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Mechanical faults occurring in drivetrains are traditionally monitored through vibration 
analysis, and more rarely by analyzing electrical quantities measured on the involved 
electromechanical system. However, a monitoring method able to take into account the 
whole information contained in three-phase electrical quantities was recently proposed. 
The goal of this paper is to compare this three-phase electrical approach and the usual 
vibration-based method in terms of detection capabilities of mechanical faults in 
drivetrains. 
 
In this context, a 2MW geared wind turbine operating in an industrial wind farm was 
equipped during several months with accelerometers near the main bearing and 
electrical sensors on the stator of the electrical generator. During this period, an 
important mechanical fault occurred in the main bearing of this system. The evolution of 
the fault indicators computed by the two previous approaches are compared all along 
this period of time. All the indicators behave similarly and show the development of an 
inner bearing fault in the main bearing. 
 
This demonstrate that a mechanical fault occurring in a drive train can be monitored and 
detected by analyzing electrical quantities, even if the fault is distant from the electrical 
generator. 
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Abstract 
 

Mechanical faults occurring in drive trains are traditionally monitored through vibration 

analysis, and more rarely by analyzing electrical quantities measured on the involved 

electromechanical system. However, a monitoring method able to take into account the 

whole information contained in three-phase electrical quantities was recently proposed. 

The goal of this paper is to compare this three-phase electrical approach and the usual 

vibration-based method in terms of detection capabilities of mechanical faults in drive 

trains. In this context, a 2MW geared wind turbine operating in an industrial wind farm 

was equipped during several months with accelerometers near the main bearing and 

electrical sensors on the stator of the electrical generator. During this period, an 

important mechanical fault occurred in the main bearing of this system. The evolution 

of the fault indicators computed by the two previous approaches are compared all along 

this period of time. All the indicators behave similarly and show the development of an 

inner bearing fault in the main bearing. This demonstrate that a mechanical fault 

occurring in a drive train can be monitored and detected by analyzing electrical 

quantities, even if the fault is distant from the electrical generator. 

 

1.  Introduction 
 

Onshore or offshore wind turbines are still a developing technology. Though their 

reliability has improved in time, it can be further increased by implementing efficient 

condition monitoring systems and predictive maintenance strategies. Currently, 

vibration analysis seems to be the most popular condition monitoring technique for the 

mechanical parts of their drive train, such as gears or bearings. However, other 

possibilities exist, such as analyzing the electrical quantities generated by the output 

electrical generator driven by the drive train. For example, a method has been recently 

proposed in [7] to detect mechanical faults in electrical rotating machines using the 

whole information contained in three-phase electrical currents. Such an electrical 

approach led to very encouraging results when applied on a testbench emulating a wind 

turbine. Consequently, the goal of this paper is to apply the same strategy on an 

industrial wind turbine and check if in this case the same positive results can be 

obtained. For this, the next section of this paper describes the monitored wind turbine 

and the available database, while the fault to be detected and its vibratory and electrical 

signatures are detailed in section 3. Section 4 explains the data selection process applied 

to the whole database, and the results obtained by using vibration and electrical data are 

described and compared in section 5 and 6. Finally, the last section of this paper 

presents the overall conclusions of this research work. 
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2.  Process and measurements 
 

The process of interest is an industrial onshore wind turbine installed in the wind farm 

of Arfons-Sor located in France (see Fig. 1) and owned by Valemo. This wind farm is 

constituted by eleven wind turbines of type Eco 80 2.0 from ALSTOM Ecotecnia (see 

Fig. 2.a) with the same characteristics: 2MW rated power, 80m rotor diameter, 70m hub 

height. The main components of their drive train are given in Fig. 2.b, and consist in a 

main bearing supporting the low-speed shaft driven by the hub, a planetary gearbox 

followed by a 2-stage parallel gearbox, and the high-speed shaft driving a three-phase 

induction generator. 

