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Penalisation techniques for one-dimensional re�ected rough di�erential

equations

A. Richard∗ E. Tanré † S. Torres ‡

January 15, 2019

Abstract

In this paper we solve real-valued rough di�erential equations (RDEs) re�ected on a moving boundary.
The solution is approached by a sequence of rough di�erential equations with an unbounded drift whose
intensity increases with n (the penalisation). Hence we also provide an existence theorem for RDEs with
a drift growing at most linearly. In addition, a speed of convergence of the sequence of penalised process
to the re�ected process is provided in the smooth case.

1 Introduction

Solving (stochastic) di�erential equations with a re�ecting boundary condition is by now a classical prob-
lem. For a domain D ⊆ Re, a mapping σ : Rd → Re×d, an initial value y0 ∈ D and an Rd-valued path
X = {Xt}t∈[0,T ] sometimes referred as the noise, this problem consists formally in �nding Re-valued paths
{Yt}t∈[0,T ] and {Kt}t∈[0,T ] such that ∀t ∈ [0, T ],

Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt,

Yt ∈ D, |K|T <∞,

|K|t =

∫ t

0

1{Xs∈∂D}d|K|s and Kt =

∫ t

0

n(Xs)d|K|s,

where |K|t is the �nite variation of K on [0, t] and n(x) is the unit inward normal of ∂D at x. If X is a
Brownian motion and the integral is in the sense of Itô, this problem was �rst studied by Skorokhod [24],
and then by McKean [23], El Karoui [10], Lions and Sznitman [21], to name but a few. For this reason, it is
called the Skorokhod problem associated to X, σ and D (see De�nition 2.8).

In the last few years, this problem has attracted a lot of attention when the driver X is a β-Hölder contin-
uous path: in the �regular� case β ∈ ( 1

2 , 1), existence of a solution has been established in a multidimensional
setting by Ferrante and Rovira [12] and uniqueness was then obtained by Falkowski and Sªomi«ski [11]. In
that case, the integral can be constructed by a Riemann sum approximation and is known as a Young integral
[27]. Extensions of these results to the �irregular� case β < 1

2 can be handled with rough paths. We recall
that this theory was initiated by Lyons [22] and for a (multidimensional) β-Hölder continuous path X and σ
a bounded vector �eld, it provides a way to solve the equation dYt = σ(Yt)dXt, where X = (X,X) is the path
X with a supplementary two-parameter path X (in fact higher order correction terms such as X are needed
if β ≤ 1

3 , but we shall assume β > 1
3 for simplicity). Solutions can be understood either as a limit of ODEs

driven by a smooth driver Xk which converges to X ([16, Chapter 10]), or directly as an equality between

Yt and
∫ t

0
σ(Ys)dXs when this integral is de�ned in the sense of controlled rough paths [14, 17] (see also the

original de�nition of Lyons [22] and the one of Davie [6]). In this paper both notions will be useful and shown
to coincide for the penalised RDEs. Existence of solutions of re�ected RDEs with β ∈ ( 1

3 ,
1
2 ) was proven
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by Aida [1], while Deya, Gubinelli, Hofmanová, and Tindel [8] provided uniqueness for a one-dimensional
process re�ected on the line. Note that existence was extended to processes re�ected on a moving convex
boundary by Castaing, Marie, and Raynaud de Fitte [5] and that except in this last work, the boundary is
�xed.

We focus on one-dimensional solutions to rough di�erential equations which are re�ected on a moving
boundary L : [0, T ]→ R, where the driver is a d-dimensional rough path X with Hölder regularity β ∈ ( 1

3 , 1)
(note that by a sligh abuse of notations, we may use X for X and the vocabulary of rough paths even in
the smooth case). Following a classical method for re�ected di�erential equations, we consider the following
sequence of penalised RDEs with drift:

Y nt = y0 + n

∫ t

0

(Y ns − Ls)−ds+

∫ t

0

σ(Y ns )dXs. (1.1)

For technical reasons, the drift function n(·)− will be replaced by a smoother function ψn with at most linear
growth, but the interpretation remains that of a stronger and stronger force pushing Y n above L. However,
solving RDEs with unbounded coe�cients is known to be tricky [2, 19, 20] and to the best of our knowledge,
there is no criterion in the literature allowing for the drift ψn (smooth and at most linearly growing) and
any smooth and bounded σ. Hence as a slight extension of a result of Friz and Oberhauser [13], we prove
that (1.1), with ψn as drift coe�cient instead of n(·)−, has a unique global solution. Moreover, this solution
has a Doss-Sussmann�like representation [9, 25]. This property turns to be extremely useful as it allows to
transport the monotony of ψn ≤ ψn+1 to the penalised solution, leading to Y n ≤ Y n+1. We are then able to
prove the uniform convergence of Y n and Kn :=

∫ ·
0
ψn(Y ns − Ls)ds to Y and K, which are identi�ed as the

solution to the Skorokhod problem described above, which reads in dimension 1:

Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt and Yt ≥ Lt , t ∈ [0, T ], (1.2)

and the non-decreasing path K increases only when Y hits L. Here, the re�ection term also reads Kt =
sups≤t

(
(Ls − y0 −

∫ s
0
σ(Yu)dXu) ∨ 0

)
, and under appropriate conditions, the solution is unique ([8, Theorem

9]). Besides, when X is a Gaussian rough path, the convergence of the sequence of penalised processes also
happens uniformly in Lγ(Ω), γ ≥ 1. Finally, we are able to prove a rate of convergence of Y n towards Y in
the regular case.

In a forthcoming work, we will study the Euler scheme of the penalised processes and compute the
distance between this approximation and the re�ected process. Hence, computing the rate of convergence of
the penalised solutions towards the re�ected solution is the �rst step of this program, which may be extended
to the rough case. Another natural extension of this work is to prove our results for Re-valued solutions, as
in [5, 21, 26]. We believe this might be done with our monotony argument replaced by a tightness argument,
as for instance in [26].

Organisation of the paper. In Section 2, a brief overview of rough paths de�nitions and techniques is
presented, followed by a set of precise assumptions and the statement of our main results. Then the existence
of a solution to the penalised equation is proven in Section 3, followed by some penalisation estimates. Most
of the proofs that lead to the convergence of the penalised sequence to the re�ected solution (Theorems
2.11 and 2.12) are contained in Section 4: �rst it is proven that Y n and Kn converge uniformly (we show
monotone convergence of Y n towards a continuous limit), then that Y is controlled by X in the rough paths
sense, which permits to use rough paths continuity theorems to show that Y and K solve the Skorokhod
problem. In Section 5, we prove Theorem 2.13 which gives a rate of convergence of the sequence of penalised
paths to the re�ected solution. Eventually, Appendix A gathers the proof of existence of solutions for RDEs
with unbounded drift (Proposition 2.10) and the proof of a Gronwall lemma for non-smooth paths.

Notations. C is a constant that may vary from line to line. For k ∈ N and T > 0, Ckb ([0, T ];F ) (or simply
Ckb ) denotes the space of bounded functions which are k times continuously di�erentiable with bounded
derivatives, with values in some linear space F . If E and F are two Banach spaces, L(E,F ) denotes the
space of continuous linear mappings from E to F . In the special case E = Rd and F = R, we also write (Rd)′
to denote the space of linear forms on Rd. The tensor product of two �nite-dimensional vector spaces E and
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F is denoted by E ⊗ F . In particular, Rd ⊗ Re ' Rd×e 'Md,e(R), the space of real matrices of size d× e.
Let f be a function of one variable, we de�ne

δfs,t := ft − fs. (1.3)

For β ∈ (0, 1) and a function g : [0, T ]2 → F , the Hölder semi-norm of g on a sub-interval I ⊆ [0, T ], denoted
by ‖g‖β,I (or simply ‖g‖β if I = [0, T ]), is given by

‖g‖β,I = sup
s 6=t∈I

|gs,t|
|t− s|β

.

The β-Hölder space Cβ2 ([0, T ];F ) is the space of functions g : [0, T ]2 → F such that ‖g‖β <∞. The β-Hölder
space Cβ([0, T ];F ) is the space of functions f : [0, T ]→ F such that ‖δf‖β <∞ (hereafter ‖δf‖β will simply
be denoted by ‖f‖β). With a slight abuse of notations, we may write g ∈ Cβ([0, T ];F ) even for a 2-parameter
function, and if the context is clear, we may just write g ∈ Cβ .

Similarly, we also remind the de�nitions of the p-variation semi-norm and space. For p ≥ 1, a sub-interval
I ⊆ [0, T ] and g : [0, T ]2 → E, denote by ‖g‖p,I (or simply ‖g‖p if I = [0, T ]) the semi-norm de�ned by

‖g‖pp,I = sup
π

n−1∑
i=0

|gti,ti+1
|p,

where the supremum is taken over all �nite subdivisions π = (t0, . . . , tn) of I with t0 < t1 < · · · < tn ∈ I,
∀n ∈ N. With the same abuse of notations, we de�ne Vp2 the set of continuous 2-parameter paths g with
�nite p-variation, and Vp the set of continuous paths f : [0, T ]→ F such that ‖δf‖p ≡ ‖f‖p <∞.

Note that we shall use roman letters (p, q,...) for the variation seminorms and greek letters (α, β,...) for
Hölder seminorms in order not to confuse ‖ · ‖p and ‖ · ‖α. In case there might be a confusion, we shall write
‖ · ‖p-var or ‖ · ‖α-Höl, for instance ‖f‖1-var.

Remark 1.1. Cβ (resp. Vp) is a Banach space when equipped with the norm f 7→ |f0| + ‖f‖β . (resp.
|f0| + ‖f‖p ). When this property will be needed, the paths will start from the same initial conditions, thus
we may forget about the �rst term and consider ‖ · ‖β (resp. ‖ · ‖p) as a norm.

2 Preliminaries on rough paths and the Skorokhod problem

In this section, we brie�y review the de�nitions of rough paths and rough di�erential equations, gathered
mostly from Friz and Victoir [16] and Friz and Hairer [14]. We also give a sense to the Skorokhod problem
written in Equation (1.2).

2.1 Geometric rough paths

De�nition 2.1 (Rough path). • Let β ∈ ( 1
3 ,

1
2 ] (resp. p ∈ [2, 3)). A β-Hölder rough path (resp. p-

rough path) X is a couple X =
(
(Xt)t∈[0,T ], (Xs,t)s,t∈[0,T ]

)
∈ Cβ([0, T ];Rd) × C2β([0, T ];Rd ⊗ Rd) (resp. in

Vp([0, T ];Rd)× V
p
2 ([0, T ];Rd ⊗ Rd)) such that Chen's relation is satis�ed:

Xs,t − Xs,u − Xu,t = δXs,u ⊗ δXu,t,

for any (s, t, u) ∈ [0, T ]3. The space of such paths is denoted by C β([0, T ];Rd), or simply C β (resp.
V p([0, T ];Rd) and V p). For X ∈ C β (resp. in V p), we will need the following homogeneous rough path
�norm�:

|||X|||β = ‖X‖β +
√
‖X‖2β (resp. |||X|||pp = ‖X‖pp + ‖X‖

p
2
p
2
).

