‖L∞ . ‖ f ‖L∞ , we find that ‖ f ‖F s
∞,∞

. ‖ f ‖W s,∞.

Similarly, when p = 1, (2.6), (2.7) and (2.11) imply, for j ≥ 1,

‖ f j‖L∞ . 2N j
‖ f j‖L1 . 2(N−s) j

‖Ds f j‖L1 = 2(N−s) j
‖(Ds f ) j‖L1

. 2(N−s) j
‖Ds f ‖L1 ≤ 2(N−s) j

‖ f ‖W s,1,
(2.13)

while

‖ f0‖L∞ . ‖ f0‖L1 . ‖ f ‖L1 ≤ ‖ f ‖W s,1. (2.14)

Combining (2.13) with (2.14), we find that ‖ f ‖F s−N
∞,∞

. ‖ f ‖W s,1 .

Lemma 7. Let N ≥ 2, s > 0 and 1 ≤ p < q ≤∞. Let σ = σq ∈ R be defined by σ−N/q = s−N/p.

Then

W s,p(RN) ,→ Fσ
q,∞. (2.15)

Proof. Lemma 6 shows that (2.15) holds when q =∞.

Assume next that q <∞. By Theorem B, we have W s,p(RN) ,→Wσ,q(RN ). [Item 1 (resp. item

2) is ruled out since N ≥ 2 (resp. q < ∞).] On the other hand, for sufficiently small ε > 0 and

p < q ≤ P = p+ε, we are in position to apply Lemma 2 and obtain that

W s,p(RN) ,→Wσ,q(RN )= Fσ
q,q ,→ Fσ

q,∞. (2.16)

Finally, let P < q <∞. Let θ = P/q ∈ (0,1), so that

1

q
=

θ

P
+

1−θ

∞
and σq = θσP + (1−θ)σ∞. (2.17)

By (2.17), (2.16) with q = P and Lemma 4, we find that

‖ f ‖F
σq
q,∞

. ‖ f ‖θ
F
σP
P,∞

‖ f ‖1−θ
Fσ∞
∞,∞

. ‖ f ‖W s,p(RN ), ∀ f ∈W s,p(RN).

Lemma 8. We have

‖ f ‖L∞ . ‖ f ‖F0
∞,1

, ∀ f ∈S
′. (2.18)

Proof. Let f =
∑

j≥0 f j be the Littlewood-Paley decomposition of f . Then

‖ f ‖L∞ ≤ sup
J≥0

∥∥∥∥∥
∑

j≤J
f j

∥∥∥∥∥
L∞

≤

∥∥∥∥∥
∑

j
| f j|

∥∥∥∥∥
L∞

= ‖ f ‖F0
∞,1

.
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3 Proof of Theorem 1

Outline of the proof. We investigate the validity of (1.11) by considering a number of cases, which

are of interest only when

at least one of the conditions (1.4), (1.7) or (1.9) is satisfied. (3.1)

Therefore, even if (3.1) is not explicitly assumed in a case, we may assume that (3.1) holds.

In the “positive” cases where (1.11) holds, it suffices to establish its validity only when Ω =

R
N . Indeed, combining (1.11) in Ω = R

N with the existence of a universal extension operator

P : W s,p(Ω) ,→W s,p(RN ), we obtain the validity of (1.11) in all standard domains.

In the “negative” cases where (1.11) fails, it suffices to prove that (1.11) fails in some ball

B. Indeed, assuming this fact and using the existence of a universal extension operator P :

W s,p(B) ,→W s,p(Ω) (with B ⊂Ω), we find that (1.11) fails in any domain Ω.

In view of the above, we will work either in R
N (in the positive cases) or in a (fixed) ball B

(in the negative cases).

It will be convenient to consider not only s1, s2, r, p1, p2, q,θ, N, but also s and p as in Theo-

rem A, given respectively by

s := θs1 + (1−θ)s2, (3.2)

1

p
:=

θ

p1
+

1−θ

p2
. (3.3)

Before proceeding with the proof, let us recall the assumption s1 ≤ s2, which is part of (1.12).

The proof is divided into eight cases. We will explain at the end why all situations where

(3.1) holds are contained in one of these cases.

