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Minimal time for the exact controllability of one-dimensional

first-order linear hyperbolic systems by one-sided boundary

controls

Long Hu∗, Guillaume Olive†.

January 15, 2019

Abstract

In this article we study the minimal time for the exact controllability of one-dimensional
first-order linear hyperbolic systems when all the controls are acting on the same side of the
boundary. We establish an explicit and easy-to-compute formula for this time with respect to
all the coupling parameters of the system. This partially solves an open problem raised in the
celebrated survey [Rus78] and in the article [Hu15]. The proof relies on the introduction of a
canonical UL–decomposition and the compactness-uniqueness method.

Keywords: Hyperbolic systems, Boundary controllability, Minimal control time, UL–decomposition,
Compactness-uniqueness method.

1 Introduction and main result

In this article we are interested in the controllability properties of the following class of one-
dimensional first-order linear hyperbolic systems, which appears for instance in linearized Saint-
Venant equations and many other physical models of balance laws (see e.g. [BC16, Chapter 1]):





∂y

∂t
(t, x) = Λ(x)

∂y

∂x
(t, x) +M(x)y(t, x),

y+(t, 0) = Qy−(t, 0), y−(t, 1) = u(t),

y(0, x) = y0(x),

t ∈ (0,+∞), x ∈ (0, 1). (1)

In (1), y(t, ·) is the state at time t, y0 is the initial data and u(t) is the control at time t. We
denote by n ≥ 2 the total number of equations of the system. The matrix Λ ∈ C0,1([0, 1])n×n is
assumed to be diagonal:

Λ = diag(λ1, . . . , λn), (2)

with p ≥ 1 negative eigenvalues and m ≥ 1 positive eigenvalues (so that p+m = n) such that:

λ1(x) ≤ · · · ≤ λp(x) < 0 < λp+1(x) ≤ · · · ≤ λp+m(x), ∀x ∈ [0, 1], (3)
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and we assume that, in case two eigenvalues agree somewhere, they agree everywhere:

∀i, j ∈ {1, . . . , n} , i 6= j, (∃x ∈ [0, 1], λi(x) = λj(x)) =⇒ (λi(x) = λj(x), ∀x ∈ [0, 1]) . (4)

All along this paper, for a vector (or vector-valued function) y ∈ Rn we use the notation

y =



y+

y−


 ,

where y+ ∈ Rp and y− ∈ Rm. Finally, the matrix M ∈ L∞(0, 1)n×n couples the equations of the
system inside the domain and the constant matrix Q ∈ Rp×m couples the equations of the system on
the boundary x = 0.

Taking formally the inner product in Rn (denoted by ·) of (1) with a smooth function ϕ and
integrating in time and space, we are lead to the following definition of solution (see e.g. [BC16, pp.
250-251]):

Definition 1.1. Let y0 ∈ L2(0, 1)n and u ∈ L2(0,+∞)m. We say that a function y is a (weak)
solution to (1) if y ∈ C0([0,+∞);L2(0, 1)n) and, for every T > 0,

∫ 1

0

y(T, x) · ϕ(T, x) dx −

∫ 1

0

y0(x) · ϕ(0, x) dx

=

∫ T

0

∫ 1

0

y(t, x) ·

(
∂ϕ

∂t
(t, x)− Λ(x)

∂ϕ

∂x
(t, x) +

(
−
∂Λ

∂x
(x) +M(x)∗

)
ϕ(t, x)

)
dxdt

+

∫ T

0

u(t) · Λ−(1)ϕ−(t, 1) dt, (5)

for every ϕ ∈ C1([0, T ]× [0, 1])n such that ϕ+(·, 1) = 0 and ϕ−(·, 0) = R∗ϕ+(·, 0), where R ∈ Rp×m

is defined by
R = −Λ+(0)QΛ−(0)

−1, (6)

and Λ+ = diag(λ1, . . . , λp) and Λ− = diag(λp+1, . . . , λn).

We recall that Λ ∈ C0,1([0, 1])n×n = W 1,∞(0, 1)n×n so that ∂Λ
∂x

exists and belongs to L∞(0, 1)n×n.
We can establish that system (1) is well-posed, that is, for every y0 ∈ L2(0, 1)n and u ∈ L2(0,+∞)m,
there exists a unique solution y ∈ C0([0,+∞);L2(0, 1)n) to (1) and this solution depends continuously
on y0 and u on compact time intervals (see e.g. Section 2 below). The regularity of the solution to
(1) allows us to consider control problems in L2(0, 1)n. We say that the system (1) is:

• exactly controllable in time T if, for every y0, y1 ∈ L2(0, 1)n, there exists u ∈ L2(0,+∞)m such
that the corresponding solution y ∈ C0([0,+∞);L2(0, 1)n) to system (1) satisfies y(T ) = y1.

• null controllable in time T if the previous property holds at least for y1 = 0.

• approximately controllable in time T if, for every ε > 0 and every y0, y1 ∈ L2(0, 1)n, there exists
u ∈ L2(0,+∞)m such that the corresponding solution y ∈ C0([0,+∞);L2(0, 1)n) to system (1)
satisfies

∥∥y(T )− y1
∥∥
L2(0,1)n

≤ ε.

Clearly, exact controllability in time T implies null and approximate controllability in the same
time. For any (Λ,M,Q) that satisfies the above standing assumptions, we denote by Tinf (Λ,M,Q) ∈
[0,+∞] the minimal time for the exact controllability of (1), that is

Tinf (Λ,M,Q) = inf {T > 0, (1) is exactly controllable in time T } . (7)
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The time Tinf (Λ,M,Q) is named “minimal time” according to the current literature, despite it is
not always a minimal element of the set. We keep this naming here, but we use the notation with
the “inf” to avoid eventual confusions. Since exact controllability in time T1 clearly implies exact
controllability in time T2 for every T2 ≥ T1, the time Tinf (Λ,M,Q) ∈ [0,+∞] is also the unique time
that satisfies the following two properties:

• If T > Tinf (Λ,M,Q), then (1) is exactly controllable in time T .

• If T < Tinf (Λ,M,Q), then (1) is not exactly controllable in time T .

The goal of the present article is precisely to explicitly characterize Tinf (Λ,M,Q) in terms of Λ, M and
Q. To the best of our knowledge, finding the minimal time for the controllability of one-dimensional
first-order linear hyperbolic systems is a problem that dates back at least to the celebrated survey
[Rus78]. In this article, the author introduced two times, one for which we have exact controllability
after this time, and another one for which we do not have exact controllability before this other time
(this is also done for the null controllability, with different times). There, the author also observed
that in general these two times do not agree, thus leaving a gap in between where the situation was
not clear. There are not a lot of other works in the literature devoted to a characterization of the
minimal time of control for this class of systems. It seems that the attention was mainly directed
towards the controllability of quasilinear versions of such systems afterwards, see for instance the book
[Li10] and the references therein. More recently in [Hu15], the author also addressed the question of
finding the minimal time of control and he showed that the time of [Rus78] giving the positive result
can actually be reduced if we require stronger assumptions on the boundary coupling parameter Q.
The author also showed that, for some very particular Q within this class, the time he obtained is
in fact the minimal time of control. Extending the condition of [Hu15], a new and smaller time of
control was then introduced in [CN18], but it was again shown to be the minimal time only in some
particular situations. To summarize, most of the works in the literature require conditions on Q to
obtain a better time for the exact (or null) controllability of such systems and, as a result, they are
unable to deal with general Q not meeting their conditions. In addition, none of them are actually
able to show what happens just before their time without considering particular cases of systems (this
is done only for M = 0 in [Hu15, CN18]), thus legitimately questioning the optimality of the times
they introduced in these articles. In this paper, we will finally completely solve this long-standing
problem (regarding the exact controllability property) by developing the original ideas of [Rus78],
combined with some results of [DO18] and [NRL86], and by introducing an accurate factorization of
Q similar to the one of [DJM06].

Before going further and stating the main result of this paper, we need to introduce some notations
and concepts. We start with the characteristics associated with system (1). For every i ∈ {1, . . . , n},
every t ≥ 0 and x ∈ [0, 1] fixed, we introduce the characteristic χi(·; t, x) ∈ C1

([
sini (t, x), souti (t, x)

])

passing through (t, x), that is the solution to the ordinary differential equation:





d

ds
χi(s; t, x) = λi (χi(s; t, x)) , s ∈

[
sini (t, x), souti (t, x)

]
,

χi(t; t, x) = x,

(8)

where sini (t, x), souti (t, x) ∈ R (with sini (t, x) < t < souti (t, x)) are the enter and exit parameters of the
domain [0, 1], that is the unique respective solutions to





χi(s
in
i (t, x); t, x) = 1, χi(s

out
i (t, x); t, x) = 0, if i ∈ {1, . . . , p} ,

χi(s
in
i (t, x); t, x) = 0, χi(s

out
i (t, x); t, x) = 1, if i ∈ {p+ 1, . . . , n} .

(9)
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Their existence and uniqueness are guaranteed by the assumption (3). We then introduce

Ti(Λ) =





souti (0, 1) if i ∈ {1, . . . , p} ,

souti (0, 0) if i ∈ {p+ 1, . . . , n} .

Since the speeds do not depend on time, the exact value of Ti(Λ) can actually be obtained by
integrating over [0, 1] the differential equation satisfied by the inverse function ξ 7−→ χ−1

i (ξ; t, x) (see
e.g. (30) and (31) below):

Ti(Λ) =





−

∫ 1

0

1

λi(ξ)
dξ if i ∈ {1, . . . , p} ,

∫ 1

0

1

λi(ξ)
dξ if i ∈ {p+ 1, . . . , n} .

(10)

For the rest of this article it is important to keep in mind that the assumption (3) implies the following
order relation between the Ti(Λ):





T1(Λ) ≤ . . . ≤ Tp(Λ),

Tp+m(Λ) ≤ . . . ≤ Tp+1(Λ).

(11)

It is known that the combination of the two largest times Tp(Λ)+Tp+1(Λ) yields a time for which
the exact controllability of (1) holds if rankQ = p. This was proved for instance in [Rus78, Theorem
3.2] but with a slightly different boundary condition at x = 1, namely y−(t, 1) = D1y+(t, 1) +Du(t)
with D1 ∈ Rm×p and D ∈ Rm×m invertible (so that m = p), which makes the corresponding
system time-reversible and has clearly equivalent controllability properties. Let us also mention
[Li10, Theorem 3.2] for a constructive method, moreover for quasilinear systems. It is then not
difficult to see that Tp(Λ) + Tp+1(Λ) is the sharpest time for the exact controllability of (1) which is
uniform with respect to all possible choices of M and Q, i.e.

max
M

max
Q

rankQ=p

Tinf (Λ,M,Q) = Tp(Λ) + Tp+1(Λ). (12)

In [Rus78], the author already tried to improve the time (12) by imposing some conditions on Q.
Notably, he showed in [Rus78, Theorem 3.7] (still in the above context) that the exact controllability
holds in time T1, where

T1 = max
i∈{p+1,...,n}

(T̂i, Tp(Λ)), T̂i =





Ti(Λ) + Tji(Λ) if ji exists,

Ti(Λ) if not,

(13)

where ji ∈ {1, . . . , p} is the largest index such that qji,i−p 6= 0, if it exists1. In [Rus78, Theorem 3.6],
he also introduced a time T0 > 0 for which the exact controllability fails for T < T0 but he already
observed that in general these two times T1 and T0 do not agree.

More recently, it has been shown in [Hu15], and then in [CN18], that the time (12) may be sharpen
for another particular class of matrices Q. To be more precise, let us introduce the following condition
for every i ∈ {1, . . . , p}:

the i× i matrix formed from the last i rows and the last i columns of Q is invertible. (14)

1There is a missprint in the definition of ji in [Rus78, Proposition 3.4]: it should be (D∗
0
)i−p

ji
in place of (D∗

0
)i
ji

(which does not always make sense since i ∈ {p+ 1, . . . , n}).
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It was then proved in [Hu15, Theorem 1.1], by developing the constructive approach of [Li10, Theorem
3.2], that for every Q such that (14) holds for i = p, the system (1) with M = 0 (in fact, a quasilinear
version of (1)) is exactly controllable in time T for every T > T2, where

T2 = max {Tm+1(Λ) + Tp(Λ), Tp+1(Λ)} . (15)

We emphasize that the condition (14) for i = p is stronger than just assuming that rankQ = p when
m > p. In [Hu15, Remark 1.3], the author then showed an example of Q that satisfies (14) for i = p

for which the system (1) with M = 0 is not exactly controllable in time T for every T < T2.
On the other hand, using the so-called backstepping method, it was proved in [CN18, Theorem

2] that for every Q such that (14) holds for every i ∈ {1, . . . , p} and every but a possible countable
number of M , the system (1) is exactly controllable in time T3, where

T3 = max
i∈{1,...,p}

(Ti(Λ) + Tm+i(Λ), Tp+1(Λ)). (16)

It is also shown in [CN18, Theorem 3] that the part “but a possible countable number of” in the
previous statement can be removed if we look for exact controllability in times T > T3, but it is done
under obviously too restrictive assumptions (m = 2, p = 1 or p = 2, Λ constant, M analytic in a
neighborhood of x = 0, etc.). Finally, in [CN18, Proposition 1] the authors showed that the system
(1) with M = 0 is not exactly controllable in time T for every T < T3 but, once again, only for Q

satisfying (14) for every i ∈ {1, . . . , p}.
In this article we will obtain the minimal time of control for any fixed Q, without assuming

anything more than rankQ = p. This will generalize the previous results. As already mentioned
before, we use a different approach than in the two last mentioned articles and we go back to the
original ideas of the first paper [Rus78].

