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Abstract :
The Betz limit sets a theoretical upper limit for the energy efficiency of turbines energy efficiency of turbines,
expressed as a maximum power coefficient of of 16/27. Betz’s theory is precise and is based on the calcula-
tion of kinetic energy. However, if the potential energy is taken into account potential energy, the theoretical
energy efficiency of a turbine can be higher. higher. Fast wind turbines recover the kinetic energy of the wind
in an optimal way kinetic energy of the wind while a large amount of potential energy is potential energy is
created without being recovered. The notion of potential energy potential energy is fundamental, it is not
possible to recover energy if we do not energy, if we do not create a constraint. This article examines this
potential energy and the possibility for a wind turbine to transform it into into kinetic energy.
The Betz theory has been defined from the model of fast moving turbines. This theory has been generalized
to slow and fast moving turbines and it has been defined as a law. The conservation of energy implies that if a
variation of kinetic energy increases, the variation of kinetic energy increases, the variation of potential energy
decreases. In the case of slow moving turbines, the conservation of energy applies, but not for the applies,
but not for the case of fast moving turbines, however this is the reality. This paper proposes a new formula-
tion of the power of turbines with a notion of temporal, in order to be able to verify the conservation of energy.

Keywords : Betz limit, Betz’s law, Wind turbine, Tidal turbine, HAWT, VAWT.

1 Introduction
Lanchester, Betz, Joukowsky van Kuik (2007) van Kuik et al. (2015) Lanchester (1915) have defined the
maximum power coefficient of wind turbines. This limit is commonly called the Betz limit. Considerable
research efforts have been deployed to optimize wind turbines in order to reach this limit, for instance by
optimizing the angle of incidence, the shape of the blade profile etc. One may for example refer to "Wind
Energy Handbook "Burton et al. for fast moving horizontal axis wind turbines (HAWT), to "Hydrodynamic
modelling of marine renewable energy devices: A state of the art review" Day et al. (2015) or to "Wind
Turbine Design: With Emphasis on Darrieus Concept" Paraschivoiu (2002) for vertical axis wind turbines
(VAWT).

Research has been made to reach the Betz limit: - by ducting the turbine (Georgiou (2016) Georgiou
and Theodoropoulos (2016)) - by placing a water turbine in a narrow channel, which allows the water level
upstream to be increased by the resistance to the advancing fluid (Quaranta (2018) (Quaranta (2018))) - by
grouping turbines in wind farms in order to create an excess of power due to the proximity between machines
(ducting effect) (Vennell (2013) Vennell (2013) and Broberg (2018) Broberg et al. (2018)).
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The Betz limit is based on the calculation of kinetic energy. Designing a wind turbine, the energy of the
fluid is taken into account in order to calculate the recoverable energy and to design a structure withstanding
the stress.

Vfluid
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F

Ucarriage = 0

fig. 0

A carriage with a square sail that can move freely, will be set in motion by the wind and thus be subject
to very low wind stress. If the carriage is blocked, its structure will be subject to high stress.
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fig. 1

A carriage with a modern sail that can move freely will be set in motion by the wind and subject to high
stress from the wind. However, if the carriage is blocked, it will be subject to low stress on its structure.

In the case of fast moving wind turbines, when the wind increases, the turbine structure is subject to
high stress.

Large wind turbines are stopped when the wind becomes too strong, not because they produce too much
energy but because excessive stress could damage or destroy their structure. The stress induced in a structure
is potential energy. Betz’s theory does not take into account this potential energy. It exclusively takes into
consideration kinetic energy.

In the case of a sailboat, the sole sail cannot recover all the energy from the wind. Betz’s theory applies
to the sail that can not retrieve more than 16/27 of the wind’s kinetic energy. Many books explore the Betz
limit, for instance John Kimball’s "Physics of Sailing"Kimball (2009).

However, the America’s Cup is a good example showing that the Betz limit can be exceeded. Indeed, a
sailboat equipped with hydrofoils transforms potential energy into kinetic energy. The kinetic energy of the
wind sets the boat in motion. The fluid flowing around the hydrofoils lifts the boat out of the water, thus
reducing the drag and improving the efficiency. The wind power has not increased but the potential energy
that applied constraints on the keel has been converted into kinetic energy by the flow of fluid around the
profiles of the foils.

