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ABSTRACT
Information incompleteness is a major data quality issue
which is amplified by the increasing amount of data col-
lected from unreliable sources. Assessing the completeness
of data is crucial for determining the quality of the data it-
self, but also for verifying the validity of query answers over
incomplete data. While there exists an important amount
of work on modeling data completeness, deriving this com-
pleteness information has not received much attention. In
this work, we tackle the issue of efficiently describing and in-
ferring knowledge about data completeness w.r.t. to a com-
plete reference data set and study the use of a pattern alge-
bra for summarizing the completeness and validity of query
answers. We describe an implementation and experiments
with a real-world dataset to validate the effectiveness and
the efficiency of our approach.
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1. INTRODUCTION
Information incompleteness is a major data quality issue

that is exacerbated by the growing number of applications,
collecting data from distributed, open, and unreliable en-
vironments. Sensor networks and data integration are sig-
nificant examples in which data incompleteness naturally
arises due to hardware or software failures, data incompat-
ibility, missing data access authorizations etc. In all these
situations, querying and analyzing data can lead to deriv-
ing partial or incorrect answers. Extensive effort has been
devoted to representing and querying incomplete databases
[11, 8, 3, 7, 13, 16]. The common characteristics of these
approaches is the use of some intensional or extensional in-
formation about completeness for deciding whether a query
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returns complete answers and, in some cases, for annotat-
ing the query answers with some completeness meta-data.
Despite these efforts, reasoning about data completeness re-
mains tricky due to the complexity of exhaustively repre-
senting and deriving information about available and miss-
ing data in large datasets.

In many situations, datasets and query results are ex-
plicitly or implicitly depend on some complete reference
(or master) datasets to describe their expected full extent.
For instance, sensor databases are usually construed within
a spatio-temporal reference delimiting the coverage of the
captured data. It is also believed according to [9] that 80
% of enterprises maintain master data with their analyti-
cal databases (customers informations, product) . In other
data-centric applications, a reference is defined by domain
experts during database design and updated when neces-
sary. Finally, it may also sometimes be useful to use an
existing table or query result as a reference for deriving a
comprehensive representation about available and missing
information in some specific context.

Representing information completeness. To understand
the importance of using reference datasets for assessing data
completeness, consider the database in Table 2 which depicts
an example of a sensor database. The table Energy reports
on daily energy measurements for some locations specified
by floor (fl) and room (ro). This database is endowed
with a spatial reference MAP describing all locations in
some building and a calendar CAL indicating the expected
temporal coverage (Table 1). Observe that both reference
data sets are not necessarily validated master data but might
have been built by an expert for a specific analysis task.

Table 1: Reference tables

MAP fl ro

f1 r1
f1 r2
f2 r1

CAL we

w1
w2

×
da

Mon
Tue

For various reasons, the current database misses some val-
ues that are pinpointed in grayscale in the Energy table.
Assume that an analyst wants to gain a full knowledge about
the segments of the data that are available or missing. To
facilitate her understanding of the data, the analyst would
like a summarized version of the completeness information
and may opt for a pattern-based representation like the one
presented in Table 3. This figure shows two tables PE and
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Table 2: Data table

Energy fl ro we da kWh
t0 f1 r1 w1 Mon 10
t1 f1 r1 w1 Tue 12
t2 f1 r1 w2 Mon 10
m0 f1 r1 w2 Tue ⊥
t3 f1 r2 w1 Mon 8
t4 f1 r2 w1 Tue 10
m1 f1 r2 w2 Mon ⊥
m2 f1 r2 w2 Tue ⊥
t5 f2 r1 w1 Mon 12
t6 f2 r1 w1 Tue 7
t7 f2 r1 w2 Mon 8
t8 f2 r1 w2 Tue 8

PE capturing the available and the missing information of
table Energy respectively. More exactly, table PE contains
pattern tuples that capture all partitions which are complete
w.r.t. the reference. For instance, pattern tuple p0 indicates
that all measurements pertaining to week w1 are available,
whatever the values of floor, room or day are. Pattern p3
in table PE reports that no measure can be found for room

r2 and week w2. This representation is compact as it only
reports on the largest possible partitions that are complete
(resp. missing) in the data. It is also covering as it re-
ports on every possible maximal complete (resp. missing)
partition of the data. Without this presentation, the analyst
might have to issue several queries without any guarantee of
deriving an exhaustive information about completeness that
the pattern representation offers in a rather natural manner.

Table 3: Completeness pattern tables of Energy

PE fl ro we da

p0 ∗ ∗ w1 ∗
p1 f2 ∗ ∗ ∗
p2 f1 r1 ∗ Mon

PE fl ro we da

p3 ∗ r2 w2 ∗
p4 f1 r1 ∗ Tue

Analyzing information completeness. Pattern tables can
become very large due to randomness of missing information
and may not be easily analyzed by hand. Querying pattern
tables with SQL turns out to be a convenient means for
extracting and reasoning about data completeness. In our
example, if an analyst wants to identify the floors where all
measures are available, she could issue the following query
on PE and notice that, since p1 is the only pattern satisfying
the predicate of Q0, the only floor satisfying her criteria is
f2.

Q0 : select f l from PE

where ro=’ ∗ ’ and we=’ ∗ ’ and da=’ ∗ ’

Querying pattern tables have another interesting applica-
tion when it comes to extracting completeness information of
query answers obtained from incomplete input tables. One
solution consists in evaluating a query over the data and in
extracting afterwards the completeness of the query answer
from the corresponding reference dataset. However, extract-
ing completeness patterns is costly and it often is more ef-
fective to derive the completeness patterns of query answers

directly from the patterns of the input data. To illustrate
this idea, consider Q1 which retrieves all measures referring
to week w2:

Q1 : select ∗ from Energy where we = ’w2 ’ ;

By evaluating Q1 over PE and PE respectively, we obtain
Table Q1(PE) and table Q1(PE): Q1 produces a complete

answer for floor f2 while the first tuple in Q1(PE) indicates
that no answer is returned for room r2 during week w2:

Q1(PE) fl ro we da

f2 ∗ ∗ ∗
f1 r1 ∗ Mon

Q1(PE) fl ro we da

∗ r2 w2 ∗
f1 r1 w2 Tue

The pattern completeness model can also play a crucial
role for validating the correctness of aggregation queries an-
swers. When such queries are applied on incomplete data,
the values resulting from aggregating incomplete partitions
are simply incorrect and there is means to notify this fact
to the user. To illustrate the role of the pattern model in
detecting potential problems with aggregation queries, con-
sider Q2 which sums the energy consumption over all day
values.

Q2 : select f l , ro , we , sum(kWh) as kWh
from Energy

group by f l , ro , we

This query returns both valid and non-valid answers pro-
duced by complete and incomplete partitions respectively.
Incomplete partitions producing incorrect results can easily
be identified by patterns for which the value of the attribute
day is a constant instead of ∗. These ”incompleteness” pat-
terns are separated from the correct partitions in Q2(PE)
and Q2(PE).

Q2(PE) fl ro we

∗ ∗ w1
f2 ∗ ∗
f1 r1 ∗

Q2(PE) fl ro we

∗ r2 w2
f1 r1 ∗

Annotating query results. Completeness pattern tables
also can be used for rewriting aggregation queries to au-
tomatically annotate the produced results. For example,
Table 4 shows the annotated result of query Q2 where com-
pleteness information is directly extracted from P2 and P̄2.