• X ∈ C β([0, T ];Rd) (resp. in V p) is a geometric rough path if the symmetric part of X, sym(X) =(
Xij + Xji

)
i,j=1...d

, satis�es

sym(X)s,t =
1

2
δXs,t ⊗ δXs,t.
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Intuitively, this relation implies that geometric rough paths admit a �rst order chain rule, as for smooth paths
or Stratonovich calculus. The space of geometric β-Hölder rough paths (resp. p-rough paths) is denoted by
C β
g (resp. V p

g ).

Although our main results are expressed in Hölder spaces only, the p-variations play an important role in
the proofs, due to the nature of the compensator process K (which is non-decreasing and thus in V1).

For the following de�nition, we follow [8].

De�nition 2.2 (Control). Let I be an interval and de�ne the simplex SI = {(s, t) ∈ I2 : s ≤ t}. A control
is a map w : SI → R+ which is super-additive, i.e. w(s, t) +w(t, u) ≤ w(s, u) for all s ≤ t ≤ u ∈ I. A control
is regular if lim|s−t|→0 w(s, t) = 0.

For instance, if ‖X‖pp,I < ∞ for some interval I ⊆ [0, 1], then wX(s, t) = ‖X‖pp,[s,t] is a control on SI . If
X ∈ Vp(I), then wX is a regular control.

2.2 Rough di�erential equations with drift

For a geometric rough path X ∈ C β
g

(
[0, T ],Rd

)
, we would like to give a meaning to the following formal

equation:

dYt = b(Yt)dt+ σ(Yt)dXt. (2.1)

We adopt the de�nition of solution given in [16, De�nition 12.1] (see also [13, De�nition 3]), which we recall
for the reader's convenience. Note that this de�nition gives a meaning to (1.1), even though

∫
σ(Y ns )dXs has

not been de�ned yet.

De�nition 2.3 (RDE with drift). Let X ∈ C β
g

(
[0, T ],Rd

)
, with β ∈ ( 1

3 ,
1
2 ]. We call Y ∈ C0([0, T ],Re)

a solution to the RDE with drift (2.1) started at y0 ∈ Re if there exists a sequence (Xk)k∈N of Rd-valued
Lipschitz paths such that

• sup
k∈N

∣∣∣∣∣∣Xk
∣∣∣∣∣∣
β
<∞, where Xk = (Xk,Xk) and Xks,t =

∫ t
s
(Xk

u −Xk
s )dXk

u ;

• Xk converges pointwise to X;
• for all k, the ODE dY kt = b(Y kt )dt+ σ(Y kt )dXk

t has a solution and ‖Y k − Y ‖∞,[0,T ] → 0 as k →∞.

The classical Doss-Sussmann representation (see Doss [9] and Sussmann [25]) provides a way to write the
solution of a stochastic di�erential equation as the composition of the �ow of σ with the solution of a random
ODE. It works for one-dimensional noises, even in some rough cases. However its multidimensional gener-
alization requires strong geometric assumptions on σ (see [9]). Instead we recall a less explicit formulation
borrowed from Friz and Oberhauser [13], which requires no additional assumption on σ and shall be enough
for our needs.

For some σ : Re → L(Rd,Re), consider the RDE

dỸt = σ(Ỹt) dXt, (2.2)

and if they exist, denote by y0 7→ UX;y0
t←0 the �ow of the solution (i.e. Ỹt = UX;y0

t←0 when Ỹ0 = y0), by J
X;y0
t←0 its

Jacobian and by JX;y0
0←t the inverse of the Jacobian.

Proposition 2.4 ([13]). Assume that b ∈ C1
b (Re;Re), σ ∈ C4

b (Re;L(Rd,Re)) and that X ∈ C β
g

(
[0, T ];Rd

)
,

with β ∈ ( 1
3 ,

1
2 ). Then for any y0 ∈ Re, there exists a unique solution Y to the RDE with drift (2.1) started

from y0. Moreover, this solution has the following Doss-Sussmann representation:{
Yt = UX;Zt

t←0

Zt = y0 +
∫ t

0
W (s, Zs)ds

, t ∈ [0, T ],

where
W (t, z) = JX;z

0←t b
(
UX;z
t←0

)
, (t, z) ∈ [0, T ]× Re. (2.3)
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2.3 Assumptions

We shall assume throughout the paper (except in the more general Proposition 2.10) that

σ ∈ C4
b (R, (Rd)′). (2.4)

Since the penalisation term n(·)− in (1.1) is not di�erentiable, we approximate it by a smooth non-increasing
function ψn such that

∀y ∈ R, ψn(y) =

 0 if y > 0,
smooth convex interpolation if − 1

n < y ≤ 0,
− 1

2 − ny if y ≤ − 1
n .

(2.5)

In fact, for any n ∈ N it is possible to choose ψn as above and which also satis�es:{
ψn ∈ C∞ and ψ′n ∈ C∞b ;

∀y ∈ R, ψn(y) ≤ ψn+1(y) and − 1
2 + ny− ≤ ψn(y) ≤ ny−.

(2.6)

We assume that the driving signal is a geometric β-Hölder rough path, for some β ∈ ( 1
3 ,

1
2 ], i.e. X =

(X,X) ∈ C β
g ([0, T ];Rd). The boundary process is assumed to have at least the same Hölder regularity as X,

and further that

X̂ := (X,L) can be enhanced into a geometric β-Hölder rough path X̂ = (X̂, X̂) ∈ C β
g ([0, T ];Rd+1). (2.7)

In that case, we still denote by X the projection of X̂ on the X component, and by X = (X,X) the associated
rough path. Note that the previous assumption is not trivial in general because of the roughness β ≤ 1

2 . In
fact since we consider RDEs with drifts, we will also need (X,L, t) to be lifted into a geometric rough path.
In that case, since the identity function of R is smooth, it is always possible to realise such a lift, in such
a way that the projection on (X,L) coincides with X̂ (see Young pairings [16, Section 9.4]). Observe that
Young pairings can also be used to obtain (2.7), but then one has to assume more regularity on L, namely
that L ∈ Vq, with q ≥ 1 such that 1

q + 1
p > 1 (p = β−1).

With these notations and assumptions, we consider

Y nt = y0 +

∫ t

0

ψn(Y ns − Ls)ds+

∫ t

0

σ(Y ns )dXs , t ∈ [0, T ]. (2.8)

For each n ∈ N, we will see in Proposition 3.1 that there is a unique solution to (2.8).

2.4 Gaussian rough paths

In the case X is a Gaussian process, several papers give conditions (see in particular Cass, Hairer, Litterer,
and Tindel [4]) for X to be enhanced into a geometric rough path. Cass, Litterer, and Lyons [3] also proved
that such conditions yield that the Jacobian of the �ow has moments of all order (see also [4] with a bounded
drift).

Let X = (X1, . . . Xd) be a continuous, centred Gaussian process with independent and identically dis-
tributed components, then following Cass et al. [3]: Let R(s, t) = E

(
X1
sX

1
t

)
denote the covariance function

of X1, and

R

(
s, t
u, v

)
= E

[
(X1

t −X1
s )(X1

v −X1
u)
]

be the rectangular increments of R. Then for r ∈ [1, 3
2 ), we might assume that R has �nite second-order

r-variation in the sense

‖R‖r;[0,T ]2 :=

 sup
π=(ti)
π′=(t′i)

∑
π,π′

R

(
ti, ti+1

t′i, t
′
i+1

)r
1
r

<∞ (HCov)

Under this assumption, X can almost surely be enhanced into a geometric rough path X = (X,X) and for
any α ∈ ( 1

3 ,
1
2r ), X ∈ C α

g . Moreover, this assumption permits to obtain upper bounds on the Jacobian of the
�ow of a Gaussian RDE, which shall help us to obtain better convergence results in Theorem 2.12.
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2.5 Controlled rough paths

We choose to de�ne controlled rough paths with respect to the p-variation topology. Roughly, this is because
the compensator K and its approximations Kn are clearly in V1 while it seems much more di�cult to prove
that they have some Hölder regularity. Then, it becomes easier to use rough paths continuity results such as
Theorem 2.6.

De�nition 2.5 (Controlled rough path). Let p ∈ [2, 3) and X ∈ Vp([0, T ];Rd). A path Y ∈ Vp([0, T ];E) is

controlled by X if there exist a path Y ′ ∈ Vp([0, T ];L(Rd, E)) and a map RY ∈ V
p
2
2 ([0, T ];E) such that

∀s ≤ t ∈ [0, T ], δYs,t = Y ′sδXs,t +RYs,t.

Y ′ is called the Gubinelli derivative (although not unique). The space of such couples of paths (Y, Y ′) controlled

by X is denoted by VpX(E) (CβX(E) for a corresponding de�nition in β-Hölder norm, see [14, De�nition 4.6]).

If now X ∈ V p([0, T ];Rd) and (Y, Y ′) ∈ VpX(L(Rd,Re)), then the rough integral of Y against X is de�ned
by ∫ T

0

YsdXs = lim
n→∞

∑
πn=(ti)

YtiδXti,ti+1
+ Y ′tiXti,ti+1

, (2.9)

where (πn)n∈N is an increasing sequence of subdivisions of [0, T ] with t0 = 0, tn = T , such that limn→∞max(ti+1−
ti) = 0.

The existence of this integral has been established by Gubinelli [17] for the Hölder topology (see also [14,
Proposition 4.10]). In the p-variation topology, we refer to Friz and Shekhar [15, Theorem 31]:

Theorem 2.6. Let p ∈ [2, 3). If X ∈ V p([0, T ];Rd) and (Y, Y ′) ∈ VpX(L(Rd,Re)), then the rough integral
of Y against X exists (and the limit in (2.9) does not depend on the choice of a subdivision). Moreover, for
any s, t ∈ [0, T ],∣∣∣∣∫ t

s

YudXu − YsδXs,t − Y ′sXs,t
∣∣∣∣ ≤ Cp (‖X‖p,[s,t]‖RY ‖ p2 ,[s,t] + ‖X‖ p

2 ,[s,t]
‖Y ′‖p,[s,t]

)
. (2.10)

Let us �nally recall Proposition 2.12 of [5].

