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Abstract

1 Introduction

Multicommodity flow network optimization problems have been widely studied and sur-

veyed, mostly in the linear case (see [1] among others) and to some extent in the nonlinear

convex case (see [76]). Most applications are still very challenging in the Network Design

domain for many practitioners in different fields like Transportation, Communications or

xxxx (see [7]).

We will focus here on the non convex nature of the cost function for general continuous

multicommodity flows and this will include purely combinatorial problems like the pure

concave cost network loading problem known to be NP-hard. To be more precise, we will

consider the following model defined on a digraph G = (V, E) with a set K of commodities

sending a fixed quantity of flow bk between pairs of origins and destinations (ok, dk), k ∈ K :

min
∑

e∈E fe(xe) (MCF)

xe −
∑

k x
k
e = 0, ∀e ∈ E (1)

xk ∈ Fk, ∀k ∈ K (2)

where Fk is the set of feasible k-flows :

Fk = {xk | Axk = bk, xk ≥ 0}
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the matrix A defining the arc-node incidence matrix of graph G. Observe that the objective

function is a separable arc cost function of the total flow xe =
∑

k x
k
e using arc e ∈ E . In some

cases, additional arc costs depending separately on each commodity must be introduced,

but we will not give any special insight to them as they do not induce any notable additional

difficulties in the numerical treatment of these models.

We point out that that model includes the capacitated case as the capacity constraints

can be embedded in the arc cost functions fe which are supposed to be only piecewise

smooth with values in the extended real line IR ∪ {+∞}. Then it can also tackle the case

of discrete decisions at the condition that these are defined arcwise. In particular, we will

study multicommodity flow network problems with piecewise convex arc costs which appear

in the modeling of the Capacity and Flow Assignment (CFA) problems for Network Design

of general data networks. On the other hand, we will not survey (unless some algorithmic

tool discussed later will need to refer to it) topological constraints on the graph like path

constraints or connectivity constraints.

As a basic case, the fixed cost loading problem will be modelled by the step function

fe(xe) =

{

0 if xe = 0
Fe if xe > 0

Fixed-cost as well as general concave-cost network flow problems have been largely

studied since the early results of Tuy [88]. Most of these contributions, well reported in

Pardalos and Rosen’s survey [78], focussed on Branch-and-Bound like approaches applied

to single-commodity or transshipment models. Further enhancements have improved these

techniques (see [15]) and adhoc software have been produced to solve large classes of Global

Optimization problems (see [50] or [57]). These algorithmic schemes can apply too to a

large class of integer network design problems that we will not survey here (see [11]).

The concave-cost multicommodity flow problem is much less studied in the literature

even if constructive surveys have been published in the nineties ([71, 7]). Most original

approaches have faced the necessity to decompose w.r.t. commodities which led to La-

grangian relaxation and Branch-and-Price strategies. We will present in section 3 the basic

references that established the most noticeable results and algorithmic recent contributions

on the Fixed-charge and concave-cost Network Design problem. From uncapacitated to

multiple facilities models, we will observe the importance of both polyhedral study and

Benders decomposition in the literature.

The situation which will be focussed in the last section is the network design problem

where routes and capacities have to be simultaneously assigned to meet a given multi

commodity demand of traffic. Routing corresponds in general to convex arc costs (average

delay, congestion measure, QoS ...) and is usually modeled with continuous flow variables

associated with each commodity unless additional constraints are present like unsplittable

routing for example (refs...). On the other hand, capacity assignment has been modeled

by integer decision variables as the choice is in practice modular with a finite number of

available capacities for each arc. So the joint Capacity and Flow Assignment problem

(CFA) is in general modeled by large-scale Mixed-Integer Nonlinear Programs which are
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very challenging to be solved exactly. Moreover, the combination of both objectives means

a trade-off between structural costs (capacity installation) and congestion costs (routing

decisions) as the former tends to induce a low-cost sparse network and the latter, a less

congested dense and multi-path network (see [18]).

After recalling negative-cycle optimality conditions for single and multi commodity flow

networks in section 2, we present a survey of fixed cost network design problems which are

currently modeled as mixed-integer multicommodity flow problems. We consider different

levels of complexity, from the pure fixed cost case to general non convex design cost func-

tions, but do limit the study to flow and capacity constraints without additional topological

constraints. We will consider in section 4 a continuous but piecewise convex model for ca-

pacity expansion in a network and propose some exact local and global schemes to solve it.

Decomposition among commodities is the main directive idea of many algorithms which will

be compared on medium and large-scale instances of the non convex multicommodity flow

continuous models. Besides the guarantees given by local optimality conditions on feasible

cycles, these approaches take profit of the existence of performant algorithms for convex

cost multicommodity network flow problems, able to produce sharp lower bounds and nice

starting solutions for further local improvements.

2 Negative cycle optimality conditions

We will analyze in the next section the optimality conditions for general cost multicom-

modity flow problems, focussing on the difficulty to extend the classical results for single

commodity flows.