Table 4: Annotated Query Answer

Result Q2 fl ro we kWh annot
f1 r1 w1 22 ok
f1 r1 w2 10 incorr
f1 r2 w1 18 ok
f2 r1 w1 19 ok
f2 r1 w2 16 ok

This result can be obtained by rewriting Q2 into a union
of two queries separating the correct and incorrect answers.
For example, for generating the subset of correct results gen-
erated by complete partitions, we use the following query
rewriting for Q2 :
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Qcomplete :
select f l , ro , we ,

sum(kWh) as kWh, ’ ok ’ as annot
from Energy d natural join P p

where (d . f l = p . f l or p . f l = ’ ∗ ’ )
and (d . ro = p . ro or p . ro = ’ ∗ ’ )
and (d . we = p . we or p . we = ’ ∗ ’ )
and p . da = ’ ∗ ’

group by f l , ro , we

The partition of incorrect and incorrect results can be
generated by changing the last filter into p.da != ’∗’. In a
similar way, it is straightforward to to define a SQL query
which generates the set of missing answers by joining the
reference data set with the missing pattern table.

The last use-case shows another benefit of completeness
patters when joining data tables. Consider that an analyst
wants to exploit the result of Q2 to derive the consumption
per square meter. To do so, she join the result of Q2, which
has been materialized in the table EnergyWeek, with the
table Surface, which contains the surface of room r1 on
both floors.

Q3 : select f l , ro , we , kwh/M2 as kWh m2
from EnergyWeek natural join Surface ;

In this case, the completeness pattern table Q3(PE,PS)
of Q3 can be generated by joining the pattern table Q2(PE)
and the pattern table PS of table Surface.

PS fl ro

* r1

Q3(PE,PS) fl ro we

* r1 w1
* r1 w1

Contributions. In this article we are interested in reason-
ing with relative information completeness in general and in
analyzing query answers over incomplete datasets. This set-
ting is of interest for many practical situations where data
analysts need to assess the quality of complex queries. Our
main contributions are the following:

• a new data completeness model based on the notion of
minimal completeness pattern cover for summarizing
relative completeness information ;

• a new sound and complete pattern algebra extending
the relational algebra with two fundamental operators,
allowing for generating and transforming completeness
pattern covers ;

• an implementation and an experimental evaluation on
a real-world sensor dataset, on top of a standard rela-
tional DBMS.

Paper Outline. The rest of the article is structured as fol-
lows. Section 2 discusses related work. Section 3 introduces
the pattern model as well as the notions of completeness
and correctness of SQL queries. The pattern algebra and
some applications of pattern queries are presented in Sec-
tion 4. Section 5 describes our solution for processing and
optimize pattern queries using standard relational database
technology and presents two algorithms for generating pat-
tern tables. The experimentations presented in Section 6
evaluate our approach on a real-world sensor dataset.

2. RELATED WORK

Modeling Information Completeness. Information com-
pleteness is a major data quality issue that received at-
tention in several contexts [12, 1]. In the database con-
text, data completeness usually addresses the question of
query answer completeness under two different settings: the
Closed-World-Assumption (CWA) which considers that the
database contains all tuples while some of them might have
null values [6], and the open-world assumption (OWA) which
considers, in addition to the possibility of attributes with
null values, tuples which are missing in the database.

Under the OWA setting, some line of work considers using
reference database DBC which can be either virtual or ma-
terialized to capture the full extent of data. A standard way
for representing the completeness of a database DB w.r.t.
a virtual database DBC consists in defining complete infor-
mation as views over DBC [11, 8, 13]. Deciding whether a
query is complete then relies on determining whether this
query can be rewritten into queries that can be answered on
DBC using the defined views.

Our work is more reminiscent to the relative information
completeness line of work using materialized reference (mas-
ter) datasets [3]. In this work, given a database DB and a
master database DBC , deciding whether DB is complete for
a query Q resorts to finding a set of containment constraints
V of the form q(DB) ⊆ p(DBC) where q is a query on
DB and p is a projection on DBC . The complexity bounds
obtained for different languages used for expressing queries
and containment constraints demonstrate the difficulty of
reasoning about information completeness [3]. Our pattern
tables can be considered as exhaustive sets (disjunctions) of
conjunctive containment constraints. Our goal within this
setting is not only to decide if the answer is complete, but
also to compute all containment constraints (patterns) sat-
isfied by the query answer.

[16] introduces m-tables (inspired from c-tables [6]) for
representing completeness information and an algebra over
m-tables for annotating query answers with certainty infor-
mation. Our completeness patterns can be assimilated to
extended tuples in the m-tables model, by substituting m by
∗. This theoretical model is more expressive than our pat-
tern based model, but also has more practical issues than
our model which can efficiently be implemented by using
standard relational database technology.

Pattern-based Completeness Models and Algebras. The
seminal work of [11] suggests a model based on meta tuples
that describe data integrity (completeness and correctness)
constraints. Meta relations are similar to our pattern tables,
where meta tuples are used to define available, valid and in-
valid data and to encode logical views over virtual complete
and correct data tables. Query completeness checks if there
exists a rewriting of the query using only complete views.
Another idea of this early work is the definition of an algebra
that manipulates meta tuples for producing sound (but not
complete) sets of meta tuples satisfied by an input query.

More recently, [13] presents an approach which consists
in associating completeness patterns to data tables and an
algebra for querying patterns to produce query answer com-
pleteness information. From this work we adopt the ap-
proach of using patterns and of defining an algebra to ma-
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nipulate these patterns. In [13] completeness patterns de-
scribe the extent of data completeness as views over a virtual
complete database, whereas we suppose that completeness
of a data table or query answer is automatically assessed
w.r.t. a materialized reference table. This introduces an
additional practical and semantic dimension for analyzing
quality issues of data and query results related to informa-
tion incompleteness.

The work in [7] analyzes different types of partial result
anomalies engendered by data incompleteness. The data
completeness model distinguishes between cardinality (in-
complete, phantom, indeterminate) and correctness (credi-
ble and non-credible) anomalies at different granularity lev-
els (input, operator, column, partition). The authors also
study how these anomalies are propagated within a query
plan. We follow the same approach regarding completeness
propagation using operators at the granularity of partition
(down to individual tuples). We derive raw completeness
informations from reference data whereas [7] derives com-
pleteness information from observed physical access anoma-
lies.

Query Result Correctness. In our setting, correctness does
not deal with the validity of data tuples w.r.t. logical con-
straints as in [11, 8], but is more related to the concept
of summarizability [10]. The notion of summarizability was
first introduced by [14] in the context of statistical databases,
where it refers to the correct computation of aggregate val-
ues with a coarser level of detail from aggregate values with
a finer level of detail. One of the summarizability condi-
tions defined in [14] is completeness which checks if all el-
ements in a cluster (coarser level) exist and are attached
to some cluster. In our setting, this mainly corresponds to
the constraint that the partitions (clusters) generated by the
group-by clause of an analytical query are complete. As we
we will show in Section 4.2, our pattern model and algebra
also allows us to identify and filter incomplete partitions.