To deal with general Q and state our main result we need to introduce the concept of canonical
form for full row rank matrices (a related notion can be found in [DJM06, Definition 2]):

Definition 1.2. We say that a matrix Q0 ∈ R
p×m is in canonical form if there exist distinct column

indices c1(Q
0), . . . , cp(Q

0) ∈ {1, . . . ,m} such that:

∀i ∈ {1, . . . , p} ,





q0i,ci(Q0) 6= 0,

q0i,j = 0, ∀j > ci(Q
0), j 6∈

{
ci+1(Q

0), . . . , cp(Q
0)
}
,

q0i,j = 0, ∀j < ci(Q
0).

(17)

Example 1.3. Consider the following matrices

Q0
1 =




0 1 4 −1

0 0 2 3

0 0 0 1




, Q0
2 =




0 0 4

1 2 0

0 1 0




, Q0
3 =




1 4 −1 0

0 2 3 0

0 0 1 1




.

The matrices Q0
1 and Q0

2 are both in canonical form, with c3(Q
0
1) = 4, c2(Q

0
1) = 3, c1(Q

0
1) = 2 and

c3(Q
0
2) = 2, c2(Q

0
2) = 1, c1(Q

0
2) = 3. However, Q0

3 is not in canonical form because there is no c3(Q
0
3)

that simultaneously satisfies the second and third conditions of (17).

Remark 1.4. If Q0 ∈ Rp×m is in canonical form, then necessarily:

(i) The indices c1(Q
0), . . . , cp(Q

0) are unique.
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(ii) q0i,j = 0 for every i ∈ {1, . . . , p} and j 6∈
{
c1(Q

0), . . . , cp(Q
0)
}
.

(iii) rankQ0 = p.

(iv) We have
q0k,ci(Q0) = 0, ∀k > i, ∀i ∈ {1, . . . , p} . (18)

The first point is clear since ci(Q
0) is the column index of the unique non-zero entry of the i-th row

of Q0 that is not in the columns with indices ci+1(Q
0), . . . , cp(Q

0). The second point immediately
follows from the two last conditions in (17). The third point is also clear by considering a linear
combination of the only p non-zero columns of Q0 and looking first at its last row, then at its last
but one row, etc. For the last point, first note that for i = p, (18) is clear since there is no condition
(k ∈ {1, . . . , p}). For i = p − 1, we have to check that q0p,cp−1(Q0) = 0. Since cp−1(Q

0) 6= cp(Q
0) we

have two possibilities, either cp−1(Q
0) < cp(Q

0) so that the equality follows from the last condition
in (17), either cp−1(Q

0) > cp(Q
0) so that the equality follows from the second condition in (17).

Repeating the reasoning for i = p− 2, p− 3, etc. eventually leads to (18).

Next, we present a result that comes from the Gaussian elimination and that we will call in this
article “canonical UL–decomposition” (U for upper and L for lower, see also Remark 1.12 below for
this naming):

Proposition 1.5. Let Q ∈ Rp×m with rankQ = p. Then, there exists a unique Q0 ∈ Rp×m such
that the following two properties hold:

(i) There exists L ∈ R
m×m such that QL = Q0 with L lower triangular (ℓij = 0 if i < j) and with

only ones on its diagonal (ℓii = 1 for every i).

(ii) Q0 is in canonical form.

We call Q0 the canonical form of Q.

We mention that, because of possible zero columns of Q, the matrix L is in general not unique.
The proof of Proposition 1.5 is given in Appendix A. With this proposition, we can extend the
definition of the ci indices in Definition 1.2 to any full row rank matrix:

Definition 1.6. Let Q ∈ Rp×m with rankQ = p. We define c1(Q), . . . , cp(Q) ∈ {1, . . . ,m} by

ci(Q) = ci(Q
0),

where Q0 is the canonical form of Q provided by Proposition 1.5.

Example 1.7. We illustrate how the find the decomposition of Proposition 1.5 in practice. Consider

Q1 =




4 6 3 −1

8 −1 5 3

2 −1 1 1




, Q2 =




4 −4 4

5 2 0

2 1 0




.

Let us deal with Q1 first. We look at the last row, we take the last nonzero entry as pivot. We remove
the entries to the left on the same row by doing the column substitutions C3 ← C3−C4, C2 ← C2+C4
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and C1 ← C1 − 2C4 so that

Q1L1 = Q1




1 0 0 0

0 1 0 0

0 0 1 0

−2 1 −1 1




=




6 5 4 −1

2 2 2 3

0 0 0 1




.

We now move up one row and take as new pivot the last nonzero entry that is not in C4. We
remove the entries to the left on the same row by doing the column substitutions C2 ← C2 − C3 and
C1 ← C1 − C3 so that

Q1L1L2 = Q1L1




1 0 0 0

0 1 0 0

−1 −1 1 0

0 0 0 1




=




2 1 4 −1

0 0 2 3

0 0 0 1




.

Finally, a last substitution shows that Q1 becomes Q0
1 of Example 1.3, namely:

Q1L = Q1L1L2




1 0 0 0

−2 1 0 0

0 0 1 0

0 0 0 1




=




0 1 4 −1

0 0 2 3

0 0 0 1




= Q0
1.

Similarly, it can be checked the canonical form of Q2 is in fact Q0
2 of Example 1.3.

Remark 1.8. Where we want to put entries to zero in Example 1.7 in fact depends on the way the
times are ordered (11). This will be more clear during the proof of Theorem 3.1 below. We mention
this point to highlight the fact that the definition of the canonical form is linked to this ordering and
a change in (11) may then require another kind of factorization of Q.

After such a long but necessary preparation we can now clearly state the main result of this paper:

Theorem 1.9. Let Λ ∈ C0,1([0, 1])n×n satisfy (2), (3) and (4), M ∈ L∞(0, 1)n×n and Q ∈ Rp×m be
fixed. We have:

(i) Tinf (Λ,M,Q) < +∞ if, and only if, rankQ = p.

(ii) If rankQ = p, then

Tinf (Λ,M,Q) = max
i∈{1,...,p}

(Tp+1(Λ), Ti(Λ) + Tp+ci(Q)(Λ)), (19)

where c1(Q), . . . , cp(Q) ∈ {1, . . . ,m} are defined in Definition 1.6.
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To the best of our knowledge, this is the first result that completely characterizes the minimal
time for the exact controllability of (1). Not only this, but this result also shows that the time
(19) is explicit in terms of Λ (recall (10)) and in terms of Q as well, since the computation of the
indices ci(Q) rely on the Gaussian elimination, which is a very efficient algorithm that shows that
the minimal time (19) is actually easy to compute in practice.

Example 1.10. A comparison with the other times of the literature (13), (15) and (16) can be made.
For Q1 ∈ R3×4 of Example 1.7 we have

Tinf (Λ,M,Q1) = T3 = max (T4(Λ), T1(Λ) + T5(Λ), T2(Λ) + T6(Λ), T3(Λ) + T7(Λ)) ,

whereas T1 = T4(Λ) + T3(Λ) and T2 = max (T4(Λ), T3(Λ) + T5(Λ)). On the contrary, the case of
Q2 ∈ R3×3 of Example 1.7 is not covered by the results [CN18], and for this parameter we have

Tinf (Λ,M,Q2) = max (T4(Λ), T1(Λ) + T6(Λ), T2(Λ) + T4(Λ), T3(Λ) + T5(Λ))

= max (T2(Λ) + T4(Λ), T3(Λ) + T5(Λ)) ,

whereas T1 = T2 = T4(Λ) + T3(Λ).

Remark 1.11. Observe that the expression (19) of Tinf (Λ,M,Q) does not depend on M . This
means that the internal coupling terms M(x)y(t, x) in (1) have almost no impact on the controllability
properties of this system. All our attention should then be on the coupling on the boundary Q. Let
us however mention that whether the infimum in the definition (7) of Tinf (Λ,M,Q) is or is not a
minimum depends on the values of M . In fact, by using the techniques we will develop below, it can
be shown that the minimum is reached if, and only if, (1) is approximately controllable in time (19),
and it is known that this latter property depends on M , as for instance illustrated in [Rus78, pp.
659-661] (see also item 2. of [CN18, Theorem 1]). A complete characterization of the parameters M

and Q for which the infimum is equal to the minimum seems an open problem (some partial results
can be found in [CN18]).

Remark 1.12. We have seen that Tp(Λ) + Tp+1(Λ) is the worst possible time of control. On the
other hand, it can be checked that

min
(c1,...,cp)∈{1,...,m}

cj 6=ck, j 6=k

(
max

i∈{1,...,p}
(Tp+1(Λ), Ti(Λ) + Tp+ci(Λ))

)
= T3,

where we recall that T3 is defined in (16), and the minimum is reached for ci satisfying

ci = m− p+ i, ∀i ∈ {1, . . . , p} . (20)

The condition (20) means that the canonical form Q0 of Q is an upper triangular matrix, see e.g.
Q0

1 of Example 1.3. Thus in this case Q has a “standard” UL–decomposition. Moreover, it can be
shown with the Gaussian elimination that a full row-rank matrix Q admits such a decomposition if,
and only if, Q satisfies (14) for every i ∈ {1, . . . , p} (see e.g. [Gan59, Theorem II.1]). As a result,
we see that we recover the time and the assumption given in [CN18, Theorem 2]. Note as well that
our observation justifies the name of “optimal time” given in this article (before it, there were no real
justification to such a naming).

The rest of the paper is organized as follows. In the next section we simply recast the system
(1) into its abstract form and prove basic properties. In Section 3, we make use of the notion of
canonical UL–decomposition to establish necessary and sufficient conditions for the system (1) to
be exact controllable in a given time when there are no internal coupling terms, i.e. when M = 0.
In Section 4 we use compactness-uniqueness arguments to show that the minimal time of control
remains the same when we add a bounded perturbation M .
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2 Abstract setting

It is well-known that the system (1) can equivalently be rewritten as an abstract evolution system:





d

dt
y(t) = AMy(t) +Bu(t), t ∈ (0,+∞),

y(0) = y0,

(21)

also to be referred to as (AM , B) in the sequel, where we can identify the operators AM and B

through their adjoints by formally taking the inner product of (21) with a smooth function ϕ and
then comparing with (5). The state and control spaces are

H = L2(0, 1)n, U = R
m.

They are equipped with their usual inner products and identified with their dual. The unbounded
linear operator AM : D(AM ) ⊂ H −→ H is defined, for every y ∈ D(AM ) by

AMy(x) = Λ(x)
∂y

∂x
(x) +M(x)y(x), x ∈ (0, 1),

with domain
D(AM ) =

{
y ∈ H1(0, 1)n, y+(0) = Qy−(0), y−(1) = 0

}
.

It is clear that D(AM ) is dense in H since it contains C∞
c (0, 1)n. A computation shows that

D(A∗
M ) =

{
z ∈ H1(0, 1)n, z+(1) = 0, z−(0) = R∗z+(0)

}
,

where we recall that R ∈ Rp×m is defined in (6), and we have, for every z ∈ D(A∗
M ),

A∗
Mz(x) = −Λ(x)

∂z

∂x
(x) +

(
−
∂Λ

∂x
(x) +M(x)∗

)
z(x), x ∈ (0, 1). (22)

Note that in fact D(A∗
M ) does not depend on M . On the other hand, the control operator B ∈

L(U,D(A∗
M )′) is given for every u ∈ U and z ∈ D(A∗

M ) by

〈Bu, z〉D(A∗

M
)′,D(A∗

M
) = u · Λ−(1)z−(1). (23)

Note that B is well-defined since Bu is continuous on H1(0, L)n (by the trace theorem H1(0, 1)n →֒
C0([0, 1])n) and since ‖·‖D(A∗

M
) and ‖·‖H1(0,1)n are equivalent norms on D(A∗

M ). Finally, the adjoint

B∗ ∈ L(D(A∗
M ), U) is given for every z ∈ D(A∗

M ) by

B∗z = Λ−(1)z−(1).

Using the method of characteristics, it is not difficult to show that the operator AM generates a
C0-semigroup when M is diagonal and we even have an explicit formula for it. Since we will mainly
perform computations on the adjoint semigroup in the sequel, it is then when M = ∂Λ

∂x
that the

adjoint semigroup will have the simplest expression (see (22)).

Proposition 2.1. For every i ∈ {1, . . . , p} and j ∈ {1, . . . ,m}, let φi, φp+j ∈ C1,1([0, 1]) be the
non-negative and increasing functions defined for every x ∈ [0, 1] by

φi(x) = −

∫ x

0

1

λi(ξ)
dξ, φp+j(x) =

∫ x

0

1

λp+j(ξ)
dξ, (24)
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(note that φi(1) = Ti(Λ) and φp+j(1) = Tp+j(Λ), see (10)). Then, the operator A∗
∂Λ
∂x

generates a

C0-semigroup on H given, for every t ≥ 0 and z0 ∈ H, by

(
SA ∂Λ

∂x

(t)∗z0
)

i
(x) =





z0i
(
φ−1
i (t+ φi(x))

)
, if t+ φi(x) < φi(1),

0, if t+ φi(x) > φi(1),

(25)

for every i ∈ {1, . . . , p} and a.e. x ∈ (0, 1), and by

(
SA ∂Λ

∂x

(t)∗z0
)

p+j
(x)

=





z0p+j

(
φ−1
p+j (φp+j(x) − t)

)
, if t− φp+j(x) < 0,

p∑

i=1

ri,p+jz
0
i

(
φ−1
i (t− φp+j(x))

)
, if 0 < t− φp+j(x) < φ1(1),

...
...

p∑

i=k+1

ri,p+jz
0
i

(
φ−1
i (t− φp+j(x))

)
, if φk(1) < t− φp+j(x) < φk+1(1),

...
...

0 if φp(1) < t− φp+j(x),

(26)

for every j ∈ {1, . . . ,m} and a.e. x ∈ (0, 1).

