N
N

N

HAL

open science

Coarsening and percolation in the Ising Model with
quenched disorder
F Insalata, F Corberi, F Cugliandolo, M. Picco

» To cite this version:

F Insalata, F Corberi, F Cugliandolo, M. Picco.
with quenched disorder. Journal of Physics: Conference Series, 2018, 956, pp.012018. 10.1088/1742-

6596/956/1/012018 . hal-01982529

HAL Id: hal-01982529
https://hal.science/hal-01982529
Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Coarsening and percolation in the Ising Model


https://hal.science/hal-01982529
https://hal.archives-ouvertes.fr

Journal of Physics: Conference Series

PAPER « OPEN ACCESS

Coarsening and percolation in the Ising Model with quenched disorder

To cite this article: F Insalata et al 2018 J. Phys.: Conf. Ser. 956 012018

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 134.157.80.139 on 16/01/2019 at 11:01


https://doi.org/10.1088/1742-6596/956/1/012018
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/289668896/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

8th Young Researcher Meeting IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 956 (2018) 012018 doi:10.1088/1742-6596/956/1/012018

Coarsening and percolation in the Ising Model with
quenched disorder

F Insalata'?, F Corberi?, L F Cugliandolo® and M Picco?

! Dipartimento di Fisica “E. R. Caianiello”, Universita di Salerno, via Giovanni Paolo IT 132,
84084 Fisciano (SA), Italy.

2 INFN, Gruppo Collegato di Salerno, and CNISM, Unita di Salerno, Universita di Salerno,
via Giovanni Paolo IT 132, 84084 Fisciano (SA), Italy.

3 Sorbonne Universités, Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique
Théorique et Hautes Energies, 4, Place Jussieu, Tour 13, 5eme étage, 75252 Paris Cedex 05,
France.

E-mail: ferdinsa@live.it

Abstract. Through large-scale numerical simulations, we study the phase ordering kinetics
of the 2d Ising Model after a zero-temperature quench from a high-temperature homogeneous
initial condition. Analysing the behaviour of two important quantities — the winding angle and
the pair-connectedness — we reveal the presence of a percolating structure in the pattern of
domains. We focus on the pure case and on the random field and random bond Ising Model.

1. Introduction

Phase ordering kinetics, the ordering of a system via domain growth after a quench from the
homogeneous phase into one with broken symmetry, has attracted great interest in the last 50
years [1].

A simple example is a ferromagnet, instantaneously cooled (quenched) from above to
below the critical point. The initial equilibrium state becomes unstable after the quench
and evolves towards one of the two possible symmetry-related ordered configurations with
opposite magnetizations. Relaxation toward the new equilibrium state occurs slowly (i.e. not
exponentially fast) by the formation and growth (coarsening) of domains of the two equilibrium
phases (i.e. group of aligned spins). This domain growth is driven by superficial tension, i.e.
the interfaces tend to become flatter due to energetic reasons. Over time, the smallest domains
disappear so that the typical size R(t) of the remaining ones increases.

One theoretical approach to this class of problem is the kinetic Ising Model (IM), originally
introduced by Glauber [2]. One starts with a Ising system in which each spins is randomly
oriented, a situation that can be described as equilibrium at infinite temperature, T — oo.
Then, the evolution of the system is treated as a Markov chain, with appropriate transition
probabilities. The dynamical evolution can be simulated through standard Monte Carlo methods
[3]. In the thermodynamic limit, the coarsening process goes on indefinitely, with none of the
two equilibrium phases (up and down spins in this case) prevailing at any given finite time.
This means that the magnetic system does not develop a magnetization, or equivalently that on
average up spins are in the same number as down spins.
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It was recently shown [4, 5, 6] that, after a transient from the quench, some of the
morphological features of the coarsening domains in an ordinary, homogeneous IM are the same
as those of a geometrical lattice at the percolation threshold p. of random site percolation [7]. In
such condition, a spanning (percolating) cluster is present. In the coarsening IM, we observe a
percolating domain of either up or down spins. This fact may seem paradoxical, since percolation
is a non-interacting problem, whereas coarsening is driven by spin-spin interactions. Moreover,
the absence of magnetization in the coarsening system means that the percolative structures
are present when 1/2 of spins are up (down). For a 2d square lattice, the same geometry we
will consider for the IM, the critical percolation threshold is p. ~ 0.59, when occupying sites
randomly. This means that we observe percolation in the corsening IM when the occupation
probability of up (down) spins is 1/2 < p.. This is not a contradiction, however, since after
the transient ¢,, the spin configuration is no longer random, having been shaped by the spin-
spin interactions. It is, indeed, only after the coarsening dynamics has gone on for a transient
that percolative features appear, while they are absent right after the quench, a sign that they
are due to interactions. This can be phrased by saying that the spin-spin interactions lower
the percolation threshold from p. ~ 0.59 to 1/2. Moroever, although random uncorrelated
percolation and correlated coarsening coexist on the same lattice, they live on separate length
scales : the percolative properties are not present, at any given time, on length scales that are
smaller than R(t), the typical size of the domains, i.e. the correlated regions.