 

 

Ar f o n s

WT 6

WT 8

 
1.a location of the wind farm 1.b location of Arfons-Sor wind turbines 

Figure 1. Arfons-Sor wind farm [3] 

 

 

 
 

Main bearing
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Parallel gearbox - stage 1

Planetary gearbox

Parallel gearbox - stage 2

Hub &  Blades

 
 

2.a Alstom Ecotecnia 

Eco 80 2.0 

2.b main components of the drive train 

Figure 2. Arfons-Sor wind turbines [3] 
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 3 

 

In the context of the European project KAStrion presented in [1], two of these wind 

turbines (WT6 and WT8 in Fig. 1.b) were instrumented at the end of 2014 with an 

acquisition system and several mechanical and electrical sensors. Six accelerometers 

were mounted on different bearings of the drive train. A phase marker sensor was 

installed on the high-speed shaft for order-domain analysis and eventual angular 

resampling. Concerning electrical quantities, three current sensors and three voltage 

sensors were mounted on the stator of the electrical generator. 

This set of sensors gives access to different physical quantities which were regularly 

acquired (at least once a day) for monitoring purpose during the beginning of 2015 with 

the following acquisition parameters: 

• sampling frequency = 25kHz, 

• length of vibration signals = 40s, 

• length of electrical signals = 10s. 

In what follows, only one part of this large database is used to compare electrical and 

vibration analysis methods for mechanical faults monitoring: 

• one vibration signal measured at the input bearing of the planetary gearbox, 

• the three phase currents and line voltages of the stator of the electrical generator, 

• the phase marker signal. 

 

3.  Fault signature 

 
On the 30

th
 of December 2015, a total breakdown of wind turbine WT8 occurred. After 

inspection, a major mechanical fault located in the main bearing was diagnosed. More 

precisely, it was evident that an inner race fault continuously developed during a long 

period of time to finally end in the bearing partial destruction and locking. 

In order to compare the detection capabilities of approaches based on electrical or 

vibration signals applied to this kind of fault, the signature of this fault in vibrations and 

electrical quantities must first be described. 

 

3.1 Fault signature in vibration data 

 

Inner race bearing faults generate mechanical impacts with a frequency [2]: 

f
BPFI

=
N

2
f
R
1+
d
B

d
P

cosβ








 , (1) 

where N is the number of rolling elements, f
R
< f

BPFI
 is the shaft rotating frequency, 

d
B
 and d

P
 the ball and pitch diameters, and β  the contact angle. 

In a 1
st
 approximation [10], these impacts can be assumed purely periodic with a 

fundamental frequency f
BPFI

, and amplitude modulated at the shaft rotating frequency 

f
R
 by the load effect. This is not the case in more refined models [11,12] where the 

contact angle depends on the ball position, leading to mechanical impacts containing 

also a random part. In both cases however, their low-frequency content is mainly 

constituted by frequency peaks with frequencies harmonically related to f
BPFI

 

surrounded by sidebands spaced by f
R
. These impacts generate mechanical waves 
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travelling through structures to the sensor where the vibration signal is finally measured. 

Even by taking into account the time variation of the transfer function between the 

impact location and the sensor, the low-frequency content of the vibration signal due to 

this particular fault can be approximated by a series of peaks of frequencies 

k × f
BPFI

± l × f
R
 where k and l are integers and f

BPFI
> f

R
. These set of peaks finally 

constitutes one part of the vibratory signature of inner race bearing faults. Table 1 gives 

the values of these characteristic frequencies for the main bearing of the monitored wind 

turbine. They are expressed in orders of the high-speed shaft rotating frequency. 

 

f
BPFI

 0.31605 ball pass frequency of inner race 

f
R
 0.00995 low-speed shaft rotating frequency 

Table 1. Characteristic frequencies of the faulty main bearing 

expressed in orders of the high-speed shaft rotating frequency [3] 

 

3.2 Fault signature in electrical data 

 

The mechanical impacts previously described have no effect on electrical quantities 

measured at the output of the wind turbine generator. However, bearing faults also 

generate load torque oscillations on the rotating shaft where the faulty bearing is 

located, which is the low-speed shaft in the present case. These torque variations occur 

at the same rate as the mechanical impacts and have the same characteristics. Therefore, 

they can also be approximated in the low-frequency range as a series of peaks with 

frequencies k × f
BPFI

± l × f
R
 (k and l integers). If these torque oscillations reach the 

high-speed shaft by travelling through the drive train, they will affect the electrical 

generator and consequently its electrical quantities. In [4,5], such torque oscillations 

have been shown to cause amplitude and/or phase modulations in electrical quantities 

and more particularly in stator currents of induction machines. One part of the electrical 

signature of an inner race bearing fault is therefore the presence of amplitude and/or 

phase modulations of frequencies k × f
BPFI

± l × f
R
 (k and l integers) in the stator 

currents of the output generator of the monitored wind turbine. 