Proof. We only show how to find the formula (25) and (26). It can be checked afterwards that these
formula define a C0-semigroup and that A∗

∂Λ
∂x

is indeed the corresponding generator (by using the

very definition of what is a C0-semigroup). We recall that z̃(t) = SA∂Λ
∂x

(t)∗z0 is the unique solution

to the following abstract O.D.E. when z0 ∈ D(A∗
∂Λ
∂x

) (see e.g. [EN00, Lemma II.1.3]):





d

dt
z̃(t) = A∗

∂Λ
∂x

z̃(t), t ∈ [0,+∞),

z̃(0) = z0.

Therefore, we expect z̃ to solve




∂z̃

∂t
(t, x) = −Λ(x)

∂z̃

∂x
(t, x),

z̃+(t, 1) = 0, z̃−(t, 0) = R∗z̃+(t, 0),

z̃(0, x) = z0(x),

t ∈ [0,+∞), x ∈ (0, 1). (27)

Let us first find z̃i for i ∈ {1, . . . , p}. Since z̃i solves




∂z̃i

∂t
(t, x) + λi(x)

∂z̃i

∂x
(t, x) = 0,

z̃i(t, 1) = 0,

z̃i(0, x) = z0i (x),

t ∈ [0,+∞), x ∈ (0, 1),
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along the characteristic χi we have

d

ds
z̃i (s, χi(s; t, x)) = 0, ∀s ∈ [sini (t, x), souti (t, x)], s ∈ [0,+∞).

It follows that

z̃i(t, x) =





z0i (χi(0; t, x)) , if sini (t, x) < 0,

0, if sini (t, x) > 0.

(28)

On the other hand, for j ∈ {1, . . . ,m}, similar computations lead to

z̃p+j(t, x) =





z0p+j (χp+j(0; t, x)) , sinp+j(t, x) < 0,
p∑

i=1

ri,p+j z̃i
(
sinp+j(t, x), 0

)
, sinp+j(t, x) > 0.

(29)

Now, since λi does not depend on time, we have a more explicit formula for χi(0; t, x) and sini (t, x).
Indeed, the inverse function ξ 7→ χ−1

i (ξ; t, x) solves





∂χ−1
i

∂ξ
(ξ; t, x) =

1
∂χi

∂s

(
χ−1
i (ξ; t, x); t, x

) =
1

λi(ξ)
, ξ ∈ [0, 1],

χ−1
i (x; t, x) = t.

(30)

Therefore, χ−1
i (y; t, x) = t+

∫ y

x
1

λi(ξ)
dξ. Using the functions (24), we have

χ−1
i (y; t, x) =





t+ φi(x)− φi(y), if i ∈ {1, . . . , p} ,

t− φi(x) + φi(y), if i ∈ {p+ 1, . . . , n} .

(31)

Recalling the definition (9) of sini (t, x), we then have

sini (t, x) =





t+ φi(x) − φi(1), if i ∈ {1, . . . , p} ,

t− φi(x), if i ∈ {p+ 1, . . . , n} ,

(32)

and

χi(0; t, x) =





φ−1
i (t+ φi(x)) , if i ∈ {1, . . . , p} and sini (t, x) < 0,

φ−1
i (φi(x) − t) , if i ∈ {p+ 1, . . . , n} and sini (t, x) < 0.

(33)

Plugging these formula in (28) and (29), and taking into account that φi(1) ≤ φi+1(1) for every
i ∈ {1, . . . , p− 1} by (11), we obtain (25) and (26).

Remark 2.2. Observe that the right-hand sides in (25) and (26), considered as functions of t and x,
make sense for z0 ∈ L2(0, 1)n only (i.e. the compositions are well-defined), either for every t ≥ 0 and
a.e. x ∈ [0, 1], or for every x ∈ [0, 1] and a.e. t ≥ 0. For instance for (25) this follows from the fact that
the maps x ∈ (0, φ−1

i (φi(1) − t)) 7→ φ−1
i (t+ φi(x)) and t ∈ (0, φi(1) − φi(x)) 7→ φ−1

i (t+ φi(x)) are
C1-diffeomorphisms (for every t ∈ [0, φi(1)) and x ∈ [0, 1), respectively). For the rest of this article,
we then abuse the notation SA∂Λ

∂x

(t)∗z0(x) to denote either of these functions when z0 ∈ L2(0, 1)n.
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Let us now turn out to the properties of the control operator B. First of all, it can be checked

directly from the formula (26) that, when z0 ∈ D(A∗
∂Λ
∂x

), the function x 7→
(
SA∂Λ

∂x

(t)∗z0
)

−
(x) belongs

to H1(0, 1)m and has a trace at x = 1 equal to
(
SA ∂Λ

∂x

(t)∗z0
)

−
(1) since the right-hand side of (26)

is a continuous function of x on [0, 1] for such z0. A simple change of variable then easily shows that,
for any 0 < T < φn(1), there exists C > 0 such that

∫ T

0

∥∥∥B∗SA ∂Λ
∂x

(t)∗z0
∥∥∥
2

U
dt ≤ C

∥∥z0
∥∥2
H
, ∀z0 ∈ D(A∗

∂Λ
∂x

). (34)

This property shows that B is a so-called admissible control operator for A ∂Λ
∂x

(see e.g. [TW09,

Theorem 4.4.3]).
Since the operator AM is nothing but a bounded perturbation of A ∂Λ

∂x
, it follows that AM also

generates a C0-semigroup on H (see e.g. [EN00, Theorem III.1.3]) and that B is also admissible for
AM (see e.g. [DO18, p. 401]). It also follows that the abstract system (21) is well-posed in the sense
that: for every y0 ∈ H and every u ∈ L2(0,+∞;U), there exists a unique solution y ∈ C0([0,+∞);H)
to (21) given by the Duhamel formula (see e.g. [TW09, Proposition 4.2.5]):

y(T ) = SAM
(T )y0 +ΦM (T )u, ∀T ≥ 0, (35)

where ΦM (T ) is the so-called input map of (AM , B), that is the linear operator defined for every
u ∈ L2(0,+∞;U) by

ΦM (T )u =

∫ T

0

SAM
(T − s)Bu(s) ds.

We recall that a priori ImΦM (T ) ⊂ D(A∗
M )′ but the admissibility of B in fact means that ImΦM (T ) ⊂

H for some (and hence all) T > 0 (see e.g. [TW09, Definition 4.2.1]). From this assumption it follows
that the function T ∈ [0,+∞) 7→ ΦM (T )u ∈ H is continuous for every u ∈ L2(0,+∞;U) (see e.g.
[TW09, Proposition 4.2.4]), so that the function y defined by (35) indeed belongs to C0([0,+∞);H).
From the admissibility of B it also follows that ΦM (T ) ∈ L(L2(0,+∞;U), H) (see e.g. [TW09,
Proposition 4.2.2]). The adjoint ΦM (T )∗ ∈ L(H,L2(0,+∞;U)) is nothing but the unique continuous
linear extension to H of the map that takes z1 ∈ D(A∗

M ) and associates to it the following function
of L2(0,+∞;U) (see e.g. [TW09, Proposition 4.4.1]):

t ∈ (0,+∞) 7−→





B∗SAM
(T − t)∗z1, if t ∈ (0, T ),

0, if t > T.

Finally, it can be checked that the function y defined by (35) satisfies (5) and is thus the (weak)
solution to (1) in the sense of Definition 1.1 (see e.g. [Cor07, pp. 63-65]).

Let us now recall that all the notions of controllability can be reformulated in terms of ImΦM (T ).
Indeed, it is not difficult to see that (AM , B) is exactly (resp. approximately) controllable in time T

if, and only if, ImΦM (T ) = H (resp. ImΦM (T ) = H). It is also well-known that the controllability
has a dual concept named observability. More precisely (see e.g. [TW09, Theorem 11.2.1]), (AM , B)
is exactly controllable in time T if, and only if, there exists C > 0 such that

∥∥z1
∥∥2
H
≤ C

∫ T

0

∥∥ΦM (T )∗z1(t)
∥∥2
U

dt, ∀z1 ∈ H, (36)

and (AM , B) is approximately controllable in time T if, and only if,

(
ΦM (T )∗z1(t) = 0, a.e. t ∈ (0, T )

)
=⇒ z1 = 0, ∀z1 ∈ H. (37)
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Finally, for M = ∂Λ
∂x

, the adjoint of the input map Φ ∂Λ
∂x

(T )∗ is explicit. Indeed, we see from

the formula (26) that the operator z1 ∈ L2(0, 1)n 7−→ Λ−(1)
(
SA ∂Λ

∂x

(T − ·)∗z1
)

−
(1) (extended by

zero outside (0, T )) belongs to L(H,L2(0,+∞;U)). Since we have already seen that it agrees with
B∗SA∂Λ

∂x

(T − ·)∗z1 for z1 ∈ D(A∗
∂Λ
∂x

), by uniqueness of the continuous extension, this shows that the

adjoint of the input map is given, for every z1 ∈ H , by

Φ ∂Λ
∂x

(T )∗z1(t) = Λ−(1)
(
SA ∂Λ

∂x

(T − t)∗z1
)
−
(1), a.e. t ∈ (0, T ).

3 Controllability of the unperturbed system

The goal of this section is to characterize the minimal time for the exact controllability of the unper-
turbed system (A0, B), i.e. of the system





∂y

∂t
(t, x) = Λ(x)

∂y

∂x
(t, x),

y+(t, 0) = Qy−(t, 0), y−(t, 1) = u(t),

y(0, x) = y0(x),

t ∈ (0,+∞), x ∈ (0, 1). (38)

It is indeed natural to first investigate what happens when M = 0 and constitutes a first step
towards our main result Theorem 1.9. We will then use a perturbation argument in the next section
to deal with internal couplings M 6= 0. For the system (38) we will actually establish an even more
precise result, namely:

Theorem 3.1. Let Λ ∈ C0,1([0, 1])n×n satisfy (2) and (3), and Q ∈ Rp×m be fixed. For every T > 0,
(38) is exactly controllable in time T if, and only if, the following two properties hold:

(i) rankQ = p.

(ii) T ≥ maxi∈{1,...,p}(Tp+1(Λ), Ti(Λ) + Tp+ci(Q)(Λ)).

Remark 3.2. Note that the assumption (4) is not needed in Theorem 3.1. We also point out that
the assumption (3) could be weaken all along this section into the following:

λi(x) < 0 < λp+j(x), ∀x ∈ [0, 1], ∀i ∈ {1, . . . , p} , ∀j ∈ {1, . . . ,m} ,

as long as we assume that the eigenvalues are ordered in such a way that (11) holds, which can always
be done without loss of generality.

As simple as system (38) looks like (the equations are not coupled inside the domain), a necessary
and sufficient condition for the exact controllability for general boundary couplings Q was not known
before, to the best of our knowledge. As already mentioned in the introduction, the sufficiency is
established in [Hu15, Theorem 1.1] for couplings Q satisfying the condition (14) for i = p (which is
stronger than (i)) and for times T > T2, where we recall that T2 is defined by (15) (possibly larger
than in (ii), see e.g. Example 1.10). Moreover, the necessity is only shown for a particular choice
of Q in [Hu15, Remark 1.3]. On the other hand, it is proved in [CN18, Proposition 1], under the
standing assumption that Q satisfies (14) for every i ∈ {1, . . . , p}, that (ii) is a sufficient condition
for the null controllability in time T , and that it also becomes necessary if we add (i). Theorem 3.1
is thus the first result to provide a complete answer to this problem. It also partially solves the open
problem in [Rus78, Remark p. 656] (we say “partially” because this paper was focused on the null
controllability): “This raises the question, unresolved at the moment, concerning the identification
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of a “critical time” Tc such that observability holds if T ≥ Tc and does not hold if T < Tc. Such a
critical time Tc can readily be shown to exist but no satisfactory characterization of it is available at
this writing.” The key point to solve this problem is to carefully investigate the boundary condition
at x = 0, which somehow allows to transfer the actions of the controls to the indirectly controlled
components (i.e. to the components associated with a positive speed in our framework). This is
where the introduction of the canonical UL–decomposition of Q is crucial.

Before giving the proof of Theorem 3.1 we mention that we can add any diagonal matrix to the
system (38) without changing its controllability properties. We use it to simplify the diagonal terms
in the adjoint system, and thus the computations below (in other words, we can use the formula (25)
and (26)).

Lemma 3.3. Let Λ ∈ C0,1([0, 1])n×n satisfy (2) and (3) and Q ∈ R
p×m. For every T > 0, (A ∂Λ

∂x
, B)

is exactly controllable in time T if, and only if, (A0, B) is exactly controllable in time T .

The proof of Lemma 3.3 is a simple change of variable. It is contained in Appendix C.

3.1 Sufficient conditions

In this part we establish the positive result, that is we assume that rankQ = p and that T ≥
maxi∈{1,...,p}(Tp+1(Λ), Ti(Λ) + Tp+ci(Q)(Λ)) and we are going to prove that in this case (A0, B) is
exactly controllable in time T . Thanks to Lemma 3.3, it is equivalent to prove the exact controllability
of (A ∂Λ

∂x
, B). Now, to prove that (A ∂Λ

∂x
, B) is exactly controllable in time T , we will use the duality

and show that there exists C > 0 such that, for every z1 ∈ L2(0, 1)n, we have

∥∥z1
∥∥2
L2(0,1)n

≤ C

∫ T

0

‖z−(t, 1)‖
2
Rm dt, (39)

where z ∈ C0([0, T ];L2(0, 1)n) is the solution to the adjoint system, i.e. z(t) = SA∂Λ
∂x

(T − t)∗z1.

In what follows, C > 0 is a positive constant that may change from line to line but that does not
depend on z1.