Case 1. q =∞, r ≥ 0 is an integer, r ≤ s1 and s1 −N/p1 6= s2 −N/p2

Case 2. s1 = s2

Case 3. p = 1

Case 4. (1.1) holds (i.e., (1.4) fails) and s1 −N/p1 6= s2 −N/p2

Case 5. s1 < s2, q =∞ and s1 −N/p1 = s2 −N/p2 is an integer ≥ 0

Case 6. N = 1, s2 ≥ 1 is an integer, p2 = 1, 1< p1 ≤∞ and s1 = s2 −1+1/p1

Case 7. N = 1, s2 ≥ 1 is an integer, p2 = 1, 1< p1 ≤∞ and s2 −1+1/p1 < s1 < s2

Case 8. N ≥ 2, s2 ≥ 1 is an integer, p2 = 1, 1< p1 ≤∞ and s2 −1+1/p1 ≤ s1 < s2

Case 1. Assume that q =∞, r ≥ 0 is an integer, r ≤ s1 and s1 − N/p1 6= s2 − N/p2. Then (1.11)

holds

Proof. We note that s1 − r− N/p1 6= s2 − r− N/p2 and that s j − r ≥ 0, j = 1,2. We are thus in

position to combine Lemmas 4 and 6 and find that

‖ f ‖F0
∞,1

. ‖ f ‖θ
F

s1−r−N/p1
∞,∞

‖ f ‖1−θ

F
s2−r−N/p2
∞,∞

. ‖ f ‖θW s1−r,p1 ‖ f ‖1−θ
W s2−r,p2 . ‖ f ‖θW s1,p1 ‖ f ‖1−θ

W s2,p2 . (3.4)

Replacing in (3.4) f with ∂α f , with α a multi-index such that |α| = r, we find that

‖Dr f ‖F0
∞,1

. ‖Dr f ‖θW s1−r,p1 ‖Dr f ‖1−θ
W s2−r,p2 . ‖ f ‖θW s1,p1 ‖ f ‖1−θ

W s2,p2 . (3.5)

Combining (3.4) and (3.5) with Lemmas 1 and 8, we find that

‖ f ‖W r,∞ = ‖ f ‖L∞ +‖Dr f ‖L∞ . ‖ f ‖F0
∞,1

+‖Dr f ‖F0
∞,1

. ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W s2,p2 . ä

Case 2. (1.11) holds when s1 = s2

Proof. With no loss of generality, we may assume that 1 ≤ p1 < p2 ≤ ∞. [Recall that we have
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assumed (s1, p1) 6= (s2, p2), and thus when s1 = s2 we must have p1 6= p2.] It follows that r <

s = s1 = s2 and p1 < p < p2. Let us note that, in view of the assumption s1 = s2, (1.1) holds.

Therefore, (1.11) holds also, possibly except when (1.6) fails. We find that we only have have to

investigate the validity of (1.11) when

s−
N

p
= r is an integer ≥ 0 and q =∞. (3.6)

In this case, the validity of (1.11) follows from Case 1. ä

Case 3. (1.11) holds when p = 1

Proof. In this case we have p = p1 = p2 = 1 and thus s1 < s2. In particular, (1.1) holds. The

only possible obstruction for the validity of (1.11) can arise from Theorem B item 1. We thus

investigate the case where N = 1, s≥ 1 is an integer, 1< q <∞, r = s−1+1/q.

We let S1, S2 such that:

1. We have s1 < S1 < s< S2 < s2, and S j is not an integer, j = 1,2.

2. If we let R j := S j −1+1/q, j = 1,2, then R j > 0.

The last condition is satisfied provided S j, j = 1,2 are sufficiently close to s (since s−1+1/q ≥

1/q > 0).

Define λ,λ1,λ2 ∈ (0,1) by the relations

s=λS1 + (1−λ)S2, S1 =λ1s1 + (1−λ1)s2, S2 =λ2s1 + (1−λ2)s2. (3.7)

Clearly, we have

r =λR1+ (1−λ)R2, (3.8)

λλ1+ (1−λ)λ2 = θ, (3.9)

λ (1−λ1)+ (1−λ) (1−λ2)= 1−θ. (3.10)

Let us note that, since 1< q <∞ and S j is not an integer, j = 1,2, we have

WS j ,1(R) ,→WR j ,q(R), j = 1,2. (3.11)

Using successively: (3.8) and Theorem A, (3.11), (3.9)–(3.10) and Theorem A, we find that

‖ f ‖W r,q(R) . ‖ f ‖λ
WR1,q(R)

‖ f ‖1−λ

WR2,q(R)
. ‖ f ‖λ

WS1,1(R)
‖ f ‖1−λ

WS2,1(R)

.
(
‖ f ‖λ1

W s1,1(R)
‖ f ‖1−λ1

W s2,1(R)

)λ (
‖ f ‖λ2

W s1,1(R)
‖ f ‖1−λ2

W s2,1(R)

)1−λ
= ‖ f ‖θ

W s1,1(R)
‖ f ‖1−θ

W s2,1(R)
.

This completes Case 3. ä

In view of Case 2 and Case 3, from now on we may assume that

s1 < s2 (3.12)

and

1< p <∞, (3.13)

and in particular that (1.7) fails. [Note that the value p =∞ is excluded, in view of (1.12).]

Case 4. Assume that (1.1) holds (i.e., that (1.4) fails) and that s1−N/p1 6= s2−N/p2. Then (1.11)

holds

Proof. We may assume that (3.12) and (3.13) hold. It suffices to investigate the cases where (1.6)
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fails. In view of Theorem B and of the assumption (3.13), we thus have that r ≥ 0 is an integer,

q =∞, 1< p <∞ and s= r+N/p.