 

4.  Data selection process 

 
As mentioned in section 2, electrical and vibration data were regularly (at least daily) 

acquired on the monitored wind turbine from January to May 2015, enabling the 

constitution of a large database. The first task to do is then to select a correct data subset 

from the whole database enabling to simply and correctly monitor the wind turbine. 

In order to simplify as much as possible the analysis methods used to monitor the 

bearing fault, the first criterion is to select signals which are as stationary as possible. 

This requirement is more or less equivalent to select the signals acquired with a shaft 

rotating frequency as constant as possible. Therefore, the variations of the shaft rotating 

frequency during each acquisition constitutes a first interesting feature to select the data. 

In order to easily compare the results obtained for different signals, the data should be 

acquired when the monitored wind turbine runs around the same operating point. This 

requirement is more or less equivalent to select the data acquired for similar shaft 
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rotating frequency and electrical power generated. Therefore, mean values of the shaft 

rotating frequency and of the electrical power computed over the acquisition time 

constitute other interesting features to select the data. 

From this and noting that vibration and electrical data were not acquired at the same 

time, the two following data selection strategies have been developed. 

 

4.1 Vibration data selection 

 

From the previous discussion, the useful features to select vibration data are the mean 

value of the shaft rotating frequency (representing the wind turbine operating point) and 

its maximum variation (representing the stationarity of signals) computed over the 

acquisition time. Therefore, for each acquired vibration signal, the following quantities 

are determined: 

• The time evolution of the high-speed shaft rotating frequency is estimated 

thanks to the phase marker signal. This sensor gives one phase reference per 

round of the high-speed shaft, such that one estimation f
H
n   of its rotating 

frequency is realized for each round n. 

• The mean value f
H
 of f

H
n   is then estimated over the whole acquisition time. 

• In order to measure the variations of f
H
n  , several quantities can be estimated. 

The relative standard deviation σ
H
 (usual standard deviation of f

H
n   

normalized by f
H
)  and the relative maximum deviation ∆

H
 (maximum 

deviation of f
H
n   normalized by f

H
) are the two chosen features. These two 

quantities are slightly different, σ
H
 representing the small fluctuations of 

f
H
n  , while ∆H  being more sensitive to linear or polynomial trends. 

These three features are computed over a preselected set of 92 vibration signals 

verifying f
H
 > 26.5Hz and σ

H
 < 4%, and the obtained distributions are given in 

Fig. 3.a.  

  
3.a distribution of shaft rotating frequency 

features (top f
H
, middle σ

H
, down ∆

H
) 

3.b time distribution of selected data 

Figure 3. Vibration data selection 
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The values of f
H
 are clearly concentrated close to 30Hz, which is the nominal value of 

the electrical generator rotating frequency. The distributions of σ
H
 and ∆

H
 show that 

the major part of their values stay close to 0, whatever the acquired signal. Finally, data 

verifying f
H
 > 29.5Hz (the wind turbine works close to its nominal operating point) 

and σ
H
 < 1% and ∆

H
 < 5% (the rotating frequency is almost constant and the signals 

almost stationary) are selected in the final dataset. The corresponding thresholds appear 

as red lines in Fig. 3.a, and finally lead to a set of 42 selected vibration signals. The 

distribution of these selected signals over time given in Fig. 3.b shows that the obtained 

vibratory database correctly covers the period of time during which the wind turbine is 

monitored (from January to May). 

 

4.2 Electrical data selection 

 

The electrical data selection strategy is exactly the same as for vibration data, but an 

additional criterion is used on the electrical quantities generated by the wind turbine 

generator to further specify its operating point. The idea is to keep electrical data 

sufficiently close to their maximal and nominal value. This can be done for example by 

computing the RMS value of each acquired electrical data, and discarding those for 

which this value is too small compared to its maximum. The electric data are finally 

selected if they also verify the previous criteria concerning the shaft rotating frequency. 