1) For j ∈ {1, . . . ,m}, since in particular T ≥ Tp+1(Λ) ≥ Tp+j(Λ), using the method of character-
istics (see e.g. (26) with z0 = z1 and T − t in place of t), we have

∥∥z1p+j

∥∥2
L2(0,1)

≤ C

∫ T

T−Tp+j(Λ)

|zp+j(t, 1)|
2
dt. (40)

These terms are good because it concerns z−(t, 1) (see (39)). Similarly, for i ∈ {1, . . . , p}, since
T ≥ Ti(Λ), we have (see e.g. (25))

∥∥z1i
∥∥2
L2(0,1)

≤ C

∫ T

T−Ti(Λ)

|zi(t, 0)|
2
dt. (41)

These terms are not good because it concerns z+(t, 0). We would like to get ride of it. The
only information that we know about z+(t, 0) is through the boundary condition

z−(t, 0) = R∗z+(t, 0). (42)

Since rankQ = p we also have rankR = p. Therefore, R∗ ∈ Rm×p has at least one left-
inverse and we can express z+(t, 0) in function of z−(t, 0). However, we do not really want to
completely inverse this relation without looking more closely at it as it will eventually lead to
the observability inequality (39) only for times T larger or equal than the time Tp(Λ)+Tp+1(Λ),
which is not the minimal one in general.
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2) This is where we use the decomposition of Proposition 1.5. According to it, there exist a
canonical form Q0 ∈ Rp×m and a lower triangular matrix L ∈ Rm×m such that

QL = Q0.

As a result, (42) implies that (we recall that R = −Λ+(0)QΛ−(0)
−1)

(Q0)∗Λ+(0)z+(t, 0) = −L
∗Λ−(0)z−(t, 0). (43)

We now look carefully at this relation row by row for the row indices ci(Q). Let i ∈ {1, . . . , p}
be fixed. The ci(Q)-th row of (43) is

p∑

k=1

q0k,ci(Q)λk(0)zk(t, 0) = −
m∑

j=1

ℓj,ci(Q)λp+j(0)zp+j(t, 0).

Using some of the structural properties of Q0 and L, namely, q0k,ci(Q) = 0 for k > i (see (18) in

Remark 1.4) and ℓi,j = 0 for i < j, this is equivalent to

∑

k<i

q0k,ci(Q)λk(0)zk(t, 0) + q0i,ci(Q)λi(0)zi(t, 0) = −
∑

j≥ci(Q)

ℓj,ci(Q)λp+j(0)zp+j(t, 0).

Using now the fact that q0i,ci(Q) 6= 0, we obtain

zi(t, 0) =
1

q0
i,ci(Q)λi(0)


−

∑

k<i

q0k,ci(Q)λk(0)zk(t, 0)−
∑

j≥ci(Q)

ℓj,ci(Q)λp+j(0)zp+j(t, 0)


 . (44)

We recall that the goal is to estimate zi(t, 0) on the time interval (T − Ti(Λ), T ) (see (41)).
Therefore, we estimate each term in the brackets in (44) on this interval.

3) To estimate the first term, we first observe, using the method of characteristics and the boundary
condition z+(·, 1) = 0, that we have zk(·, 0) = 0 in (0, T − Tk(Λ)) for every k ∈ {1, . . . , p} (see
(25)), so that ∫ T

T−Ti(Λ)

|zk(t, 0)|
2
dt =

∫ T

T−Tk(Λ)

|zk(t, 0)|
2
dt, ∀k ≤ i.

Therefore, for the first term in the right-hand side of (44), we have

∫ T

T−Ti(Λ)

∣∣∣∣∣
∑

k<i

q0k,ci(Q)λk(0)zk(t, 0)

∣∣∣∣∣

2

dt ≤ C

∫ T

T−Ti(Λ)

∑

k<i

|zk(t, 0)|
2
dt

= C
∑

k<i

∫ T

T−Ti(Λ)

|zk(t, 0)|
2
dt

= C
∑

k<i

∫ T

T−Tk(Λ)

|zk(t, 0)|
2
dt.

The important point is that it is estimated by a similar expression than the one we want to
estimate but that contains only terms for k < i.

The second term to be estimated is the one which fixes the time Ti(Λ) + Tp+ci(Q)(Λ). Indeed,
we first observe that, using the method of characteristics (see (26)) and the fact that T ≥
Ti(Λ) + Tp+ci(Q)(Λ) ≥ Ti(Λ) + Tp+j(Λ) for j ≥ ci(Q), we have

∫ T

T−Ti(Λ)

|zp+j(t, 0)|
2
dt ≤ C

∫ T−Tp+j(Λ)

T−Ti(Λ)−Tp+j(Λ)

|zp+j(t, 1)|
2
dt, ∀j ≥ ci(Q).
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Therefore, for the second term in the right-hand side of (44), we have

∫ T

T−Ti(Λ)

∣∣∣∣∣∣

∑

j≥ci(Q)

ℓj,ci(Q)λp+j(0)zp+j(t, 0)

∣∣∣∣∣∣

2

dt ≤ C

∫ T

T−Ti(Λ)

∑

j≥ci(Q)

|zp+j(t, 0)|
2
dt

= C
∑

j≥ci(Q)

∫ T

T−Ti(Λ)

|zp+j(t, 0)|
2
dt

≤ C
∑

j≥ci(Q)

∫ T−Tp+j(Λ)

T−Ti(Λ)−Tp+j(Λ)

|zp+j(t, 1)|
2
dt

≤ C

∫ T

0

‖z−(t, 1)‖
2
Rm dt.

To summarize, we have obtained the following estimate, valid for every i ∈ {1, . . . , p}:

∫ T

T−Ti(Λ)

|zi(t, 0)|
2
dt ≤ C

∑

k<i

∫ T

T−Tk(Λ)

|zk(t, 0)|
2
dt+ C

∫ T

0

‖z−(t, 1)‖
2
Rm dt.

By induction (starting with i = 1) we easily deduce that, for every i ∈ {1, . . . , p},

∫ T

T−Ti(Λ)

|zi(t, 0)|
2
dt ≤ C

∫ T

0

‖z−(t, 1)‖
2
Rm dt.

Combined with (41) and (40) this establishes (39) and conclude the proof of the positive result.

3.2 Necessary conditions

We now turn out to the proof of the negative result, that is we assume that (A0, B) is exactly
controllable in a time T > 0 and we show that both conditions (i) and (ii) of Theorem 3.1 necessary
hold. Once again, thanks to Lemma 3.3, it is equivalent assume the exact controllability of (A ∂Λ

∂x
, B).

We then argue by contraposition and show that, if one of the conditions (i) or (ii) fails, then (A ∂Λ
∂x

, B)

is not approximately controllable in time T for any T > 0. Now, to prove that (A ∂Λ
∂x

, B) is not

approximately controllable in time T , we will use the duality and show that there exists z1 ∈ L2(0, 1)n

such that
z−(t, 1) = 0, a.e. t ∈ (0, T ), z1 6= 0,

where as usual z ∈ C0([0, T ];L2(0, 1)n) is the solution to the adjoint system, i.e. z(t) = SA∂Λ
∂x

(T −

t)∗z1.

1) First we show that, if rankQ < p, then (A ∂Λ
∂x

, B) is not approximately controllable in time T

for any T > 0. Let then T > 0 be fixed. Since rankR = rankQ, by assumption, there exists
η ∈ Rp such that

R∗η = 0, η 6= 0.

Let us then define z1 ∈ L2(0, 1)n for every x ∈ (0, 1) by

z1i (x) =

{
ηi if x ∈

(
0, φ−1

i (T1(Λ))
)
,

0 otherwise,
∀i ∈ {1, . . . , p} , z1−(x) = 0.

Note that it is well-defined since T1(Λ) = φ1(1) ≤ φi(1) for every i ∈ {1, . . . , p}. Let z ∈
C0([0, T ];L2(0, 1)n) be the solution to the adjoint system corresponding to this data. The
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method of characteristics (see (25)) gives

∀i ∈ {1, . . . , p} , zi(t, 0) =

{
ηi if t ∈ (T − T1(Λ), T ) and t > 0,

0 otherwise,

so that
R∗z+(t, 0) = 0, a.e. t ∈ (0, T ). (45)

It follows that z− = 0 (see (26)). In particular, z−(t, 1) = 0 a.e. t ∈ (0, T ). Since it is clear that
z1 6= 0, this shows that (A ∂Λ

∂x
, B) is not approximately controllable in time T for any T > 0 if

rankQ < p.

2) Let us now assume that rankQ = p but

T < max
i∈{1,...,p}

(Tp+1(Λ), Ti(Λ) + Tp+ci(Q)(Λ)).

Let us show once again that, in this case, the system (A ∂Λ
∂x

, B) is not approximately controllable

in time T . First of all, we can always assume that

T ≥ max (Tp(Λ), Tp+1(Λ)) .

Indeed, let T < max (Tp(Λ), Tp+1(Λ)) be fixed. Assume for instance that Tp(Λ) ≥ Tp+1(Λ). Let
us then define z1 ∈ L2(0, 1)n for every x ∈ (0, 1) by

z1i (x) = 0, ∀i ∈ {1, . . . , p− 1} , z1p(x) =

{
0 if x ∈

(
0, φ−1

p (T )
)
,

1 if x ∈
(
φ−1
p (T ), 1

)
,

z1−(x) = 0.

Note that z1 6= 0 since z1p = 1 in the open set (φ−1
p (T ), 1), which is not empty by assumption.

Let z ∈ C0([0, T ];L2(0, 1)n) be the solution to the adjoint system corresponding to this data.
The method of characteristics (see (25)) gives

z+(t, 0) = 0, a.e. t ∈ (0, T ).

In particular, we have again (45) and we conclude as in the previous step. The case Tp(Λ) ≤
Tp+1(Λ) can be treated similarly.

3) From now on, let i0 ∈ {1, . . . , p} be fixed such that

Ti0(Λ) + Tp+ci0(Q)(Λ) = max
i∈{1,...,p}

(Ti(Λ) + Tp+ci(Q)(Λ)).

Let us now construct the final data z1 ∈ L2(0, 1)n for which the controllability will fail. Let
α+ ∈ R

p be defined by

αi =





0 if i ∈ {1, . . . , i0 − 1} ,

1 if i = i0,

−1

q0
i,ci(Q)λi(0)

i−1∑

k=1

q0k,ci(Q)λk(0)αk if i ∈ {i0 + 1, . . . , p} .

Let then β ∈ Rm be defined by
β = (Q0)∗Λ+(0)α+,

that is, βj =
∑p

k=1 q
0
k,jλk(0)αk for every j ∈ {1, . . . ,m}. Using the second property of Remark

1.4, we see first that
βj = 0, ∀j 6∈ {c1(Q), . . . , cp(Q)} .
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On the other hand, using the property (18) and the definition of α+, we have

βci(Q) =
∑

k<i

q0k,ci(Q)λk(0)αk + q0i,ci(Q)λi(0)αi =





0 if i ∈ {1, . . . , i0 − 1} ,

q0i0,ci0(Q)λi0 (0) if i = i0,

0 if i ∈ {i0 + 1, . . . , p} .

Let us now introduce α− = (αp+1, . . . , αn) ∈ Rm defined by

α− = −Λ−(0)
−1 (L∗)−1

β,

so that
α− = −Λ−(0)

−1 (L∗)
−1

(Q0)∗Λ+(0)α+. (46)

Note that, since L∗ is an upper triangular matrix and βj = 0 for j > ci0(Q), we have

αp+j = 0, ∀j > ci0(Q). (47)

We now define z1 ∈ L2(0, 1)n for every x ∈ (0, 1) by

z1i (x) =





αi if i ∈ {i0, . . . , p} and φ−1
i

(
T − Tp+ci0(Q)(Λ)

)
< x < φ−1

i (Ti0(Λ)) ,

0 otherwise.

Note that z1 is well-defined since 0 ≤ T − Tp+ci0(Q)(Λ) < Ti0(Λ) by assumption and since

Ti0(Λ) = φi0 (1) ≤ φi(1) for i ∈ {i0, . . . , p}. It is also clear that z1 6= 0 since z1i0(x) = αi0 = 1 6= 0

for every x in the non-empty open set (φ−1
i0

(T − Tp+ci0(Q)(Λ)), φ
−1
i0

(Ti0(Λ))).

4) Let z ∈ C0([0, T ];L2(0, 1)n) be the solution to the adjoint system corresponding to this data.
Let us now show that

z−(t, 1) = 0, a.e. t ∈ (0, T ). (48)

Since z1− = 0 and T ≥ Tp+1(Λ) ≥ Tp+j(Λ), the method of characteristics (see (26)) gives

zp+j(t, 1) = 0, a.e. t ∈ (T − Tp+j(Λ), T ), ∀j ∈ {1, . . . ,m} . (49)

On the other hand, for every i ∈ {1, . . . , i0 − 1}, since z1i = 0 and zi(t, 1) = 0, the method of
characteristics (see (25)) gives

zi(t, 0) = 0 = αi, a.e. t ∈ (0, T ), ∀i ∈ {1, . . . , i0 − 1} . (50)

Finally, since T ≥ Tp(Λ) ≥ Ti(Λ) ≥ Ti0(Λ) for i ∈ {i0, . . . , p}, the method of characteristics
(see (25)) gives

∀i ∈ {i0, . . . , p} , zi(t, 0) =

{
αi if T − Ti0(Λ) < t < Tp+ci0 (Q)(Λ),

0 otherwise.
(51)

Let us now recall the boundary condition at x = 0 that z satisfies:

z−(t, 0) = −Λ−(0)
−1(L∗)−1(Q0)∗Λ+(0)z+(t, 0).

Combined with (50), (51) and the relation (46) between α− and α+, we see that

∀j ∈ {1, . . . ,m} , zp+j(t, 0) =

{
αp+j if T − Ti0(Λ) < t < Tp+ci0(Q)(Λ),

0 otherwise.
(52)
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In particular, thanks to (47), we have

zp+j(t, 0) = 0, a.e. t ∈ (0, T ), ∀j ∈ {ci0(Q) + 1, . . . ,m} .