Proposition 2.7. Let p ∈ [2, 3). Let X ∈ V p([0, T ];Rd) and assume that (Y n, (Y n)′)n∈N ⊂ V
p
X(L(Rd,Re))

is a sequence such that:

(Y n)′ and RY
n

converge in the uniform topology on [0, T ],

and

sup
n∈N

(
‖(Y n)′‖p,[0,T ] + ‖RY

n

‖ p
2 ,[0,T ]

)
<∞,

then (Y n, (Y n)′) converges uniformly to some (Y, Y ′) ∈ VpX and

lim
n→∞

‖
∫ ·

0

Y ns dXs −
∫ ·

0

YsdXs‖∞,[0,T ] = 0.

2.6 The Skorokhod problem

Having at our disposal a rough integral in the sense of Equation (2.9), we can give a meaning to Equation
(1.2), also referred to as Skorokhod problem associated to σ and L, denoted by SP (σ, L).

De�nition 2.8. Let X ∈ V p([0, T ];Rd). We say that (Y,K) solves SP (σ, L), or that it is a solution to the
re�ected RDE with di�usion coe�cient σ started from y0 ≥ L0 and re�ected on the path L, if

(i) (Y, σ(Y )) ∈ VpX and (Y,K) satis�es Equation (1.2), in the sense that both sides are equal, where the
integral

∫ ·
0
σ(Ys)dXs is understood in the sense of (2.9);
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(ii) ∀t ∈ [0, T ], Yt ≥ Lt;

(iii) K is nondecreasing;

(iv) ∀t ∈ [0, T ],
∫ t

0
(Ys − Ls)dKs = 0, or equivalently,

∫ t
0
1{Ys 6=Ls}dKs = 0 .

Remark 2.9. In item (i), it is also possible to de�ne solutions to re�ected RDEs in the sense of Davie as
in Deya et al. [8]. For RDEs with bounded coe�cients (without re�ection), Davie's solution and the solution
in the sense of controlled rough paths coincide ([14, Proposition 8.8]).

2.7 Main results

Hereafter, even if β > 1
2 , we use the notation X ∈ C β

g even though the iterated integral X is irrelevant in this
case. This notation permits to present our results in a uni�ed form.

Our �rst result states the global existence and uniqueness of solutions for RDEs with an unbounded drift
which has at most linear growth. It is generally a di�cult task to obtain global existence for RDEs when
the vector �elds are unbounded (which is the case of ψn), and known counter-examples show that global
solutions may not exist in general. Nevertheless, for an RDE with coe�cient V = (V1, . . . , Vd) on Re, where
each Vi has components V ki , there are several results in this direction ([19, 20], [16, Exercise 10.56] and [2])
which ask very roughly for V ki ∇V lj to be bounded and Hölder continuous for all i, j, k, l. Observe that in our
case (assuming L ≡ 0 for simplicity), the vector �eld V would be V (y, t) = (σ(y), ψn(y)) but that ψnσ

′ is
not bounded.

Proposition 2.10. Let σ ∈ C4
b (Re,L(Rd;Re)), n ∈ N and b ∈ C1(Re,Re) with ∇b ∈ Cb(Re,Re×e) (i.e. b is

not necessarily bounded). Let β ∈ ( 1
3 ,

1
2 ), and let X be a d-dimensional β-Hölder geometric rough path. Then

for any initial condition y0, there exists a unique solution Y to the drifted RDE on [0, T ]. Moreover, this
solution is a path Y ∈ Cβ which also solves:{

Yt = UX;Zt
t←0

Zt = y0 +
∫ t

0
W (s, Zs) ds

, t ∈ [0, T ],

where
W (t, z) = JX;z

0←t b
(
UX;z
t←0

)
, (t, z) ∈ [0, T ]× Re.

Since there is little di�erence between our proof and the original one of Friz and Oberhauser [13] (the
di�erence is that b is bounded in [13]), it is postponed to the Appendix. The idea is to derive �rst the local
existence and a Doss-Sussmann representation on a small time interval where the existence of the solution is
known. Global existence is then achieved by stability of the ODE in the Doss-Sussmann representation.

Besides enabling us to prove the previous proposition, the Doss-Sussmann representation also has a
monotonous property that will be very useful for the penalisation procedure. In particular, we will be able
to deduce that there exists a path Y which is the non-decreasing limit of the sequence (Y n)n∈N and that this
path is controlled by X (Proposition 4.10).
We are now in a position to state our �rst main theorem.

Theorem 2.11. Let X = (X,X) ∈ C β
g be a geometric β-Hölder rough path, β ∈ ( 1

3 , 1) \ { 1
2}. Assume that

{ψn}n∈N, σ and L satisfy conditions (2.4)-(2.7), and that y0 ≥ L0.

(i) Then the sequence
(
Y n,

∫ ·
0
ψn(Y ns − Ls)ds

)
n∈N de�ned as the solution to (2.8) converges uniformly in

C[0, T ] to some path (Y,K) ∈ CβX × V1.

(ii) Besides, (Y,K) is the unique solution to the re�ected RDE (1.2) (in the sense of De�nition 2.8), i.e.
it is the solution to the Skorokhod problem SP (σ, L).

So far, the result only involved deterministic rough paths. Using some recent results on Gaussian rough
paths leads to the following theorem.
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Theorem 2.12. Let σ and {ψn}n∈N satisfy conditions (2.4)-(2.6) and let y0 ≥ L0 almost surely. Let
X = (X1, . . . , Xd) be a continuous, centred Gaussian process with independent and identically distributed
components, and let R be its covariance function. Assume that either X ∈ Cβ([0, T ];Rd) for some β ∈ ( 1

2 , 1),
or that:

• R has �nite second-order r-variations for some r ∈ [1, 3
2 ), as in (HCov);

• L satis�es almost surely condition (2.7) for any β < 1
2r and that E

[
‖L‖γβ

]
<∞, for any γ ≥ 1.

Then the conclusions of Theorem 2.11 hold in the almost sure sense and moreover, the convergence holds in
the following sense: ∀γ ≥ 1,

lim
n→+∞

E

[
sup
t∈[0,T ]

|Yt − Y nt |γ
]

= 0. (2.11)

In the �regular� case, we obtain a rate of convergence of the sequence of penalised processes to the re�ected
solution.

Theorem 2.13. Let X ∈ Cβ be a β-Hölder path, with β ∈ ( 1
2 , 1). Assume that {ψn}n∈N, σ and L satisfy

conditions (2.4)-(2.7), and that y0 ≥ L0. Then the solution Y n converges to Y with the following rate: for
any ε ∈ (0, 2β − 1), there exists C > 0 (that depends only on ε, β and ‖X‖p with p = β−1) such that

sup
t∈[0,T ]

|Y nt − Yt| ≤ C n−(2β−1)+ε.

Note that unless otherwise stated (for instance in the proof of Theorem 2.13), we will only consider the
case β ∈ ( 1

3 ,
1
2 ]. Indeed if β ∈ ( 1

2 , 1), Young integrals can be used which makes proofs easier.

3 Penalisation for RDEs

3.1 Flow of an RDE

In this paragraph, we gather several useful properties of the �ow of the solution of an RDE, and of its

Jacobian. Hereafter,
{
UX;y0
t←0 , t ∈ [0, T ]

}
denotes the solution to the RDE (2.2) with σ ∈ C4

b (Re;L(Rd,Re))
(note that C3

b is enough for existence and uniqueness in (2.2)).

First, we know that the smoothness of the �ow depends on the smoothness of σ: for any t, y0 7→ UX;y0
t←0

is Lipschitz continuous and twice di�erentiable (see for instance [13, Proposition 3]). Denote by JX;y0
t←0 its

Jacobian matrix, which according to [3, Corollary 4.6] is uniformly (in t ∈ [0, T ] and y0 ∈ R) bounded by a
quantity depending only on p, ‖X‖p,[0,T ] and the so-called α-local p-variation of X (see [3, De�nition 4.3]).
We denote this upper bound by CX

J .

Denote also by JX;·
0←t := (JX;·

t←0)−1 its inverse matrix, which can be seen as the Jacobian of the �ow of the same

RDE with X evolving backward. Hence as noticed in the proof of [4, Theorem 7.2], JX;·
0←t is also bounded by

CX
J , so that altogether the following inequality is ful�lled:

sup
y0∈R

max
(
‖JX;y0
·←0 ‖∞,[0,T ], ‖JX;y0

0←· ‖∞,[0,T ]

)
≤ CX

J <∞. (3.1)

Note also that with σ ∈ C4
b , J

X;·
0←t and J

X;·
t←0 are Lipschitz continuous, uniformly in t.

Besides, when X is Gaussian with iid components and satis�es (HCov), C
X
J has moments of all orders ([3,

Theorem 6.5] and [3, Theorem 7.2]). Note that b is not related to the de�nition of U and J , thus the above
four inequalities depend only on σ.

As observed in [4, Section 7], JX;z
0←· satis�es the following linear RDE, for any �xed z:

dJX;z
0←t = dMtJ

X;z
0←t,

where M depends on the �ow UX;z
t←0. If e = 1 (e is the dimension of the space in which y lives), it is thus a

consequence of the fact that JX;z
0←0 = 1 and of the uniqueness in the previous equation that JX;z

0←t > 0 for any
z ∈ R and any t ≥ 0. Hence it follows from Equation (3.1) that

∀z ∈ R, JX;z
0←t ≥ (CX

J )−1(> 0). (3.2)
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Finally, the mapping W (t, z) de�ned in (2.3) is continuous in t, Lipschitz continuous in z uniformly in
t if b is bounded (this is however not true anymore if b is unbounded). This ensures that there is a unique
solution to

z′t = W (t, zt), z0 = y0.

3.2 Existence of a global solution to (2.8)

The result below states the global existence of a solution to the rough di�erential equation (2.8). Due to the
boundary term in (2.8), we cannot apply directly Proposition 2.10. However, provided that (2.8) can be cast
into a proper RDE with drift using Assumption (2.7), then the result will hold.

Proposition 3.1. Let σ ∈ C4
b (R; (Rd)′), n ∈ N and ψn satisfying (2.5)-(2.6). Let β ∈ ( 1

3 ,
1
2 ), let X be a

β-Hölder geometric rough path and let {Lt}t∈[0,T ] be a barrier process satisfying (2.7). Then for any initial
condition y0 such that y0 ≥ L0, there exists a unique solution to (2.8). Moreover, this solution is a path
{Y ns }s∈[0,T ] ∈ Cβ which also solves:{

Y nt = U
X;Znt
t←0

Znt = y0 +
∫ t

0
Wn(s, Zns ) ds

, t ∈ [0, T ], (3.3)

where
Wn(t, z) = JX;z

0←t ψn

(
UX;z
t←0 − Lt

)
, (t, z) ∈ [0, T ]× R.

