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[1] A new statistical analysis of the in situ scattering phase function measurements
performed by the Laboratoire de Météorologie Physique’s airborne polar nephelometer is
implemented. A principal component analysis along with neural networks leads to the
classification of a large data set into three typical averaged scattering phase functions. The
cloud classification in terms of particle phase composition (water droplets, mixed-phase,
and ice crystals) is done by a neural network and is validated by direct Particle Measuring
Systems, Inc., probe measurements. The results show that the measured scattering phase
functions carry enough information to accurately retrieve component composition and
particle size distributions. For each classified cloud, we support the statement by
application of an inversion method using a physical model of light scattering to the
average scattering phase function. Furthermore, the retrievals are compared with size
composition obtained by independent direct measurements. INDEX TERMS: 0320

Atmospheric Composition and Structure: Cloud physics and chemistry; 0649 Electromagnetics: Optics; 3260

Mathematical Geophysics: Inverse theory; 3359 Meteorology and Atmospheric Dynamics: Radiative
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1. Introduction

[2] Microphysical and optical properties of cloud particles
are known to be a primordial source of information for the
understanding of light interactions in the atmosphere system
through radiative and chemical processes, hence of the cloud
feedback of earth climate. Well-documented observations of
the scattering properties for different types of clouds are
required for reliable modeling of radiative transfer character-
istics in a cloudy atmosphere (see, among others Kinne et al.
[1992]) and to improve satellite and ground-based cloud
product retrievals (see, among others, Rossow and Schiffer
[1991]). The main goal of this study is to draw up a set of
representative scattering phase functions and particle size
distributions for different types of clouds relative to their
particle-phase composition (liquid-water phase, solid-water
phase: i.e. ice crystals, and mixed phase: i.e. water droplets
and ice crystals) using a statistical analysis of around 60,000
measurements. A physical modeling of particle scattering
properties supports the interpretation of the statistical results.

Various intensive aircraft field measurements using an air-
borne polar nephelometer and PMS probes allowed us to
study simultaneous observations of cloud optical and micro-
physical properties. The data have been obtained during
three campaigns, namely: ARAT’97 [Duroure et al., 1998],
CIRRUS’98 [Durand et al., 1998], JACCS’99 [Asano et al.,
2002; Gayet et al., 2002], which were carried out from
Clermont-Ferrand (central part of France), Tarbes (South-
West of France), and over the Sea of Japan, respectively.
Collectively, these campaigns present the advantage of
including a large set of data obtained in a wide variety of
meteorological conditions.
[3] This paper investigates the potential of statistical

analysis of the in situ scattering phase functions performed
by the polar nephelometer [Gayet et al., 1998] for the
description of clouds’ optical and microphysical properties.
First, we describe the implementation of a principal com-
ponent analysis (PCA) on the data to find pertinent relation-
ships amongst scattering phase functions of different cloud
compositions. Then, we present the classification of the
patterns we evidenced, by using neural networks leading to
the determination of typical optical characteristics. Finally,
from the established typical scattering phase functions, the
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inverse method of Oshchepkov et al. [2000] for the retrieval
of particle size distribution and composition is applied for
the validation of the results.

2. Statistical Data Analysis

2.1. Description of the Probes and Data Processing

[4] The ARAT’97 and JACCS’99 experiments involve
observations in stratiform water and mixed-phase clouds
whereas cirrus clouds were sampled during the CIRRUS’98
campaign. These data represent more than 60,000 optical
and microphysical measurements with a sampling fre-
quency of 1 Hz. This corresponds to measurements sampled
with a spatial resolution of about 100 m according to the
mean cruising speed of the aircraft. The aircraft were
equipped with the polar nephelometer for the scattering
phase function measurements, a Particle Measuring Sys-
tems, Inc., (PMS) 2D-C probe for measurements of particle
images and, except for CIRRUS’98, a PMS FSSP100 probe
for droplet size distribution measurements.
[5] The polar nephelometer [Gayet et al., 1998] measures

the scattering phase function of an ensemble of cloud
particles (from a few micrometers to about 800 mm diam-
eter), which intersect a collimated laser beam near the focal
point of a parabolic mirror. The laser beam is provided by a
high-power (0.8 W) multimode laser diode operating at a
wavelength of 804 nm. The light scattered at polar angles
from ±3.49� to ±169� is reflected onto a circular array of 56
photodiodes. Nevertheless, the measurements at small for-
ward scattering angles are not available due to contamina-
tion by the diffracted light from the edges of holes drilled on
the polar nephelometer paraboloidal mirror. Consequently,
only 34 channels corresponding to scattering angles ranging
from ±15� to ±169� are exploitable.
[6] The bi-dimensional optical array spectrometer (PMS