2.1 Convex cost single-commodity flows

We consider first the so-called Negative-cycle optimality conditions, well-known for single-

commodity flow and examine to what extent they may be generalized to the multi-commodity

case. In their simpler form, these first-order optimality conditions state that a feasible flow

is optimal if and only if there do not exist augmenting cycles with negative cost. Here, an

augmenting cycle is a cycle of the graph such that any arc in the cycle possess a positive

residual capacity (i.e., the total flow is strictly lower than the capacity on any forward arc

and strictly positive on any backward arc of the cycle, see [1] for instance). Several authors

have considered early the extension to separable convex cost functions, see [16], [55], [90],

[81], [70] and [51].

To be more precise, let us recall the optimality conditions for single commodity flow

problems with convex arc costs (a complete proof can be found in [16]).

Notation : for a given cycle Θ of G and an arbitrary sense of circulation which defines a

partition of Θ in two subsets of arcs, Θ+ for the direct arcs and Θ− for the reverse arcs, we

will use the incidence vector of the cycle θ ∈ IRm with components θe equal to 1, -1 for the

arcs in Θ+,Θ− respectively and 0 for the others. For a given feasible flow x, we consider
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augmenting cycles as the ones which have a strictly positive residual capacity; i.e. a cycle

Θ of G is augmenting if and only if there exists a positive ᾱ such that x+ αθ is feasible for

any α ∈ [0, ᾱ]. Given a feasible cycle Θ we define its cost by :

λ(x,Θ) =
∑

e∈Θ+

f
′+
e (xe)−

∑

e∈Θ−

f
′−

e (xe) (3)

where f
′+
e (xe) (resp. f

′−
e (xe)) is the right (resp. left) partial derivative of the arc cost

function fe with respect to xe.

GH theorem : Optimality conditions for the single-commodity case : A feasible solution

is optimal if and only if there does not exist any augmenting cycle with negative cost.

The first interest in extending this result to MCF is the possibility to design easy-to-

implement cycle-canceling algorithms working on each commodity separately like a decom-

position method. The second idea is to further study general continuous and piecewise

smooth arc cost functions, giving some insight towards the non convex case.

It is already well-known that GH theorem cannot be extended so straightforward to the

multicommodity case, even in the apparently simplest situation like linear-cost capacitated

MCF. Indeed, the decomposition among the K commodities is not possible. This of course

does not mean that we are not able to produce optimality conditions from the primal and

dual pairs of LP associated with MCF.

To illustrate the goals we aim at, we first illustrate the main difficulty on a simple

example :

Let us consider the two-commodity flow network of Figure 1-a where both demands are

equal to 1 and all arc capacities are equal to 1. The arc cost coefficients are simply 0 for the

vertical arcs and +1 for the horizontal arcs, so that the optimal solution uses the vertical

arcs to send one unit of flow from each origin to each destination. But, one can verify easily

that the feasible solution represented by the dotted paths shown on Figure 1-b does not

present any augmenting cycle even if it is not optimal.
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Figure 1: The linear case does not work
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However, it is still possible to write equivalent negative cycle conditions in the uncapaci-

tated case with smooth convex arc cost functions. Obviously, we must add some hypotheses

to ensure that an optimal solution indeed exists, like using strongly convex cost functions or

coercivity assumptions. In [75], Ouorou and Mahey have shown that it is possible to extend

the negative cycle optimality condition to capacitated multicommodity flow problems using

arc cost functions satisfying the following property :

A : Properties of congestion functions Let consider functions Φ : C × IR 7→ IR
⋂

{+∞} such

that :

1. Φ(c, ·) is strictly convex, monotone increasing on (0, c)

2. Φ(c, ·) is continuously derivable on (0, c) and

Φ′(c1, x) ≤ Φ′(c0, x) for any 0 ≤ x < c0 < c1

3. Φ(c, 0) = 0 and Φ(c, x) → +∞ if x ↓ c

Observe that the cost function acts as a barrier and, assuming that a strictly feasible

solution exists, we can skip the capacity constraints. A well known example of such con-

gestion function in data networks is Kleinrock’s function Φ(c, x) = x
c−x

which expresses the

average delay of a traffic x on an arc with capacity c assuming Poissonian hypotheses for

M/M/1 queues (see [?] for example).

Let x =
∑

k x
k be a feasible solution of (MCF) such that f(x) =

∑

eΦ(ce, xe) has a

finite value. We will call a cycle Θ k-augmenting if it presents a strictly positive residual

for commodity k, i.e. if we can augment the commodity flow value xk
e on the direct arcs of

Θ and reduce these values on the reverse arcs. In our model, a k-augmenting cycle is such

that all reverse arcs carry a positive value of commodity k. The set of arcs which carry

some positive k-flow will be denoted hereafter by Ek.