In a recent work [8], we showed that this phenomenology is also found in two types of
inhomogeneous IM, where structural (quenched) disorder is present. In particular, we focussed
on the random field Ising Model (RFIM) and random bond Ising Model (RBIM).

In this paper, after a brief review of the models considered and of the Monte Carlo algorithm
implemented (Sec. 2), we define the relevant observables in Sec. 3 and present the basic results
which highlight the occurrence of the percolation transition in Sec. 4.

2. Models and algorithm
We consider a 2d square lattice of linear size L, and the Hamiltonian of our models is

H{Si}) == JiiSiSi+ Y HiS;, (1)
(i) d
where S; are the Ising variables and (ij) are two nearest-neighboring sites. The different models
considered in our study are determined by the properties of the coupling constant .J;; and of the
external field H;, as follows.

Homogeneous IM: In this case, H; = 0 and J;; = Jp, i.e. we recover the ordinary IM. We
also refer to it as the clean or pure model.

RFIM: The couplings are constant J;; = Jy, while the external fields H; are drawn from a
symmetric bimodal distribution and uncorrelated in space, i.e. H; = +h, each with probability
one half. We refer to this model as the RFIM.

RBIM: No external fied, H; = 0, while the couplings are J;; = Jy + d;;, where §;; are
independent random numbers drawn from a uniform distribution in [—4, +J]. We keep 6 < Jy
in order to avoid frustration effects. We refer to this model as the RBIM.

In the case of the RBIM, coarsening via domain growth still takes place in the absence
of frustration, which is the case we have considered. In the case of the RFIM, the Imry-Ma
argument [9] tells us that ordering takes place up to a length

brv ~ <§Z) - : (2)

As we will see below, we focus on the case in which £73; — oo, for which the system orders in
any dimension.
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As mentioned above, we can treat the dynamical evolution of the system as a Markov chain
and simulate it through the Metropolis algorithm. Specifically, our algorithm flips single spins
with Glauber transition rate

1 HY + H;
w(S; = —S;) = = |1 — S tanh (i | 3)
2 T
where the Weiss Field H,LW , is given by
HY = > 1S, (4)
jENN(7)

with j running over the nearest-neighbors of the spin .5;.

For our simulations, the protocol consists in preparing a system of uncorrelated spins with no
magnetization — equilibrium at 7" — oo — and letting it evolve through single-spin flip according
to Eq. (3). Performing the quench to Ty amounts to inserting the value of Ty into Eq. (3). We
have let Ty — 0 keeping the ratios € = T% (for RBIM) and € = % (for RFIM) finite.

First, let us notice that this limit entails £;p; — oo, as mentioned above. Moreover, this
simplifies the form of the transition rates, which depend only on the parameter €. Not only we
obtain a theory that depends on a single parameter, but simulations are sped up and thermal
noise is reduced. More details on this algorithm and on its reliability can be found in [10, 11].

3. Key observables

The first quantity we consider, an essential one for the study of the phase ordering kinetics of
a system, is the typical domain size R(t). This is also referred to as growing length, since it
grows while the system orders through domain growth. We have computed it as the inverse of
the density of defects, i.e. dividing the number of couple of unaligned spins by L?. As discussed
n [12], this is a standard method to estimate R(t). We have then performed, as for all other
quantities, an ensemble average, typically on 10°—10° realizations. R(t) grows as t1/2 in the pure
system and slower and slower for increasing values of the parameter € controlling the strength
of disorder. More details can be found in [13].

In order to probe the emergence of percolation in the coarsening process, we used two
observables : the average squared winding angle and the pair-connectedness function. They
are naturally defined on a geometrical lattice in which a fraction p of the sites is occupied. They
can be measured on an Ising lattice by identifying occupied sites as, say, up spins and empty
sites as down spins, or vice-versa. A domain can then be considered as a cluster of up (or down)
spins and the above quantities can be computed with respect to the domains of the system.

The (average squared) winding angle is defined considering the external contours — hulls — of
a cluster of occupied sites. One considers two points P and @ at a distance x along the hull,
and the tangent to the hull in these two points. The angle between the two tangents, measured
counterclockwise in radiants units, is the winding angle 6(P, Q). By fixing x, one can calculate
the average winding angle for two points separated by this distance, (6(x)). It can be exactly
proven, through methods of conformal field theory, that on a lattice at the percolation threshold
for the hull of any cluster we have [14, 15]

(*(r)) =a+

1
S+k (5)

where a is a constant and k£ = 6. This equation holds when r > ry, rg being the lattice spacing,
i.e. when the microscopic structure of the lattice can be ignored. Therefore, we will report
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numerical data only for the largest domain of the system, so to have the largest possible range
in which r > rg.