Provenance and explanations. Many existing work deals
with deriving explanations for missing answers [5, 4] or with
answering why-not questions [17, 2]. These works assume
the data to be complete and focus on understanding the
behaviour of queries rather than on evaluating the impact
of incomplete data on the completeness and the validity of
queries with aggregation.

3. DATA MODEL

3.1 Reference tables and completeness
The main extension of our data model with respect to the

relational data model is the possibility to define reference
tables for representing completeness constraints over data
tables.

Definition 1. Let D and R be two relational tables such
that D contains all attributes A of table R. Table R is called
a reference table for data table D with reference attributes
A and the pair T = (D,R) is called a constrained table.

Example 1. The Cartesian product MAP ×CAL of ta-
bles MAP and CAL in Table 1 is a reference table of
Energy with reference attributes A = {fl, ro, we, da}.

Observe that any table S(A,M) with key A and with null
values for attribute M can be decomposed into a constrained
table ∆(S) = (D,R) where measure table D ⊆ S contains
all tuples in S without null values and R = πA(S) contains
all key values in S. Similarly, we can build from any con-
strained table T = (D,R) a relational table Γ(T ) = R nD
with null values such that ∆(Γ(T )) = T .

Definition 2. A constrained table T = (D,R) with refer-
ence attributes A is complete iff R ⊆ πA(D).

Example 2. The constrained table T=(Energy, R) in Ta-
ble 2 is not complete forR = MAP×CAL but it is complete
for R=σwe=′w1′∧ro=′r1′(MAP×CAL)

3.2 Minimal pattern covers
In this section we introduce the notion of minimal com-

pleteness pattern cover as a comprehensive description of all
complete and empty data partitions in a constrained table.

Definition 3. Let A = {a1, a2, ..., an} be a set of reference
attributes where the domain of each attribute is extended
by a distinguished value ∗ called wildcard. A (completeness)
pattern p = [a1 : v1, a2 : v2, ..., an : vn] over A is a tuple
which assigns to each reference attribute ai ∈ A a value
vi ∈ dom(ai) ∪ {∗} in the extended domain of ai. A set of
completeness patterns P (A) = {p1, p2, . . . , pk} over a set of
reference attributes A is called a pattern table.

In the following we will denote by [∗] the wildcard pattern
where all attributes are assigned to wildcards. Observe that
a pattern table might contain only data tuples, i.e. pattern
tuples without any wildcards. Completeness patterns are
part of a generalization/specialization hierarchy defined as
follows.

Definition 4. A pattern p1 generalizes a pattern p2 if p1
can be obtained from p2 by replacing zero or more con-
stants by wildcards. Inversely, p1 specializes p2 if p1 can
be obtained from p2 by replacing zero or more wildcards by
constants.

We can show that this generalization/specialization hierar-
chy forms a semi-lattice with the wildcard pattern as top-
element and data tuples as bottom elements.

Definition 5. The instance I(p, S) of a pattern p in some
table S is the subset of tuples t ∈ S which are specializations
of p.

The instance I(p, S) of a pattern p = [a1 : v1, a2 : v2, ...,
an : vn] in some table S can be computed by a relational
selection I(p, S) = σcond(S) with filtering condition cond =∧

(ai = p.ai∨p.ai = ∗). It is then easy to show the following
properties of pattern instances:

• I([∗], S) = S;

• I(p, I(p, S)) = I(p, S);

• S ⊆ S′ ⇒ I(p, S) ⊆ I(p, S′).

The notion of instance can naturally be extended from pat-
terns to pattern tables P and constrained tables T = (D,R):
I(P, S) =

⋃
p∈P I(p, S) and I(p, T ) = (I(p,D), I(p,R)). The

following definition relates constrained tables to pattern ta-
bles:
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Definition 6. A constrained table T = (D,R) satisfies a
completeness pattern p, denoted by T |= p, if I(p,R) ⊆
I(p,D). A constrained table T satisfies a completeness pat-
tern table P if T satisfies all patterns in P .

It is easy to show that a constrained table T is complete
if it satisfies wildcard pattern [∗].

Definition 7. A pattern p2 subsumes a pattern p1, de-
noted by p1 v p2, if for all constrained tables T : T |= p2 ⇒
T |= p1.

Proposition 1. p1 v p2 if and only if p1 is a specializa-
tion of p2. (see proof in the Appendix)

In the following, we define several properties and relation-
ships connecting pattern tables to constrained tables which
are necessary to define the final notion of minimal pattern
cover.

Definition 8. A pattern table P covers a constrained ta-
ble T iff for all patterns p satisfied by T there exists a pattern
p′ ∈ P subsuming p.

Example 3. Pattern table PE in Table 3 covers the con-
strained table T = (Energy,MAP×CAL). When replac-
ing p0 = [∗, ∗, w1, ∗] by two patterns pa = [f1, ∗, w1, ∗] and
pb = [f2, ∗, w1, ∗] this is not true anymore, since pattern
p0 = [∗, ∗, w1, ∗] is satisfied by T but not subsumed by any
pattern in P − {p0} ∪ {pa, pb}.

Observe that a pattern table P covering a constrained table
T is not necessarily satisfied by T . In particular, any pattern
table containing the universal pattern covers all constrained
tables T .

Definition 9. A pattern table P strictly covers a constrained
table T if P covers T and P |= T .

Definition 10. A pattern table P is reduced if there exists
no pair of distinct patterns p ∈ P and p′ ∈ P such that p is
a generalization of p′.

Proposition 2. For each constrained table T , there ex-
ists a unique reduced strict cover P ∗(T ) called the minimal
pattern cover of T . (see proof in the Appendix)

Example 4. Pattern table PE in Table 2 is the minimal
pattern cover of constrained table T = (Energy,MAP ×
CAL).

3.3 Reasoning with minimal covers
Completeness patterns define data partitions and minimal

pattern covers can be used for reasoning about the com-
pleteness of these partitions. For example, by the definition
of minimal cover, we can show for all constrained tables
T = (D,R) where R 6= ∅ and all patterns p ∈ P ∗(T ) in the
minimal cover of T that:

• the instance I(p,D) is complete and not empty.

• the instances I(p′, D) of all specializations p′ of p are
complete (but might be empty) and

• the instances I(p′, D) of all generalizations p′ 6= p of p
are incomplete and not empty.

Similarly, let T = (D,R) denote the complement of T
where D contains all tuples “missing” in D w.r.t. R and
P ∗(T ) be the minimal cover of T . Then as before, we can
show for all T = (D,R) where R 6= ∅ and all patterns p ∈
P ∗(T ) in the minimal cover of T :

• the instance I(p,D) is incomplete and empty.

• the instances I(p′, D) of all specializations p′ of p are
empty (but might be complete) and

• the instances I(p′, D) of all generalization p′ 6= p of p
are incomplete and not empty.

We introduce the following attributes for characterizing
some completeness pattern p:

– E : I(p,D) is empty;
– N : I(p,D) is not empty;
– C : I(p,D) is complete;
– I : I(p,D) is incomplete;

For example, a pattern p is an E-pattern, if its partition
is empty. Then, an IE-pattern denotes a partition which is
incomplete and empty, i.e. missing.