On the other hand, if t > Tp+j(Λ) and j ≤ ci0(Q) we then have t > Tp+ci0(Q)(Λ) so that, by
(52),

zp+j(t, 0) = 0, a.e. t ∈ (Tp+j(Λ), T ), ∀j ∈ {1, . . . , ci0(Q)} .

As a result,
zp+j(t, 0) = 0, a.e. t ∈ (Tp+j(Λ), T ), ∀j ∈ {1, . . . ,m} .

The method of characteristics (see (26)) then gives

zp+j(t, 1) = 0, a.e. t ∈ (0, T − Tp+j(Λ)), ∀j ∈ {1, . . . ,m} .

Combined with (49), we see that (48) holds. Since we have seen that z1 6= 0, the system
(A ∂Λ

∂x
, B) is not approximately controllable in time T .

4 Stability of the minimal time of control

In this section we show that the internal coupling term M in (1) has almost no impact on the exact
controllability properties of (1) and that it can be completely removed without affecting the minimal
time of control. More precisely, the goal of this section is to establish the following perturbation
result:

Theorem 4.1. For every Λ ∈ C0,1([0, 1])n×n that satisfies (2), (3) and (4), Q ∈ R
p×m and M ∈

L∞(0, 1)n×n, we have
Tinf (Λ,M,Q) = Tinf (Λ, 0, Q) . (53)

Note that this will achieve the proof of our main result Theorem 1.9, when combined with Theorem
3.1 of the previous section.

4.1 Idea of the proof and preliminary results

The key point in the proof of Theorem 4.1 is to show that the difference between the input maps
of two systems (not exactly (A0, B) and (AM , B), but some perturbations of them) is a compact
operator. Indeed, the conclusion will then follow from the following general abstract result:

Theorem 4.2. Let H and U be two complex Hilbert spaces. Let A1 : D(A1) ⊂ H −→ H be the
generator of a C0-semigroup on H and let B ∈ L(U,D(A∗

1)
′) be admissible for A1. Let P ∈ L(H) be

a bounded operator and let us form the unbounded operator A2 = A1 + P with D(A2) = D(A1). For
i = 1, 2, let Φi(T ) ∈ L(L2(0,+∞;U), H) be the input map of (Ai, B) at time T ≥ 0, and let

Tinf (Ai, B) = inf {T > 0, (Ai, B) is exactly controllable in time T } ∈ [0,+∞].

We assume that:

(i) For i = 1, 2, (Ai, B) satisfies the Fattorini-Hautus test, i.e.

ker(λ−A∗
i ) ∩ kerB∗ = {0} , ∀λ ∈ C. (54)

(ii) Φ1(T )
∗ − Φ2(T )

∗ is compact for every T > 0.

Then, we have Tinf (A2, B) = Tinf (A1, B).
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This general result was already noticed in [DO18, Remarks 2.4 and 1.5] and similar ideas have
also been used earlier in [Rus78, p. 657, p. 659] (with a stronger assumption than (i) though). The
proof of Theorem 4.2 is a simple application of the compactness-uniqueness result [DO18, Theorem
4.1], it is detailed at the beginning of Appendix B for the sake of completeness.

Let us now point out that concerning our system (1) it is actually claimed (without proof) in
[Rus78, p. 657] that “A somewhat involved, but not conceptually difficult, argument allows one to
see that the operator differences S∗ − S∗

d , C∗ − C∗
d are both compact.” (see also [Rus78, p. 659]),

where C∗ − C∗
d corresponds to ΦM (T )∗ − ΦMd

(T )∗ in our notation, where Md denotes the diagonal
part of M (strictly speaking it is only almost true, since we recall that a different boundary condition
at x = 1 is considered in [Rus78]). However, it appears to us that the proof of this claim is not
straightforward at all, in particular because the solution to the adjoint system of (AM , B) is not
explicit if M has no particular structure. We also think that it deserves more than these three lines
since it is in fact the key point to transfer the controllability properties of one system onto another,
thanks to Theorem 4.2. The main goal of Section 4 is thus to provide a complete proof of this fact.
As already mentioned, once this is done, Theorem 4.1 will be an immediate consequence of Theorem
4.2, because the assumption (i) will be easily checked in our case. Now, in order to check that the
difference between the input maps of two systems is compact, we developed the following practical
sufficient condition involving only the unperturbed system:

Lemma 4.3. Under the framework of Theorem 4.2 (we do not assume (i) and (ii) here though), we
assume that:

(ii)′ There exist ε > 0, a Hilbert space Ĥ, a function G ∈ L2(0, ε;L(H, Ĥ)) with G(t) compact for
a.e. t ∈ (0, ε) and C > 0 such that, for a.e. t ∈ (0, ε),

‖B∗V z̃(t)‖U + ‖V z̃(t)‖H ≤ C
∥∥G(t)z0

∥∥
Ĥ
, ∀z0 ∈ D(A∗

1),

where V z̃(t) =
∫ t

0 K(t, s)z̃(s) ds is the Volterra operator with kernel K(t, s) = SA1
(t − s)∗P ∗

and z̃(t) = SA1
(t)∗z0.

Then, the assumption (ii) of Theorem 4.2 holds.

The proof of Lemma 4.3 is postponed to Appendix B for the sake of the presentation. It relies on
some ideas of [NRL86] and an estimate that can be found in [DO18].

Remark 4.4. It is crucial to observe that the assumption (ii)′ in Lemma 4.3 only concerns the
semigroup of the unperturbed system (A1, B). This is what makes this result usable in practice. Note
as well that this assumption has to be checked only for small times, which makes the computation
easier in our case. Finally, let us also mention that another more general condition than (ii)′ can be
found in Proposition B.2 below.

Roughly speaking, the proof of Theorem 4.1 will then be reduced to check the assumption (ii)′ of
Lemma 4.3. We will see in the next section that the computation of V z̃(t) will reveal some integral
operators of a particular form, for which we will need the following technical result to conclude (see
also [NRL86, Lemma 4]):

Lemma 4.5. Let Ω ⊂ R2 be the bounded open subset defined by

Ω =
{
(s, x) ∈ R

2, x ∈ (0, 1), a(x) < b(x), s ∈ (a(x), b(x))
}
,

for some functions a, b ∈ C0,1([0, 1]). We assume that Ω 6= ∅. Let β ∈ C1(Ω) with β(Ω) ⊂ (0, 1) and

(
∂β

∂s
(s, x) > 0, ∀(s, x) ∈ Ω

)
or

(
∂β

∂s
(s, x) < 0, ∀(s, x) ∈ Ω

)
.
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Denoting the inverse of the map s 7→ β(s, x) by β−1(·, x), we also assume that x 7→ ∂β−1

∂ξ
(ξ, x) does

not depend on x. For every x ∈ [0, 1], let J(x) ⊂ R be the bounded open subset defined by

J(x) =





{s ∈ (a(x), b(x)), f1 (β(s, x)) < f2(x)} if a(x) < b(x),

∅ otherwise,

for some f1, f2 ∈ C1,1([0, 1]) with ∂f1
∂ξ

> 0 in [0, 1] or ∂f1
∂ξ

< 0 in [0, 1]. Let then Ω′ ⊂ Ω be the
bounded open subset defined by

Ω′ =
{
(s, x) ∈ R

2, x ∈ (0, 1), s ∈ J(x)
}
.

Let α ∈ C1(Ω′) with α(Ω′) ⊂ (0, 1) and

∂α

∂s
(s, x) 6= 0, ∀(s, x) ∈ Ω′. (55)

Finally, let k ∈ L∞(0, 1).
Then, for every f ∈ L2(0, 1) and x ∈ [0, 1], the function s 7→ k(β(s, x))f(α(s, x)) belongs to

L1(J(x)) with the estimate

∣∣∣∣∣

∫

J(x)

k(β(s, x))f(α(s, x)) ds

∣∣∣∣∣ ≤
‖k‖L∞(0,1)

infs∈J(x)

∣∣∂α
∂s

(s, x)
∣∣ ‖f‖L2(0,1) . (56)

Moreover, the linear operator defined for every f ∈ L2(0, 1) and x ∈ [0, 1] by

Kf(x) =

∫

J(x)

k(β(s, x))f(α(s, x)) ds, (57)

has the following properties:

(i) K
(
L2(0, 1)

)
⊂ L2(0, 1) and the operator f ∈ L2(0, 1) 7→ Kf ∈ L2(0, 1) is compact.

(ii) K
(
H1(0, 1)

)
⊂ H1(0, 1) and, for every f ∈ H1(0, 1) and x ∈ [0, 1], the trace of Kf at x is

equal to Kf(x).

(iii) For every x ∈ [0, 1], the operator f ∈ L2(0, 1) 7→ Kf(x) ∈ R is compact.

Proof.

1) By assumption (55), the function s ∈ J(x) 7→ α(s, x) is a C1-diffeomorphism for every x ∈ [0, 1]
such that a(x) < b(x). Its inverse will be denoted by α−1(·, x). Using the change of variable
s 7→ α(s, x) we see that the function s 7→ k(β(s, x))f(α(s, x)) belongs to L1(J(x)) and

Kf(x) =

∫ 1

0

h(ξ, x)f(ξ) dξ, h(ξ, x) =





k
(
β
(
α−1 (ξ, x) , x

))
∣∣∂α
∂s

(α−1(ξ, x), x)
∣∣ 1α(J(x),x)(ξ) if a(x) < b(x),

0 otherwise.

(58)
The Cauchy-Schwarz inequality immediately gives the estimate (56). Since the kernel h ∈
L∞((0, 1)× (0, 1)), it is well-known that the operators of the form (58) are compact, so that (i)
holds.
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2) For the proof of item (ii) we assume for instance that we are in the case ∂β
∂s

> 0 in Ω and
∂f1
∂ξ

> 0 in [0, 1]. Using then the change of variable s 7→ β(s, x) when a(x) < b(x) shows that

Kf(x) =

∫ c(x)

β(a(x),x)

k(ξ)f
(
α
(
β−1 (ξ, x) , x

)) ∂β−1

∂ξ
(ξ, x) dξ,

where

c(x) =





β (b(x), x) if a(x) < b(x) and f1(β(b(x), x)) < f2(x),

f−1
1 (f2(x)) if a(x) < b(x) and f1(β(a(x), x)) ≤ f2(x) ≤ f1(β(b(x), x)),

β(a(x), x) otherwise.

Thanks to our regularity assumptions, we see that, when f ∈ H1(0, 1), Kf is continuous on
[0, 1] and piecewise H1(0, 1), which yields Kf ∈ H1(0, 1) with trace at x ∈ [0, 1] equal to Kf(x).

3) Finally, the compactness of f ∈ L2(0, 1) 7→ Kf(x) is immediate since this operator is bounded
by the estimate (56) and its range is a finite-dimensional space.

We conclude this section with the statement of a last lemma. We will see during the proof of
Theorem 4.1 below that it is crucial to have only integral terms on subsets of the form J(x) satisfying
the assumptions of the previous lemma. Since these subsets do not in general agree with (0, 1), we
may have other undesirable integral terms. The goal of the next lemma is to show that we can
remove these possible other “bad” integral terms if we assume (4), which is the main purpose of this
assumption.

Lemma 4.6. For every i ∈ {1, . . . , n}, let

Ei = {j ∈ {1, . . . , n} | ∃x ∈ [0, 1], λj(x) = λi(x)} .

Assume that (4) holds, i.e.

Ei = {j ∈ {1, . . . , n} | λj(x) = λi(x), ∀x ∈ [0, 1]} .

Then, for every M ∈ L∞(0, 1)n×n, there exists M̃ ∈ L∞(0, 1)n×n such that the following two proper-
ties hold:

(i) For every T > 0, (A
M̃
, B) is exactly controllable in time T if, and only if, (AM , B) is exactly

controllable in time T .

(ii) For every i ∈ {1, . . . , n} and every j ∈ Ei, we have

m̃i,j(x) = δi,j
∂λi

∂x
(x), a.e. x ∈ (0, 1),

where δi,j denotes the Kronecker delta, i.e. δi,j = 1 if i = j and δi,j = 0 otherwise.

In fact, we can prescribe any L∞ function on the diagonal of M̃ , we chose ∂λi

∂x
only for later

computational purposes. The proof of Lemma 4.6 is technical and it is postponed to Appendix C for
the sake of clarity. It is essentially an appropriate change of variable.

Remark 4.7. Let us mention that it is assumed in [NRL86, p. 322] that mi,j = 0 for every
i ∈ {1, . . . , n} and j ∈ Ei with j 6= i. Roughly speaking, Lemma 4.6 shows that the assumptions in
[Rus78] are stronger than the assumptions in [NRL86].
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4.2 Proof of Theorem 4.1

The main steps of the proof of Theorem 4.1 have been explained in the previous section. Let us now
go into the details.

1) Let M ∈ L∞(0, 1)n×n be fixed and let M̃ ∈ L∞(0, 1)n×n be the corresponding matrix provided
by Lemma 4.6. The idea is to apply Theorem 4.2 with

A1 = A ∂Λ
∂x

, A2 = A
M̃
, P = M̃ −

∂Λ

∂x
.

Once the assumptions of this theorem will be checked, we will obtain

Tinf

(
Λ, M̃ , Q

)
= Tinf

(
Λ,

∂Λ

∂x
,Q

)
.

The desired identity (53) will then follows from item (i) of Lemma 4.6 and Lemma 3.3.

2) First of all, we have to check that (A ∂Λ
∂x

, B) and (A
M̃
, B) satisfy the Fattorini-Hautus test. This

is an easy step. In fact, let us show that (AM , B) satisfies the Fattorini-Hautus test for every
M ∈ L∞(0, 1)n×n. Let λ ∈ C and z ∈ D(A∗

M ) be such that A∗
Mz = λz and B∗z = 0. Thus,

z ∈ H1(0, 1)n solves the system of O.D.E.





∂z

∂x
(x) = −Λ(x)−1

(
λIdRn×n +

∂Λ

∂x
(x) −M(x)∗

)
z(x), x ∈ (0, 1),

z(1) = 0,

so that z = 0 by uniqueness.