2D-C) provides information on the crystal size and shape
with a size range from 25 mm to 800 mm by recording cloud
particles diffraction images. The PMS Forward Scattering
Spectrometer Probe (FSSP-100) is an optical particle coun-
ter for the sampling of droplet size-distribution from 3 mm to
45 mm in diameter. The data processing method of the above
instruments has already been described in detail by Auriol et
al. [2001] and Gayet et al. [2002].
[7] In order to discriminate the cloud phase composition

we define a criterion (Rmic), which is determined by the
bulk quantities derived from the particle size distributions
measured by both the 2D-C and FSSP-100 probes:

Rmic ¼ LWC=IWC ð1Þ

where LWC is the liquid water content (g m�3) derived
from the FSSP-100 and IWC refers to the ice water content
(g m�3) derived from 2D-C measurements. A comparison
between side scattering angles behavior of a large set of
experimental phase functions in various cloud situations and
the ratio Rmic led us to define empirical thresholds to
distinguish the cloud phase. As a matter of fact, the side
scattering angles are very sensitive to the presence (or not)
of ice crystal particles [Gayet et al., 2002]. In order to
remove from the data set the cloud portions with very low
particle concentration, a particle density threshold has been
added. The FSSP-100 and 2D-C threshold concentrations of
1 cm�3 and 1 l�1 (i.e. 0.001 cm�3), respectively, roughly

correspond to the lower representative values which can be
measured by these probes. Table 1 summarizes these criteria
for cloud phase classification. This method could be
connected to the methodology proposed by Cober et al.
[2001] which assesses the relative ice and liquid quantities
using the responses from six available airborne micro-
physical instruments. Although our method is less sophis-
ticated than the one developed by Cober et al. [2001], it
proves to be reliable enough to identify liquid, mixed and
glaciated cloud conditions. It should be noticed that the
previously established microphysical criteria (Rmic and
concentration thresholds) will also be used to validate the
neural network classification of the scattering phase
functions, as discussed in section 3.

2.2. Application of the Principal Component Analysis

[8] In this section, a Principal Component Analysis
(PCA) is applied to a large set of optical measurements
(scattering phase functions) obtained during the campaigns
listed in section 2.1.
[9] A PCA is designed to generate a new set of uncorre-

lated parameters, called principal components, representa-
tive of the original data set. Algebraically, principal
components could be defined as particular linear combina-
tions of a set of variables. These linear combinations
represent the selection of a new coordinate system obtained
by rotating the original system of coordinates. The new axes
correspond to the directions with maximum variability and
provide a simpler description of the covariance structure of
the original set of variables (see, among others, Johnson and
Wichern [1998]). In many practical implementations, only a
few principal components are required to reproduce almost
all the system’s variability with reasonably good accuracy.
This is especially true when a limited number of primary
physical parameters have a major impact on the measured
functions (in this case, scattering phase functions).
[10] The main objectives of this section are data reduc-

tion, denoising and possible physical interpretation of the
revealed patterns. Besides, PCA serves as an intermediate
step to rearrange the data set before the cloud classification
performed in section 2.3. Indeed, most of the classification
approaches like cluster analysis encounter great difficulties
when the number of variables is large and when there is
high correlation among them.
[11] In order to apply PCA to the optical data set, we

follow the well-established methodology (see, among
others, Legendre and Legendre [1998]) expanding the
optical measurements in terms of eigenvectors of the data
set correlation matrix. A particular feature of this analysis
consists in making the calculations in the logarithmic space.
The logarithm of nonnegative values is used in our appli-
cation of the PCA in order to make comparable the
magnitudes of all variables. Otherwise, the first principal
components would stand only for the characteristics having
highest variance and would not reproduce all the system
variability. At the same time, the logarithm is also a
monotonous function, so the features of the scattering phase
functions (optical measurements) can be estimated from the
properties of their logarithm.
[12] Accordingly, to parameterize the measured functions,

we expand the vectors fj = log[Sj(q)] in terms of eigenvec-
tors of the correlation matrix of the logarithm of scattering
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phase functions Sj(q) (Sj(q) is the non-normalized angular
scattering phase function of the jth measurement and q is the
scattering angle). It should be noted that PCA is particularly
adequate when there is a fairly high linear correlation
among measured parameters of a data set.
[13] Figure 1a represents the first four eigenvectors, Xl