It will be convenient to rely on geometric interpretations of the conditions (1.2) and (1.4)

with s1 < s2. Condition (1.2) asserts that the point (s,1/p) belongs to the open line segment

I = I(s1, s2, p1, p2) determined by its endpoints (s1,1/p1) and (s2,1/p2). On the other hand,

condition (1.4) is equivalent to the fact that the right endpoint of I, i.e., (s2,1/p2), is of the

form (k,1), with k positive integer, and that in addition the slope of I is ≤−1. Therefore, given

s1, s2, p1, p2, if (1.4) is satisfied for some couple (s, p) with (s,1/p)∈ I, then it is satisfied by every
such couple. Equivalently, given I, if (1.1) holds for some couple (s, p) with (s,1/p)∈ I, then (1.1)

holds for every such couple.

Using these considerations, (3.12) and the assumption that (1.1) is satisfied by (s, p), we

obtain the following fact (which can also be checked analytically). Let s1 < S1 < s < S2 < s2 and

define P1, P2 such that the points (S j,1/P j), j = 1,2, belong to I. Define λ, λ1, λ2 as in (3.7).

Then

1

P j
=

λ j

p1
+

1−λ j

p2
, j = 1,2,

1

p
=

λ

P1
+

1−λ

P2
(3.14)

and

‖ f ‖
WS j ,P j . ‖ f ‖

λ j

W s1,p1
‖ f ‖

1−λ j

W s2,p2
, ∀ f ∈W s1,p1(RN)∩W s2,p2(RN ), ∀ j = 1,2. (3.15)

We choose S j such that S j − r > 0, j = 1,2; this is possible since s− r = N/p > 0.

We next note that, under the assumption s1 − N/p1 6= s2 − N/p2, the function I ∋ (s,1/p) 7→

s−N/p is strictly monotone, and thus in particular S1−N/P1 6= S2−N/P2. Since r < S1, by Case

1 we have

‖ f ‖W r,∞ . ‖ f ‖λ
WS1,P1

‖ f ‖1−λ

WS2,P2
. (3.16)

We complete Case 4 by combining (3.16), (3.15) and (3.9)–(3.10). ä

In Case 5 below, we assume (3.12), i.e., s1 < s2.

Case 5. Assume that q =∞ and that s1 − N/p1 = s2 − N/p2 is an integer ≥ 0. Then (1.11) fails

except in the trivial case where p1 =∞, p2 = 1

Proof. Let us note that we have p2 < p1 and r = s−N/p = s1−N/p1 = s2−N/p2 ≥ 0 is an integer.

Case 5.1. p1 =∞ and p2 = 1

In this case, we have s1 = r, s2 = r+N, and thus W s1,p1 = W r,∞ and W s2,p2 ,→ W r,∞, whence

(1.11).

Case 5.2. p2 > 1 and p1 <∞

We have W s2,p2 ,→W s1,p1 , which implies W s1,p1∩W s2,p2 =W s1,p1 . However, we have W s1,p1 6,→

W r,∞, so that (1.11) fails.

Case 5.3. p2 > 1 and p1 =∞ (so that s1 = r)

In this case, (1.11) becomes ‖ f ‖W r,∞ . ‖ f ‖θW r,∞ ‖ f ‖1−θ
W s2,p2

, which fails since W s2,p2 6,→W r,∞.

Case 5.4. p2 = 1 and 1< p1 <∞

This is a more delicate case. We want to prove that the estimate

‖ f ‖W r,∞ . ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W r+N,1 , ∀ f ∈W s1,p1(B)∩W r+N,1(B) (3.17)

fails in the unit ball B.

When r = 0, this is an immediate consequence of the analysis in [6, Appendix]. We present a

a proof valid for all integers r ≥ 0.
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Fix some function ϕ ∈ C∞
c (B) such that ϕ(x) = xr

1/r! near the origin. For such ϕ, we have

0< C j <∞, j = 1,2,3, where

C1 := |ϕ|W s1 ,p1 (RN ), C2 := |ϕ|W r+N,1 (RN ), C3 := |ϕ|W r,∞(RN ).

Set

ϕλ(x)=λ−r ϕ(λx), ∀λ> 1,

so that ϕλ ∈C∞
c (B).