The pair-connectedness function is defined in percolation theory as the probability that two
occupied sites at distance r belong to the same cluster. From 2d percolation theory, we know

that at p = p. [16, 17]
—2A
.
Chperelr70) ~ () (©)
To

where rg is the unit of length, usually the lattice spacing. Eq. (6) holds for r > ry, with the
critical exponent A = 5/48. In the coarsening system we measure the pair-connectedness at any
given time, identifying all the domains of up and down spins and then computing

Clt) = 115 3 Y 05,5,.): (7

where dg, 5. = 1 if the two spins belong to the same domain — namely they are aligned and there
is a path of aligned spins connecting them — and dg, 5, = 0 otherwise.

4. Numerical results

We now show how measuring the winding angle and the pair-connectedness on the domains of
the coarsening IM highlights that the morphological properties of the domain patchwork are
those of critical percolation.

— t=2.88
2P =704 4
t=16.2 |
— 1=39.6
10r (=105 d
Critical percolation
S, -

<B(r,t)>

4
In(r)

2 3

Figure 1. Average squared winding angle for the domains of the largest cluster of the pure
2d IM, plotted against Inr, the distance r along the hull. Results are relative to a lattice with
L = 640. In the key we report the measurement times. The dashed line is Eq. (5) with k£ = 6,
the value of critical percolation.

In Fig. 1 we report results for the clean model of size L = 640, for various measurement
times. The dashed blue line is the analytical curve, namely Eq. (5) with k = 6.

Apart from an upward vertical shift of the curves for increasing measurement times — whose
interpretation is discussed in [8] — for each curve we observe two behaviors : an initial part
(short distances) in which the analytical expression is not followed, and a large-distance regime
where numerical data are very well described by Eq. (5). Indeed, we fitted the slope of the
purple curve corresponding to R(t) = 2.68 and ¢ = 3.13 in the range 4 < In(z) < 7 , and we
obtained k = 5.94, in excellent agreement with the value k = 6 for critical percolation. This



8th Young Researcher Meeting IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 956 (2018) 012018 doi:10.1088/1742-6596/956/1/012018

signals that over sufficiently large distances the largest cluster has the morphological properties
of percolation. Interestingly, we see that the crossover between the two behaviors takes place at
a distance {; which increases with the measurement time.

We find a similar behaviour for pair-connectedness, shown for the pure IM in Fig 2. We
performed the measurement of g(r) at different times on a system of size L = 512. For each
curve except t = 2, after an initial distance which increases with time, curves for coarsening
have the same slope as that for percolation, the black line with slope —2A = —10/48 (at large
distances the curves bends upward as due to finite size effects). Notice that this is not true for
very small times, when the system is still very close to the initial condition. The vertical shift
of the curves for varying measurement times is interpreted in [8] in the same way as for the
winding angle.

I T T T 17 T T T 17

0.6— _

g(r)

0.3

o——e Critical percolation
—t=2
4
— 16
— 32
256

1 10 100
¥

Figure 2. Pair connectivity measured on a lattice at percolation threshold (black line) and for
a coarsening homogeneous 2d IM (colored lines) is plotted against the distance r. Measurement
times are given in the key. The lattice size is L = 512 in both cases.

In Figs. 1 and 2 we noticed a length, growing with time, after which the domains acquire
the morphological properties of critical percolation. It is natural to identify this length with the
growing length R(t), the typical size of the correlated regions (domains). Indeed, as mentioned
in Sec. 1, percolative properties can only be present a length scale over which the system is still
uncorrelated. This interpretation can be formalised and quantitatively verified through scaling
arguments [8].

Most importantly, we find analogous results for all the values of disorder strength considered,
for both RFIM and RBIM. We only report data for the RFIM with ¢ = 1 in Figs. 3 and 4

We regard this as compelling evidence that the clusters arising in the coarsening process are
those of critical percolation, for both pure and disordered systems. We can therefore conclude
that percolation effects are quite robust, since they are not destroyed by the presence of the
considered quenched disorder.

5. Conclusions

In this work we have investigated the relevance of percolative effects on the coarsening process
of the 2d IM quenched from a completely disordered initial state to zero final temperature. We
focused on the clean case and on two forms of quenched randomness, random bonds and random
fields. We have used two quantities — winding angle and pair-connectedness — which represent
efficient tools to detect percolation effects.
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Figure 3. Same as Fig. 1, but for RFIM with Figure 4. Same as Fig. 2 but for a RFIM with
€ERF — 1. €ERF — 1.

In the light of our results, we can conclude that the influence of percolation on the coarsening
dynamics of a quenched ferromagnet — previously highlighted for homogeneous models — also
extends to systems where quenched disorder is present, systems that are much less understood.
These results represent a first necessary step toward the generalisation of one of the few analytical
theories of coarsening [18] — currently available for pure systems — that hinges on the percolative
properties of the domains of the ordering system.

Finally, a natural extension of this work concerns randomly diluted models, a class of systems
whose phase ordering kinetics presents subtleties and differences with respect to random field
and random bond models [19].
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