Example 5. Consider a minimal cover P and its comple-
ment P given in Table 5. Figure 1 is a tree representation

Table 5: A pattern table and its complement
P A B C

a2 ∗ ∗
a1 b1 ∗
∗ b1 c1
a1 b3 c2

P A B C
a4 ∗ ∗
a1 b2 ∗
a3 ∗ c2
∗ ∗ c4

of patterns where each node at some level i in the tree cor-
responds to a pattern with i constant attributes. The wild-

Figure 1: Labeled completeness pattern lattice.

card pattern [∗] is the root, the first level corresponds to all
patterns [ai, ∗, ∗], [∗, bj , ∗] and [∗, ∗, ck] with one attribute
etc. The leftmost node at the second level denotes pattern
[a1, b1, ∗] ∈ P . All patterns in P are labeled CN (in blue)
and all patterns in P are labeled IE (missing, in red). All
ancestors of both kind of patterns nodes are N -patterns.
Pattern [a1, ∗, ∗] is incomplete (I), pattern [a2, b1, ∗] is C
(complete) and [a4, b1, ∗] is IE, i.e. missing.
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4. COMPLETENESS PATTERN ALGEBRA

4.1 Pattern queries and algebra
Let T = (D,R) be a constrained table and Q be a rela-

tional query which can be applied to D and R. Our goal
is to define a set of operators which allow us to compute
the minimal cover P ∗(T ′) of the result of T ′ = Q(T ) =
(Q(D), Q(R)). Suppose that there exists an operator . com-
puting the minimal cover of some constrained table T . Then
it is possible to obtain the minimal cover P ∗(T ′) of T ′ by ap-
plying .: P ∗(T ′) = .(Q(D), Q(R)) (see red dashed lines in
Figure 2). An alternative way is to rewrite Q(D) into a new

query Q̂(P,R) over a strict (not necessarily minimal) cover

P (T ) of constrained table T such that Q̂ takes as input the
couple (P,R) and produces the new couple (P ∗(T ′), Q(R))
(see blue solid line in Figure 2).

T = (D,R) T ′ = (D′, R′)

P (T ) P ∗(T ′)

Q

.

Q̂

.

Figure 2: Pattern queries

In the following we will show that it is possible to extend
the relational algebra RA with two operators unfold (/) and
fold (.) for transforming strictly covering (but not necessar-
ily reduced) pattern tables and to use this extended algebra
RAext = RA∪{., /} to define a new pattern algebra RApatt
over pattern tables.

Definition 11. The unfold operator /A(P,R) generates for
a given pattern table P and reference table R an equivalent
pattern table P ′ ≡R P where all values of attributes ai ∈ A
are constant values.

The unfolding /A(P,R) of a pattern table P on some at-
tribute set A w.r.t. its reference table R can be defined by
the following relational algebra expression:

/A(P,R) = πR.A,P.¬A(P 1θ/ R) (1)

where θ/ =
∧
aj∈A(P.aj = ∗∨P.aj = R.aj) for all attributes

in A and πR.A,P.¬A denotes the projection on attributes A
of R and on all attributes of P except A.

Example 6. Consider the following pattern table P and
the reference of Table 1. Unfolding a minimal pattern table
does not preserve minimality. For example, the third pattern
subsumes the second one in the result.

P fl ro we da

∗ ∗ w1 ∗
f2 ∗ ∗ ∗
f1 r1 ∗ Mon

/{fl}(P,R) fl ro we da

f1 ∗ w1 ∗
f2 ∗ w1 ∗
f2 ∗ ∗ ∗
f1 r1 ∗ Mon

Operator fold .ai is the inverse operator of /ai and gener-
alizes, when possible, all subsets S of patterns p ∈ S which
are equal for all attributes except for attribute ai into a sin-
gle pattern pai:∗ with a wildcard value for attribute ai = ∗:

Definition 12. The fold operator .ai(P,R) generates for
a given pattern table P and reference table R an equivalent
pattern table P ′ ≡R P where there exists no pattern pai:∗
and subset S ⊆ P ′ of specializations p of pai:∗ where pai:∗ =′

∗′ and pai:∗ is equivalent to S: 6 ∃pai:∗, S ⊆ P ′ : pai:∗ =
∗ ∧ {pai:∗} ≡R S.

To compute .A(P,R) we first compute the set M = R −
I(P,R) = R−D of all reference tuples missing in D1. Then,
let pai:∗ denote the pattern obtained from p by replacing
the constant value vi of attribute ai in p by a wildcard ∗.
The semi-join expression G(ai) = σai 6=∗(P ) nθ. M where
θ. =

∧
i 6=j(P.aj = ∗∨P.aj = M.aj) returns all patterns p in

P which cannot be generalized on ai: condition θ. is true for
all patterns p ∈ P where the pai:∗ is incomplete (its instance
in M is not empty). Then G(ai) = σai 6=∗(P )−G(ai) returns
the set of patterns p where pai:∗ is complete and we can
define the folding operator as follows:

.ai(P,R) = σai=∗(P ) ∪G(ai) ∪ {[ai : ∗]} × π¬ai(G(ai))

Observe that if there is no pattern p ∈ P where ai has a con-
stant value, thenG(ai) andG(ai) are empty and .ai(P,R) =
P .

Example 7. Consider the pattern table P ′ below.

P ′ fl ro we da

f2 ∗ ∗ ∗
f1 r1 ∗ Mon
∗ r1 w1 ∗
∗ r2 w1 ∗

Observe that

• σro=∗(P ′) = {[f2, ∗, ∗, ∗]},

• G(ro) = {[f1, r1, ∗,Mon]} and

• G(ro) = {[∗, r1, w1, ∗], [∗, r2, w1, ∗]} and thus {[ai :
∗]} × π¬ai(G(ai)) = {[∗, ∗, w1, ∗]}.

Therefore, .ro(P
′, R) returns PE in Table 3.

As for unfold, the fold operation is associative and can be
generalized on a set of attributes A = {a1, a2, ..., an}:

.A(P,R) =

{
P for A = ∅⋃
ai∈Ah

(.ai(.A−ai(P,R), R)) otherwise

(2)

In the following, /(P,R) (unfold all) and .(P,R) (fold all)
will denote the unfold and fold operations over all reference
attributes in P (andR). It is easy to show that .(/(P,R), R) =
P and /(.(D,R), R) = D

Using the extended relational algebra RAext, we can now
define a pattern algebra RApatt which consists in defining for
each relational operator op ∈= {σ, π,1,∪,∩,−} its counter-
part ôp ∈ {σ̂, π̂, 1̂, ∪̂, ∩̂, −̂}. Let P and P ′ be two strict
covers of constrained tables T = (D,R) and T ′ = (D′, R′).
Then we define the following pattern algebra RApatt = {σ̂,
π̂, 1̂, ∪̂, ∩̂, −̂} where each operator ôp is defined by using its
relational counterpart op and operators . and /:

ôp (P ) = . ( op (/(P,R)), op (R)) (3)

P ôpP ′ = . (/(P,R) op / (P ′, R′), R opR′) (4)

1Remind that since P is a strict cover I(P,R) ⊆ D.

6



Theorem 3. RApatt is sound and complete.