A simple scaling argument shows that

|ϕλ
|W s1 ,p1 (B) → C1, |ϕλ

|W r+N,1(B) → C2 as λ→∞, |ϕλ
|W r,∞(B) = C3, (3.18)

‖ϕλ
‖Lt(B) → 0 as λ→∞, ∀1≤ t ≤∞ (3.19)

and

Dmϕλ
→ 0 a.e. in B as λ→∞, ∀m≥ 0 integer. (3.20)

In view of (3.18)–(3.20), of Lemma 1 and of the Brezis-Lieb lemma ([3]), for every fixed

function f ∈ C∞
c (B) and for every fixed number β> 0 we have

lim
λ→∞

‖ f +βϕλ
‖

p1

W s1,p1 (B)
= ‖ f ‖p1

W s1,p1 (B)
+ (C1)p1βp1 (3.21)

and

lim
λ→∞

‖ f +βϕλ
‖W r+N,1(B) = ‖ f ‖W r+N,1(B) +C2β. (3.22)

Using (3.21)–(3.22) and a straightforward induction argument, for every sequence (β j) of

positive numbers we may choose a sequence (λ j) such that

J+1

4J
(C1)p1

J∑

j=1

(β j)
p1 ≤

∥∥∥∥∥

J∑

j=1

β j ϕ
λ j

∥∥∥∥∥

p1

W s1,p1 (B)

≤
4J

J+1
(C1)p1

J∑

j=1

(β j)
p1 , ∀J ≥ 1 (3.23)

and

J+1

4J
C2

J∑

j=1

β j ≤

∥∥∥∥∥

J∑

j=1

β j ϕ
λ j

∥∥∥∥∥
W r+N,1(B)

≤
4J

J+1
C2

J∑

j=1

β j, ∀J ≥ 1 (3.24)

(see [10] for a similar construction).

On the other hand, we have

∥∥∥∥∥

J∑

j=1

β jϕ
λ j

∥∥∥∥∥
W r,∞(B)

≥

∣∣∣∣∣
∂r

∂xr
1

(
J∑

j=1

β j ϕ
λ j

)

(0)

∣∣∣∣∣=
J∑

j=1

β j. (3.25)

We consider a sequence (β j) of positive numbers such that

∑

j≥1

β j =∞ and
∑

j≥1

(β j)
p1 <∞ (3.26)

(note that this is possible, since p1 > p2 = 1).

We now argue by contradiction and assume that (3.17) holds. We obtain a contradiction (via

(3.23)–(3.26)) by testing (3.17) on fJ :=
∑J

j=1β j ϕ
λ j and letting J →∞.

Case 5 is complete. ä
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Case 6. Assume that N = 1, s2 ≥ 1 is an integer, p2 = 1, 1 < p1 ≤∞ and s1 = s2 −1+1/p1. Then

(1.11) holds if and only if: [1< p1 <∞ and p1/θ ≤ q <∞] or [p1 =∞ and q =∞]

Proof. We first assume that s2 = 1 (and thus s1 = 1/p1 and r = 1/q); as we will see below, the case

where s2 ≥ 2 easily reduces to this special case.

Case 6.1. s2 = 1 and p1 =∞

By Theorem B, when 1< q <∞ we have

W1,1(Ω)∩L∞(Ω)=W1,1(Ω) 6,→W1/q,q(Ω),

and thus (1.11) cannot hold.

On the other hand, when q =∞, the estimate ‖ f ‖L∞ . ‖ f ‖θL∞‖ f ‖1−θ
W1,1 holds for every θ ∈ (0,1),

in view of the embedding W1,1(Ω) ,→ L∞(Ω).

Case 6.2. s2 = 1, 1< p1 <∞ and q = p1/θ (and thus r = θ/p1)

By Theorem A and the embedding W1,1(R) ,→ L∞(R), we have

‖ f ‖W r,q = ‖ f ‖Wθ/p1,p1/θ . ‖ f ‖θ
W1/p1,p1

‖ f ‖1−θ
L∞ ≤ ‖ f ‖θ

W1/p1,p1
‖ f ‖1−θ

W1,1 ,

whence (1.11).

Case 6.3. s2 = 1, 1< p1 <∞ and p1/θ < q <∞

By Theorem B and the previous case, we have

‖ f ‖W r,q = ‖ f ‖W1/q,q . ‖ f ‖Wθ/p1,p1/θ . ‖ f ‖θ
W1/p1,p1

‖ f ‖1−θ
W1,1 .

Case 6.4. s2 = 1, 1< p1 <∞ and q < p1/θ

Note that we must have q > 1. We will prove that, for every 1< q < p1/θ, the estimate

‖ f ‖W1/q,q . ‖ f ‖θ
W1/p1,p1

‖ f ‖1−θ
W1,1 , ∀ f ∈W1/p1,p1

c (I)∩W1,1(I) (3.27)

fails in the interval I = (−2,2).

For 0< ε< 1/2, a> 0, b > 0, we consider the function v = vε,a,b : (−2a,2a)→R given by:

v(x) :=






0, if |x| > (1+ε)a

b, if |x| < a

affine, in (a, (1+ε)a) and in (−(1+ε)a,−a)

. (3.28)

By straightforward calculations, we have

|v|W1,1(R) = 2b (3.29)

and

Ctb
t
| lnε| ≤ |v|t

W1/t,t ((−2a,2a))
≤ C′

tb
t
| lnε|, ∀1< t <∞ (with 0< Ct,C

′
t <∞). (3.30)

Arguing by contradiction and assuming the validity of (3.27), we obtain a contradiction (via

(3.29)–(3.30)) by testing (3.27) with vε,1,1 and letting ε→ 0.