(l = 1, 2, 3, 4), of the correlation matrix of fj calculated for
our data set (i.e. about 60,000 measurement points), as a
function of scattering angle q. The results show the presence
of peaks at some particular scattering angles pointed out by
the black arrows (q = 32.5�, 53.5�, 64�, 134�, 162� and
165�). The high discontinuities of the eigenvectors reveal
the low correlation of the corresponding scattering angles
with the other ones. Such result leads to the conclusion that
the data at those angles are not reliable. Consequently, this
type of analysis enables us to detect the polar nephelometer
channels that are not working accurately and which will not
be used in the following.
[14] After excluding the unreliable data, the correlation

matrix and its eigenvectors were computed another time. The
values of the first four normalized eigenvalues ll correspond-
ing to the first four eigenvectors, Xl (l = 1, 2, 3, 4) are reported
on Figure 1b. (with the same presentation as on Figure 1a).
The first eigenvector represents 97% of the total population
variance, the three next ones 1.1%, 0.6% and 0.3%, respec-
tively. These four values add up to 99% of the total sum of the
eigenvalues, this means that 99% of the variations of vectors
Sj can be described by the following expression:

f j Qð Þ ¼ f Qð Þh i þ
X4

l¼1

Cj;lxl qð Þ ð2Þ

where hf(Q)i represents the average phase function of the
total data set and Cj,l = (fj � hf(Q)i)T. Xl(Q) are the expansion
coefficients of fj (T designates a transposed matrix). The
first four coefficients Cj,l contain the major part of the
information about a particular scattering phase function.
Consequently, in our case, the PCA leads to a significant
reduction of the dimensionality of the data set. Instead of
the 28-dimensional space of scattering phase functions
(after removing the unreliable channels), we have the 4-
dimensional space of the expansion coefficients Cj,l. In
principle, each observation can be expressed with good
accuracy as a linear combination of the selected set of
eigenvectors X1, X2, X3, X4 by equation (2).
[15] Some important information may be obtained from

an analysis of the first four eigenvectors behaving. The first
eigenvector X1 is almost constant, meaning that 97% of the
phase function variations are caused by changing the
particle concentration. The second eigenvector X2 reverses
sign twice, at the angles of 34� and 125�. Accordingly, it
means that increasing the sideward scattering is followed by
decreasing energy scattered into smaller (15� < q < 34�) and
higher angles (125� < q < 155�), and vice versa. At this
point one can see that the PCA results are in total agreement

with the general light scattering theory. Here, the most
important information consists in the percentage of the
phase function variations (the values of l1 and l2).
[16] The third eigenvector, X3, reverses sign at 21�, 75�,

and 137� and should carry information about the particle
phase composition because the angle interval [75�–137�] is
quite close to that one of [60�–140�]. It is well known that
the scattering properties in sideward angles, approximately
between 60� and 140�, are sensitive to the particle shape
and structure [Yang and Liou, 1996; Doutriaux-Boucher et
al., 2000]. Comparatively to the particles in a liquid-water
phase, the mixed phase and the ice phase particles scatter
more energy in the angle range from 75� to 137� and from
15� to 21�. On the other hand, they scatter less energy for
21� < q < 75�.
[17] Finally, the eigenvector X4 is close to zero, except for

q < 44� and q > 110�. Its sign is opposite for these two
intervals. In principle, such features could be connected
with some scattering properties that affect the asymmetry
parameter. But, these explanations should be considered as
an zero-order interpretation because there is no one-to-one
correspondence between the principal components and
some physical features.
[18] As an example, Figure 1c illustrates the different

steps to restore a particular scattering phase function obser-
vation using equation (2). The corresponding logarithm of
measured phase function is represented by open circle
symbols and the average logarithm of scattering phase
function of the total data set is plotted with full circle
symbols. By adding the contributions of the first four
principal components, the restored logarithm of scattering
phase function (thick grey curve) is found to be in very
good agreement with the measured one (with a root mean
square error of 6%). The vectors PCi presented on the
Figure 1c are defined by:

PCi ¼ f qð Þh i þ
Xi

l¼1

Cj;lxl qð Þ ð3Þ

[19] The first principal component obviously contributes
to most of variability (thin black curve) and its magnitude
depends on the particle number density. In this particular
case, the contribution of the second principal component is
relatively small (see differences between dotted black and
thin black curves). At the same time, the contribution of the
third component is noticeable. The thick black line almost
fits to the measured data. As it was expected, the contribu-
tion of the fourth component shows up a better fitting at the
left and right ends of the phase function.