Remark 3.2. • For β > 1
2 , the previous Doss-Sussmann representation holds also true by a simple

application of the usual chain rule. Moreover, our assumptions on the coe�cients meet those from [18]
and thus there exists a unique solution to (2.8).

• If the dimension of the noise d equals 1, then the usual Doss-Sussmann representation [9] can be used.

Proof. For y ∈ R2, de�ne b̂(y) = (ψn(y1 − y2), 0)T , where we used the notation y = (y1, y2)T ∈ R2. In the

same way, de�ne σ̂(y) =

(
σ(y1) 0

0 1

)
, so that σ̂ ∈ C4

b

(
R2;L(Rd+1,R2)

)
. Finally, let X̂ ∈ C β

g be the rough

path above (X,L), as in (2.7). Proposition 2.10 ensures that there exists a unique solution Ŷ n ∈ Cβ([0, T ];R2)
to the following RDE with drift

dŶ nt = b̂(Ŷ nt )dt+ σ̂(Ŷ nt )dX̂t.

Since Y n corresponds to the �rst component of Ŷ n, the result follows.

3.3 Penalisation estimates

We will rely on the previous Doss-Sussmann representation and the comparison theorem for ODEs to prove
that (Y n)n∈N is a bounded nondecreasing sequence of continuous processes.

Lemma 3.3. Let Ψ > 0, `, {gn}n∈N be continuous functions such that gn0 = 0, and assume that for each
n ∈ N, fn is a solution to:{

fnt = fn0 + gnt + Ψ
∫ t

0
ψn(fnu − `u)du, ∀t ∈ [0, T ],

fn0 = f0 ≥ `0.

Then,

(i) For all t ∈ [0, T ],

∀n ∈ N, |δfn0,t − δ`0,t| ≤
√

26‖gn − δ`0,·‖∞,[0,t] ;

(ii) Let β ∈ (0, 1). If `, {gn}n∈N ∈ Cβ([0, T ],R) and fn0 ≥ `0, then

∀t ∈ [0, T ], ∀n ∈ N, ψn(fnt − `t) ≤ Ψn(Ψ−β + Ψ1−β)n1−β ,

where Ψn = C(‖`‖β + ‖gn‖β + 1
2ΨT 1−β).
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Proof. (i) Denoting Ψ
∫ t

0
ψn(fnu − `u)du by knt , let f

n
and gn be de�ned as follows:

f
n

t := δfn0,t − δ`0,t = −δ`0,t + gnt + Ψ

∫ t

0

ψn(fnu − `u)du

=: gnt + knt .

Observe that

(f
n

t )2 = (gnt )2 + (knt )2 + 2

∫ t

0

gnt dk
n
u = (gnt )2 + 2

∫ t

0

(knu + gnt ) dknu

≤ (gnt )2 + 2

∫ t

0

(gnt − gnu)dknu

where we used the inequality f
n

uψn(fnu − `u) ≤ (fnu − `u)ψn(fnu − `u) ≤ 0. It follows that

(f
n

t )2 ≤ (gnt )2 + 2knt ‖gnt − gn· ‖∞,[0,t] ≤ (gnt )2 + 2(|fnt |+ |gnt |)‖gnt − gn· ‖∞,[0,t]
≤ 5‖gn· ‖2∞,[0,t] + 4|fnt |‖gn· ‖∞,[0,t]

≤ 5‖gn· ‖2∞,[0,t] + 1
2

(
|fnt |2 + 16‖gn· ‖2∞,[0,t]

)
,

which implies the result.

(ii) The inequality ψn(x) ≥ − 1
2 − nx yields

fnt − `t ≥ fn0 − `0 + gnt − 1
2Ψt− nΨ

∫ t

0

(fnu − `u)du.

Denote g̃nt := gnt − 1
2Ψt and f̃n the solution to

f̃nt − `t = fn0 − `0 + g̃nt − nΨ

∫ t

0

(f̃nu − `u)du. (3.4)

It follows from the comparison principle of ODEs that for any t ∈ [0, T ], fnt − `t ≥ f̃nt − `t. Solving
(3.4) yields

fnt − `t ≥ (fn0 − `0)e−nΨt −
∫ t

0

e−nΨ(t−u)dg̃nu

≥ (fn0 − `0)e−nΨt + g̃nt e
−nΨt + nΨ

∫ t

0

e−nΨ(t−u)(g̃nu − g̃nt )du , t ∈ [0, T ]. (3.5)

Since ψn(x) ≤ nx−, we now obtain from (3.5) that

ψn(fnt − `t) ≤ n
(
g̃nt e
−nΨt + nΨ

∫ t

0

e−nΨ(t−u)(g̃nu − g̃nt )du

)
−

≤ n‖g̃n‖βtβe−nΨt + ‖g̃n‖βn2Ψ

∫ t

0

e−nΨ(t−u)(t− u)βdu , t ∈ [0, T ].

It is clear that n‖g̃n‖βtβe−nΨt ≤ ‖g̃n‖βΨ−βn1−β . Thus one focuses now on the second term: an
integration-by-parts and the change of variables v = nΨu yield

n2Ψ

∫ t

0

e−nΨ(t−u)(t− u)βdu = −ntβe−nΨt + βn

∫ t

0

e−nΨuuβ−1du

= −ntβe−nΨt + βn1−βΨ1−β
∫ nΨt

0

vβ−1e−vdv

≤ Cn1−βΨ1−β . (3.6)
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4 Existence of a solution to the Skorokhod problem

4.1 Existence of the limit process

We use �rst comparison theorems and the Doss-Sussmann representation (3.3) to apply Lemma 3.3 and get
the following result, which implies the existence of paths Z and Y as pointwise limits of (Zn) and (Y n).

Proposition 4.1. (i) Let the notations and assumptions of Theorem 2.11 be in force. Then the sequences
of paths (Zn)n∈N and (Y n)n∈N de�ned in (3.3) are nondecreasing with n. Besides, the following in-
equalities are satis�ed:

sup
n∈N

sup
t∈[0,T ]

|Znt | < +∞ and sup
n∈N

sup
t∈[0,T ]

|Y nt | < +∞.

(ii) Now let the assumptions of Theorem 2.12 be in force. Then the previous conclusions hold in the almost
sure sense and moreover, for any γ ≥ 1,

E

[
sup
n∈N

sup
t∈[0,T ]

|Znt |γ
]
< +∞ and E

[
sup
n∈N

sup
t∈[0,T ]

|Y nt |γ
]
< +∞.

Proof. (i) For each n ∈ N, recall from (3.3) that Zn is the solution of a (random) ODE with coe�cient

Wn(t, z) = JX;z
0←tψn(UX;z

t←0−Lt). In view of (3.2) and the fact that ψn ≤ ψn+1, it follows from the comparison

theorem for ODEs that Zn ≤ Zn+1. Besides, the mapping z 7→ UX;z
t←0 is increasing since its derivative is JX;z

t←0

which, similarly to (3.2), is positive. Hence Y n ≤ Y n+1 a.s.

To prove the boundedness of Zn and Y n, de�ne Z̃n as the solution of the following (random) ODE:

Z̃nt = y0 + CX
J

∫ t

0

ψn

(
U

X;Z̃ns
s←0 − Ls

)
ds, t ∈ [0, T ],

which in view of the bound (3.1) and the comparison principle yields Z̃nt ≥ Znt . Observing that

U
X;Z̃ns
s←0 = UX;y0

s←0 + U
X;Z̃ns
s←0 − U

X;y0
s←0

= UX;y0
s←0 +

∫ Z̃ns

y0

JX;z
s←0ds

≥ UX;y0
s←0 + (CX

J )−1(Z̃ns − y0),

where the last inequality follows from (3.2), it comes that

Z̃nt ≤ y0 + CX
J

∫ t

0

ψn

(
UX;y0
s←0 + (CX

J )−1(Z̃ns − y0)− Ls
)
ds, t ∈ [0, T ].

Note that as the solution of an RDE, UX;y0
s←0 satis�es (see [14, Proposition 8.3]):

‖UX;y0
·←0 ‖β,[0,T ] ≤ C

{(
‖σ‖C2b |||X|||β,[0,T ]

)
∨
(
‖σ‖C2b |||X|||β,[0,T ]

) 1
β

}
, (4.1)

where C depends only on β. Hence, denoting temporarily by Cσ,X,β the right-hand side of the previous
inequality, and since y0 ≥ L0,

Z̃nt ≤ y0 + CX
J

∫ t

0

ψn

(
−Cσ,X,βsβ + (CX

J )−1(Z̃ns − y0)− (Ls − L0)
)
ds, t ∈ [0, T ], (4.2)

so that the process Z
n
which is the solution to the ODE

Z
n

t = −Cσ,X,βtβ +

∫ t

0

ψn

(
Z
n

s − (Ls − L0)
)
ds, t ∈ [0, T ]
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satis�es −Cσ,X,βtβ + (CX
J )−1(Z̃nt − y0) ≤ Znt , ∀t ∈ [0, T ] (by the comparison principle of ODEs). By Lemma

3.3, Z
n
satis�es:

|Znt − (Lt − L0)| ≤
√

26

(
Cσ,X,βt

β + sup
s∈[0,t]

|Ls − L0|

)
,

which then leads to the following bound: there exists C > 0 which depends only on σ, β, T such that

Znt ≤ y0 + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])t
β + sup

s∈[0,t]

|Ls − L0|

)
. (4.3)

Moreover, Zn ≥ y0, hence supn∈N supt∈[0,T ] |Znt | < +∞. To prove the second part of claim (i), observe that

|Y nt | = |U
X;Znt
t←0 | = |U

X;y0
t←0 + U

X;Znt
t←0 − U

X;y0
t←0 |

≤ |y0|+ ‖UX;y0
·←0 ‖β,[0,t]tβ + CX

J |Znt − y0|. (4.4)

Claim (i) then follows from (4.1) and (4.3).

(ii) Now if X is a Gaussian process satisfying the assumptions of Theorem 2.12, it su�ces to use the
deterministic estimates (4.1), (4.3) and (4.4), as well as the following probabilistic estimates: for any γ ≥ 1,

E
[
|||X|||γβ,[0,T ]

]
<∞, E

[
(CX

J )γ
]
<∞ and E

[
‖L‖γβ,[0,T ]

]
<∞ (4.5)

where the �rst bound is a classical consequence of Kolmogorov's continuity theorem (which follows from
(HCov) for any β <

1
2r ), the second one is [3, Theorem 6.5] and the third one was an assumption in Theorem

2.12. Then Claim (ii) holds true.

Remark 4.2. Observe that in the previous proof, we carefully avoided to estimate directly the Hölder regu-

larity of t 7→
∫ t

0
σ(U

X;Zns
s←0 )dXs, since any basic a priori estimate would have depended on n. However, we will

be able to treat such questions in the next section.