 
4.a data selection criteria 

 
4.b time distribution of selected data 

Figure 4. Electrical data selection 

 
This selection strategy is applied to the whole electrical database consisting of 790 

records, and leads to a set of only 25 electrical data. Fig. 4.a compares the whole 

electrical dataset (in blue) and the selected one (in red). In this figure, each data is 

represented as a point in a plane with f
H
 on the abscissa and the electric power 

(roughly estimated as the product of current and voltage RMS values) on the ordinate. 

Such a curve is quite similar to the power curve usually used to characterize the 

operating points of wind turbines. This figure clearly shows that every selected data was 

acquired when the wind turbine ran around the same operating point obtained for the 

nominal shaft rotating frequency and the nominal electrical power. Moreover, their time 

distribution represented in Fig. 4.b shows that the selected electrical database correctly 

covers the desired period of time going from January to May. 
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5.  Vibration data results 
 

According to section 3.1, one part of the vibratory signature of an inner race bearing 

fault is constituted by a set of spectral peaks with frequencies k × f
BPFI

± l × f
R
 (k and l 

integers), where f
BPFI

 is given by Eq. (1) and f
R
< f

BPFI
 is the low-speed shaft rotating 

frequency. The values of these frequencies expressed in orders of the high-speed shaft 

rotating frequency f
H
 are given in Table 1.  

The presence and the temporal evolution of this signature can be easily studied by 

computing the power spectral density of the selected vibration signals in the frequency 

band of interest. The chosen estimator is a simple averaged modified periodogram or 

Welch’s periodogram [6], with a Blackman window of length 2.6s (corresponding to a 

spectral resolution of 0.02 orders of f
H
), an overlap of 75% and a zero-padding factor 

of 4. The obtained results are given in Fig. 6 where the PSDs obtained at the beginning 

of the period of interest (January) appear in blue and the ones obtained at the end (May) 

appear in red. 

 
Figure 5. Power spectral densities of vibration signals - frequency in orders of f

H
 

(blue = January, red = May) 

 

The top figure shows a frequency band were the first 3 harmonics of f
BPFI

 labelled by 

black arrows are visible, contrarily to their sidebands hidden by a strong wide band 

noise and the limited spectral resolution. Clearly, the fault signature is already present in 

the first PSDs, but not with a significant level. Its amplitude is much more important in 

the last PSDs, highlighting a large increase in the fault signature between January and 

May. The down figure focuses on the 1
st
 harmonic of f

BPFI
, which is further used to 

compute a simple fault indicator obtained by summing the estimated PSDs around this 

particular frequency (more precisely between 0.29 to 0.34). 
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Fig. 6 shows the temporal evolution of this indicator during the whole period of interest 

according to the measurement number (Fig. 6.a) and the measurement date (Fig. 6.b). A 

large increase of this quantity between the end of March and the end of April is clearly 

visible in these figures. Therefore, this simple vibration fault indicator shows that the 

condition of the main bearing inner race strongly deteriorates during the period of 

interest, and particularly during the month of April. 

 
6.a evolution vs. measurement number 

 
6.b evolution vs. measurement date 

Figure 6. Fault indicator obtained through vibration data 

 

6.  Electrical data results 
 

According to section 3.2, one part of the electrical signature of the inner race bearing 

fault is the presence of amplitude and/or phase modulations of frequencies 

k × f
BPFI

± l × f
R
 (k and l integers) in the stator currents measured at the output generator 

of the monitored wind turbine. A logical approach is then to demodulate the main 

component of these currents, in other words their fundamental component located at 

f
0
= 50Hz, and check the presence of components of frequency k × f

BPFI
± l × f

R
 in the 

demodulated quantities. 

A three-phase method was recently proposed in [7] to realize such a three-phase 

demodulation, jointly with a fault indicator dedicated to mechanical faults in three-

phase electrical rotating machines. The whole structure of this method is summarized in 

Fig. 7, where three main parts clearly appear. 

 

 
Figure 7. Mechanical fault indicator computation for three-phase electrical data 

 

The first step of this algorithm is the application of the instantaneous symmetrical 

component (ISC) transform [8] to the three phase currents. It consists of a simple matrix 

product between the three measured stator currents and the inverse Fortescue matrix. 