Proof. We show that for all relational operators op ∈
{σ, π,1,∪,∩,−}, constrained tables T = (D,R) and T ′ =
(D′, R′) with strict covers P and P ′ respectively, equations
5 and 6 are true:

ôp (P ) = . ( op (D), op (R)) (5)

P ôpP ′ = . (DopD′, R opR′) (6)

For proving soundness and completeness we use the two
equalities P = .(D,R) and D = /(P,R);
Soundness:

ôp (P ) = . ( op (/(P,R)), op (R)) = .( op (D), op (R))

P ôpP ′ = . (/(P,R) op / (P ′, R′), R opR′)

= . (DopD′, R opR′)

The first equality in both equations is obtained by definitions
3 and 4, respectively.
Completeness:

.( op (D), op (R)) = . ( op (/(P,R)), op (R)) = ôp (P )
(7)

.(DopD′, R opR′) = . (/(P,R) op / (P ′, R′), R opR′) (8)

=P ôpP ′ (9)

The last equality in both equations is obtained by definitions
3 and 4, respectively.

Safe projection. Using the extended relational algebra, we
also can define a specific operator called safe projection which
filters all complete partitions before projection. Let Aπ
denote the attributes removed by some projection. Then
θπ =

∧
ai∈Aπ (ai = ∗) filters all patterns which are incom-

plete for attributes Aπ. The safe projection operator π̂∗ first
folds all patterns over the attributes which are projected
out and filters all incomplete dimensions before projection.
This guarantees that the result only contains patterns cor-
responding to partitions which were complete w.r.t. the re-
moved attributes:

π̂∗¬Aπ (P,R) =(π¬Aπ (σθπ (.Aπ (P,R))), π¬Aπ (R)) (10)

Observe also that if P is already a minimal cover, projec-
tion produces a minimal cover without requiring a final fold
operation.

4.2 Pattern query examples
The extended relational algebra and the pattern algebra

can be used to define queries on pattern tables. Let T =
(D,R) be a constrained table with a strict cover P over
some reference attributes A.

Generating pattern and dimension tables. By definition,
the complete unfolding /(P,R) of P generates table D. On
the other hand, the complete folding .(P,R) of P generates
the minimal cover of T . Observe that we also can obtain
the same minimal cover by a complete folding .(D,R) of D.

Querying pattern tables. As mentioned in Section 3.3, it
is possible to check the completeness and emptiness of par-
titions in T using only information available in the minimal

cover P and its complement P . It is easy to show that sim-
ple selection over pattern tables is sufficient to check if a
given pattern p exists in some pattern table P or is a spe-
cialization/generalization of a pattern p′ ∈ P . For example
pattern [a5, ∗, ∗] is incomplete and not empty (IN) or com-
plete and empty (CE) since query σA=′a5′(P ∪ P ) is empty
(see Section 3.3).

Identifying complete partitions. Consider, for example
the SQL query with reference table R(fl, ro, we, da):

select f l , we , avg (khw) from D
group by f l , we

Let P be a strict cover of constrained table T = (D,R).
The completeness patterns of the result can be computed
by the projection π̂fl,we(P ) whereas the safe projection pre-
sented in Section 4.1 π̂∗fl,we(P ) retrieves the patterns of all
partitions with correct result.

Identify missing information in joins. Folding can be
used to analyze completeness issues in join queries and to
identify missing information in input data tables. For exam-
ple, consider a natural join T 1 S between two data tables T
and S sharing a set of attributes A. Then, .(πA(T ), πA(S))
returns a compact representation of all tuples in T that can
be joined with S whereas .(πA(T )− πA(S), πA(T )) returns
a compact representation of the tuples in S that are missing
with respect to T in order to produce a complete result.

5. PATTERN QUERY PROCESSING

5.1 Pattern query optimization and execution
As shown in Section 4.1 unfolding / can directly be trans-

lated into the relational algebra, whereas folding . over a set
of attributes needs recursion which is not expressible in re-
lational algebra (see Section 5.3 for implementations of .).
Based on these observations, it is possible to rewrite any
pattern query without folding into a relational query over
pattern tables and reference tables. We will illustrate this
by two examples with selection and projection.

Example 8. Let T = (D,R) be a constrained table strictly
covered by a pattern table P . Let σθσ (D) be a selection with
a filtering predicate θσ using only reference attributes. The
following pattern selection generates a minimal cover for the
result of Q:

σ̂θσ (P,R) = . (σθσ (/(P,R)), σθσ (R)) (11)

Unfolding is necessary to check the existence of tuples
in pattern instances. For example, in order to check if a
pattern p = (a1 : v1, . . . , ai : ∗, . . . , an : vn) satisfies a fil-
tering condition ai=ci, p must be unfolded on attribute ai.
As shown before, the final fold operation cannot be trans-
lated into relational algebra without recursion. However the
subexpression composed of a selection and an unfold can
be translated into the relational algebra and optimized us-
ing standard relational query rewriting. Starting from the
filtering expression Q = σθσ (/(P,R)) we can apply follow-
ing rewriting steps to obtain a more optimal expression in
relational algebra:

• replace /(P,R) by /A(P,R) unfolding P only over the
filtering attributes A = {ai, ..., ak} used in the filtering
condition θσ;
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• replace /A(P,R) by its relational definition and push
the selection condition θσ into the unfold rewriting:

Q = πR.A,P.¬A(P 1θ/ (σθσ (R)))

where θ/ =
∧
aj∈A(P.aj = ∗ ∨ P.aj = R.aj)

Finally, if the condition is a conjunction of equality pred-
icates ai = ci, all pattern attributes ai ∈ A can safely be
replaced by ai : ∗ and join can be replaced by semi-join:

Q = ({[A : ∗]} × (πP.¬A(P nθ/ (σθσ (R))), σθσ (R)))

The final query expression can directly be translated into
SQL.

Example 9. Consider the following more complex query
expression over the same constrained table (D,R):

Q = πfl,ro,we,da(σfl=′f1′(D))

Let P be a strict (not necessarily minimal) cover of D
and R = MAP × CAL. By applying similar rewriting
steps as before, we can obtain the following pattern query
which generates a strict cover of the constrained query result
(Q(D), Q(R)):

{fl : ∗} × πP.ro,P.we,P.da(P 1cond (σfl=′f1′(MAP)) (12)

The corresponding SQL query is the following:

select ’ ∗ ’ as f l , p . ro , p . we , p . da
from P join MAP on

(P . f l= ’ ∗ ’ or P ∗ . f l=MAP . f l )
and (P . ro=’ ∗ ’ or P . ro=MAP . ro )

where MAP . f l= ’ f 1 ’

Observe that the SQL query only refers to table MAP for
unfolding attribute fl. Reference table CAL is independent
of MAP and can be ignored. This point is discussed in
more detail in the following section.

5.2 Independent reference tables
Fold (.) and unfold (/) comprise costly joins with refer-

ence tables. In many real world settings, reference tables
R = R1×R2× ...×Rn are defined by the Cartesian product
of independent reference tables Ri corresponding to spatial,
temporal and other dimensions. These reference tables Ri
are obviously much smaller than the generated reference ta-
ble R and introduce optimization opportunities for reducing
unfolding/folding costs.