3) We now turn out to the proof of the second condition (ii) in Theorem 4.2. We recall that it is
enough to check the assumption (ii)′ of Lemma 4.3. In our case, we will do it for

ε = φ1(1),

so that the expression (26) of the unperturbed semigroup has only two possibilities when t ∈
(0, ε), which will make the computations below easier. In order to check this condition (ii)′,
we will show that (V z̃(t))i(x) is in fact a sum of integral terms of the form (57), with the
corresponding assumptions of Lemma 4.5 being satisfied. The conclusion will then follow from
this lemma (see below).

First of all, we recall that, for every t ≥ 0 and f ∈ L2(0, t;L2(0, 1)n), we have the identity

(∫ t

0

f(s) ds

)

i

(x) =

∫ t

0

fi(s, x) ds, a.e. x ∈ (0, 1), ∀i ∈ {1, . . . , n} .

This can be seen using for instance the property Li,ϕ

(∫ t

0
f(s) ds

)
=
∫ t

0
Li,ϕ(f(s)) ds with

the continuous linear forms Li,ϕg = 〈gi, ϕ〉L2(0,1), where ϕ ∈ L2(0, 1), and Fubini’s theorem.

Therefore, for every i ∈ {1, . . . , n}, we can write

(V z̃(t))i (x) =

∫ t

0

(
SA ∂Λ

∂x

(t− s)∗P ∗z̃(s)
)

i
(x) ds.

4) We first perform the computations for i ∈ {1, . . . , p}. From the expression (28) of the semigroup,
we have

(V z̃(t))i (x) =

∫

J−

i (t,x)

(P ∗z̃(s))i (χi(0; t− s, x)) ds,
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where J−
i (t, x) is open set defined for every t ≥ 0 and x ∈ [0, 1] by

J−
i (t, x) =

{
s ∈ (0, t), sini (t− s, x) < 0

}
.

On the other hand, denoting the entries of M̃∗ − ∂Λ
∂x

by
(
p∗i,j
)
1≤i,j≤n

, we have,

(P ∗z̃(s))i (χi(0; t− s, x)) =

n∑

k=1

p∗i,k (χi(0; t− s, x)) z̃k (s, χi(0; t− s, x)) .

As a result, combining both expressions yields

(V z̃(t))i (x) =

∫

J−

i (t,x)

n∑

k=1

p∗i,k (χi(0; t− s, x)) z̃k (s, χi(0; t− s, x)) ds.

Let us now recall that M̃ has been constructed in such a way that (see item (ii) of Lemma 4.6)

p∗i,k(ξ) = 0, a.e. ξ ∈ (0, 1), ∀k ∈ Ei,

so that

(V z̃(t))i (x) =

n∑

k=1
k 6∈Ei

∫

J−

i (t,x)

p∗i,k (χi(0; t− s, x)) z̃k (s, χi(0; t− s, x)) ds.

We split the sum into two sums, according to whether k ∈ {1, . . . , p} or k ∈ {p+ 1, . . . , n}:
(V z̃(t))i (x) = (V z̃(t))i,≤p(x) + (V z̃(t))i,>p(x) with

(V z̃(t))i,≤p(x) =

p∑

k=1
k 6∈Ei

∫

J−

i (t,x)

p∗i,k (χi(0; t− s, x)) z̃k (s, χi(0; t− s, x)) ds,

and

(V z̃(t))i,>p(x) =
n∑

k=p+1

∫

J−

i (t,x)

p∗i,k (χi(0; t− s, x)) z̃k (s, χi(0; t− s, x)) ds.

Let us deal with the first sum (V z̃(t))i,≤p(x). Thanks to the semigroup formula (28), we have

(V z̃(t))i,≤p(x) =

p∑

k=1
k 6∈Ei

∫

J−−

i,k
(t,x)

p∗i,k (χi(0; t− s, x)) z0k (χk (0; s, χi(0; t− s, x))) ds,

where J−−
i,k (t, x) ⊂ J−

i (t, x) is open set defined by

J−−
i,k (t, x) =

{
s ∈ J−

i (t, x), sink (s, χi(0; t− s, x)) < 0
}
, ∀k ∈ {1, . . . , p} .

Let us now deal with the second sum (V z̃(t))i,>p(x). Thanks to the semigroup formula (29)
and (28) (here we use the fact that t < φ1(1)), we have

(V z̃(t))i,>p(x) =

n∑

k=p+1

∫

J−−

i,k
(t,x)

p∗i,k (χi(0; t− s, x)) z0k (χk (0; s, χi(0; t− s, x))) ds,

+

n∑

k=p+1

∫

J−+

i,k
(t,x)

p∗i,k (χi(0; t− s, x))

p∑

ℓ=1

rℓ,kz
0
ℓ

(
χℓ

(
0; sink (s, χi(0; t− s, x)) , 0

))
ds,
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where J−−
i,k (t, x), J−+

i,k (t, x) ⊂ J−
i (t, x) are the open sets defined by

J−−
i,k (t, x) =

{
s ∈ J−

i (t, x), sink (s, χi(0; t− s, x)) < 0
}
, ∀k ∈ {p+ 1, . . . , n} ,

J−+
i,k (t, x) =

{
s ∈ J−

i (t, x), sink (s, χi(0; t− s, x)) > 0
}
, ∀k ∈ {p+ 1, . . . , n} .

In summary, for every i ∈ {1, . . . , p}, we have

(V z̃(t))i (x) = (V z̃(t))i,≤p(x) + (V z̃(t))i,>p(x)

=
n∑

k=1
k 6∈Ei

∫

J−−

i,k
(t,x)

p∗i,k (χi(0; t− s, x)) z0k (χk (0; s, χi(0; t− s, x))) ds

+

n∑

k=p+1

∫

J−+

i,k
(t,x)

p∗i,k (χi(0; t− s, x))

p∑

ℓ=1

rℓ,kz
0
ℓ

(
χℓ

(
0; sink (s, χi(0; t− s, x)) , 0

))
ds. (59)

5) Similar computations for j ∈ {1, . . . ,m} show that

(V z̃(t))p+j (x) =

n∑

k=1
k 6∈Ep+j

∫

J−−

p+j,k
(t,x)

p∗p+j,k (χp+j(0; t− s, x)) z0k (χk (0; s, χp+j(0; t− s, x))) ds

+
n∑

k=p+1
k 6∈Ep+j

∫

J−+

p+j,k
(t,x)

p∗p+j,k (χp+j(0; t− s, x))

p∑

i=1

ri,kz
0
i

(
χi

(
0; sink (s, χp+j(0; t− s, x)) , 0

))
ds

+

p∑

i=1

ri,p+j

n∑

k=1
k 6∈Ei

∫

J+−

p+j,k,i
(t,x)

p∗i,k
(
χi

(
0; sinp+j(t− s, x), 0

))

× z0k
(
χk

(
0; s, χi

(
0; sinp+j(t− s, x), 0

)))
ds

+

p∑

i=1

ri,p+j

n∑

k=p+1

∫

J++

p+j,k,i
(t,x)

p∗i,k
(
χi

(
0; sinp+j(t− s, x), 0

))

×

p∑

ℓ=1

rℓ,kz
0
ℓ

(
χℓ

(
0; sink

(
s, χi

(
0; sinp+j(t− s, x), 0

))
, 0
))

ds, (60)

where J−−
p+j,k(t, x), J

−+
p+j,k(t, x) and J+−

p+j,k,i(t, x), J
++
p+j,k,i(t, x) are the open sets defined for every

t ≥ 0 and x ∈ [0, 1] by

J−∓
p+j,k(t, x) =

{
s ∈ J−

p+j(t, x), ±sink (s, χp+j(0; t− s, x)) < 0
}
,

J+∓
p+j,k,i(t, x) = {s ∈ J+

p+j(t, x), ±sink
(
s, χi

(
0; sinp+j(t− s, x), 0

))
< 0},

and where J−
p+j(t, x), J

+
p+j(t, x) are the open sets defined by

J∓
p+j(t, x) =

{
s ∈ (0, t), ±sinp+j(t− s, x) < 0

}
.

6) We have just seen that, for every t ∈ (0, ε), z0 ∈ L2(0, 1)n, i ∈ {1, . . . , n} and a.e. x ∈ (0, 1),
(V z̃(t))i (x) is a sum of terms of the form (57). If we manage to prove that each of these
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terms satisfies the assumptions of Lemma 4.5, then this will show that the expressions in the
right-hand sides of (59) and (60) make sense for every x ∈ [0, 1] (not only a.e.) and belong to
H1(0, 1) when z0 ∈ H1(0, 1)n, with a trace at x = 1 equal to the same expression but with x

changed into 1. A natural candidate for the function G of Lemma 4.3 will then be the function
defined for every t ∈ (0, ε) and z0 ∈ L2(0, 1)n by

G(t)z0 =
(
(V z̃(t))p+1 (1), . . . , (V z̃(t))n (1), (V z̃(t))1 , . . . , (V z̃(t))n

)
, (61)

where G(t) is considered as an operator from the space H = L2(0, 1)n onto the product space

Ĥ = Rm×L2(0, 1)n and where, by abuse of notation, (V z̃(t))i in (61) denotes in fact the function
defined for every x ∈ [0, 1] by the expression in the right-hand side of (59) (if i ∈ {1, . . . , p}) or
(60) (if i = p+ j ∈ {p+ 1, . . . , n}). We use a similar abuse of notation for (V z̃(t))p+j (1).

7) Let us now check that each of the integral terms in (59) and (60) satisfies the assumptions of
Lemma 4.5. We focus on the terms in (V z̃(t))p+j (x) since they are the most important ones
(because (V z̃(t))p+j (1) appears in (61)) and since the terms in (59) can be treated similarly to
the first two terms in (60). Let then j ∈ {1, . . . ,m} be fixed. For obvious reasons of presentation
we will also only treat one type of integrals in (V z̃(t))p+j (x). Let us point out that the a priori
extra assumptions in Lemma 4.5 are used to treat all the other cases. We choose to deal with
the first type of integrals in (60), namely,

∫

J−−

p+j,k
(t,x)

p∗p+j,k (χp+j(0; t− s, x)) z0k (χk (0; s, χp+j(0; t− s, x))) ds = K(t)z0k(x).

Let then k ∈ {1, . . . , n} with k 6∈ Ep+j be fixed. We are in the configuration of Lemma 4.5 with

J(x) = J−−
p+j,k(t, x), β(s, x) = χp+j(0; t− s, x), α(s, x) = χk (0; s, χp+j(0; t− s, x)) ,

β−1(ξ, x) = φp+j(ξ)− φp+j(x) + t,

Ω =
{
(s, x) ∈ R2, x ∈ (0, 1), s ∈ J−

p+j(t, x)
}
, a(x) = max (0, t− φp+j(x)) , b(x) = t,

f1(ξ) =





φp+j(ξ) + φk(ξ) − φk(1), if k ≤ p,

φp+j(ξ)− φk(ξ), if k > p, k 6∈ Ep+j ,

f2(x) = φp+j(x) − t.

The regularities of these functions are clear. Note that, for this case, we have a(x) < b(x) for
every x ∈ (0, 1] since t > 0. Recalling the definition (24) of the φk, and thanks to (3), we can
check that, if k ≤ p, then ∂f1

∂ξ
> 0 in [0, 1] and, if k > p with k 6∈ Ep+j , then either ∂f1

∂ξ
> 0 in

[0, 1] (if k > p + j) or ∂f1
∂ξ

< 0 in [0, 1] (if k < p + j). Let us now compute the derivatives of

β and α. First of all, it can be checked (using for instance the explicit formula (32) and (33))
that, for every i ∈ {1, . . . , n}, every t > 0 and x ∈ (0, 1) such that sini (t, x) < 0, we have





∂χi

∂t
(0; t, x) = −λi (χi(0; t, x)) ,

∂χi

∂x
(0; t, x) = λi (χi(0; t, x))

1

λi(x)
.

It follows that

∂β

∂s
(s, x) = −

∂χp+j

∂t
(0; t− s, x) = λp+j (χp+j(0; t− s, x)) , (62)
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and

∂α

∂s
(s, x) =

∂χk

∂t
(0; s, χp+j(0; t− s, x))−

∂χk

∂x
(0; s, χp+j(0; t− s, x))

∂χp+j

∂t
(0; t− s, x),

= −λk (χk (0; s, χp+j(0; t− s, x)))

(
1−

λp+j (χp+j (0; t− s, x))

λk (χp+j (0; t− s, x))

)
.

(63)

From these computations, we see that none of these terms are equal to zero. For the first term
(62), this follows from the basic assumption (3). For the second term (63) this is where we use
in a crucial way that k 6∈ Ep+j . As a result, all the assumptions of Lemma 4.5 are satisfied.

8) Finally, thanks again to the fact that k 6∈ Ep+j , we have

min
ξ∈[0,1]

|λk(ξ)| > 0, min
ξ∈[0,1]

∣∣∣∣1−
λp+j(ξ)

λk(ξ)

∣∣∣∣ > 0.

Thus, we see from (63) that
∣∣∂α
∂s

∣∣ can be estimated from below by a positive constant that does
not depend on t, s or x. As a consequence, from the estimate (56) of Lemma 4.5 we obtain that
there exists C > 0 such that

∣∣K(t)z0k(1)
∣∣+
∥∥K(t)z0k

∥∥
L2(0,1)

≤ C
∥∥z0k
∥∥
L2(0,1)

, ∀t ∈ (0, ε).

Since similar estimates hold for the other integrals and the other components, this shows that
for the function G defined by (61) we also have G ∈ L∞(0, ε;L(H, Ĥ)) ⊂ L2(0, ε;L(H, Ĥ)). All
the assumptions of Lemma 4.3 are now satisfied. This completes the proof of Theorem 4.1.