2.3. Cloud Phase Classification Using Neural Networks

[20] The next step is to perform a cloud classification of
the measured cloud phase function in terms of particle phase
composition (water-droplets, mixed-phase and ice-crystals).

Table 1. Cloud Classification in Terms of Particle Composition According to Bulk Quantities (Rmic) and Particle Density Criteriaa

Rmic > 0.5 ConcFssp >1 cm�3 0.5 � Rmic � 0.1 ConcFssp > 1 cm�3 and Conc2dc > 1 l�1 Rmic < 0.1 Conc2dc > 10 l�1

Classification Liquid Phase Clouds Mixed Phase Clouds Solid Phase Clouds
Description water dominating water + ice ice dominating

aConcFssp represents the number concentration derived from the FSSP-100 probe and Conc2dC is the number concentration measured by the 2D-C
probe.
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This classification stems from the interpretation of the
expansion coefficients Cj,l (l = 1, 2, 3, 4). The typical clusters
are shown on the diagram (Cj,1 versus Cj,3, see Figure 2)
where the scattering phase functions are linked to the cloud’s
composition through their coefficients Cj,1 and Cj,3.
[21] Different classification techniques (clustering analy-

sis and competitive neural networks) were tested but the
results were not satisfactory. Finally, a feed-forward percep-
tron with two hidden layers using supervised training was
chosen to analyze relationships among the first four principal
components. Each layer is characterized by its weight matrix
W, bias vector b and output vector a. The input vector (ak�1)
and output vector (ak) of the kth layer are interconnected as:

ak ¼ Tk xkð Þwith xk ¼ Wkak�1 þ bk ð4Þ

where Tk is the transfer function (the hyperbolic tangent in our
case) of the kth layer. The training set is composed ofM pairs:
(a0m, sm) m = 1, . . ., M, where a0m and sm designate the mth
input and target vectors. All the weight matrixes and biases
are determined by minimizing a performance function E as:

E ¼
XM

m¼1

a2m � smð ÞT 	 a2m � smð Þ ð5Þ

[22] In our case, the input vectors consist of the first four
expansion coefficients Cj,l (l = 1, . . ., 4) and the output
vectors define the class (water, mixed phase, ice) of which an
input vector belongs to. The training set is composed of
patterns representing 5% of the total data set. Pairs are
randomly selected from the data, which we are sure to belong
to a particular class. The neural network is trained using the
Levenberg-Marquardt algorithm for the back-propagation
with MacKay’s Bayesian regularization [MacKay, 1992].
The MATLAB neural network toolbox was used. Finally,
the generalization phase is performed with the entire data set.

3. Results of the Statistical Analysis

[23] The principal component analysis has been applied
to our data set, which includes both cloud events and ‘clear
sky’ segments. These ‘clear sky’ events are mostly charac-

Figure 1. Results of the Principal Component Analysis applied on a data set of 60,000 measurements
obtained with the polar nephelometer in various cloud situations. (a) First four eigenvectors of the scattering
phase function correlation matrix versus the 34 measured scattering angles). The black arrows indicate
channels that are not working correctly. (b) Same as (a). Here, only the 28 reliable channels are reported.
The values of the first four normalized eigenvalues ll of Xl are displayed. (c) Summed contributions, up to a
given principal component (PCi) for one example of restored scattering phase function (see text).
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terized by a noise signal on the polar nephelometer meas-
urements (offset), which can be different according to the
experiment under consideration because it strongly depends
on the instrument’s optical settings. High concentrations of
aerosols could also contribute to the variation of the signal
measured by the polar nephelometer.
[24] The scatter plot of the Cj,1 expansion coefficient

(corresponding to the first eigenvector X1) versus the Cj,3

coefficient, on Figure 2, describes the optical features of the
clouds in the clearest representation. Actually, the highest
values of Cj,3 coefficient correspond to the lowest side
scattering energies and to the highest scattering in the
angular range of 35� to 60�. This means that high values
of Cj,1 and Cj,3 (Cj,1 > 5 and Cj,3 > 1) correspond to liquid
phase clouds with high concentration of water droplets
whereas low values of Cj,3 (Cj,3 < 0.45) indicate the
presence of ice crystals with a large side scattering behavior.
The results of neural network classification, determined
from the scattering behavior of the cloud particles, clearly
show three clusters specific of the particle phase. On Figure
2, the blue cluster represents water droplet clouds (32% of
the measurements according to our cloud phase classifica-
tion), the olive green cluster (63%) indicates ice particle
clouds and mixed-phase clouds (4%) correspond to the red
cluster. The data points that have a Cj,1 value lower than
zero will not be considered in the following. As a matter of
fact, these points correspond to clouds with a small con-
centration of particles (low value of signal to noise ratio) or
to clear sky conditions. The variability of the Cj,3 compo-
nent could be due to aerosol contribution and/or to the
variations of the clear sky noise signal.