Theorem 1 Assuming the congestion functions possess the Property (A), a feasible solution

x∗ is a global minimum of (MCF) if and only if, for all commodities k = 1, . . . , K, there

does not exist any k-augmenting cycle with negative cost.

Proof : See [75]

Ouorou and Mahey observed too that the result is no more valid if smoothness is not

assumed. We will analyze deeper the non smooth case in the next sections, and, in partic-

ular, we will discuss the local optimality conditions for the model (MCF) when the arc cost

functions fe are piecewise convex.

2.2 Local optimality conditions for MCF

We will analyze here the special case where the arc cost function is piecewise convex such

that fe(xe) = min{Φel(xe), l = 1, . . . , L} where each function Φel is smooth and convex,
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defined on [0,+∞) (we can thus assume that each Φel is a congestion function as in Theorem

1) . A motivating example of such functions is the Capacity Expansion problem which will

be described in section 4.

Thanks to the simple separable structure of the cost function, it is possible to put

down first-order local optimality conditions for problem (MCF) even in the presence of

breakpoints where the cost function is not differentiable. Indeed, left and right partial

derivatives do exist with respect to all variables. This implies that directional derivatives

exist in all directions, allowing to use the first-order conditions for a local minimum : if x∗ is

a local minimum of the function f , then the directional derivative f ′(x∗; d) is non negative

in all feasible directions d. We will show below that the convexity of the Φel functions that

build the objective function f on each arc not only allows us to characterize that condition

using left and right derivatives but also turns the condition necessary and sufficient.

For any such local optimum, let define :

E0 = {e ∈ E | x∗

e ∈ [0, γec0e)}

E1 = {e ∈ E | x∗

e ∈ (γec0e, c1e)}

G = {e ∈ E | x∗

e = γec0e}

and let g = |G|. There are 2g different partitions of the set G in two disjoint subsets of arcs

G = G0i

⋃

G1i, i = 1, . . . , 2g, so that we can define 2g subregions of the feasible set, denoted

by Ci :

Ci = {x ∈ M(T ) | xe ∈ [0, γec0e] for e ∈ E0

⋃

G0i

xe ∈ [γec0e, c1e] for e ∈ E1

⋃

G1i}

These subregions have disjoint interior points and cover the feasible set of solutions of (CCE)

in a neighborhood of x∗. They are defined such that x∗ ∈ Ci, ∀i = 1, . . . , 2g. Moreover, the

objective function f is convex when restricted to any region Ci and we can write optimality

conditions separately in each one of these regions. Indeed, we can associate with each arc in

the partition its ’active’ congestion functions, i.e. Φ(c0e, xe) for e ∈ E0

⋃

G0i and Φ(c1e, xe)

for e ∈ E1

⋃

G1i, so that f(x) is simply the sum of the active functions for x ∈ Ci.

Kuhn-Tucker conditions on set Ci

There exist multipliers ui
e and vik satisfying :











ui
e = ∂Φ(c0e, x

∗
e)/∂xe, 0 < x∗

e < γec0e, e ∈ E0

ui
e ≤ ∂Φ(c0e, x

∗
e)/∂xe, x∗

e = 0, e ∈ E0

ui
e ≥ ∂Φ(c0e, x

∗
e)/∂xe, x∗

e = γec0e, e ∈ G0i

{

ui
e = ∂Φ(c1e, x

∗
e)/∂xe, γec0e < x∗

e < c1e, e ∈ E1

ui
e ≤ ∂Φ(c1e, x

∗
e)/∂xe, x∗

e = γec0e, e ∈ G1i
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and, for all commodity k :

∀p ∈ Pk s.t. xkp > 0, vik =
∑

e∈p

ui
e

∀p ∈ Pk s.t. xkp = 0, vik ≤
∑

e∈p

ui
e

Recall that these conditions imply that the active paths have minimal lengths with respect

to first derivatives of the active functions associated with Ci. The objective function be-

ing convex on that region, the conditions are necessary and sufficient. Thus, at a local

minimum, these conditions must be satisfied for all subregions. A crucial question is then

to identify situations where the solution is blocked at some breakpoint which cannot be

optimal. Indeed, it can be shown that, when an arc flow is set to the breakpoint value at

an optimal solution, that arc must belong to all active paths for all commodities using it.

Thus, breakpoints correspond to bottleneck arcs where the total traffic is exactly equal to

the breakpoint value, i.e.
∑

k∈Ke
tk = γec0e. Thus, any perturbation of one of the demands

flowing through arc e will shift the arc flow value by the same quantity and consequently

get out of the breakpoint. That observation tends to induce the fact that the number g of

breakpoints at a local minimum will remain quite low.

Negative cycle optimality conditions

Let x be a feasible solution of (CCE). We will call a cycle Θ k-augmenting if it presents

a strictly positive residual for commodity k, i.e. if we can augment the commodity flow

value xk
e on the direct arcs of Θ and reduce these values on the reverse arcs. In our model,

a k-augmenting cycle is such that all reverse arcs carry a positive value of commodity k.