A Canonical UL–decomposition

In this appendix we give a proof of Proposition 1.5, which is a crucial result to define the key elements
in our main result Theorem 1.9. Let Q ∈ Rp×m with rankQ = p be given. We recall that want to
prove that there exists a unique Q0 ∈ Rp×m such that the following two properties hold:

(i) There exists L ∈ Rm×m such that QL = Q0 with L lower triangular (ℓij = 0 if i < j) and with
only ones on its diagonal (ℓii = 1 for every i).

(ii) Q0 is in canonical form (Definition 1.2).

Proof of Proposition 1.5.

1) The existence follows from the Gaussian elimination, as shown for instance in Example 1.7.
We briefly recall the general procedure. Since rankQ = p, the last row of Q ∈ Rp×m cannot
be zero. Let then cp ∈ {1, . . . ,m} be the last non-zero entry of the last row of Q. We then
remove the entries of Q at the left of qp,cp . In matricial form this means that we multiply Q

to the right by a lower triangular matrix with only ones on its diagonal and zero everywhere

else, except for its cp-row whose first cp − 1 entries are equal to
−qp,1
qp,cp

, . . . ,
−qp,cp−1

qp,cp
. We then

obtain an equivalent matrix to Q which has only one non zero entry on its last row. We then
forget about the last row to obtain a (p− 1)×m matrix with full-row rank and we repeat the
procedure (cp−1 being the last non-zero entry of such a matrix which is not in the cp column,
etc.). It is not difficult to see that the matrix resulting from these operations is in canonical
form.
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2) To show the uniqueness, we assume that there exist two canonical form Q0, Q̃0 ∈ Rp×m and two

lower triangular matrices with only ones on their diagonal L, L̃ ∈ Rm×m such that QL = Q0

and QL̃ = Q̃0 and we prove that Q0 = Q̃0. Denoting L′ = L̃−1L, we have

Q0 = Q̃0L′,

and L′ is a lower triangular matrix with only ones on its diagonal. Looking at this equality
column by column, we have

Q0
j = Q̃0

j +
m∑

i=j+1

ℓ′i,jQ̃
0
i , ∀j ∈ {1, . . . ,m} .

We want to prove that Q0
j = Q̃0

j for every j. For j = m it is clear. For j = m− 1, we have

Q0
m−1 = Q̃0

m−1 + ℓ′m,m−1Q̃
0
m. (64)

If Q̃0
m = 0 then we are done. Assume then that Q̃0

m 6= 0. This necessarily means that m ∈{
c1(Q̃

0), . . . , cp(Q̃
0)
}

by the two last conditions in (17). Let us write m = cim(Q̃0). Then,

q̃0im,m−1 = 0 by the last condition in (17). On the other hand, since Q0
m = Q̃0

m by the previous

step, the same considerations apply to Q0
m, i.e. m = ckm

(Q0) for some km. Let us show that
we necessarily have km = im. If km > im, then q̃0km,m = 0 by (18) in Remark 1.4. Since

q0km,m 6= 0 by the first condition in (17), the identity q0km,m = q̃0km,m would fail. By the same

arguments, im > km is not possible either. As a result, m = cim(Q0) and thus q0im,m−1 = 0 as
well. Therefore, looking at the im-th row of the equality (64), we obtain

0 = ℓ′m,m−1q̃
0
im,m.

Since q̃0im,m 6= 0 by the first condition in (17), we obtain that ℓ′m,m−1 = 0. Coming back to

(64) we have established that Q0
m−1 = Q̃0

m−1. Reasoning by induction we easily obtain that

Q0
j = Q̃0

j for every j. This completes the proof of the uniqueness part.

B Sufficient conditions for the stability of the minimal time of

control

In this appendix we prove Theorem 4.2 and Lemma 4.3, which provide practical sufficient conditions
to ensure that the minimal time for exact controllability is invariant under bounded perturbations of
the generator. The proof is based on the compactness-uniqueness method and the Volterra integral
equation satisfied by semigroups of boundedly perturbed generators.

Let us first briefly recall that the compactness-uniqueness method has been extensively used
to prove the exact controllability of various systems governed by partial differential equations, see
in particular [Lio88] and the pioneering work [RT74] concerning stability, and it has recently been
improved and put in a complete abstract framework in [DO18]. We refer to the latter article and
the numerous references therein for more details on this method. We only wish to add the references
[DR77, Corollary 4.2] and [Rus78, p. 657, p. 659] to those already present in [DO18]. The proof of
Theorem 4.2 is in fact a simple consequence of the following general abstract result, established in
[DO18, Theorem 4.1]:
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Theorem B.1. Let H and U be two complex Hilbert spaces. Let A : D(A) ⊂ H −→ H be the
generator of a C0-semigroup on H and let B ∈ L(U,D(A∗)′) be admissible for A. Let Φ(T ) ∈
L(L2(0,+∞;U), H) be the input map of (A,B) at time T ≥ 0. Assume that there exist T0 > 0, a

complex Hilbert space Ĥ, a compact operator G ∈ L(H, Ĥ) and C > 0 such that, for every z1 ∈ H,

∥∥z1
∥∥2
H
≤ C

(∫ T0

0

∥∥Φ(T0)
∗z1(t)

∥∥2
U

dt+
∥∥Gz1

∥∥2
Ĥ

)
. (65)

Assume moreover that (A,B) satisfies the Fattorini-Hautus test. Then, (A,B) is exactly controllable
in time T for every T > T0.

Let us now give the proof of Theorem 4.2. In what follows, we use the notation introduced in the
statement of Theorem 4.2.

Proof of Theorem 4.2. We first prove that Tinf (A2, B) ≤ Tinf (A1, B). Let then T1 > 0 be such that
(A1, B) is exactly controllable in time T1 and let us show that necessarily Tinf (A2, B) ≤ T1. By
assumption and duality there exists C > 0 such that, for every z1 ∈ H ,

∥∥z1
∥∥2
H
≤ C

∫ T1

0

∥∥Φ1(T1)
∗z1(t)

∥∥2
U
dt,

so that,

∥∥z1
∥∥2
H
≤ 2C

(∫ T1

0

∥∥Φ2(T1)
∗z1(t)

∥∥2
U
dt+

∫ T1

0

∥∥(Φ1(T1)
∗ − Φ2(T1)

∗) z1(t)
∥∥2
U
dt

)
.

By assumption we know that the remainder G = Φ1(T1)
∗ − Φ2(T1)

∗ is compact and that (A2, B)
satisfies the Fattorini-Hautus test. Therefore, we can apply Theorem B.1 and obtain that (A2, B) is
exactly controllable in time T1+ε for every ε > 0. This shows that Tinf (A2, B) ≤ T1+ε for every ε > 0.
Letting ε → 0 we obtain the claim. The proof of the reversed inequality Tinf (A2, B) ≥ Tinf (A1, B)
is exactly the same by simply changing the roles of (A2, B) and (A1, B).

Let us now turn out to the proof of Lemma 4.3. First of all, we shall establish the following result:

Proposition B.2. Under the framework of Theorem 4.2 (we do not assume (i) and (ii) here though),
we assume that:

(ii)′′ For every T > 0, there exist a Hilbert space H̃, a compact operator F ∈ L(H, H̃) and C > 0
such that

∫ T

0

‖B∗V z̃(t)‖2U dt+

∫ T

0

‖V z̃(t)‖2H dt ≤ C
∥∥Fz0

∥∥2
H̃
, ∀z0 ∈ D(A∗

1),

where V z̃(t) =
∫ t

0
K(t, s)z̃(s) ds is the Volterra operator with kernel K(t, s) = SA1

(t − s)∗P ∗

and z̃(t) = SA1
(t)∗z0.

Then, the assumption (ii) of Theorem 4.2 holds, i.e. Φ1(T )
∗ − Φ2(T )

∗ is compact for every T > 0.

Remark B.3. As in Lemma 4.3, the assumption (ii)′′ in Proposition B.2 only concerns the semigroup
of the unperturbed system (A1, B). Thus, this result is also usable in practice. It was for instance
proved in [DO18, p. 402] that (ii)′′ is satisfied if P is compact. However, we emphasize that the
perturbation is only assumed to be bounded in Proposition B.2 (it is important because in (1) the
perturbation is not compact). The condition (ii)′′ is an integrated version of (ii)′. It is more general
but it has to be checked for any time T .
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The proof of Proposition B.2 relies on some ideas of [NRL86] and an estimate that can be found
for instance in [DO18]. More precisely, it is based on the two following results:

Lemma B.4. For every f ∈ C1([0,+∞);H) and t ≥ 0,

∫ t

0

SA1
(t− s)∗f(s) ds ∈ D(A∗

1). (66)

Moreover, for every T > 0, there exists C > 0 such that, for every f ∈ C1([0, T ];H),

∫ T

0

∥∥∥∥B
∗

∫ t

0

SA1
(t− s)∗f(s) ds

∥∥∥∥
2

U

dt ≤ C ‖f‖2L2(0,T ;H) . (67)

The estimate (67) is a consequence of the admissibility of B for A1. For a proof we refer for
instance to [DO18, Appendix A]. The second result we shall need is the following:

Lemma B.5. For every T > 0, there exists C > 0 such that, for every z0 ∈ H,

∫ T

0

∥∥SA1
(t)∗z0 − SA2

(t)∗z0
∥∥2
H

dt ≤ C

∫ T

0

∥∥∥∥
∫ t

0

SA1
(t− s)∗P ∗SA1

(s)∗z0 ds

∥∥∥∥
2

H

dt. (68)

The proof of this second lemma is included at the end of the proof of [NRL86, Lemma 3] but let
us briefly recall it for the sake of completeness:

Proof of Lemma B.5. Let V ∈ L(L2(0, T ;H)) be the bounded linear operator defined for every y ∈
L2(0, T ;H) by

V y(t) =

∫ t

0

K(t, s)y(s) ds, t ∈ (0, T ),

where the kernel is K(t, s) = SA1
(t− s)∗P ∗. Since K ∈ L∞((0, T )× (0, T );L(H)), the operator V is

well-defined and Id−V is invertible (see e.g. [Hoc73, Theorem 2.5]). Therefore, its inverse is bounded
by the closed graph theorem, meaning that there exists C > 0 such that, for every y ∈ L2(0, T ;H),

‖y‖L2(0,T ;H) ≤ C ‖(Id− V )y‖L2(0,T ;H) . (69)

Let us now recall the integral equation satisfied by semigroups of boundedly perturbed operators (see
e.g. [EN00, Corollary III.1.7]), valid for every z0 ∈ H and t ≥ 0:

SA2
(t)∗z0 = SA1

(t)∗z0 +

∫ t

0

SA1
(t− s)∗P ∗SA2

(s)∗z0 ds.

Thus, we see that y(t) = SA1
(t)∗z0 − SA2

(t)∗z0 is the solution to the following Volterra integral
equation in L2(0, T ;H):

(Id− V )y(t) = −

∫ t

0

SA1
(t− s)∗P ∗SA1

(s)∗z0 ds, t ∈ (0, T ), (70)

and the desired estimate (68) then follows from (69).

We are now ready to prove Proposition B.2.

Proof of Proposition B.2. Let T > 0 be fixed. We will show that there exists C > 0 such that, for
every z0 ∈ H , ∥∥(Φ1(T )

∗ − Φ2(T )
∗)z0

∥∥
L2(0,+∞;U)

≤ C
∥∥Fz0

∥∥
H̃
. (71)
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Since F is assumed to be compact, this will clearly implies that Φ1(T )
∗ − Φ2(T )

∗ is compact as
well. First of all, note that we only have to prove (71) for z0 ∈ D(A∗

1) since this set is dense in
H and all the operators involved in (71) are actually continuous operators on H . Besides, when
z0 ∈ D(A∗

1) = D(A∗
2), we have the more explicit expression (Φ1(T )

∗ − Φ2(T )
∗)z0(t) = B∗SA1

(T −
t)∗z0−B∗SA2

(T − t)∗z0 for a.e. t ∈ (0, T ). The starting point to estimate this difference is again the
Volterra integral equation (70). Using (66) we see that each term in (70) actually belongs to D(A∗

1)
if z0 ∈ D(A∗

1) = D(A∗
2). Therefore, we can apply B∗ to obtain the following identity:

B∗SA1
(t)∗z0 −B∗SA2

(t)∗z0 = −B∗

∫ t

0

SA1
(t− s)∗P ∗SA1

(s)∗z0 ds

+B∗

∫ t

0

SA1
(t− s)∗P ∗

(
SA1

(s)∗z0 − SA2
(s)∗z0

)
ds.

Using now the estimate (67) and then (68) on the second term of the right-hand side, we obtain

∫ T

0

∥∥B∗SA1
(t)∗z0 −B∗SA2

(t)∗z0
∥∥2
U
dt ≤ C

(∫ T

0

∥∥∥∥B
∗

∫ t

0

SA1
(t− s)∗P ∗SA1

(s)∗z0 ds

∥∥∥∥
2

U

dt

+

∫ T

0

∥∥∥∥
∫ t

0

SA1
(t− s)∗P ∗SA1

(s)∗z0 ds

∥∥∥∥
2

H

dt

)
.

Using the assumption (ii)′′ this establishes (71) for every z0 ∈ D(A∗
1).

Let us now conclude this part of the appendix with the proof of Lemma 4.3, which in fact provides
sufficient conditions in small time to guarantee that the assumption (ii)′′ of Proposition B.2 is satisfied.
The proof is essentially a use of the basic functional equation of semigroups.

Proof of Lemma 4.3.