[25] In order to compare and validate the cluster classi-
fication considered above, an alternative classification is
presented according to our cloud phase criteria in Table 1,
based on direct microphysical measurements from the PMS
instruments. The different cloud compositions are dis-
played in Figure 3 with same color scheme as Figure 2.
The results in Figure 2 and the direct classification dis-
played in Figure 3 are in good agreement, as expected. The
black dots (50% of the measurements) represent the clear
sky parts and are mainly observed for values of Cj,1 and
Cj,3 lower than zero. This analysis based on microphysical
measurements is, however, still limited, mainly because of
the high uncertainties on microphysical parameters derived
from the PMS probe [Gayet et al., 2002] but also because
the criteria given by equation (1) does not involve enough
information about cloud composition. This classification
technique involves a limited amount of parameters to
characterize the cloud phase (ConcFssp, Conc2dC, IWC,
LWC) thus presenting a serious disadvantage in compar-
ison to the classification based on a PCA along with neural
networks. Indeed, the latter offers the possibility to take
into account a scattering phase function on 28 angles to
discriminate cloud phase.

4. Interpretation of Representative Scattering
Phase Functions Using Physical Modeling

[26] In this section, we compare particle size distributions
retrieved from average scattering phase functions with those
averaged from direct PMS microphysical measurements for
each cloud type. This is an important issue for further

Figure 2. Expansion coefficient diagram: First coefficient (Cj,1) versus the third coefficient (Cj,3). The
clusters are colored (blue, red and olive green) according to the cloud composition (water droplet clouds,
mixed-phase clouds and ice particles respectively). See color version of this figure at back of this issue.
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validation of the classification technique presented in sec-
tion 2.3, as well as to assess the information content of the
polar nephelometer measurements.
[27] To study this issue, the iterative inversion method

developed by Oshchepkov et al. [2000], using physical
modeling of the scattered light, is applied to the average
scattering phase functions within a given class. We recall
here that the method is based on a bi-component (water
droplet and ice crystal) representation of cloud composition
and uses the non-linear least square fitting of the scattering
phase function using smoothness constraints on the desired
particle size distributions (PSD). Measurement errors at
each angle and PSD’s values for each size, in a sense of
probability density function, are assumed to be described by
the lognormal law, which is the most natural way to take a
priori information about the non-negativity of these quanti-
ties [Tarantola, 1994]. Note that no analytical expression
for the particle size distribution is assumed for the converg-
ing solution in this method. The only constraint in this
connection is smoothness, needed to avoid an unrealistic
jagged structure of the desired size distribution, because the
inverse problem is ill posed without constraints.
[28] The inversion method is designed for the retrieval of

two volume particle equivalent size distributions simulta-
neously, one for ice crystals and another for (spherical)
water droplets. We need, however, to specify a lookup table
containing scattering phase functions of individual ice
crystals. In this paper, we have considered only hexagonal
ice crystals with different aspect ratios and randomly
oriented in 3D space. The scattering phase function of
spherical water droplets follows from classic Lorenz-Mie
theory and the scattering patterns of hexagonal crystals are
computed by an improved geometric-optics model [Yang

and Liou, 1996]. In the setting up of the lookup table, we
define an equivalent size of ice crystal through the radius of
an area-equivalent circle whose area is equal to the ice
crystal’s cross-section for random orientation.
[29] The inversion results (in terms of particle size dis-