4.2 Uniform continuity of the sequence of penalised processes

So far we only obtained pointwise convergence of the sequences of paths. Now, we obtain uniform convergence
and derive Hölder continuity of the limiting paths. Thus this section is organised as follows: Lemmas 4.3 to
4.6 are technical results which permit to overcome the main di�culty here (Proposition 4.8), which is that
the negative part of Y n−L converges to 0 as n→∞. Finally, we prove that this implies the desired uniform
convergence of Y n and Zn (Proposition 4.9).

De�ne the mapping

κX,Z(s, t) := C(|||X|||p,[s,t] ∨ |||X|||
p
p,[s,t]) + CX

J (Zt − Zs)

for any s < t ∈ [0, T ], for some constant C > 0 which depends only on p. De�ne similarly κX,Zn with Zn

instead of Z in the previous expression.

Lemma 4.3. (i) For any n ∈ N, κX,Zn is a control in p-variation norm for Y n, i.e. for any s < t ∈ [0, T ],

‖Y n‖p,[s,t] ≤ κX,Zn(s, t).

Besides, κX,Z is a control in p-variation norm for Y , i.e. ∀s < t ∈ [0, T ],

‖Y ‖p,[s,t] ≤ κX,Z(s, t).

(ii) Moreover, if X and L satisfy the assumptions of Theorem 2.12, then for any γ ≥ 1 and for any n ∈ N,
E [κX,Zn(0, T )γ ] <∞ and E [κX,Z(0, T )γ ] <∞.
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Proof. (i) For each n ∈ N, Zn is a non-decreasing path and invoking Proposition 4.1, it follows that
supn∈N ‖Zn‖1-var,[0,T ] < ∞ and thus supn∈N ‖Zn‖p,[0,T ] < ∞ (note that this bound depends only on X
and L, see (4.3)). Moreover, since Zn is a non-decreasing path,

‖Zn‖pp,[s,t] ≤ sup
π

{
sup
ti∈π
|δZnti,ti+1

|p−1
∑
|δZnti,ti+1

|
}

= sup
π

{
|δZns,t|p−1

∑
|δZnti,ti+1

|
}

= δZns,t.

Hence it follows that

lim sup
n∈N

‖Zn‖pp,[s,t] ≤ lim sup
n∈N

(Znt − Zns )p = (Zt − Zs)p. (4.6)

As a consequence, using the Doss-Sussmann representation (3.3), one obtains

‖Y n‖p,[s,t] = sup
π

(∑
π

|U
X;Znti+1

ti+1←0 − U
X;Znti
ti←0 |p

) 1
p

≤ sup
π

(∑
π

‖U
X;Znti+1

·←0 ‖pp,[ti,ti+1]

) 1
p

+ sup
u∈[s,t]

‖UX;·
u←0‖Lip‖Zn‖p,[s,t]

≤ sup
π

(∑
π

‖U
X;Znti+1

·←0 ‖pp,[ti,ti+1]

) 1
p

+ CX
J (Znt − Zns ).

Since (s, t) 7→ ‖U
X;Znti+1

·←0 ‖pp,[s,t] is super-additive, i.e. for any s ≤ t ≤ u, ‖U
X;Znti+1

·←0 ‖pp,[s,t] + ‖U
X;Znti+1

·←0 ‖pp,[t,u] ≤

‖U
X;Znti+1

·←0 ‖pp,[s,u], we deduce that

‖Y n‖p,[s,t] ≤ ‖U
X;Znti+1

·←0 ‖p,[s,t] + CX
J (Znt − Zns ).

Now the standard bound (4.1) also holds in p-variation norm (see [14, Exercise 10.20]), hence

‖Y n‖p,[s,t] ≤ C
(
‖σ‖C2b |||X|||p,[s,t] ∨ (‖σ‖C2b |||X|||p,[s,t])

p
)

+ CX
J (Znt − Zns ).

Finally, noticing that for any �nite subdivision π of [s, t],∑
π

(δYti,ti+1
)p = lim

n→∞

∑
π

(δY nti,ti+1
)p

≤ lim
n→∞

‖Y n‖pp,[s,t],

gives the desired result.

(ii) The result can be directly deduced from the de�nition of κX,Z (resp. κX,Zn) and from the combination
of inequalities (4.3) and (4.5).

Let us denote Kn the penalisation term in (2.8):

Kn
t :=

∫ t

0

ψn(Y ns − Ls)ds, t ∈ [0, T ]. (4.7)

The p-variations of Kn are controlled by those of Zn:

Lemma 4.4. Consider the continuous process Kn as de�ned in (4.7). Then for any n ∈ N and any s < t ∈
[0, T ],

δKn
s,t ≤ CX

J δZ
n
s,t.

This implies that for any q ≥ 1, ‖Kn‖q,[s,t] ≤ CX
J ‖Zn‖q,[s,t].
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Proof. Using the de�nition (3.3) of Zn and the bound (3.1) on J (recall also that J is positive), one has:

Kn
t −Kn

s =

∫ t

s

J
X;Znu
u←0 J

X;Znu
0←u ψn(Y nu − Lu)du

≤ CX
J

∫ t

s

J
X;Znu
0←u ψn(Y nu − Lu)du = CX

J (Znt − Zns ) .

Since Kn is non-decreasing, the result is a direct consequence of the previous inequality.

Lemma 4.5. The path σ(Y n) is controlled by X and its Gubinelli derivative is σ′(Y n)σ(Y n) (σ′(y) considered
as an element of L(L(Rd,R),R)).

Proof. Recall that Y n is a solution obtained by approximation, i.e. in the sense of De�nition 2.3. The �rst
goal of this proof is to show that Y n can also be understood as a solution in the sense of controlled rough
paths.
We know from Proposition 3.1 that Y n does not blow up in �nite time. Let ω be �xed, denote M(ω) =

supt∈[0,T ] |Y nt (ω)| and consider a bounded smooth function ψ
(M)
n equal to ψn on the ball B(0, 2M(ω)). We

denote by Y n,M the solution to (2.8) with ψ
(M)
n instead of ψn. We have Y n,Mt (ω) = Y nt (ω) for all t ∈ [0, T ].

Now consider the following RDE in the augmented form (i.e. without drift) with bounded coe�cient:

dŶ n,Mt = σ̂(Ŷ n,Mt )dX̂t,

where Ŷ n,Mt = (Y n,Mt , Lt)
T is the solution in the sense of De�nition 2.3, where for any (y, l) ∈ R2:

σ̂((y, l)) =

(
σ(y) ψ

(M)
n (y − l) 0

0 . . . 0 0 1

)
,

and X̂ is the canonical rough path above X̂t = (XT
t , t, Lt)

T . It appears that this equation can now be
solved in the sense of controlled rough paths (see [14, Theorem 8.4]), and that the solution that we denote

by Y
n,M

is controlled by X̂ (with Gubinelli derivative σ̂(Y
n,M

)). Considering that X̂ can be approximated

by a sequence ((X̂k, X̂k))k∈N of smooth paths in the α-Hölder rough path topology, with α < β and X̂k

the Riemann-Stieltjes iterated integral of X̂k (see [14, Proposition 2.5]), we can associate a unique solution

Ŷ n,M,k to the equation dŶ n,M,k
t = σ̂(Ŷ n,M,k

t )dX̂k
t , for each k ∈ N. In view of the continuity of the Itô-Lyons

map X ∈ C β 7→ Y ∈ CαX , where Y is the solution in the controlled rough paths sense ([14, Theorem 8.5]),

we obtain that Ŷ n,M,k converges in α-Hölder norm to Y
n,M

. Since Ŷ n,M,k is in fact a solution in the usual

sense of ODEs, it also converges in the uniform topology to Ŷ n,M . Hence Ŷ n,M = Y
n,M

, and as noticed in
the �rst paragraph, Y n,M = Y n, so that the two notions of solution coincide.

In particular, (Ŷ n,M , σ̂(Ŷ n,M )) ∈ Cβ
X̂
. This immediately yields that

(
Y n, (σ(Y n), ψn(Y n − L))T

)
is

controlled by the paths Xa
t := (XT

t , t)
T , which in other words states that the mapping Qns,t := δY ns,t −

(σ(Y ns ), ψn(Y ns − Ls))δXa
s,t satis�es ‖Qn‖ p2 ,[0,T ] < ∞. Hence one deduces that (Y n, σ(Y n)) ∈ CβX : Indeed,

setting for any s < t ∈ [0, T ],

Rns,t := δY ns,t − σ(Y ns )δXs,t, (4.8)

one gets that

|Rns,t| = |Qns,t + ψn(Y ns − Ls)(t− s)|
≤ |Qns,t|+ ‖ψn(Y n − L)‖∞,[0,T ](t− s) ≤ |Qns,t|+ n‖Y n − L‖∞,[0,T ](t− s),

Thus it follows from the above and Proposition 4.1 that

‖Rn‖ p
2 ,[0,T ] ≤ C

(
‖Qn‖ p

2 ,[0,T ] + n‖Y n − L‖∞,[0,T ]T
)
<∞,

and in particular the Gubinelli derivative of Y n is σ(Y n) ∈ Vp([0, T ]; (Rd)′).
Finally, σ(Y n) is controlled by X with Gubinelli derivative σ′(Y n)σ(Y n) (see [14, Lemma 7.3]).
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That σ(Y n) is controlled by X means that the following quantity is bounded in p
2 -var, for each n ∈ N:

Rσ,ns,t := δσ(Y n)s,t − σ′(Y ns )σ(Y ns )δXs,t. (4.9)

Lemma 4.6. (i) Under the assumptions of Theorem 2.11, one has the following inequality:

Θ := sup
n∈N

(
‖σ(Y n)Tσ′(Y n)‖p,[0,T ] + ‖Rσ,n‖ p

2 ,[0,T ]

)
<∞. (4.10)

(ii) If in addition, the assumptions of Theorem 2.12 hold, then E (Θγ) <∞, for any γ ≥ 1.

Proof. (i) First, observe that by the regularity assumption on σ and by Lemma 4.3, the �rst part of the
inequality is ful�lled: supn∈N ‖σ(Y n)Tσ′(Y n)‖p,[0,T ] <∞.

Now consider Rσ,n. By a Taylor expansion,

δσ(Y n)s,t = σ′(Y ns )δY ns,t +

∫ Y nt

Y ns

σ′′(y)(Y nt − y)dy. (4.11)

The combination of (4.8) and (4.11) yields

Rσ,ns,t = σ′(Y ns )Rns,t +

∫ Y nt

Y ns

σ′′(y)(Y nt − y)dy.