Definition 13. Let P be a pattern table with a reference
table R = R1 × R2 × ... × Rn. The unfolding of a pattern
table P on some attribute set A = A1 ∪A2 ∪ ... ∪Ak where
Ai are non-empty subsets of attributes of sub-table Ri (wlg .
unfolding is done over the first k reference tables Ri) is de-
fined as follows:

/A(P,R) = πRi.Ai,P.¬A(P 1θ1/ R1 1θ2/ R2 1θ3/ ... 1θk/ Rk))

(13)

where θi/ =
∧
aj∈Ai(P.aj = ∗∨P.aj = Ri.aj) and πRi.Ai,P.¬A

denotes the projection on attributes Ai of Ri and on all at-
tributes of P except A.

Observe that /A only joins with reference tables Ri which
contain at least one attribute a ∈ A.

Definition 14. The folding of a pattern table P on some
attribute ai of a reference table Rj is defined as in Def-
inition 12, except that the missing tuples can directly be
computed from the reference table Rj without considering
the other tables: M = Rj − πAj (D).

Then, similarly to unfold, the fold operator .A only needs
to access reference tables Rj which contain at least one at-
tribute ai ∈ A.

Proposition 4. If all attribute domains are independent
and the input pattern tables are minimal covers, selection
with equality, projection and Cartesian product can be ex-
pressed using the relational algebra (without /) and generate
minimal covers.

Proof. The proof directly follows from the definitions
of selection with equality, projection and Cartesian prod-
uct.

5.3 Folding algorithms
As shown in Section 4.1 the fold operator can be imple-

mented by an iterative evaluation of standard SQL queries
including joins with reference tables (Equation 2). This sec-
tion will present two optimized folding algorithms. The first
algorithm FoldData computes minimal covers for data ta-
bles and the second algorithm FoldPatterns directly folds
pattern tables into minimal covers without a preliminary
unfolding step.

5.3.1 Folding data
Algorithm FoldData (Algorithm 1) computes for a given

constrained table T = (D,R) a strict cover P ∗(T ) following
a set of attributes A. If A is the set of all attributes in T ,
FoldData produces the minimal cover of T . The algorithm
explores the data table by searching for complete partitions.
It starts from the most general pattern i.e. wildcard pat-
tern [∗] (level 0) and explores top-down and breadth-first
the pattern subsumption lattice LD generated by the active
attribute domains in the data table D. Each level l cor-
responds to all patterns p with l constants. For checking if
some pattern p is satisfied by D, the algorithm compares the
cardinality of p in D and R using standard SQL queries (we
assume that the projection of D on the reference attributes
is included in R). After each level, all specializations of the
found complete patterns p are by definition also complete
and the tuples covered by p can be pruned from D before
executing the next level. Algorithm FoldData uses the fol-
lowing functions:

• powerSet(A,N) produces all subsets of A of cardinal-
ity N .

• patterns(A,D) produces for a set of attributes A, all
patterns πA(D)× {[∗]}

• checkComp(p,D,R) checks if I(p,D) = I(p,R)

• prune(P,D) deletes from D all tuples satisfied by pat-
terns p ∈ P .

Observe that operations checkComp and patterns can be
implemented by standard SQL queries. In particular, patterns
is a simple projection on D and checkComp can be im-
plemented by comparing the result of two count-queries on
D and R (we suppose that D ⊆ R). In the worst case,
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Algorithm 1: Algorithm FoldData

Data: constrained table T = (D,R), attribute set A
Result: minimal cover P ∗(T )

1 P := ∅ ; for level := 0 to |A| do
2 X := ∅ ;
3 for B ∈ powerSet(A, level) do
4 for p ∈ patterns(B,D) do
5 if checkComp(p,D,R) then
6 P := P ∪ {p} ; X := X ∪ {p} ;

7 prune(X , D) ;

8 return P

FoldData explores (almost) the whole pattern lattice LD
that is generated by all attribute/value combinations in the
data table. The number of patterns size(LD) of LD de-
pends on the active attribute domains in the data table D
and is exponential in the number of attributes: size(LD) =∑n
i=1(Cin)∗Dn where n is the number of attributes, and Di

is the maximum size of the Cartesian product of the active
domain of i attributes in the data table. The size of the
reference table influences the cost of checking pattern satis-
faction. Such a worst case scenario corresponds to particular
case of random missing data which generates large pattern
tables without pruning opportunities. As we show in our
experiments, real-world data generally follows more regular
incompleteness schemes which increase the compression rate
and folding performance.

5.3.2 Folding pattern tables
Algorithm FoldData operates exclusively on data tables

and cannot be used to fold pattern tables without a pre-
liminary complete unfold. This unfolding obviously loses
the compression of pattern tables, in particular for pattern
tables with a high compactness ratios.

A pattern table P is not minimal for two main reasons.
First, it might not be reduced, i.e. it contains two patterns
p1 and p2 such that p1 < p2. Second, it might not be a cover,
i.e. there might exist a subset of patterns S ⊆ P which
could be merged into a single equivalent pattern p 6∈ P . For
example [f1,r1,w1,∗] and [f1,r2,w1,∗] from P can be merged
into [f1,∗,w1,∗] /∈ P .

Algorithm 2 treats these issues separately. The merge
step (lines 1 to 11) first solves the second issue and checks
if the instance I(S,R) of a subset S ⊆ P is equivalent to
the instance I(p,R) of a pattern p 6∈ P . The algorithm ex-
plores the pattern lattice bottom-up starting from the most
specialized pattern (at the lowest level) and by recursively
merging sets S of patterns which differ only on the constant
of one attribute. As soon as S can be merged into one pat-
tern p, the latter is added to P (it might be merged with
a higher level pattern at the next iteration). Notice that
merged patterns are removed only after all level merges are
performed (line 11), because one pattern can take part in
several pattern merges. For example, [f1,r1,w1,∗] can merge
first with [f1,r2,w1,∗] to generate [f1,∗,w1,∗], and merge a
second time with [f2,r1,w1,∗] to produce [∗,r1,w1,∗]).

The first outer loop performs the merge and uses the fol-
lowing functions:

• getPatt(P, level) returns all patterns p ∈ P with level
constant attributes.

• isGen(p1, p2) checks if p1 is a generalization of p2 (Def-
inition 4)

• gen(p, a) generalizes pattern p by replacing the con-
stant attribute a by a wildcard.

• getConstAttrs(p) finds all constant attributes of pat-
tern p.

• checkComp(X, p, T,R) checks if the instance of pat-
tern set X in data table T is equal to the instance of
pattern p in R.

• getSimPatt(P, p, a) returns all patterns in P which
differ from p by a different constant value for attribute
a.

To deal with the first issue, Algorithm FoldPatterns re-
duces P by removing all remaining patterns p1 ∈ P which
specialize another pattern p2 ∈ P . This can be done by a
simple auto-join on P (lines 12 to 17).