This operation returns the three ISCs corresponding to the measured currents. The 

second step consists in applying a Hilbert demodulation technique [9] to the positive 

sequence ISC (noted i+ t( )  in Fig. 7) around the electrical fundamental frequency 
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f
0
= 50Hz. As explained in [7], the output of this second step is the instantaneous 

amplitude and frequency of the electrical fundamental component (noted a+ t( )  and 
f
+
t( )  in Fig. 7). Once the three-phase quantities are demodulated, the third and last step 

is the fault indicator computation based on the integration of a simple power spectral 

density estimator. The two main advantages of using this three-phase approach 

compared to usual single-phase algorithms is that it uses the whole information 

contained in three-phase electrical quantities, and it improves the final signal-to-noise 

ratio in the demodulated quantities. As a direct consequence, the fault indicators 

proposed in Fig. 7 offer better detection capabilities than the ones based on single-phase 

approaches [7]. 

This approach is applied to the three-phase currents belonging to the selected electrical 

dataset described in section 4. Fig. 8 shows the spectral content of the demodulated 

electrical quantities, in other words of the instantaneaous amplitude a+ t( )  (Fig. 8.a - 
top) and frequency f+ t( )  (Fig. 8.a - down) of the fundamental component located at 

50Hz. These power spectral densities have been estimated with the same estimator as 

for vibration data. No clear modulating component increases in the spectrum of a+ t( )  at 
the expected frequency of f

BPFI
 labelled by black arrows. This shows that this quantity 

contains few information on such a bearing fault. On the contrary, this particular 

component increases in the spectrum of f+ t( )  during the period of interest, as 
highlighted by the focus of Fig. 8.b. Consequently, a simple fault indicator can be 

obtained by summing the power spectral density of f+ t( )  around the expected fault 
frequency f

BPFI
 (and as for vibration data, between 0.29 and 0.34). 

  
8.a instantaneous amplitude a

+
t( )  (top) 

and frequency f+ t( )  (down) 
8.b instantaneous frequency f+ t( )  

Figure 8. Power spectral densities of demodulated electrical quantities -  

frequency in orders of f
H
 (blue = January, red = May) 

 

Fig. 9 shows the temporal evolution of this electrical indicator during the whole period 

of interest according to the measurement number (Fig. 9.a) and the measurement date 
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(Fig. 9.b). A slight increase of this quantity between the end of March and the end of 

April is visible in these two sub-figures. When comparing these results with the ones of 

Fig. 6, it is clear that the electrical indicator is less sensitive to the inner race fault than 

the mechanical indicator.  

 

 
9.a evolution vs. measurement number 

 
9.b evolution vs. measurement date 

Figure 9. Fault indicator obtained through electrical data 

 

 

However, An important point to notice is the complexity of the wind turbine drive train, 

composed of a planetary gearbox followed by a 2-stage parallel gearbox. Indeed, the 

accelerometer delivering the vibration signal used to compute the mechanical indicator 

is located close to the main bearing and finally to the fault impacts. On the contrary, in 

order to influence the electrical generator, the load torque oscillations due to the main 

bearing fault must propagate through all the elements of the gearboxe to the high-speed 

shaft. As a consequence, their electrical signature in the stator currents is less important, 

and the fault detection is more difficult. 

 

7.  Conclusions 
 

This paper compares electrical and vibratory condition monitoring methods to detect a 

mechanical fault occurring in the main bearing of an industrial wind turbine. Firstly, a 

data selection process uses the shaft rotating frequency and the electrical power at the 

output of the wind turbine in order to ensure that the processed data are stationary and 

acquired around the same operating point. Secondly, vibration and electrical data are 

processed on the same period of time to obtain two different mechanical fault indicators 

dedicated to inner race bearing faults. Clearly, these two indicators behave similarly and 

increase during the same month, indicating that an inner race fault probably developed 

in the wind turbine main bearing during this particular month. However, the indicator 

obtained through vibrations seems to be more sensitive than the one relying on electrical 

data. As mentioned in section 6, this is due to the fact that the fault is distant from the 

electrical generator located on the other side of the drive train. In such a case, the 

electrical indicator can be used to confirm the presence of a mechanical fault, but hardly 

to detect it with certainty. 
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