tribution) along with direct measurements (from PMS
FSSP-100 and 2D-C probes), for the three typical types of
clouds (water cloud (a), mixed-phase cloud (b) and ice
cloud (c)) are displayed on the lower panels of Figure 4. The
retrievals are obtained for ice crystal aspect ratio equal to
unity. In the upper panel of this figure, the corresponding
initial scattering phase functions are also shown. The mean
measured scattering phase functions, defined according to
the classification defined on Figure 2, are plotted here along
with theoretical ones obtained according to the retrievals for
each water and ice component. The vertical error bars on the
measured scattering phase functions represent the uncer-
tainties caused by both instrumental errors of measurements
and variation of the microphysical properties of the clouds.
They are defined through diagonal elements of the corre-
sponding covariance matrix obtained for each selected type
of cloud (section 3). The results can be summarized as
follows:
1. For water clouds (Figure 4a), the results show very

good agreement between the direct measurements and
retrieved ones as already discussed by Gayet et al. [2002].
The contribution of ice crystals being very small, the value
of the retrieved ice size-particle distribution is negligible in
comparison with the water-droplet size distribution. The
retrieved scattering phase function is almost equal to the one
corresponding to the water contribution.
2. In the mixed phase case (Figure 4b), the retrieved

results of both particle size distributions (water droplets and

Figure 3. Same as Figure 2. Here, the cloud classification has been obtained from direct PMS probe
measurements. The black data points represent clear sky measurements. See color version of this figure at
back of this issue.
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ice crystals) are also in reasonably good agreement with the
direct measurements. Although the water droplet contribu-
tion dominates the scattering features of the cloud, the
contribution of ice particles is sensitive enough, to be
detected with the inversion technique particularly in the side
scattering angles [Oshchepkov et al., 2000].
3. The presence of a non-negligible so-called ‘water

component’ in ice clouds (Figure 4c) represents small
supercooled droplets or spherical ice particles, as discussed
by Oshchepkov and Isaka [1997] for laboratory measure-
ments. The retrieved ice particle size distribution agrees
well with the direct observations.
[30] The above results show that polar nephelometer

measurements (between 15� and 155�) contain a consider-
able amount of information on cloud composition, which
can be traced to the systematic differences in scattering
patterns for water droplets and ice crystals. The ability of
the inversion technique to discriminate the contribution of
the components leads to the retrieval of representative
particle size distributions.

5. Conclusions and Outlook

[31] The main goal of this study is to present typical
cloud optical properties in terms of scattering phase func-
tions from 15� to 155� along with microphysical parameters
(particle size distributions) for three specific types of clouds

relative to their phase (liquid-water droplets, mixed-phase
and ice-particles). A large set of in situ measurements were
analyzed using a principal component analysis. The classi-
fication of the revealed patterns leads to draw up three
typical averaged scattering phase functions measured by the
polar nephelometer along with the corresponding particle
size distribution obtained by direct PMS probe measure-
ments. The cloud classification in terms of particle phase
composition (water droplets, mixed-phase and ice crystals)
is achieved by using a neural network (multilayer percep-
tron), which has the advantage of involving the equivalent
of 28 parameters (a scattering phase function on 28 scatter-
ing angles) to characterize the microphysical and optical
properties of cloud particles. This classification is validated
by the discrimination of the cloud water phase on the basis
of the ratio of bulk microphysical parameters derived from
direct PMS probe measurements.
[32] The interpretation of the results using an inversion

technique show that the information contained in the
scattering phase function measurements is sufficient to
restore component composition and particle size distribu-
tion. This statement is supported by rather a good agreement
of the inversion results with the particle size composition
obtained by the direct PMS probe measurements for each
selected type of cloud.
[33] In the near future, we will report on our implemen-

tation of the extrapolation of the scattering phase function

Figure 4. Inversion of the averaged scattering phase functions for three types of cloud: (a) Water droplet
cloud, (b) Mixed-phase cloud and (c) Ice crystals clouds. Upper panel: Measured and retrieved scattering
phase functions. The contributions on scattering properties are displayed for both particle compositions
(water and ice). Bottom panel: Direct (PMS probes) and retrieved particle size distributions.
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for small forward and backward angles. This is done by
computing the scattering behavior of the retrieved size
distribution. Furthermore, this will be extended to near-
infrared wavelengths. These phase functions could eventu-
ally be included in radiative transfer analyses to achieve
reliable retrievals of the microphysical and optical proper-
ties of clouds that matter in climate studies.
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Figure 2. Expansion coefficient diagram: First coefficient (Cj,1) versus the third coefficient (Cj,3). The
clusters are colored (blue, red and olive green) according to the cloud composition (water droplet clouds,
mixed-phase clouds and ice particles respectively).

Figure 3. Same as Figure 2. Here, the cloud classification has been obtained from direct PMS probe
measurements. The black data points represent clear sky measurements.
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