Case 6.5. s2 = 1, 1< p1 <∞ and q =∞

This is a sub-case of Case 5.4.

Case 6.6. s2 ≥ 2

Let us note that s1, s2, r, p1, p2, q are in a positive case if and only of s1 − s2 +1,1, r− s2 +

1, p1, p2, q are in a positive case.
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Therefore, in a positive case we are in position to apply (1.11) with s2 = 1 and find that

‖ f (s2−1)
‖W r−s2+1,q . ‖ f (s2−1)

‖
θ

W1/p1,p1
‖ f (s2−1)

‖
1−θ
W1,1

. ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W s2,1 ,∀ f ∈W s1,p1(R)∩W s2,1(R),

(3.31)

‖ f ‖Lq ≤ ‖ f ‖W r−s2+1,q . ‖ f ‖θ
W1/p1,p1

‖ f ‖1−θ
W1,1

. ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W s2,1 ,∀ f ∈W s1,p1(R)∩W s2,1(R).

(3.32)

We obtain (1.11) from (3.31), (3.32) and Lemma 1.

If we are in a negative case, then there exists a sequence

( f j) j≥1 ⊂ (W s1−s2+1,p1(I)∩W1,1(I))\{0}

such that

‖ f j‖W r−s2+1,q ≥ j‖ f j‖
θ
W s1−s2+1,p1

‖ f j‖
1−θ
W1,1 , ∀ j ≥ 1. (3.33)

We consider some finite length open interval J such that I ⊂ J. By Lemma 1 and the exis-

tence of extension operators, there exist functions g j : J →R, ∀ j ≥ 1, such that

1. g(s2−1)
j = f j in I.

2. ‖g j‖W s1,p1 (J) ≈ ‖ f j‖W s1−s2+1,p1 (I), ‖g j‖W s2,1(J) ≈ ‖ f j‖W1,1(I), ‖g j‖W r,q(J) ≈ ‖ f j‖W r−s2+1,q(I), ∀ j ≥ 1.

Using (3.33) and the above properties of g j, we find that (1.11) fails.

Case 6 is complete. ä

Case 7. Assume that N = 1, s2 ≥ 1 is an integer, p2 = 1, 1 < p1 ≤∞ and s2 −1+1/p1 < s1 < s2.

Then (1.11) holds

Proof. As explained in Case 6, we may assume that s2 = 1, and thus 1/p1 < s1 < 1.

Case 7.1. s2 = 1 and 1< q < p1

Let f ∈ W s1,p1(R)∩W1,1(R). Set A := ‖ f ‖W s1,p1 and B := ‖ f ‖W1,1 . We may assume that A > 0

and B > 0. We want to prove the estimate

‖ f ‖q
W r,q . Aθq B(1−θ)q. (3.34)

Let f =
∑

j≥0 f j be the Littlewood-Paley decomposition of f . In view of Lemma 2, (3.34)

amounts to

∑

j≥0

2r jq
‖ f j‖

q
Lq . Aθq B(1−θ)q. (3.35)

We now note that the following estimates hold:

‖ f j‖L1 . 2− j
‖ f ′j‖L1 = 2− j

‖( f ′) j‖L1 . 2− j
‖ f ′‖L1 ≤ 2− jB, ∀ j ≥ 1, (3.36)

‖ f0‖Lq . ‖ f0‖L1 . ‖ f ‖L1 ≤ B, (3.37)

‖ f j‖Lq . 2 j(1−1/q)
‖ f j‖L1 . 2− j/qB, ∀ j ≥ 1 (3.38)

and

‖ f j‖Lp1 ≤ 2−s1 j
‖ f ‖F

s1
p1,p1

≈ 2−s1 j
‖ f ‖W s1,p1 = 2−s1 j A. (3.39)

Indeed:

1. (3.36) follows from (2.7) and (2.11);
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2. (3.37) is a special case of (2.6);

3. (3.38) is a consequence of (2.6) and (3.36);

4. (3.39) is an immediate consequence of the formula of ‖ f ‖F
s1
p1,p1

combined with Lemma 2.

Combining (3.36)–(3.37) with (3.39) we find, via Hölder’s inequality, that

‖ f j‖Lq . 2−(λs1+1−λ) j Aλ B1−λ; (3.40)

here, the number λ ∈ (0,1) is defined by the equation

1

q
=

λ

p1

+
1−λ

1
. (3.41)

[The fact that 0<λ< 1 follows from the assumption 1< q < p1.]