Hence

|Rσ,ns,t | ≤ ‖σ′‖∞|Rns,t|+ ‖σ′′‖∞(Y nt − Y ns )2 ≤ C
(
|Rns,t|+ (Y nt − Y ns )2

)
.

From Lemma 4.5, the De�nition (4.8) of Rn, and inequality (2.10) applied to |
∫ t
s
σ(Y nu )dXu − σ(Y ns )δXs,t|,

one gets

|Rns,t| ≤ δKn
s,t + |σ′(Y ns )σ(Y ns )||Xs,t|+ Cp

(
‖X‖p,[s,t]‖Rσ,n‖ p

2 ,[s,t]
+ ‖σ′(Y n)σ(Y n)‖p,[s,t]‖X‖ p

2 ,[s,t]

)
.

Hence

|Rσ,ns,t | ≤M
(
δKn

s,t + |Xs,t|+ ‖X‖p,[s,t]‖Rσ,n‖ p
2 ,[s,t]

+ ‖σ′(Y n)σ(Y n)‖p,[s,t]‖X‖ p
2 ,[s,t]

+ (Y nt − Y ns )2
)
,

for M that depends only on p, the uniform norms of σ and its derivatives. Thus for any s < t ∈ [0, T ] such
that |s− t| ≤ δX , δX := T ∧ sup

{
δ > 0 : ‖X‖p,[s,t] ≤ 1

2M
−1, ∀s, t ∈ [0, T ] s.t. |t− s| ≤ δ

}
, one gets

|Rσ,ns,t | ≤ 2M
(
δKn

s,t + |Xs,t|+ ‖σ′(Y n)σ(Y n)‖p,[s,t]‖X‖ p
2 ,[s,t]

+ (Y nt − Y ns )2
)
.

Using the bound on δKn from Lemma 4.4 and the bound on ‖Y n‖p from Lemma 4.3, one gets for any
|s− t| ≤ δX that

|Rσ,ns,t | ≤ C
(
δZns,t + |Xs,t|+ κX,Zn(s, t)‖X‖ p

2 ,[s,t]
+ κX,Zn(s, t)2

)
. (4.12)

Then

‖Rσ,n‖
p
2
p
2 ,[0,T ]

= sup
π=(ti)

 ∑
ti+1−ti≤δX

|Rσ,nti,ti+1
|
p
2 +

∑
ti+1−ti>δX

|Rσ,nti,ti+1
|
p
2


≤ C

(
(δZn0,T )

p
2 + ‖X‖

p
2
p
2 ,[0,T ]

+ κX,Zn(0, T )
p
2 ‖X‖

p
2
p
2 ,[0,T ]

+ κX,Zn(0, T )p
)

+ sup
π=(ti)

∑
ti+1−ti>δX

|Rσ,nti,ti+1
|
p
2 . (4.13)
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By a simple induction, one can verify that for any s0 < s1 < · · · < sN ,

Rσ,ns0,sN =

N−1∑
k=0

Rσ,nsk,sk+1
+

N−1∑
k=1

δRσ,ns0,sk,sk+1
,

where δRσ,ns0,sk,sk+1
= Rσ,ns0,sk+1

−Rσ,ns0,sk−R
σ,n
sk,sk+1

. In view of (4.9), there is δRσ,ns0,sk,sk+1
= −δσ′σ(Y n)s0,skδXsk,sk+1

.
Hence

|δRσ,ns0,sk,sk+1
| ≤ C|δY ns0,sk ||δXsk,sk+1

|

≤ C|δXsk,sk+1
|
k−1∑
j=0

|δY nsj ,sj+1
| (4.14)

For any index i in (4.13) such that ti+1 − ti > δX , denote Ki = b ti+1−ti
δX
c (≤ T

δX
), ti,k = ti + kδX for any

k = 0 . . .Ki and ti,Ki+1 = ti+1. We obtain

∑
ti+1−ti>δX

|Rσ,nti,ti+1
|
p
2 =

∑
ti+1−ti>δX

|
Ki∑
k=0

Rσ,nti,k,ti,k+1
+ δRσ,nti,ti,k,ti,k+1

|
p
2

≤
∑

ti+1−ti>δX

(
2
T

δX

) p
2−1 Ki∑

k=0

|Rσ,nti,k,ti,k+1
|
p
2 + |δRσ,nti,ti,k,ti,k+1

|
p
2

≤
(

2
T

δX

) p
2−1 ∑

ti+1−ti>δX


Ki∑
k=0

|Rσ,nti,k,ti,k+1
|
p
2 + C

(
Ki∑
k=0

|δY nti,k,ti,k+1
|

) p
2 Ki∑
k=0

|δXti,k,ti,k+1
|
p
2


≤ C

(
T

δX

) p
2−1 ∑

ti+1−ti>δX

{
Ki∑
k=0

|Rσ,nti,k,ti,k+1
|
p
2 +

(
T

δX

)p−1 Ki∑
k=0

|δY nti,k,ti,k+1
|p +

T

δX

Ki∑
k=0

|δXti,k,ti,k+1
|p
}

≤ C
(
T

δX

) p
2−1 ∑

ti+1−ti>δX

Ki∑
k=0

|Rσ,nti,k,ti,k+1
|
p
2 + C

(
T

δX

) 3p
2 −2 (

‖Y n‖pp,[0,T ] + ‖X‖pp,[0,T ]

)
,

where we used (4.14) in the third inequality. Now, since ti,k+1 − ti,k ≤ δX , we can use (4.12) to get that

∑
ti+1−ti>δX

Ki∑
k=0

|Rσ,nti,k,ti,k+1
|
p
2 ≤ C

(
(δZn0,T )

p
2 + (1 + κX,Zn(0, T )

p
2 )‖X‖

p
2
p
2 ,[0,T ]

+ κX,Zn(0, T )p
)
.

Eventually, one gets that

∑
ti+1−ti>δX

|Rσ,nti,ti+1
|
p
2 ≤ C

(
T

δX

) 3p
2 −2 (

(δZn0,T )
p
2 + (1 + κX,Zn(0, T )

p
2 )‖X‖

p
2
p
2 ,[0,T ]

+ κX,Zn(0, T )p + ‖X‖pp,[0,T ]

)
,

so that

‖Rσ,n‖
p
2
p
2 ,[0,T ]

≤ C(δX)2− 3p
2

(
(δZn0,T )

p
2 + (1 + κX,Zn(0, T )

p
2 )‖X‖

p
2
p
2 ,[0,T ]

+ κX,Zn(0, T )p + ‖X‖pp,[0,T ]

)
.

In view of the de�nition of κX,Zn and since Zn ≤ Zn+1,

‖Rσ,n‖
p
2
p
2 ,[0,T ]

≤ C(δX)2− 3p
2

(
Z
p
2

T + ZpT + |||X|||
p
2

p,[0,T ] + |||X|||pp,[0,T ] + |||X|||p
2

p,[0,T ]

)
. (4.15)

Finally, since we assumed that ‖X‖β <∞, it follows that ‖X‖p,[s,t] ≤ ‖X‖β |t− s|β and then (since β = p−1)

that δX ≥ 1
2 (‖X‖βC)−p > 0. This proves (i).

(ii) Using Lemma 4.3 (ii), we deduce that E
[
supn∈N ‖σ′(Y n)σ(Y n)‖γp,[0,T ]

]
< ∞. In view of (4.15)

and the fact that E[δ
(2− 3p

2 )γ

X ] . E[‖X‖p(
3p
2 −2)γ

β ] < ∞ for any γ ≥ 1, Lemma 4.3 (ii) also implies that

E
[
supn∈N ‖Rσ,n‖

γ
p,[0,T ]

]
<∞.
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Corollary 4.7. The rough integral in (2.8) is β-Hölder continuous on [0, T ], uniformly in n: there exists
C > 0 depending only on p, ‖σ‖∞ and ‖σ′‖∞ such that

∀n ∈ N, ∀s, t ∈ [0, T ],
∣∣ ∫ t

s

σ(Y nu )dXu

∣∣ ≤ C(1 + Θ)|||X|||β |s− t|
β ,

where Θ was de�ned (independently of n) in (4.10).

Proof. In view of Lemmas 4.5 and 4.6, Theorem 2.6 implies that

wn(s, t) := ‖
∫ ·

0

σ(Y nu )dXu‖pp,[s,t]

is bounded from above by a control, denoted by w(s, t), which is independent of n. Namely:

wn(s, t)
1
p ≤ ‖σ(Y n)‖∞,[s,t]‖X‖p,[s,t] + ‖σ′(Y n)σ(Y n)‖∞,[s,t]‖X‖p,[s,t]

+ Cp

(
‖X‖p,[s,t]‖Rσ,n‖ p

2 ,[s,t]
+ ‖X‖ p

2 ,[s,t]
‖σ′(Y n)σ(Y n)‖p,[s,t]

)
≤ C (1 + Θ)

(
‖X‖p,[s,t] + ‖X‖ p

2 ,[s,t]

)
=: w(s, t)

1
p ,

where Θ was de�ned (independently of n) in (4.10). To conclude the proof, it remains to notice that since
(X,X) ∈ C β , ‖X‖p,[s,t] ≤ ‖X‖β |s− t|β and ‖X‖ p

2 ,[s,t]
≤ ‖X‖2β |s− t|2β .

Proposition 4.8. (i) Under the assumptions of Theorem 2.11, there exists C > 0 which depends only on p
and T , such that for any n ∈ N∗,

sup
s∈[0,T ]

(Y ns − Ls)− ≤ C
(

1 + (1 + Θ)|||X|||β + ‖L‖β
)
n−β ,

where Θ was de�ned in (4.10). In particular, lim
n→∞

sup
s∈[0,T ]

(Y ns − Ls)− = 0.

(ii) If in addition, the assumptions of Theorem 2.12 hold, then lim
n→∞

E
[

sup
s∈[0,T ]

|(Y ns − Ls)−|γ
]

= 0, for any

γ ≥ 1.

Proof. (i) Applying Lemma 3.3(ii) and Corollary 4.7, one gets that

∀n, sup
s∈[0,T ]

(Y ns − Ls)− ≤ C
(

1 + ‖L‖β + ‖
∫ ·

0

σ(Y nu )dXu‖β
)
n−β

≤ C
(

1 + ‖L‖β + (1 + Θ)|||X|||β
)
n−β . (4.16)

which is the desired result.
(ii) Using (4.5) and Lemma 4.6 (ii), one gets that lim|s−t|→0 E[w(s, t)γ ] = 0, ∀γ ≥ 1, so the result follows

from (4.16).