The set of arcs which carry some positive k-flow will be denoted hereafter by Ek.

Theorem 2 A feasible solution x∗ is a local minimum of (CCE) if and only if, for all

commodities k = 1, . . . , K, there does not exist any k-augmenting cycle with negative cost.

Proof : see [66].

Observe that the key fact which leads to the proof of the sufficient condition in the

second part of the proof of the precedent theorem are the inequalities expressed in (??)

and (??) to bound the reduced costs of the cycle. It works because, at the breakpoints,

f
′+
e (x∗) < f

′−
e (x∗) and the result could not have been extended to a convex non smooth

congestion function as already observed in [75]. As an illustration, let us come back to the

two-commodity flow example described in section 2.1. We will compare two uncapacitated

situations with different piecewise linear functions on the vertical arcs (the first one convex

and the second one concave as shown on Figure 2) and the same linear cost fe(xe) = xe on

the horizontal arcs so that the optimal solution is still to route both commodities on the

vertical arcs. In a first case, the arc cost functions are given by

• fe(xe) = xe for the horizontal arcs
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• fe(xe) = max{1, 2xe − 1} for the vertical arcs

Thus f is a convex function but non smooth at xe = 1. Again, let us take the feasible but

non optimal solution of Figure 1-[b]. However, there are no negative k-augmenting cycles

for both commodities1. We can check in particular that the cost of cycle Θ1 for commodity

1 is equal to 0.

ef  (x  )e

x e1

1

(a)

ef  (x  )e

x e1

1

(b)

Figure 2: Convex and concave arc costs

In the second case, the arc cost function is

• fe(xe) = xe for the horizontal arcs

• fe(xe) = min{1, 2xe − 1} for the vertical arcs

Each arc-cost function is now concave piecewise linear and, considering the same solution as

before, we can now find a negative cost cycle, for instance, for the first commodity, the cycle

Θ1 has cost -4 (Fig. 2-[b]). The relation between left and right derivatives at the breakpoint

is crucial to determine whether we can use the negative-cycle optimality condition or not.

3 From fixed-charge to multiple choice network de-

sign

Our basic separable arc-cost model includes many well-studied situations like concave-cost or

fixed-cost network design that we will briefly survey here before extending to more complex

functions like piecewise non linear or step increasing discontinuous cost functions. As many

interesting surveys already exist on different subjects, we will not try to be exhaustive

but mainly focus on strategies which aim at decomposing among commodities. Most of

1This counterexample for the convex case is due to E. Tardos [87]
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the contributions, well reported in Pardalos and Rosen’s survey [78], focus on Branch-and-

Bound like approaches applied to single-commodity or transshipment models, extending too

to location problems and Steiner trees.

General concave-cost network flow problems have been largely studied since the early

results by Tuy [88] and Zangwill [93] . Minimizing a concave function on a polyhedron is

known to be a NP-hard problem in the general case (see [89] for some polynomial algorithms

with series-parallel networks, see too [79]) and early algorithms have relied on Branch-and-

Bound associated with linearization techniques ( Yaged [92], [45]) or greedy heuristics (cite

Minoux [69] or Balakrishnan and Graves [6]). Applications to packet-switched communica-

tions networks have been early studied by Gerla and Kleinrock [43] where they separated

the design and routing costs and observed that a global minimum can be reached when the

concave cost function follows a power law fe(xe) = aex
α
e + be. See too [2] for mixed-integer

formulations of the piecewise linear and nonlinear concave functions and use of Lagrangian

Relaxation. Lagrangian heuristics have too been tested with relative success [73]. A com-

prehensive survey can be found in [13].

We now discuss the fixed-charge uncapacitated network loading problem (FCUNL) which

is too a basic brick in the modelling of challenging network design problems. By the way, the

piecewise linear concave cost network flow problem can be modelled as a FCUNL as shown

in [54], at the cost of increasing the number of arc decision variables. On the other hand,

any FCUNL model can be viewed as a step or piecewise affine cost network flow problem.

The cost function is generally represented by the following discontinuous function :

fe(xe) =

{

Fe + cexe for xe > 0
0 for xe = 0

It is then generally approximated by a concave piecewise affine function for a small value

ǫe > 0 as shown in Figure 3.

An efficient procedure based on a dual-ascent method to solve FCUNL has been proposed

by Balakrishnan et al [5]. The problem turns to be much more complex when capacities

bound the flow on each arc. The main reason is that the continuous relaxation of the

capacitated model is quite weak as discussed below while the uncapacitated polytope is

very close to be integral (see [47]).