From (3.37)–(3.38) and (3.40), we obtain, with x := A/B > 0,

‖ f j‖Lq .min
{
2− j/qB, 2−(λs1+1−λ) j AλB1−λ

}

= Aθ B1−θ min
{
2− j/qx−θ, 2−(λs1+1−λ) jxλ−θ

}
.

(3.42)

In view of (3.42) and of the desired conclusion (3.35), it thus suffices to prove that

∑

j≥0

min
{
2(rq−1) jx−θq, 2(r−λs1−1+λ) jqx(λ−θ)q

}
. 1. (3.43)

We now invoke the following result, whose proof is postponed.

Lemma 9. Let α,β,γ,δ∈R be such that αδ=βγ and α,β> 0. Then there exist 0< C1 < C2 <∞

such that

C1 ≤

∞∑

j=−∞
min

{
2−α j xγ, 2β j x−δ

}
≤ C2, ∀ x> 0. (3.44)

In order to obtain (3.43), it suffices thus to be in position to apply Lemma 9 with

α := (1−λ+λs1 − r)q, β := rq−1, γ := (λ−θ)q, δ := θq.

We start by checking the identity

αδ=βγ, (3.45)

which is equivalent to

θ(1−λ+λs1 − r)= (λ−θ)

(
r−

1

q

)
. (3.46)

On the other hand, we have, by (1.11), r = 1/q+ θ(s1 −1/p1). Plugging this value of r into

(3.46) shows that (3.46) reduces to (3.41), and thus (3.45) holds.

We next prove that α,β> 0. We clearly have δ> 0. In view of (3.45), it suffices to prove that

β> 0 and γ> 0.

The inequality β> 0 follows from r−1/q = θ(s1−1/p1).

Finally, γ> 0 is equivalent to λ> θ, that we obtain as follows: we have q > p, and thus

λ

p1

+
1−λ

1
=

1

q
<

1

p
=

θ

p1

+
1−θ

1
,
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so that λ> θ, as claimed.

Case 7.1 is complete.

Case 7.2. s2 = 1 and q ≥ p1

Let, for sufficiently small ε≥ 0, Q := p1 −ε and define R by

R−1/Q = r−1/q = s−1/p = θ (s1 −1/p1)> 0.

Since for ε= 0 we have 0< R < s1, we find that, for small ε> 0, we have 0< R < s1 < s, while

1<Q < p1. By Case 7.1, we have

‖ f ‖WR,Q . ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W1,1 , ∀ f ∈W s1,p1(R)∩W1,1(R). (3.47)

On the other hand, we have, by Theorem B,

WR,Q (R) ,→W r,q(R). (3.48)

Combining (3.47) and (3.48), we find that (1.11) holds.

Case 7 is complete. ä

Case 8. Assume that N ≥ 2, s2 ≥ 1 is an integer, p2 = 1, 1 < p1 ≤∞ and s2 −1+1/p1 ≤ s1 < s2.

Then (1.11) holds

Proof. We consider several sub-cases.

Case 8.1. [p1 < q <∞] or [p1 < q =∞ and r is not a non-negative integer]

By Lemma 2, we have W r,q = Fr
q,t for some t. Let r j, j = 1,2, be given by Lemma 7, such that

W s j,p j (RN) ,→ F
r j
q,∞, j = 1,2. It is easy to see that r1 > r2 and θ r1 + (1−θ) r2 = r. Therefore, we

are in position to apply Lemma 4 and find that

‖ f ‖W r,q ≈ ‖ f ‖F r
q,t
. ‖ f ‖θ

F
r1
q,∞

‖ f ‖1−θ

F
r2
q,∞

. ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W s2,1 , ∀ f ∈W s1,p1(RN )∩W s2,1(RN). (3.49)

Case 8.2. p1 < q =∞ and r ≥ 0 is an integer

Since q =∞, (1.12) yields

r = θ

(
s1 −

N

p1

)
+ (1−θ)

(
s2 −

N

1

)
,

and thus

r ≤max

{
s1 −

N

p1

, s2 −
N

1

}
= s1 −

N

p1

≤ s1.

Arguing as in the proof of (3.49), but using Lemmas 6 and 8 instead of Lemmas 7 and 2, we

find that

‖ f ‖L∞ . ‖ f ‖F0
∞,1

. ‖ f ‖θ
F

r1−r
∞,∞

‖ f ‖1−θ

F
r2−r
∞,∞

. ‖ f ‖θW s1−r,p1 ‖ f ‖1−θ
W s2−r,1 , ∀ f ∈W s1,p1(RN)∩W s2,1(RN).

(3.50)

Applying (3.50) to ∂α f , with |α| = r, we obtain

‖Dr f ‖L∞ . ‖Dr f ‖θW s1−r,p1 ‖Dr f ‖1−θ
W s2−r,1

. ‖ f ‖θW s1,p1 ‖ f ‖1−θ
W s2,1 , ∀ f ∈W s1,p1(RN)∩W s2,1(RN ).