Algorithm 2: Algorithm FoldPatterns

Data: pattern table P , reference table R, data table T ,
attribute set A

Result: minimal cover P ∗(I(P,R))
1 for level := |A| to 0 do
2 Slevel = ∅
3 for p ∈ getPatt(P, level) do
4 for a ∈ getConstAttrs(p) do
5 pai:∗ := gen(p, a)
6 S := getSimPatt(P, p, a)
7 if pai:∗ /∈ P then
8 if checkComp(S, pai:∗, T,R) then
9 P := P ∪ {pai:∗}

10 Slevel := Slevel ∪ S
11 P := P − Slevel
12 for level1 := 0 to |A| do
13 for p1 ∈ getPatt(P, level1) do
14 for level2 := level1 + 1 to |A| do
15 for p2 ∈ getPatt(P, level2) do
16 if isGen(p1, p2) then
17 P := P − {p2}
18 return P

In the worst case, the reduce step generates O(|P |2) gener-
alization tests. Similar to the top-down algorithm FoldData,
the size size(LP ) of the pattern lattice LP explored by the
merge step can be estimated by size(LP ) =

∑n
i=1(Cin) ∗Di

where n is the number of attributes, and Di is the max-
imum size of the Cartesian product of the active domain
of i attributes in the pattern table. Since the size Di over
the pattern table P is in general much smaller than the size
Di over the data set D, computing the minimal cover for
P (without unfold) is in general much more efficient than
computing the minimal cover on the data set D. This ob-
servation is confirmed by our experiments (see Section 6)

Proposition 5. Algorithm FoldPatterns is correct.

Proof. We can show that a pattern p can only be gen-
erated if there exists an attribute a and a subset of patterns
S ⊆ P such that p generalizes all patterns in S on attribute
a and S is equivalent to p. Then by following a recursive
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bottom-up strategy we guarantee that all possible generaliza-
tions are tested, which preserves the pattern covers equiv-
alence. The reduce step guarantees minimality, by brows-
ing the pattern lattice and filtering all possible specializa-
tions.

6. EXPERIMENTATION
The goal of our experiments are manifold: (i) testifying

on the effectiveness of patterns in compactly representing
completeness, (ii) analyzing the performance of the pattern
derivation algorithms (Algorithms 1 and 2) and (iii) study-
ing the efficiency impact of the pattern algebra.

We ran our experiments on a standard Linux machine
equipped with a 2.4 GhZ dual core CPU, 8GB of RAM
and 350 GB of standard storage. The algorithms are im-
plemented in Python 2.6 whereas data and patterns were
managed in PostgresSQL [15] and accessed using the psy-
copg2+ library of Python. We did not define any indexes to
accelerate filters and joins.

6.1 Datasets
We use both a real-world and a synthetic dataset. The

real-world dataset corresponds to sensor measurements of
different kinds (electricity, heating,...) collected during one
year at our University campus. This dataset features both
spatial and temporal incompleteness since not at all parts
of the campus are covered and many of the sensors oper-
ate erratically. The synthetic dataset is generated from the
real one by introducing more randomness for the purpose
of studying the impact of data distribution on pattern com-
pactness.

We restrict on measures pertaining to temperatures col-
lected in 12 out of 96 buildings and refer to this data with
Temp. We build two reference tables with different spatial
coverage and identical temporal span. The first reference,
noted RAll, includes all spatial locations of the campus re-
gardless of the existence of temperature sensors. The second
reference, noted RTemp, restricts on localities equipped with
a temperature sensor, that is, localities present in Temp.
The schema of the data and the reference tables together
with their sizes are reported in 6.

Temp(building, floor, room, year,month, day, hour, value)

Loc(building, floor, room) Cal(year,month, day, hour)

Sch(RAll) = Sch(RTemp) = Sch(Loc) ∪ Sch(Cal)

Table 6: Size of reference tables Rall and RTemp
variant x |Locx| |Calx| |Rx| = |Locx| × |Calx|

all 10,757 8,760 94,231,320
Temp 2,810 8,760 24,615,600

Intuitively, the choice of the reference has an impact on
the derivation of completeness patterns in terms of efficiency
and effectiveness. We start by investigating the effective-
ness by studying the variation of the compaction ratio when
varying the size of the data and of its associated refer-
ence. To do so, we build two smaller data tables by re-
stricting Temp spatially, by selecting only the measures of
one building (e.g. Building 25), and temporally, by keep-
ing the measures pertaining to one month out of 12 (e.g.
January). The resulting tables are respectively noted with

T OneBlg and T OneMon. Their cardinalities are re-
ported in Table 7 together with their completeness ratio
CR(ds,R) = |ds|/|Rx| w.r.t. their references Rx. We de-
note by RdsAll and RdsTemp the reference tables obtained by
using the same spatial or temporal restriction of the dataset
ds. For example, RT OneBlg

All = σbuilding=′25′(RAll).

Table 7: Sizes and completeness ratio.

dataset ds |ds| CR(ds,Rdsall) CR(ds,RdsTemp)

Temp 1,321,686 1.4% 5.36%
T OneBlg 341,640 21.43% 21.43%

T OneMon 88,536 1.4% 4.23%

As expected, the closer data is to its reference, the better
is the completeness ratio. We observe that the spatial re-
striction allows for achieving the highest completeness ratio
(21.43%).

6.2 Pattern table generation
We perform a preliminary experiment to verify the effec-

tiveness of patterns in terms of compactness and the effi-
ciency of Algorithm FoldData. The compactness of a pat-
tern table P is defined by the ratio |P |/|D| between the size
of P and the size of its data table. We consider all combi-
nations of datasets and references and report the results in
Table 8.

Table 8: Pattern derivation: preliminary results.
Execution Time (sec)

dataset ds |P | Comp. P (ds,Rall) P (ds,RTemp)
Temp 11,269 8.5 ×10−3 36,620 5,983

T OneBlg 39 1.1×10−4 45 45
T OneMon 119 1.3×10−3 90 75

Observe that using a more precise reference (spatial re-
striction) leads to decreasing execution time for Temp and
T OneMon due to reduced completeness check time. The
results also confirm that the reference choice impacts the
dataset completeness and is a determinant factor for the
execution time.

Variability analysis. Since the compactness of a pattern
table plays a major role in the performance of the query re-
sult explanation process, we investigate the problem of de-
termining which dataset features lead to high compactness.
We examine three features : (i) distribution of complete-
ness, (ii) dataset completeness and (iii) dataset size. We
use in this experiment both the real-world dataset and the
synthetic one which is obtained by randomly inserting or
deleting measures starting from real-world dataset.

In both cases, we generate a series of datasets, by increas-
ing and decreasing the completeness ratio. Starting from
datasets with a fixed completeness ratio, we build two series
of datasets: one obtained by successively inserting tuples
from the reference until reaching full completeness, another
one obtained by successively deleting its tuples until reach-
ing emptiness. The insertion and deletions follow two strate-
gies: i) a sequential strategy which selects the (inserted or
deleted) tuples using their spatial and temporal domain or-
der preserving the original data distribution and which we
call real distribution, and ii) a random strategy which picks
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these tuples in a random fashion, we call simulated distribu-
tion.

Figure 3: Synthetic datasets : Data missing ran-
domly

Figure 4: Real datasets : missing data following sen-
sor failures

Figures 3 and 4 depict the evolution of compactness w.r.t.
completeness for each distribution and each of the synthetic
dataset. In the synthetic datasets (Figures 3), the compact-
ness of a random dataset with 30% completeness evolves
symmetrically in both directions (insertion and deletion):
successive insertions/deletions generate/remove tuples which
give raise to new patterns. At some point, these insertion-
s/deletions will cause the merging of fine-grained patterns
to coarser-grained ones increasing the compactness ratio to
achieve maximum compactness at both extremities. In the
real datasets we observe the same trend with a lower ampli-
tude for a dataset with 50% initial completeness: insertions
lead to a faster completion of the partial partitions (thanks
to order sensitive updates) and thus to faster derivation of
coarser patterns without deriving all their subsumed pat-
terns.