Fixed-charge capacitated multicommodity network flow problems have been mostly

studied in the eighties and nineties decades.We send back the reader to the relatively recent

survey by Gendron et al [42] and the references therein. Modelling the problem as a mixed-

integer program substitutes the difficulty of handling piecewise linear approximations and

concave cost functions by the introduction of integer variables. The arc cost function is

thus f(x, y) =
∑

k

∑

e cekx
k
e +

∑

e Feye with ye ∈ {0, 1} and we add the following coupling

inequalities :
∑

k

xk
e ≤ ueye

where ue is the capacity of arc e.
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Figure 3: Piecewise affine concave approximation
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Lagrangian Relaxation has been applied by different authors to exploit the underlying

structure of the model, mainly in two directions : relaxing the coupling capacity con-

straints to decompose by commodity and obtain shortest-path subproblems or relaxing the

flow conservation constraints for all commodities to decompose by arcs and obtain knap-

sack subproblems. It is well-known (see [42] for a complete analysis) that the Lagrangian

lower bound is equal to the continuous relaxation bound which can be quite poor and a

much better bound is obtained with reduced additional costs by forcing the so-called strong

inequalities

xk
e ≤ bekye, ∀e, k

where bek is the maximum flow allowed on arc e for commodity k (i.e. the demand dk if no

individual capacities are imposed on arc e for commodity k).

Solving the Lagrangian dual problem can be a hard task when the number of dual mul-

tipliers increases and this has motivated the use of sophisticated subgradient algorithms

like bundle methods [36] or the volume algorithm [8]. Crainic et al [29] have reported ex-

tensive computational results with the bundle method on a large set of instances with up

to 30 nodes, 700 arcs and 400 commodities. A rather surprising fact is that the ’knapsack

relaxation’ performs better, probably because the min-cost flow subproblems in the ’capac-

ity relaxation’ are highly degenerate. As usual, the gap can be reduced by adding valid

inequalities if their separation procedure is not too costly. Further reduction of the gap to

compute exact solutions of (MCF) needs branching and the construction of Branch-and-

Cut algorithms. The polyhedral structure of the multicommodity flow solution set has been

studied by various authors (see [62, 86, 9]). Bienstock and Günlük [19] have analyzed linear

capacitated network design problems and they gave in [20] a set of valid inequalities for the

MCF-polytope, results which led to a Branch-and-Cut algorithm (see too [21]).

Heuristic approaches have been too applied to network design problems, including ca-

pacitated MCF, to obtain very reduced gaps on large instances ([17, 28, 52, 48]). Lagrangian

heuristics are able to produce nice feasible solutions on these instances by branching from the

fractional nearly feasible solution given by the bundle or the volume algorithms ([49, 56]).

Telecommunications network design problems, dealing with packet-switched traffic on

large multicommodity networks, have motivated the study of designing multiple facilities on

the candidate arcs, turning the complexity of these models even harder. General capacitated

network loading with two type of capacities has been modelled by Magnanti et al [63].

In the general case of linear transportation costs combined with discrete prices for each

facility, we obtain an equivalent piecewise affine increasing but discontinuous function (see

Figure ?? for a typical profile with economies of scale). Specific valid inequalities can be

devised for these cases like the residual capacity inequalities (see [3, 37]). That general

model includes the well-studied case of step increasing cost functions. Croxton et al [30]

have proved equivalence of different model structures for the piecewise linear cost case and

shown their direct link with the lower convex envelope of the discontinuous function (i.e.

the function which epigraph is the convex hull of the epigraph of the nonconvex original cost
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function). Different algorithmic approaches have been used in practice, see in particular

[31], [41] and [58], the latter authors exploring a dc (difference of convex functions) model

of the piecewise linear function (see too [40, 67]).

Another direction of active research to solve capacitated network design problems has

been the use of Benders decomposition to derive dual subproblems and new family of

valid cuts (see [42] for a general presentation and [25] for a survey on the uncapacitated

and capacitated fixed-charge design problems) and various enhancements of that classical

approach have been motivated by the network design models ([61, 63, 82, 33]). Generalized

Benders decomposition can be too an interesting solution procedure to exactly solve difficult

capacity and flow assignment problems with convex flow costs [64], as the subproblems

reduce to convex multicommodity network flow problems for which efficient algorithms

have been proposed (see [76] for a survey). We will get back to these nonlinear models

studying the capacity expansion problem in the next section.

Finally, we observe that MCF is a special case of general MINLP (Mixed-Integer Non-

linear Programming) for which recent developments are promising (see [46] and [23] for a

survey). Many potential applications of these new algorithms have a potential multicom-

modity structure like water networks [22], gas networks [68, 4], energy networks [74, 32] or

transportation networks [39], and naturally communications networks remain a very rich

field for challenging network design problems (see for example [72] and [24]).

We will now consider specific contributions to the special situation where we want to

expand (and buy) capacities on some arcs of a formerly dimensioned network to support

additional demand across the network.

4 A continuous model for capacity expansion

4.1 Continuous Vs discrete models in network design

Back to model (MCF), we will use in parallel the implicit arc-path model which is designed

in the following classical way.