(3.51)

We complete the analysis of Case 8.2 by combining (3.50) and (3.51) with Lemma 1.

We have thus settled all the cases where q > p1.
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Assume next that q ≤ p1. We define σ ∈R and t by

r = θ s1+ (1−θ)σ and
1

q
=

θ

p1

+
1−θ

t
≥

1

p1

. (3.52)

Since, by (1.12), we have

r < θ s1+ (1−θ) s2 and
1

q
<

1

p
=

θ

p1

+
1−θ

1
, (3.53)

we find from (3.52) and (3.53) that σ< s2 and 1< t ≤ p1.

It also follows from (1.12) and (3.52) that

θ

(
s1 −

N

p1

)
+ (1−θ)

(
s2 −

N

1

)
= r−

N

q
= θ

(
s1 −

N

p1

)
+ (1−θ)

(
σ−

N

t

)
, (3.54)

so that

σ−
N

t
= s2 −

N

1
. (3.55)

Case 8.3. σ≥ 0

In this case, Theorem B and (3.55) imply that W s2,1
,→Wσ,t. Since p1, t > 1 and (3.52) holds,

we are in position to apply Theorem A and find that

‖ f ‖W r,q . ‖ f ‖θW s1,p1 ‖ f ‖1−θ
Wσ,t . ‖ f ‖θW s1,p1 ‖ f ‖1−θ

W s2,1 , ∀ f ∈W s1,p1(RN)∩W s2,1(RN).

Case 8.4. σ< 0 and p1 <∞

In this case, we have σ 6= s1 and 1< q <∞. By (3.52), (3.55) and Lemmas 2, 4 and 7, we find

that, for some appropriate τ, we have

‖ f ‖W r,q ≈ ‖ f ‖F r
q,τ

. ‖ f ‖θ
F

s1
p1,p1

‖ f ‖1−θ
Fσ

t,∞
. ‖ f ‖θW s1,p1 ‖ f ‖1−θ

W s2,1 , ∀ f ∈W s1,p1(RN)∩W s2,1(RN ).

Case 8.5. σ< 0, p1 =∞ and [q <∞] or [q =∞ and r is not a non-negative integer]

The argument is almost identical to the one used in Case 8.4. Using, in addition, Lemma 6,

we find that

‖ f ‖W r,q ≈ ‖ f ‖F r
q,τ

. ‖ f ‖θ
F

s1
∞,∞

‖ f ‖1−θ
Fσ

t,∞
. ‖ f ‖θW s1,∞ ‖ f ‖1−θ

W s2,1 , ∀ f ∈W s1,∞(RN )∩W s2,1(RN).

Case 8.6. σ< 0, q =∞ and r ≥ 0 is an integer

By (3.52), we have p1 = t =∞ and, by (3.55), σ= s2−N < 0. Going back to (3.52), we find that

r < s1, and thus we also have r < s2. We also note that 0 = θ (s1 − r)+ (1−θ) (s2 − r−N). Using

Lemma 8 and arguing as above, we have

‖ f ‖L∞ ≤ ‖ f ‖F0
∞,1

. ‖ f ‖θ
F

s1−r
∞,∞

‖ f ‖1−θ

F
s2−r−N
∞,∞

. ‖ f ‖θW s1−r,∞ ‖ f ‖1−θ
W s2−r,1 . ‖ f ‖θW s1,∞ ‖ f ‖1−θ

W s2,1 , ∀ f ∈W s1,∞(RN)∩W s2,1(RN).
(3.56)

Applying (3.56) to ∂α f , with |α| = r, we obtain

‖Dr f ‖L∞ . ‖Dr f ‖θW s1−r,∞ ‖Dr f ‖1−θ
W s2−r,1

. ‖ f ‖θW s1,∞ ‖ f ‖1−θ
W s2,1 , ∀ f ∈W s1,∞(RN)∩W s2,1(RN ).

(3.57)

We complete this case by combining (3.56) and (3.57) with Lemma 1.

Case 8 is complete. ä

Proof of Theorem 1 completed. As explained at the beginning of the proof, we have to investigate

the cases where (3.1) is satisfied, i.e., at least one of (1.4), (1.7) or (1.9) holds.
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1. Case 1 was a sort of preliminary case, allowing us to rule out some limiting situations

(where q =∞ and r ≥ 0 is an integer).

2. The cases where s1 = s2 have been investigated in Case 2, and in the other cases we could

assume, in addition to (3.1), that s1 < s2.