This article introduces the notions of kinetic and potential energy. It suggests that a vertical axis wind
turbine (VAWT) with an appropriate design can transform potential energy into kinetic energy.
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2 Preliminary considerations of Betz’s theory
The German mathematician A. Betz has demonstrated that the power of a turbine is (cf. Appendix 14, Betz
(1920)):

Pkin = F V = [
Ckin

a

1

2
ρ S V 2

fluid] a Vfluid = Ckin
1

2
ρ S V 3

fluid

where V = a Vfluid and Ckin = 4a2(1− a)

Pkin the kinetic turbine power (W ),
Ckin the kinetic power coefficient,
ρ the fluid density ( kg

m3 ),
Vfluid the fluid velocity(ms ),
V the fluid velocity at the position of the turbine,
S the swept area.(m2).
According to Betz ’s work (preliminarily by Lanchester), a kinetic energy approach shows that the maxi-

mum power coefficient Ck can not exceed a maximum of 16
27

Ckin Betz =
16

27
Ckin ≤ Ckin Betz Pkin maxi = Ckin Betz

1

2
ρ S V 3

fluid (1)

Finduced

W (relative speed)

U = ωR

V

Finduced

Fa

Fn

Fa

Fa

R

R

Fn

Fn

R

R

tow-bladed HAWT wind turbine.;
fig. 2

The relative speed due to the rotation speed of the wind turbine and the fluid speed creates an induced
force F on the profile. This induced force F is composed of an axial force Fa and of a normal force Fn. The
axial force Fa associated with the radius R creates a driving torque to produce energy. The normal force Fn
associated with the same radius R creates a bending stress on the blade.

The power of the torque due to the axial forces and the angular rotation speed of the wind turbine is
limited to 16/27 of the wind’s kinetic power.

The forces Fn and Fa are associated with the same radius and have the same origin: the fluid velocity.
Fn creates constraints that are the source of internal energy. These constraints are potential energy. Betz’s
theory does not take into account this potential energy which is as important as the kinetic energy. Betz
limit is correct. However, it only takes into account kinetic energy. In order to increase the efficiency of wind
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and hydrokinetic turbines, they could be designed to transform the potential energy into kinetic energy.
It is necessary to dissociate slow speed turbines and fast speed turbines.
λ = ωR

Vfluid
is an important parameter which makes a difference in the behaviour of the turbines when

exposed to wind.
As for the sail, it is necessary to dissociate the navigation in thrust (square sail, spinnaker) (unstuck flow)
and the navigation in smoothness (wing profile sail) (laminar flow).

2.1 Steady state, flow conservation and energy conservation
2.1.1 Flow conservation

In steady state, the fluid velocity is constant in time: dV
dt = 0

With a constant flow, the continuity equation is obtained

S1V1 = SV = S2V2 V1 = Vfluid

2.1.2 Energy, power and kinetic force

The index kin for "kinetic" is used

Ekin =
1

2
mv2 Pkin =

dEkin

dt
=

1

2

dm

dt
v2+

1

2
m
dv2

dt

dv

dt
= 0 m = ρsvdt Pkin =

1

2
ρsv3 Fkin =

Pkin

v
=

1

2
ρsv2

2.1.3 Energy, power and potential force

The index pot for "potential" is used

Epot = m
p

ρ
Ppot =

dEpot

dt
=

dm

dt

p

ρ
+m

1

ρ

dp

dt

dp

dt
= 0 m = ρsvdt Ppot = svp Fpot =

Ppot

v
= ps

2.1.4 Energy conservation (Prescott Joule (2011))

Ekin + Epot = Ekin−fluid

In steady state, dEkin−fluid

dt = 0

⇒ dEkin

dt
= − dEpot

dt

3 Difference between a low speed turbine and a high speed turbine

3.1 The advantage of using an airplane wing
Fast moving turbines can not be described as slow moving turbines such as Savionus. The comparison is
made between the airfoil of a fast moving turbine and the cup of an anemometer.
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fig. 3

If the movement of an anemometer is not impeeded, then its cups are almost free of stress. If the rotation
of an anemometer is hampered, then its cups are subject to stress.
In the case of a wing profile, this effect is totally different. Indeed, the tangential rotation speed U of the
profile is transverse to the flow of the fluid.
The relative speed W due to the rotation speed U and the fluid speed Vfluid creates an induced force F on
the wing profile. The axial component Fa of this force F, combined with the radius, creates a driving torque.