Proposition 4.9. (i) Under the assumptions of Theorem 2.11, (Y n)n∈N converges uniformly to some process
{Yt}t∈[0,T ] ∈ Cβ.
(ii) If in addition, the driving noise X is Gaussian and the assumptions of Theorem 2.12 are satis�ed, then
the convergence happens in Lγ

(
Ω; (C0, ‖ · ‖∞,[0,T ])

)
(i.e. as in (2.11)), ∀γ ≥ 1. Besides, Y has a β-Hölder

continuous modi�cation and E[‖Y ‖γβ,[0,T ]] <∞, ∀γ ≥ 1.

Proof. (i) This proof uses estimates which are similar to those in the proof of Proposition 4.1, but this time
a bound on Znt − Zns is needed.

For any s ∈ [0, T ), de�ne {Z̃nt←s}t∈[s,T ] as the solution of the following (random) ODE:

Z̃nt←s = Zns + CX
J

∫ t

s

ψn

(
U

X;Z̃nu
u←0 − Lu

)
du, t ∈ [s, T ],
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Once again, there is Z̃nt←s ≥ Znt and

Z̃nt←s ≤ Zns + CX
J

∫ t

s

ψn

(
Y ns − Cσ,X,β(u− s)β + (CX

J )−1(Z̃nu − Z̃ns )− Lu
)
du, t ∈ [s, T ],

but unlike in (4.2), it is no longer true that the starting point Y ns is larger than Ls. Thus we only get that

Z̃nt←s ≤ Zns + CX
J

∫ t

s

ψn

(
−(Y ns − Ls)− − Cσ,X,β(u− s)β + (CX

J )−1(Z̃nu − Z̃ns )− (Lu − Ls)
)
ds, t ∈ [s, T ].

As in (4.3), one can then verify that the previous bound leads to

∀t ∈ [s, T ], Znt ≤ Z̃nt←s ≤ Zns + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|+ (Y ns − Ls)−

)
,

where C depends only on σ, β, T (an in particular not in n or s). Now as in (4.4),

|Y nt − Y ns | ≤ sup
y∈R
‖UX;y
·←0‖β,[0,T ](t− s)β + CX

J |Znt − Zns |

≤ C (CX
J )2

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|+ (Y ns − Ls)−

)
. (4.17)

Using Proposition 4.8, we can now take the (pointwise) limit as n → ∞ in the two previous inequalities to
get that for any t ∈ [s, T ],

Zt ≤ Zs + C CX
J

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|

)

and |Yt − Ys| ≤ C (CX
J )2

(
(|||X|||β,[0,T ] ∨ |||X|||

1
β

β,[0,T ])(t− s)
β + sup

u∈[s,t]

|Lu − Ls|

)
.

Hence Z and Y are (Hölder-)continuous, so arguing with Dini's Theorem, we are now able to conclude that
the convergences are uniform.

(ii) Under the assumptions of Theorem 2.12, one deduces from the previous point that limn→∞ ‖Y n −
Y ‖∞,[0,T ] = 0 almost surely. Moreover, Proposition 4.1 states that (Y n)n∈N is a nondecreasing sequence.
Thus ‖Y n−Y ‖∞,[0,T ] ≤ 2‖Y ‖∞,[0,T ], and since E[‖Y ‖γ∞,[0,T ]] <∞ (by Proposition 4.1 (ii)), the convergence

result is obtained by using Lebesgue's theorem.
The Hölder continuity of Y is a consequence of Inequality (4.17) and Proposition 4.8 (ii).

4.3 Identi�cation of the limit process X

To achieve the proof of Theorem 2.11, we will show that (Y, σ(Y )) ∈ CβX and deduce that
∫ ·

0
σ(Ys)dXs is the

uniform limit of the sequence {
∫ ·

0
σ(Y ns )dXs}n∈N and that Kn converges uniformly to a non-decreasing path

K. Then, by checking the properties (i), (ii), (iii) and (iv) of De�nition 2.8, we will be able to prove that the
paths (Y,K) so constructed are indeed solutions to the Skorokhod problem SP (σ, L).

4.3.1 Step 1: convergence of the rough integral.

Proposition 4.10. (σ(Y ), σ′(Y )σ(Y )) ∈ CβX and the following convergence happens in C0([0, T ],R):

lim
n→∞

∥∥∥∥∫ ·
0

σ(Y ns )dXs −
∫ ·

0

σ(Ys)dXs

∥∥∥∥
∞,[0,T ]

= 0.

Proof. Our aim is to check that Proposition 2.7 can be applied. First recall that σ(Y n) is controlled by X
and that its Gubinelli derivative is σ′(Y n)σ(Y n) (Lemma 4.5). By Proposition 4.9, σ′(Y n)σ(Y n) converges
uniformly to σ′(Y )σ(Y ). Similarly, Rσ,ns,t converges uniformly a.s. to Rσs,t := δσ(Y )s,t − σ′(Ys)σ(Ys)δXs,t.
Hence in view of Lemma 4.6, the assumptions of Proposition 2.7 are matched and the desired result follows.
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A direct consequence of the previous proposition and of Proposition 4.9 is that Kn converges (uniformly)
to a limit path K so that

∀t ∈ [0, T ], Yt = y0 +

∫ t

0

σ(Ys)dXs +Kt.

As a limit of non-decreasing paths, K is non-decreasing. Hence the properties (i) and (iii) of De�nition 2.8
are veri�ed.

4.3.2 Step 2: Y ≥ L.

This is the result of Proposition 4.8. Thus property (ii) of De�nition 2.8 is satis�ed.

4.3.3 Step 3: points of increase of K.

By the uniform convergence of Kn and the non-decreasing property of Kn and K, it follows that dKn weakly
converges towards dK and since Y n converges uniformly to Y ,

0 ≥
∫ t

0

(Y ns − Ls)ψn(Y ns − Ls) ds =

∫ t

0

(Y ns − Ls) dKn
s →

∫ t

0

(Ys − Ls) dKs,

where the last integral exists in the sense of Lebesgue-Stieltjes integrals, since K is a non-decreasing path.
Since Ys−Ls ≥ 0 (by the previous step) and K is non-decreasing, it follows that

∫ t
0
(Ys−Ls) dKs ≥ 0. Hence

for any t ∈ [0, T ],
∫ t

0
(Ys − Ls) dKs = 0, which proves that the point (iv) is satis�ed.

Remark 4.11. In view of Subsections 4.3.1, 4.3.2 and 4.3.3, we conclude that (Y,K) is a solution to
SP (σ, L), which achieves the proof of Theorem 2.11. In addition, if X is a Gaussian process satisfying
Assumption (HCov), we obtained all along Section 4 the probabilistic estimates to ensure that Theorem 2.12
holds.

4.4 Uniqueness

Uniqueness is in general the most tricky part in re�ection problems. Here we bene�t from earlier results in
the literature. In the case β > 1

2 , the uniqueness of the re�ected is due to Falkowski and Sªomi«ski [11].
In the case β ≤ 1

2 , the uniqueness of the re�ected RDE has been proven recently by Deya, Gubinelli,
Hofmanová, and Tindel [8]. The di�erence between our work and [8] is that they have a �xed boundary
process L ≡ 0. But their proof of uniqueness can adapt to a moving boundary.

5 Rate of convergence of the sequence of penalised processes

In this section, we prove Theorem 2.13, which gives a rate of convergence in Theorem 2.11 (in the regular
case β > 1

2 ).
The following result is similar to the rough Gronwall lemma of [7, 8], except that it only applies in the

�regular� case of q < 2, however with a second member in the inequality which is not a control. The proof is
very close to the proof of [7, Lemma 2.11], for this reason it is given in the Appendix.

Lemma 5.1. Let q ∈ [1, 2) and ∆ ∈ Vq([0, T ]). Let w1 be a regular control with M := w1(0, T ) <∞ and let
w2 be another control. Assume that for any s < t ∈ [0, T ],

‖∆‖q,[s,t] ≤ ‖∆‖∞,[s,t]w1(s, t)
1
q + w2(s, t)

1
q .

Then,

‖∆−∆0‖q∞,[0,T ] ≤ 2(2α−1)q−1e
w1(0,T )
αM sup

t∈[0,T ]

w2(0, t)e−
w1(0,t)
αM ,

where α = min
(

1,
(
2qMe2

)− 1
2−q
)
.
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Proposition 5.2. Let X ∈ Cβ with β ∈ ( 1
2 , 1) and assume that the assumptions of Theorem 2.11 are in

force. Then for any ε ∈ (0, 2β − 1), there exists C > 0 (that depends only on ε, β and ‖X‖p, p = β−1) such
that

sup
t∈[0,T ]

|Y nt − Yt| ≤ C n−(2β−1)+ε.

Proof. In this proof, denote by Πt(y) the projection in the upper half �plane� delimited by {Lt}t∈[0,T ], i.e.
Πt(y) = y if y ≥ Lt and Πt(y) = Lt if y < Lt.
The proof relies on two important ingredients: the �rst one is the continuity of the Skorokhod mapping for
any p ≥ 1,

Vp([0, T ])→ Vp([0, T ])

z 7→ y,

where (z, k) is the solution of the Skorokhod problem driven by z: y = z + k (see [11, Theorem 2.2]). The
second one is the fact observed by Sªomi«ski [26] that {Πt(Y

n
t )}t∈[0,T ] is the solution of SP (Υn, L), where

Υn
t = Πt(Y

n
t )− Y nt + y0 +

∫ t
0
σ(Y ns )dXs, and with compensator Kn.

Let q = 1
1−β+ε . Note that since β = p−1 ≥ 1+ε

2 , one has q ≥ p. Moreover, Y n ∈ Vq since Y n ∈ Vp. Thus
for any s < t ∈ [0, T ],

‖Y − Y n‖q,[s,t] ≤ ‖Y −Π(Y n)‖q,[s,t] + ‖Π(Y n)− Y n‖q,[s,t]

≤ C‖y0 +

∫ ·
0

σ(Yu)dXu −Υn‖q,[s,t] + ‖Π(Y n)− Y n‖q,[s,t],

using the continuity of the Skorokhod map. Then

‖Y − Y n‖q,[s,t] ≤ C‖
∫ ·

0

(σ(Yu)− σ(Y nu )) dXu‖q,[s,t] + (1 + C)‖Π(Y n)− Y n‖q,[s,t]

≤ C‖σ′‖∞‖Y − Y n‖∞,[s,t]‖X‖q,[s,t] + C Cq ‖X‖p,[s,t]‖Y − Y n‖q,[s,t]
+ (1 + C) ‖Π(Y n)− Y n‖q,[s,t],

using Young's inequality at the second line (which is �ne since p−1 + q−1 > 1). Now let

τ := inf{θ > 0 : CCq‖X‖p,[s,t] ≤ 1
2 , ∀s < t ∈ [0, T ] such that |t− s| ≤ θ}.

