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 According to GMM classification and statistical analyzes, the distribution of ΔVf in the Y1 population 
follows a normal distribution, the threshold can be defined as TΔVf = 2σ=0.0033m/s².  

 The data whose Vf is less than TΔVf is labeled as ‘machine-tool stopes’; the data whose Vf is greater than 
2σ and its ΔVf is less than 2σ is labeled as ‘machine-tool moves at constant speed’; the data whose Vf 
and ΔVf  are greter than 2σ is labeled as ‘machine-tool moves at varying speed’. 

 The threshold was chosen at 2σ by manual mining, through the verification of classification results.  
 As the raw data has been classified into 3 clusters, the new KPIs can be calculated in each cluster in the 

future. Such as, the tool will cut materials linear in the cluster ‘machine-tool moves at constant speed’ 
while the tool will cut materials in bending surface in the cluster ‘machine-tool moves at varying speed’. 
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 According to GMM classification and statistical analyzes, the distribution of ΔVf in the Y1 population 
follows a normal distribution, the threshold can be defined as TΔVf = 2σ=0.0033m/s².  

 The data whose Vf is less than TΔVf is labeled as ‘machine-tool stopes’; the data whose Vf is greater than 
2σ and its ΔVf is less than 2σ is labeled as ‘machine-tool moves at constant speed’; the data whose Vf 
and ΔVf  are greter than 2σ is labeled as ‘machine-tool moves at varying speed’. 

 The threshold was chosen at 2σ by manual mining, through the verification of classification results.  
 As the raw data has been classified into 3 clusters, the new KPIs can be calculated in each cluster in the 

future. Such as, the tool will cut materials linear in the cluster ‘machine-tool moves at constant speed’ 
while the tool will cut materials in bending surface in the cluster ‘machine-tool moves at varying speed’. 
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