Given a commodity k, we consider a given set of directed paths Pk joining the corre-

sponding origin and destination. This set may be the set of all simple directed paths or

a restricted set of feasible paths, for instance with a limited number of hops. Let ξkp be

the amount of flow of commodity k through the path p ∈ Pk and akp its arc-path incidence

vector defined by

aekp =







1 if arc e ∈ p

0 otherwise

Each component xe of the vector x denotes the total flow on arc e. Then xe =
∑

k

∑

p∈Pk
aekpξkp.

The set of multicommodity flow vectors, denoted by M(G, T ) can be described, either by

the implicit arc-path formulation, i.e. , for each commodity k flowing between nodes ok and

dk, the active paths must satisfy
∑

p ξkp = bk. We assume now a
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Feasibility assumption : There exists x ∈ M(G, T ) such that xe < c0e, ∀e ∈ E.

This means that the initially installed capacities c0 are strictly sufficient to flow the

traffic. We assume now that each arc in the topology is expandable to a capacity c1e ≥ c0e
at a given fixed cost πe. Let δe = c1e − c0e be the increment of capacity. The capacity

expansion model will minimize the total congestion cost plus the expansion fixed costs.

Using the previously defined arc congestion cost functions Φ(ce, xe), we can define first a

mixed-integer non linear model for the capacity expansion problem :

(DCE)

Minimize
∑

e[Φ(c0e + δeye, xe) + πeye]
subject to x ∈ M(G, T )

xe ≤ c0e + δeye, ∀e ∈ E
ye ∈ {0, 1}, ∀e ∈ E

We will now study the relationship between (DCE) and a continuous model which gets

rid of any boolean decision variables y :

(CCE)
Minimize f(x) =

∑

e fe(xe) =
∑

e min{Φ(c0e, xe),Φ(c1e, xe) + πe}
subject to x ∈ M(G, T )

xe ≤ c1e, ∀e ∈ E

Remarks :

1. As shown on Figure 2 where the non convex resulting arc cost function of (CCE) is

represented, we denote by γec0e with 0 < γe < 1, the breakpoint at which expansion

occurs. γe can thus be interpreted as the relative congestion of an arc beyong which the

network manager is willing to pay for expansion. Thus πe = Φ(c0e, γec0e)−Φ(c1e, γec0e)

is the expansion price converted in congestion cost units.

2. The arc cost function in (CCE) is continuous but non convex and non smooth at the

breakpoint γec0e. It is shown in [59] how one can easily compute a lower bound on

the optimal value of (CCE) by convexifying each arc cost function and summing up

the resulting gaps.

Trivially, if (x, y) is feasible for (DCE), x is feasible for (CCE). The following lemma is

a direct consequence of the cost structure of (DCE).

Lemma 1 Let (x∗, y∗) be an optimal solution of (DCE); then, we have the correspondences :

x∗

e > γec0e =⇒ y∗e = 1

x∗

e < γec0e =⇒ y∗e = 0

Moreover, if there exists an arc e with x∗
e = γec0e, then y∗e can be either 0 or 1, so the

optimal solution is not unique.
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Proof The two cases where x∗
e is not a breakpoint are straightforward. If x∗

e = γec0e, we

have :

Φ(c0e, γec0e) = Φ(c1e, γec0e) + πe

which shows that the value of the arc cost function does not change whenever y∗e is 0 or 1.

✷

The correspondence between optimal solutions of (DCE) and (CCE) follows immediately :

Theorem 3 i) If (x∗, y∗) is an optimal solution of (DCE), then x∗ is optimal for (CCE)

and the cost values are equal.

ii) If x∗ is an optimal solution of (CCE), then (x∗, y∗) is optimal for (DCE) with :

y∗e











= 0 if 0 ≤ x∗
e < γec0e

= 1 if γec0e < x∗
e < c1e

∈ {0, 1} if x∗
e = γec0e

Observe that these results apply to optimal solution. We have analyzed before local

optimal solutions of (CCE). The concept of a local optimal solution of (DCE) is not clearly

defined because of the discrete nature of variables y. But using the correspondence defined

above in theorem 1 part ii), we can define such a local optimum for (DCE).

Finally, we would like to point out that the tight relationship between the optimal

solutions of both models does not mean that they are equivalent. The continuous model is

in general not able to take in consideration additional constraints on the topology which, in

the contrary, can be generally done by the y-variables. Nevertheless, we will mention a few

common situations where it is possible to convert such constraints from (DCE) to (CCE) :

a. Many models of network design require symmetry of the link capacities. This is easily

modelled in (DCE) by the constraint yij = yji for some arc e = (i, j). To obtain the

same effect, we must add the following constraint in (CCE) :

((xij − γijc0ij)((xji − γjic0ji) ≥ 0

b. Cutset constraints : Let A be a subset of nodes of V and CA the corresponding cutset.