Finally, notice that the completeness distribution is a di-
rect factor impacting compactness. Different completeness
ratios lead to variable pattern numbers, the more a dataset
is complete, the fewer the patterns.

Performance. In the following experiment we evaluate the
performance of algorithm FoldData. From the original dataset
Temp, we derived 30 datasets grouped into three categories,
each with approximately the same completeness rate, but
different dataset sizes. Figure 5 shows the running time of
FoldData for all datasets according to the number of gen-
erated patterns. Categories are represented by points of dif-
ferent colors (orange = 15%, violet = 10% and green = 3%
completeness rate). Notice that execution time is not im-

Figure 5: FoldData performance

Figure 6: Pattern algebra performance

pacted by the data completeness but grows exponentially
with the number of generated patterns.

6.3 Pattern Query Processing
The following experiment measures the efficiency of pro-

cessing pattern queries for producing minimal covers for
queries over constrained tables. We compare the pattern-
based query plans (blue solid path in Figure 2) using the
techniques described in Section 5 by comparing it with the
”naive” strategy of computing the minimal cover from the
results of the query applied to the data and reference tables
(red dashed path in Figure 2). We tested both approaches
on the queries below and report the result in Figure 6.

Q1: σb=2223(Temp) Q2: σb=2223∧f=1(Temp)
Q3: σb=2223∧(m=11∨m=12)(Temp) Q4: πb,f,r,y,m,d(Temp)
Q5: πf,r,m,d(Temp) Q6: Temp 1b Elec

Assessing the completeness of queries using pattern al-
gebra outperforms the naive approach for all of the tested
queries. For Q1 and Q2 efficiency is obtained by exploit-
ing the fact that both queries use only the spatial reference
(reference independence). For Q3, where the gain is less im-
portant, partial unfolding over both reference tables incurs
some overhead while remaining reasonably low. Queries Q4

and Q5 need no unfolding which explains their performance
gain with respect to the naive solution. For Q5, pattern-
based evaluation is much more efficient because of the pat-
tern cover compactness (11K tuples). Note also that this
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particular pattern query doesn’t need unfolding, in contrast
with Q4. We observe the same trend with join query Q6

(not shown in the figure) which takes 31 seconds to be ex-
ecuted and where the pattern algebra query only takes 7.9
seconds. The pattern join implies a partial unfold on at-
tribute b with a small number of values (96b) and generates
a small number of patterns which have to be refolded.

Folding pattern query results. The last experiments set
aims at digging deeper in the efficiency of pattern queries by
analyzing the overhead of FoldPatterns. We consider differ-
ent pattern table sizes,to minimize. Running the FoldPatterns
algorithm produces pattern minimal covers with variable
compactness values (see Table 9). We report the FoldPatterns
phase execution time while keeping track of the exact num-
ber of merge and reduce operations (see section 5.3).

As expected, the running time grows with the number
of patterns to minimize and merging patterns is much more
expensive than reducing patterns which is a purely syntactic
operation.

Table 9: Pattern Fold algorithm performances
P. size Pmin.size Compac. time merges /reduces

106 22 20.75% 0.29s 7 m
238 32 13.44% 0.32s 9m+ 79 r
570 30 5.2% 0.38s 45m
992 864 87% 0.47s 6 m + 32 r

10961 3921 35.77% 1.33s 6 m + 7040 r
11285 11178 99.01% 0.35s 107 r
12054 11440 94.90% 6.59s 38 m + 158 r

7. CONCLUSION
In this paper, we presented a pattern-based approach for

representing and summarizing relative completeness infor-
mation. We proposed a formal model and characterized a
powerful reasoning mechanism for inferring and analyzing
exhaustive sets of completeness statements about data and
query answers. We validated our approach experimentally
and confirm the efficiency of the pattern algebra and its use-
fulness in evaluating query completeness and correctness.

Extending the model with statistical information about
data completeness is a challenging future direction. A nat-
ural extension under study is the use of a map-reduce plat-
form like Apache Spark [18] to compute minimal pattern
covers and implement the pattern algebra. Developing an
interactive tool for reasoning on patterns is an interesting
application that we are considering.

APPENDIX
A. PROOFS

Lemma 6. p1 v p2 ⇒ ∀S : I(p1, S) ⊆ I(p2, S)

Proof. We show that if there exists a table S where
I(p1, S) 6⊆ I(p2, S), then p1 6v p2. For showing p1 6v
p2, we define a constrained table T = (D,R) such that
I(p2, R) ⊆ I(p2, D) and I(p1, R) 6⊆ I(p1, D). Let R = S
and D = I(p2, R). Then, I(p2, D) = I(p2, I(p2, R)) =
I(p2, R) (by idempotency). Now we have to show that I(p1,
R) 6⊆ I(p1, D). Based on the initial assumption I(p1, S) 6⊆
I(p2, S) and S = R we conclude I(p1, R) 6⊆ I(p2, R) and it

is sufficient to show that I(p1, D) ⊆ I(p2, R): I(p1, D) =
I(p1, I(p2, R)) ⊆ I(p2, R) = I(p2, R).

Proof of Proposition 1. We first prove that if p1 v p2
then p1 is a specialization of p2. Suppose that p1 is not a
specialization of p2, i.e. there exists no mapping from p1 to
p2 such that p2 can be obtained from p1 by replacing one or
more constants by a wildcard. In other terms, there exists
an attribute ai such that p2.ai = c is a constant and p1.ai 6=
p2.ai. This is equivalent to the statement that cond(p1)
contains a condition p1.ai = c which is not contained in
cond(p2). Then it is easy to define a table S = {t} where
t satisfies p1 but not p2 which leads to I(p1, S) 6⊆ I(p2, S).
On the other hand, by proposition 6, we know that p1 v p2
implies ∀S : I(p1, S) ⊆ I(p2, S) (contradiction).

We now show that if p1 is a specialization of p2, then p1 v
p2. If p1 is a specialization of p2, then for all S, I(p1, S) =
I(p1, I(p2, S)) (then filtering condition of p1 is subsumed by
the filtering condition of p2). Then, if I(p2, R) ⊆ I(p2, D)
we know by monotonicity of I that I(p1, I(p2, R)) ⊆ I(p1,
I(p2, D)) which is equivalent to I(p1, R) ⊆ I(p1, D).

Proof of Proposition 2. By contradiction using the no-
tion of cover and subsumption. Suppose that there ex-
ist two minimal strict covers P ∗(T )1 and P ∗(T )2. Then
there exists a pattern p1 ∈ P ∗(T )1 − P ∗(T )2 and a pattern
p2 ∈ P ∗(T )2−P ∗(T )1 such that p1 v p2 (otherwise P ∗(T )2
would not be a cover). Since p1 6= p2 and by Proposition
1, we can conclude that p1 < p2. By Definition 8 there
must exist a third pattern p′1 ∈ P ∗(T )1 such that p2 v p′1
(otherwise P ∗(T )1 would not be a cover). Then, we obtain
p1 < p2 v p′1 where p1 and p′1 are two distinct patterns in
P ∗(T )1 and p′1 subsumes p1. This is in contradiction with
the claim that P ∗(T )1 is a minimal cover.
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