3. The cases where (1.7) holds form a sub-case of Case 3.

4. The cases where (1.9) holds are sub-cases of Cases 4 and 5.

5. The cases where N = 1 and (1.4) holds were treated in Cases 6 and 7.

6. The cases where N ≥ 2 and (1.4) holds were investigated in Case 8.

The proof of Theorem 1 is complete. ä

Proof of Lemma 9. Let J = J(x)∈Z be the (unique) integer such that

2−α j xγ < 2β j x−δ if j > J and 2−α j xγ ≥ 2β j x−δ if j ≤ J. (3.58)

It follows from (3.58) that

x(γ+δ)/(α+β)

2
< 2J

≤ x(γ+δ)/(α+β). (3.59)

On the other hand, the proportionality relation αδ=βγ implies

β
γ+δ

α+β
= δ and α

γ+δ

α+β
= γ. (3.60)

Using (3.59) and (3.60), we obtain

∞∑

j=−∞
min

{
2−α j xγ, 2β j x−δ

}
=

∑

j≤J
2β j x−δ+

∑

j>J
2−α j xγ ≈ 2βJ x−δ+2−αJ xγ

≈ xβ(γ+δ)/(α+β)−δ
+ x−α(γ+δ)/(α+β)+γ

= 2,

whence (3.44).

Appendix. Proof of Theorem B

As explained at the beginning of Section 3, in view of the arguments we present it suffices to

work in Ω=R
N or in a ball. The proof consists of three cases.

Case 1. “Ordinary” cases

The conclusion of the theorem is well-known when both s and r are integers; see e.g. [2, Sec-

tion 9.3]. Similarly, for the case where both W s,p and W r,q are regular spaces (in the sense of

Definition 3); see e.g. [14, Section 2.2.3].

By the above, it remains to consider the case where exactly one of the spaces W s,p, W r,q is

exceptional, while the other one is of fractional order.

Case 2. W s,p is of fractional order, while W r,q is exceptional

Thus q =∞ and r ≥ 0 is an integer. We must have p > 1, for otherwise, by (1.5), s is an integer,

and thus W s,1 is exceptional.

The sequence ( fJ) constructed in Case 5.4 in the proof of Theorem 1 satisfies ‖ fJ‖W s,p . 1,

while ‖ fJ‖W r,∞ →∞ as J →∞. We find that (1.6) fails.
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Case 3. W s,p is exceptional, while W r,q is of fractional order

Thus s≥ 1 is an integer, p = 1, and 1< q <∞. [Indeed, if q =∞ then r is an integer.] We consider

several sub-cases.

Case 3.1. N ≥ 2 and r < s−1

In this case, we have W s,1
,→W s−1,N/(N−1), by Case 1. By the same case, we have W s−1,N/(N−1)

,→

W r,q, and thus W s,1
,→W r,q.

Case 3.2. N ≥ 2 and s= 1

In this case, the embedding W1,1
,→W r,q has been established by Solonnikov [15]. Another proof

of this embedding can be found in [1, Appendix D]. The proof there is presented only for N = 2,

but a similar argument holds for every N ≥ 2; see also the references therein.

Case 3.3. N ≥ 2, s≥ 2 and s−1< r < s
By the previous case, we have

u ∈W s,1
=⇒ Ds−1u ∈W1,1

=⇒ Ds−1u ∈W r−s+1,q. (4.1)

On the other hand, we clearly have 1 < q < N/(N −1). By the Sobolev embedding W1,1
,→

LN/(N−1), we find that

u ∈ L1
∩LN/(N−1)

,→ Lq. (4.2)

From (4.1) and (4.2), we obtain that W s,1
,→W r,q.

Case 3.4. N = 1 and s= 1

In this case, it is possible to construct a function u : R → R such that suppu ⊂ (0,1) and u ∈

W1,1(R), but u 6∈W1/q,q((0,1)), ∀q > 1 (see Lemma 10 below). Thus the embedding W1,1
,→W1/q,q

fails.

Case 3.5. N = 1, s≥ 2 and s−1< r < s
By Case 3.4, there exists some u : R → R such that suppu ⊂ (0,1), u ∈ W1,1 \ W r−s+1,q

loc . Let

v ∈W s,1((0,1)) be such that v(s−1) = u. Then we have v ∈W s,1 \W r,q.

The proof of Theorem B is complete. ä

Lemma 10. There exists a function u :R→R, with suppu ⊂ (0,1), such that:

1. u ∈W1,1(R).

2. For every 1< q <∞, u 6∈W1/q,q((0,1)).

Proof. Let v = vε,a,b be as in (3.28). Consider a sequence u j := vε j ,a j ,b j (·− d j), where b j := 1/ j2,

ε j := e−e j
, and a j and d j are chosen such that the intervals I j := (d j−2a j, d j+2a j) have mutually

disjoint supports contained in (1/3,2/3). Let u :=
∑

u j. Clearly, suppu ⊂ (0,1) and u ∈ Lp(R),

1≤ p ≤∞. By (3.29)–(3.30), we have u ∈W1,1(R) and, for 1< q <∞,

|u|q
W1/q,q((0,1))

≥
∑

j
|u j|

q
W1/q,q(I j)

≥ Cq
∑

j

1

j2q
e j

=∞.
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