Forcing the subset A to be connected to the other nodes by at least one arc can be

modelled in (DCE) by
∑

e∈CA
ye ≥ 1, which is equivalent in (CCE) to :

max
e∈CA

xe

γec0e
≥ 1

Observe that both constraints derived in a. and b. define polyhedral non convex regions of

IRm.
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4.2 Local minimization by cycle-canceling algorithm

Based on the local optimality conditions described above, a cycle-canceling algorithm has

been derived in [?] with two main characteristics :

• Successive cycle canceling steps are performed by moving the flow of one commodity

at a time, so that the algorithm is a decomposition method.

• Nonlinear and non smooth arc cost functions are allowed, as long as right derivatives

are not greater than left derivatives at the breakpoints.

The algorithm makes use of the concept of k-feasible negative cycles where it is allowed to

increase strictly the k-th flow and thus strictly decrease the cost function. Referred to as

(CCA) in the following tables, it includes an adaptation of Barahona-Tardos [10] technique

to select the most negative family of node-disjoint cycles.

The algorithm is resumed below :

Algorithm NOME

• Find a feasible initial solution x0; t = 0

• If there exists no k-feasible cycle with negative cost, then stop : xt is a local minimum

for (CCE)

• For some k, let Θt be a k-feasible cycle such that λ(xt,Θt) = |Θt|λk(x
t) and, for each

arc e ∈ Θt, compute the greatest step αe such that :



















f ′
e
−(xt

e + αe) ≤ f ′
j
+(xt

e)− λ(xt,Θt) if e ∈ Θ+
t and xt

e ≥ γc0e
f ′
e
−(xt

e + αe) ≤ f ′
j
+(xt

e)− λ(xt,Θt) andαe ≤ γc0e − xt
e if e ∈ Θ+

t and xt
e < γc0e

f ′
e
+(xt

e − αe) ≥ f ′
j
−(xt

e) + λ(xt,Θt) andαe ≤ min{xkt
e , x

t
e − γc0e}, if e ∈ Θ−

t and xt
e > γc0e

f ′
e
+(xt

e − αe) ≥ f ′
j
−(xt

e) + λ(xt,Θt) andαe ≤ xkt
e , if e ∈ Θ−

t and xt
e ≤ γc0e

(4)

• αt = mine∈Θ{αe}

xk,t+1 = xkt + αtθt (5)

• t := t + 1

where θt in the update formula (5) denotes the incidence vector of the cycle Θt.

The complexity of that computation is only apparent, as we can observe that, in many

cases, a larger step can be performed when one reaches the breakpoint value. Indeed,

suppose that xt
e < γc0e and that the flow augments until xt

e+αe = γc0e with f ′
e
−(xt

e+αe) <

f ′
j
+(xt

e)− c(xt,Θt). Then, as f
′
e
−(xt

e + αe) > f ′
e
+(xt

e + αe), we can still augment the flow in

the interval [γc0e, c1e) corresponding to the adjacent subregion. That remark justifies the

fact that the one-dimensional search on the negative cycle can be directly performed on the
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whole interval [0, c1e), even if the function is non convex and non smooth. The situation

where one arc is set to its kink value is however possible, even if numerically unlikely as

it can be seen as a generalization of the trivial case of one arc supporting one commodity

which demand is exactly equal to γc0. Convergence to a local minimum is guaranteed by

the following central lemmas :

Lemma 2 After each cycle canceling step of algorithm (NOME), the objective function

strictly decreases.

The proof may be found in [?]

The second lemma, first proved in [?] for minimum convex-cost flow problems, produces

a lower bound on the minimum-mean cycle length at each iteration.

Lemma 3 (Karzanov and Mac Cormick) For any feasible multicommodity flowxandforeachcommodity

is a lower bound of λk(x) if and only if there exist node potentials πki and the corresponding

tensions tke = πkj − πki for each arc e = (i, j) such that

xxxx

Theorem 4 Suppose there exists a strictly feasible multicommodity solution to the problem

with capacities c1j for all j ∈ A, then the sequence generated by algorithm CCA with feasible

step sizes converges to a point which satisfies the local optimality conditions of (CCE).

Proof The objective function is currently continuously differentiable on the whole inter-

vals. Then, as the direction is sufficiently decreasing by lemma 2 and the Armijo’s condition

is always satisfied when the step is not limited to the interval bounds, it is a well-known

result (see for instance [35]) that the method will converge and each limit point is such that

the gradient of f is zero or, equivalently, there are no negative cost k- feasible cycles for all

commodities. ✷

Observe that, in the original paper by Weintraub [90], many assignment subproblems

are solved at each step to approximate the most helpful cycle, in the sense of minimizing the

decrease of the objective function after the flow update. This choice was exploited later by

Barahona and Tardos [10] to obtain a polynomial algorithm in the linear case. Our choice

is different as it relies on the idea of an approximation of the steepest-descent direction.

4.3 Towards global optimization of (CCE)

Encouraged by the quality of local optimal solutions, further enhancements have been pro-

posed in [84] and [34] towards global optimization of the capacity expansion model.