For horizontal axis wind turbines (HAWT), this torque improves the efficiency which can then approach
the Betz limit. Adding a transverse speed U will optimize the efficiency defined by Betz, but will add sig-
nificant stress on the wind turbine due to the normal component Fn of force F. That’s why HAWT wind
turbines have to be stopped when the speed of the fluid is too high. They do not produce too much but they
are subject to excessive bending stress.

Anemometer (λ < 1)
case U = ωR W Fn FnR

blocked 0 = Vfluid max 0
free ↗ ↘ ↘ ↗
case U = ωR W stress torque

blocked 0 = Vfluid max null
free ↗ ↘ ↘ ↗
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case U = ωR W potential energy kinetic energy

blocked 0 = Vfluid max null
free ↗ ↘ ↘ ↗

Horizontal axis wind turbines (λ > 1) (HAWT)
case U = ωR W Fn FaR

blocked 0 = Vfluid min 0
free ↗ ↗ ↗ ↗
case U = ωR W stress torque

blocked 0 = Vfluid min null
free ↗ ↗ ↗ ↗
case U = ωR W potential energy kinetic energy

blocked 0 = Vfluid min null
free ↗ ↗ ↗ ↗

In the case of an anemometer, the kinetic energy varies in a direction opposite to the potential energy.
This is not the case for HAWT turbines.
In the case of HAWT turbines, we must not only consider the speed of the fluid. The kinetic energy and
potential energy are related to the fluid speed and to the tangential rotation speed U. The direction of U is
perpendicular to the direction of the fluid.
The tangential rotation speed U is related to the fluid speed by this relation λ = U

Vfluid
U = ω R.

In the case of an anemometer and in the case of a wing profile, we have this equation Ekin + Epot = Ekin−fluid .
The conservation of energy is not verified in the case of a wing profile.
The variations of potential energy and energy increase when the anemometer is not blocked.

3.1.1 Low speed turbines λ < 1 :

Using the example of an anemometer with cups, when there is no resisting torque, the turbine rotates at
maximum speed (ωR = Vfluid W = 0), there is no energy production and the kinetic energy is at maximum.
When the turbine is blocked, the stress on the turbine is at maximum (W = Vfluid) and the speed of rotation
is null. The potential energy is at maximum.
To obtain energy production, both kinetic and potential energy are required.
If the kinetic energy is higher than the potential energy, the energy production is limited by the potential
energy.
Similarly, if the potential energy is higher than the kinetic energy, the energy production is limited by this
latter.

There can be no production of kinetic energy without potential energy.

Pkin−max−productive ≤ min( Pkin , Ppot )

Energy production is at its maximum when the kinetic energy is equal to the potential energy.
The total energy is equal to the sum of the kinetic energy and the potential energy.

Etotal = Ekin + Epot

Conservation of energy can be applied and verified.

dEtotal

dt
= 0 → dEkin

dt
= − dEpot

dt
(2)

The potential energy is related to the relative speed W . The kinetic energy is related to the relative speed
ωR (see Figure 2).
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The tangential rotation speed must be equal to half of the fluid speed to reach optimal conditions.

|Vfluid| = |U |+ |W | |U | = |W | U = ωR =
Vfluid

2
λ =

1

2
(3)

To produce energy, the maximum power of the kinetic energy of a turbine at low speed (λ < 1 λ = ωR
Vfluid

)
is equal to

Pkin max(with λ<1) = Ckin(with λ<1)
1

2
ρSV 3

fluid Ckin max(with λ<1) =
1

2
Ekin =

Ekin−wind

2
(4)

For a low speed turbine, the kinetic energy of the wind is partially transformed into kinetic and potential
energy.