1) By assumption, there exist C > 0 and δ ∈ (0, ε) such that, for every z0 ∈ D(A∗
1),





‖V z̃(δ)‖H ≤ C
∥∥G(δ)z0

∥∥
Ĥ
,

∫ δ

0

‖B∗V z̃(t)‖2U dt+

∫ δ

0

‖V z̃(t)‖2H dt ≤ C

∫ δ

0

∥∥G(t)z0
∥∥2
Ĥ

dt,

(72)

where, by abuse of notation, G ∈ L 2(0, ε;L(H, Ĥ)) in (72) denotes in fact a representative of

the equivalence class G ∈ L2(0, ε;L(H, Ĥ)) (so that ‖G(t)‖L(H,Ĥ) < +∞ for every t ∈ (0, ε), in

particular for t = δ) with G(δ) and G(t) compact for a.e. t ∈ (0, δ). Note in particular that the

right-hand side in the second estimate define a compact operator from H into L2(0, δ; Ĥ) by
Lebesgue’s dominated convergence theorem. We will show that (72) is enough to imply (ii)′′ of
Proposition B.2. In what follows, C > 0 denotes a positive constant that may change from line
to line but that remains independent of z0.

2) Let now T > 0 be fixed. Let k ∈ N be such that kδ ≤ T ≤ (k + 1)δ. We have

∫ T

0

‖B∗V z̃(t)‖2U dt ≤
k∑

j=0

∫ (j+1)δ

jδ

∥∥∥∥B
∗

∫ t

0

SA1
(s)∗P ∗SA1

(t− s)∗z0 ds

∥∥∥∥
2

U

dt.

The change of variable τ = t− jδ gives

∫ T

0

‖B∗V z̃(t)‖2U dt ≤
k∑

j=0

∫ δ

0

∥∥∥∥∥B
∗

∫ τ+jδ

0

SA1
(s)∗P ∗SA1

(τ + jδ − s)∗z0 ds

∥∥∥∥∥

2

U

dτ.
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Thus, breaking the integral into two parts, we have

∫ T

0

‖B∗V z̃(t)‖2U dt ≤
k∑

j=0

(
2

∫ δ

0

∥∥∥∥B
∗

∫ τ

0

SA1
(s)∗P ∗SA1

(τ − s)∗SA1
(jδ)∗z0 ds

∥∥∥∥
2

U

dτ

+2

∫ δ

0

∥∥∥∥∥B
∗

∫ τ+jδ

τ

SA1
(s)∗P ∗SA1

(τ + jδ − s)∗z0 ds

∥∥∥∥∥

2

U

dτ


 .

The first integral is estimated thanks to the second inequality in (72):

∫ δ

0

∥∥∥∥B
∗

∫ τ

0

SA1
(s)∗P ∗SA1

(τ − s)∗SA1
(jδ)∗z0 ds

∥∥∥∥
2

U

dτ ≤ C

∫ δ

0

∥∥G(t)SA1
(jδ)∗z0

∥∥2
Ĥ

dt.

For the second integral, we perform the change of variable σ = s− τ and then use the admissi-
bility of B to obtain

∫ δ

0

∥∥∥∥∥B
∗

∫ τ+jδ

τ

SA1
(s)∗P ∗SA1

(τ + jδ − s)∗z0 ds

∥∥∥∥∥

2

U

dτ

=

∫ δ

0

∥∥∥∥∥B
∗SA1

(τ)∗
∫ jδ

0

SA1
(σ)∗P ∗SA1

(jδ − σ)∗z0 dσ

∥∥∥∥∥

2

U

dτ ≤ C ‖V z̃(jδ)‖2H .

Combining both estimates, we have thus obtained

∫ T

0

‖B∗V z̃(t)‖2U dt ≤ C

k∑

j=0

(∫ δ

0

∥∥G(t)SA1
(jδ)∗z0

∥∥2
Ĥ

dt+ ‖V z̃(jδ)‖2H

)
.

Note that all the previous computations are also valid for B = Id since we only used the second
inequality in (72) and the admissibility of B. Therefore, we have

∫ T

0

‖B∗V z̃(t)‖2U dt+

∫ T

0

‖V z̃(t)‖2H dt ≤ C

k∑

j=0

(∫ δ

0

∥∥G(t)SA1
(jδ)∗z0

∥∥2
Ĥ

dt+ ‖V z̃(jδ)‖2H

)
.

3) Let us now estimate V z̃(jδ). We have

V z̃(jδ) =

j−1∑

i=0

∫ (i+1)δ

iδ

SA1
(jδ − s)∗P ∗SA1

(s)∗z0 ds.

Doing the change of variables σ = s− iδ we obtain

V z̃(jδ) =

j−1∑

i=0

SA1
(jδ − (i+ 1)δ)∗

∫ δ

0

SA1
(δ − σ)∗P ∗SA1

(σ)∗SA1
(iδ)∗z0 dσ.

Using now the first estimate in (72), it follows that

‖V z̃(jδ)‖H ≤ C

j−1∑

i=0

∥∥G(δ)SA1
(iδ)∗z0

∥∥
Ĥ
.
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C Removal of the coupling terms where the speeds agree

The goal of this appendix is to give a proof of Lemma 4.6. It is essentially an appropriate change of
variable. First of all, it is convenient to introduce the following notion (see also [Bru70]):

Definition C.1. Let M, M̃ ∈ L∞(0, 1)n×n. We say that the systems (A
M̃
, B) and (AM , B) are

equivalent, and we write
(A

M̃
, B) ∼ (AM , B),

if there exist two invertible linear transformations L ∈ L(L2(0, 1)n) and Γ ∈ Rm×m such that, for
every y0 ∈ L2(0, 1)n and u ∈ L2(0,+∞)m, if y ∈ C0([0,+∞);L2(0, 1)n) denotes the solution to
(AM , B) with initial data y0 and control u, then ỹ = Ly ∈ C0([0,+∞);L2(0, 1)n) is the solution to
(A

M̃
, B) with initial data ỹ0 = Ly0 and control ũ = Γu.

It is not difficult to check that ∼ is an equivalence relation and that, if (A
M̃
, B) ∼ (AM , B), then,

for every T > 0, the system (A
M̃
, B) is exactly controllable in time T if, and only if, the system

(AM , B) is exactly controllable in time T .

Proof of Lemma 4.6.

1) The goal is to construct M̃ such that (ii) holds and (A
M̃
, B) ∼ (AM , B), so that (i) will hold

as well. Thanks to (3) and (4), we see that there exist d ∈ {1, . . . , n}, n1, . . . , nd ∈ {1, . . . , n}

with
∑d

k=1 nk = n and λ1, . . . , λd ∈ C0,1([0, 1]) with

λ1(x) < · · · < λd(x), ∀x ∈ [0, 1],

such that, for every x ∈ [0, 1],

Λ(x) = diag(Λ1(x), . . . ,Λd(x)),

where
Λk(x) = λk(x)Id

R
nk×nk . (73)

To establish the equivalence between two systems (A
M̃
, B) and (AM , B), we will use a trans-

formation of the form
ỹ(t, x) = Ψ(x)y(t, x), (74)

where Ψ ∈ W 1,∞(0, 1)n×n is assumed to be block diagonal:

Ψ(x) = diag(Ψ1(x), . . . ,Ψd(x)),

where, for every k ∈ {1, . . . , d}, Ψk ∈W 1,∞(0, 1)nk×nk will be determined below. First of all, it
is clear that the formula (74) is reversible if we impose that all the matrices Ψ1(x), . . . ,Ψd(x)
are invertible for every x ∈ [0, 1], which also implies that x 7→ Ψ(x)−1 ∈ C0([0, 1])n×n ⊂
L∞(0, 1)n×n. Let us now work formally to find what Ψ1(x), . . . ,Ψd(x) shall satisfy and what

M̃ is allowed to be. Let us first investigate the boundary conditions. Let us denote by d+ the
index such that

d+∑

i=1

ni = p.

At x = 1, we see that we should have

ũ(t) = ỹ−(t, 1) =




Ψd++1(1)yd
++1(t, 1)

...

Ψd(1)yd(t, 1)




= Γu(t),
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with Γ = diag(Ψd++1(1), . . . ,Ψd(1)), and where (yd
++1, . . . , yd) is a block notation to simply

denote y−. On the other hand, at x = 0, we see that if we impose the condition Ψ(0) = IdRn×n ,
then

ỹ+(t, 0)−Qỹ−(t, 0) = y+(t, 0)−Qy−(t, 0).

Let us finally look at the equations that Ψ should satisfy. Since Ψk(x) and Λk(x) commute for
every x ∈ [0, 1] and k ∈ {1, . . . , d} (see (73)), so do Ψ(x) and Λ(x):

Ψ(x)Λ(x) = Λ(x)Ψ(x), ∀x ∈ [0, 1].

As a result, we have

∂ỹ

∂t
(t, x) − Λ(x)

∂ỹ

∂x
(t, x) − M̃(x)ỹ(t, x)

= Ψ(x)

(
∂y

∂t
(t, x) − Λ(x)

∂y

∂x
(t, x)−Ψ(x)−1

(
Λ(x)

∂Ψ

∂x
(x) + M̃(x)Ψ(x)

)
y(t, x)

)
.

Thus, ỹ is a solution to (A
M̃
, B) if y is a solution to (AM , B) and M̃ is defined by

M̃(x) =

(
Ψ(x)M(x) − Λ(x)

∂Ψ

∂x
(x)

)
Ψ(x)−1, a.e. x ∈ (0, 1). (75)

Note that M̃ ∈ L∞(0, 1)n×n. To summarize, we have (A
M̃
, B) ∼ (AM , B) with M̃ given by

(75) if there there exist matrices Ψk ∈ W 1,∞(0, 1)nk×nk such that the following two properties
hold for every k ∈ {1, . . . , d}:





Ψk(x) is invertible for every x ∈ [0, 1],

Ψk(0) = Id
R

nk×nk .

2) Our previous discussion was only formal but everything can be established rigorously by coming
back to the very definition of weak solution (see Definition 1.1) and using some density argu-
ments. More precisely, let ϕ̃ ∈ C1([0, T ]× [0, 1])n be fixed such that ϕ̃+(·, 1) = 0 and ϕ̃−(·, 0) =
R∗ϕ̃+(·, 0). Let H(x) = Ψ(x)∗ − (1 − x)Ψ(0)∗ − xΨ(1)∗. Since H ∈ H1

0 (0, 1)
n×n, there exists

a sequence θj ∈ C∞
c ([0, 1])n×n such that θj → Ψ∗ in H1(0, 1)n×n as j → +∞. Let then ϕj be

defined by ϕj(t, x) =
(
θj(x) + (1− x)Ψ(0)∗ + xΨ(1)∗

)
ϕ̃(t, x). Clearly, ϕj ∈ C1([0, T ]× [0, 1])n

with ϕ
j
+(·, 1) = 0 and ϕ

j
−(·, 0) = R∗ϕ

j
+(·, 0) (since Ψ(0) = IdRn×n). Moreover,





ϕj(T, ·) −−−−→
j→+∞

Ψ∗ϕ̃(T, ·) and ϕj(0, ·) −−−−→
j→+∞

Ψ∗ϕ̃(0, ·) in L2(0, 1)n,

ϕj −−−−→
j→+∞

Ψ∗ϕ̃ in H1((0, T )× (0, 1))n,

ϕ
j
−(·, 1) −−−−→

j→+∞
Γ∗ϕ̃−(·, 1) in L2(0, T )m.
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Plugging the test function ϕj in (5) and passing to the limit j → +∞, we obtain

∫ 1

0

y(T, x) ·Ψ(x)∗ϕ̃(T, x) dx−

∫ 1

0

y0(x) ·Ψ(x)∗ϕ̃(0, x) dx

=

∫ T

0

∫ 1

0

y(t, x) ·

(
Ψ(x)∗

∂ϕ̃

∂t
(t, x)− Λ(x)Ψ(x)∗

∂ϕ̃

∂x
(t, x)

+

(
−Λ(x)

∂Ψ

∂x
(x)∗ +

(
−
∂Λ

∂x
(x) +M(x)∗

)
Ψ(x)∗

)
ϕ̃(t, x)

)
dxdt

+

∫ T

0

u(t) · Λ−(1)Γ
∗ϕ̃−(t, 1) dt.

Since Ψ(x)∗ commute with Λ(x) and ∂Λ
∂x

(x) for every x ∈ [0, 1], and thanks to the definition

(75) of M̃ , we obtain

∫ 1

0

ỹ(T, x) · ϕ̃(T, x) dx−

∫ 1

0

ỹ0(x) · ϕ̃(0, x) dx

=

∫ T

0

∫ 1

0

ỹ(t, x) ·

(
∂ϕ̃

∂t
(t, x) − Λ(x)

∂ϕ̃

∂x
(t, x) +

(
−
∂Λ

∂x
(x) + M̃(x)∗

)
ϕ̃(t, x)

)
dxdt

+

∫ T

0

ũ(t) · Λ−(1)ϕ̃−(t, 1) dt.

This show that ỹ defined by (74) is indeed the weak solution of the (A
M̃
, B) system.

3) The final goal is now to design the matrices Ψ1, . . . ,Ψd such that the matrix M̃ given by (75)
satisfies the condition (ii) of Lemma 4.6, namely:

M̃k(x) =
∂Λk

∂x
(x), a.e. x ∈ (0, 1), ∀k ∈ {1, . . . , d} , (76)

where M̃k ∈ L∞(0, 1)nk×nk denotes the submatrix (m̃i,j)nk−1+1≤i,j≤nk
(with the notation n0 =

0). To this end, for every k ∈ {1, . . . , d}, we take Ψk ∈ W 1,∞(0, 1)nk×nk to be the solution to
the O.D.E. 




∂Ψk

∂x
(x) = Ψk(x)Λk(x)−1

(
Mk(x) −

∂Λk

∂x
(x)
)
, x ∈ (0, 1),

Ψk(0) = Id
R

nk×nk .

Again, since Ψ(x)∗ commute with Λ(x) and ∂Λ
∂x

(x), we see that this implies that M̃ given by (75)
satisfies (76). Moreover, it is clear that Ψk(x) is invertible for every x ∈ [0, 1]. This completes
the proof of Lemma 4.6.
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