In the first reference [84], tabu search is implemented to improve locally the local min-

imum. The authors reported significant improvements in a majority of instances, mainly

when the initial local optimum presented more arcs at the breakpoints values.

In [34], the authors proposed an implicit enumeration scheme which was tested on a

large set of non convex instances of (CCE). These tests include comparisons with global
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solvers like BARON [?] and LINDO Global [?]. We present below some illustration of the

most advanced numerical comparisons issued from the references cited before.

We first compare the algorithm (NOME) proposed above with the classical Capacity

Assignment - Flow Assignment (CA-FA) approach for the (CFA) problem. The CA-FA

algorithm (see [38], [43]) alternates between a capacity assignment phase with fixed routing

and a flow assignment phase with fixed arc capacities until no further improvements are

possible. In order to apply the CA-FA algorithm to the (CCE) model, we must decide

which one of the two capacities c0e and c1e (consequently wich one of the two ’active’

congestion functions Φ(c0e, xe) and Φ(c1e, xe)) assign whenever an arc e is at the breakpoint,

i.e. xe = γc0e. Suppose that a feasible routing is given in which an arc e is at the breakpoint

and let C1 and C2 be the two subregions associated with the two intervals [0, γc0e] and

[γc0e, c1e). At the capacity assignment phase let us assign, without loss of generality, c0e to

such an arc. Let us assume that the routing does not change in the flow assignment phase

and the algorithm stops. Note that CA-FA does not necessarily stops at a local minima of

(CCE).

The convex approximation proposed by Luna and Mahey [59] is used to generate lower

bounds of the global minima and initial solutions for both algorithms. The procedure ex-

plores the separability of the objective function convexifying each arc cost function. It

allows the use of efficient algorithms for convex multicommodity flow problems. In particu-

lar, the Proximal Decomposition method described in Mahey et al. [65] can be used to solve

the convex multicommodity flow problems found in the initial convex approximation and in

the routing phases of the CA-FA algorithm. Larger networks with different topologies were

already used by Resende and Ribeiro [80] in the context of private virtual circuit routing.

In these problems, a frame relay service offers virtual private networks to customers by

provisioning a set of permanent (long-term) private virtual circuits between endpoints on a

large backbone network. Table 1 summarizes the characteristics of the networks considered.

Instance Topology |V | |E| K
att AT&T Worldnet backbone 90 274 272
fr250 Frame-relay 60 688 250
fr500 Frame-relay 60 906 500
hier50 2-level hierarchical 50 148 245

Table 1: Network characteristics.

We solved to local optimality the (CCE) model on the topologies shown in Table 1

fixing the ratio c1e/c0e = 4 and the parameter γ = 50% (as these had been the most

difficult scenarios in our preliminary experiments). Table 2 displays the results obtained

when first performing CA-FA and then NOME. We report, for the initialization phase,

the relative deviation, and, the iterations and the computational time in seconds to solve

the convex approximation with the Proximal Decomposition algorithm proposed by Mahey

et al [65]. Then, we report, the relative deviation and the number of arcs indicated for
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expansion at the local optima obtained. In the three last columns, we report: the total

number of iterations needed by the Proximal Decomposition algorithm and, in parenthesis,

the number of convex routing problems solved by the CA-FA; the iterations needed by the

NOME; and, the total time in seconds to obtain the local optima given the initial solution.

Initial Solution Local Optimum
tk d(%) it s d(%) exp it (CA-FA) it (AC) s

att 1 27.5 2302 741 21.0 122 426 (2) 0 426
fr250 1 69.0 191 88 42.3 55 718 (4) 0 429
fr250 2 61.8 177 84 33.7 189 1933 (5) 120 4332
fr500 1 65.8 255 311 39.8 162 902 (3) 0 1423
fr500 2 41.8 234 295 27.2 387 6796 (11) 0 9500
hier50 1 36.6 1270 125 29.4 86 3715 (4) 53 440
hier50 2 9.3 2827 294 7.2 119 3175 (3) 0 333

Table 2: Results for larger networks with c1e/c0e = 4 and γ = 50%.

Our main interest in conducting these experiments is to verify that we can significantly

improve feasible solutions obtained by convex approximation applying a local optimization

procedure. For these larger networks, the average and the maximum deviation reductions

are 16% and 28.1% respectively. It is worth to note that in 2 out of 7 cases the solution ob-

tained by CA-FA was not a local minimum since NOME was executed for some iterations.

Further improvements that lead to a global optimization method can be found in [34].

5 Concluding remarks

We have proposed a survey on nonconvex multicommodity flow problems focussing on sep-

arable continuous models which are currently solved or approximated by MINLP schemes.

Starting from the constatation that local optimality conditions can decompose by commodi-

ties in some specific situations like the piecewise convex case which is a current model in

telecommunications network design with QoS driven cost functions.
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