Then for any s < t ∈ [0, T ] such that t− s ≤ τ ,

‖Y − Y n‖q,[s,t] ≤ 2C‖σ′‖∞‖Y − Y n‖∞,[s,t]‖X‖q,[s,t] + 2(1 + C) ‖Π(Y n)− Y n‖q,[s,t].

As in the proof of Lemma 4.6, it follows that for any s < t ∈ [0, T ],

‖Y − Y n‖q,[s,t] ≤ 2Cτ1−q‖σ′‖∞‖Y − Y n‖∞,[s,t]‖X‖q,[s,t] + 2(1 + C)τ1−q ‖Π(Y n)− Y n‖q,[s,t].

Hence, applying Lemma 5.1, we obtain

‖Y − Y n‖q∞,[0,T ] ≤ 2e
w1(0,T )
αM 2(1 + C) sup

t∈[0,T ]

{
‖Π(Y n)− Y n‖qq,[0,t]e

−w1(0,t)
αM

}
, (5.1)

where w1(s, t) = 2C‖σ′‖∞‖X‖qq,[s,t]. Hence considering that Π(Y n)− Y n = (Y n − L)− and

‖Π(Y n)− Y n‖qq,[0,t] ≤ ‖Π(Y n)− Y n‖q−p∞,[0,t]‖Π(Y n)− Y n‖pp,[0,t] . ‖Π(Y n)− Y n‖q−p∞,[0,t]‖X‖
p
p,[0,t],

it follows from Proposition 4.8(i) that

‖Π(Y n)− Y n‖qq,[0,t] . n−β(q−p)‖X‖pp,[0,t]

which, when plugged in (5.1) leads to the desired result (β(q−p)
q = β − (1− β + ε) = 2β − 1− ε).
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A Appendix

Proof of Proposition 2.10. The existence of a solution of (2.8) up to some time τ > 0 comes from [19],
Theorem 3 (see also [16, Theorem 10.21]). Uniqueness is also granted given the regularity of σ and b. In
view of [19, Lemma 1] (see also [16, Theorem 10.21]), we know that either Y is a global solution on [0, T ],
or that there is some time τ ′ > τ such that for any t ∈ [0, τ ′), {Ys}s∈[0,t] is a solution to (2.8) and that
limt→τ ′ |Yt| =∞. In the remaining of this proof, we shall prove that Yt coincides on [0, τ ′) with the solution
to (3.3). Since the latter does not explode, it will follow that Y is a global solution.

Let us turn to the Doss-Sussmann representation. Recall that according to (3.1), JX;·
0←t is Lipschitz

uniformly in t but that due to the unboundedness of b, W (t, ·) is only locally Lipschitz (uniformly in t). This
su�ces to prove existence and uniqueness of a solution to żt = W (t, zt) on a small enough time interval. In

fact, JX;·
0←t is bounded (see (3.1)) and CX

U := supt∈[0,T ] |U
X;0
0←t| <∞. Denote by B(CX

U ) the ball of Re centred
in 0 and with radius CX

U . Thus

|W (t, z)| ≤ |JX;z
0←tb(U

X;0
t←0)|+ |W (t, z)− JX;z

0←tb(U
X;0
t←0)|

≤ CX
J sup
x∈B(CX

U )

|b(x)|+ CX
J |b(U

X;z
t←0)− b(UX;0

t←0)|

≤ CX
J

(
‖b‖∞,B(CX

U ) + ‖∇b‖∞CX
J |z|

)
,

i.e. W has linear growth. This ensures the stability of the solution Zt to the ODE Żt = W (t, Zt), and

its global existence on any time interval (see e.g. [16, Theorem 3.7]). Thus the process {UX;Zt
t←0 }t∈[0,T ] is

well-de�ned.
Now to prove that {Yt}t∈[0,τ ] and {UX;Zt

t←0 }t∈[0,τ ] coincide, one can follow closely the end of the proof of

[13, Proposition 3]: let (Xk)k∈N a sequence of geometric rough paths such that (Xk)k∈N is a sequence of
Lipschitz paths with uniform β-Hölder bound, which converges pointwise to X. Denote by Y k the solution
to (2.8) where Xk replaces X. Then (Y k, Zk) is easily seen to solve (3.3) with X replaced by Xk. As stated
in [13], it su�ces to prove the uniform convergence of Zk to Z to get the result. De�ne

Mk = sup
s∈[0,τ ],z∈Re

|JX;z
0←s − J

Xk;z
0←s | ∨ |U

X;z
s←0 − U

Xk;z
s←0 |

and denote JLip = sups∈[0,T ] ‖J
X;·
s←0‖Lip which is �nite (see the discussion of Section 3.1). Now the main

di�erence with [13] lies again in the unboundedness of b: denote by Z = supt∈[0,T ] |Zt| < ∞ and C
X

U =

supt∈[0,T ],supz∈B(0,Z)
|UX;z
s←0| <∞. Then for t ≤ τ ,

|Zkt − Zt| ≤
∫ t

0

{
|JX;Zs

0←s − J
X;Zks
0←s | |b(U

X;Zs
s←0 )|+ |JX;Zks

0←s − J
Xk;Zks
0←s | |b(U

Xk;Zks
s←0 )|

+ J
X;Zks
0←s |b(U

Xk;Zks
s←0 )− b(UX;Zs

s←0 )|
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| ‖b‖∞,B(CX

U ) +Mk
(
‖b‖∞,B(C

X
U )

+ ‖∇b‖∞|U
Xk;Zks
s←0 − UX;Zs

s←0 |
)

+ CX
J ‖∇b‖∞|U

Xk;Zks
s←0 − UX;Zs

s←0 |
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| b+Mk b+ ‖∇b‖∞

(
CX
J +Mk

)
|UXk;Zks
s←0 − UX;Zs

s←0 |
}
ds

≤
∫ t

0

{
JLip|Zks − Zs| b+Mk b+ ‖∇b‖∞

(
CX
J +Mk

) (
Mk + CX

J |Zks − Zs|
)}

ds,

where b := max
(
‖b‖∞,B(CX

U ), ‖b‖∞,B(C
X
U )

)
. Then, denoting CZ,1 := b + ‖∇b‖∞CX

J and CZ,2 := bJLip +
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‖∇b‖∞(CX
J )2, one gets that

sup
s∈[0,t]

|Zks − Zs| ≤ tCZ,1Mk + t‖∇b‖∞(Mk)2 + CZ,2(1 +Mk)

∫ t

0

sup
u∈[0,s]

|Zku − Zu|ds

≤
(
CZ,1 + ‖∇b‖∞Mk

)
TMk exp

(
CZ,2(1 +Mk)T

)
(A.1)

applying Gronwall's lemma in the last inequality. By the continuity of the mapping (y,X) 7→ UX;y
·←0 (see [14,

Theorem 8.5]), there is Mk → 0 as k → ∞, hence the inequality (A.1) implies that Zk converges uniformly
to Z. Since Y k has the representation (3.3), then so has Y .

Hence {Yt}t∈[0,τ ] and {UX;Zt
t←0 }t∈[0,τ ] do coincide and since the latter does not explode in �nite time, this

implies that there cannot exist τ ′ > τ such that limt→τ ′ |Yt| =∞. Thus Y is de�ned on [0, T ].

Proof of Lemma 5.1. This proof is very similar to the proof of [7, Lemma 2.11], but we reproduce most of it
for the reader's convenience, emphasizing on the main di�erences.

Without loss of generality, assume that ∆0 = 0. Let K = bα−1c be the integer part of α−1. For
k = 0, . . . ,K, de�ne tk ∈ [0, T ] such that w1(0, tk) = αMk. Hence 0 = t0 < t1 < · · · < tK ≤ T and
w1(tk, tk+1) ≤ αM . For t ∈ [0, T ], let k such that t ∈ [tk−1, tk), then

k−2∑
j=0

|δ∆tj ,tj+1
|q + |δ∆tk−1,t|q ≤

k−2∑
j=0

‖∆‖qq,[tj ,tj+1] + ‖∆‖qq,[tk−1,t]

≤ 2q−1αM

k−2∑
j=0

‖∆‖q∞,[tj ,tj+1] + 2q−1w2(0, tk−1) + 2q−1αM‖∆‖q∞,[tk−1,t]
+ 2q−1w2(tk−1, t)

≤ 2q−1αM

k−1∑
j=0

‖∆‖q∞,[0,tj+1] + 2q−1w2(0, t),

using the super-additivity property of w2.

Now set Ht = ‖∆‖q∞,[0,t] exp
(
−w1(0,t)

αM

)
. We get

k−2∑
j=0

|δ∆tj ,tj+1 |q + |δ∆tk−1,t|q ≤ 2q−1αM

k−1∑
j=0

Htj+1 exp

(
w1(0, tj+1)

αM

)
+ 2q−1w2(0, t)

≤ 2q−1αM‖H‖∞,[0,T ]e
k+1 + 2q−1w2(0, t).

Since |∆t|q ≤ Kq−1
∑k−2
j=0 |δ∆tj ,tj+1

|q + Kq−1|δ∆tk−1,t|q, we obtain from the previous equation that for any
t < tk,

‖∆‖q∞,[0,t] ≤ (2K)q−1αM‖H‖∞,[0,T ]e
k+1 + (2K)q−1w2(0, t).

Hence, using that t ∈ [tk−1, tk), so that w1(0, t) ≥ αM(k − 1),

Ht = ‖∆‖q∞,[0,t] exp

(
−w1(0, t)

αM

)
≤ (2K)q−1αMe2‖H‖∞,[0,T ] + (2K)q−1w2(0, t) exp

(
−w1(0, t)

αM

)
,

thus, using the fact that K ≤ α−1,

‖H‖∞,[0,T ] ≤ (2K)q−1αMe2‖H‖∞,[0,T ] + (2K)q−1 sup
t∈[0,T ]

(
w2(0, t) exp

(
−w1(0, t)

αM

))
≤ α2−q2q−1Me2‖H‖∞,[0,T ] + (2α−1)q−1 sup

t∈[0,T ]

(
w2(0, t) exp

(
−w1(0, t)

αM

))
.

In view of the de�nition of α and the assumption q < 2,

‖H‖∞,[0,T ] ≤ 2(2α−1)q−1 sup
t∈[0,T ]

(
w2(0, t) exp

(
−w1(0, t)

αM

))
,

and the conclusion follows from the de�nition of H.
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