Ekinwind ⇒ Ekin & Epot (5)

4 Calculation of energy

4.1 Calculation of energy λ < 1

V1 V −V + V2

p+ p− p2p1

Pressure

pmaxi

Vmini

Fluid speed

S1

S
S2

Current tube.;
fig. 4

4.1.1 Conservation of steady state energy applied in the area upstream of the turbine

1

2
ρS(V −)

3
+ SV −p+ =

1

2
ρS1V1

3 =>
1

2
ρ(V −)

2
+ p+ =

1

2
ρ
S1

S
V1

2

1

2
ρSVmini

2 + pmaxi =
1

2
ρS1V1

2

d

dt
(
1

2
ρS(V −)

2
+ p+) = 0 => Vmini

2 =
1

2

S1

S
V1

2

if S1 =
1

2
S then Vmini =

1

2
V1

the kinetic energy of the fluid is transformed into kinetic and potential energy.

Ekwind ⇒ Epot & Ekin

see 3.1.1
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4.2 Calculation of energy λ > 1

V1 V V2

p+ p− p2p1

Pressure

F luid speed

S1

S
S2

current tube.;
fig. 5

4.2.1 Calculation of the turbine power from the kinetic energy

The force applied to the rotor is Fkin = mdV
dt = dm

dt ∆V = ρSV (V1 − V2)

Pkin = FkinV = ρSV 2(V1 − V2)

Pkin =
∆Ekin

dt
=

1

2
ρSV 2(V 2

1 − V 2
2 )

It is deducted V = V1+V2

2

By defining a as a = V
Vfluid

Vfluid = V1 0 ≤ a ≤ 1 V2 = V1(2a− 1) V2 ≥ 0 a ≥ 1
2

Pk = 4a2(1− a)
1

2
ρSV 3

fluid with Ckin = 4a2(1− a) Pkin = Ckin
1

2
ρSV 3

fluid

Searching for the maximum kinetic power (Betz limit) :

dPkin

dt
= 0 a(2− 3a) = 0 as a ≥ 1

2
a =

2

3
Ckin−maxi =

16

27
= Ckin−Betz

4.2.2 Energy in stationary state applied in the turbine area

V1 V V2

p+p− p2p1

Pressure
F luid speed

S1
S

S2

turbine area
fig. 6

Ekin+ + Epot+ = Ekin− + Epot− = Epot

ρ m [
V 2
+

2
−

V 2
−
2

+
p+
ρ

− p−
ρ
] = Epot with V+ = V− = V

ρ m [
p+
ρ

− p−
ρ
] = Epot (6)
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4.2.3 Energy in stationary state applied to the whole turbine

V1 V V2

p+p− p2p1

Pressure
F luid speed

S1
S

S2

turbine area
fig. 7

Ekin1 + Epot1 = Ekin2 + Epot2 + Ekin

ρ m [
V 2
1

2
− V 2

2

2
+

p1
ρ

− p2
ρ
] = Ekin with p1 = p2

ρ m [
V 2
1

2
− V 2

2

2
] = Ekin (7)

4.2.4 Remark

The Bernoulli equations

p1 +
1

2
ρs1V1 = p+ +

1

2
ρsV p− +

1

2
ρsV = p2 +

1

2
ρs2V2

V1 = Vfluid P1 = P2 → V 2
1

2
− V 2

2

2
=

p+
ρ

− p−
ρ

by using the equation (6),
Epot = Ekin

The kinetic energy of the fluid is partially transformed into potential energy and then into kinetic energy

Ekwind ⇒ Epot ⇒ Ekin (8)

Vfluid Vfluid

Sswept area

Vfluid

1 2 3

energy transfer stage;
fig. 8

1 Kinetic energy of the fluid
2 Stresses are created on the turbine
3 The change of direction of the fluid creates a driving torque to generate energy

Ekwind ⇒ Epot ⇒ Ekin (9)

9



1 ⇒ 2 ⇒ 3

The fluid 1 creates stress on the surface swept 2 by the turbine, then there is a change of direction 3
of the fluid .

Successively, there is a transformation of energy from the kinetic energy of the fluid into potential energy,
then into kinetic energy.

Ekwind ⇒ Epot ⇒ Ekin

t0 Ekwind

Epot

Ekin

t0 + ∆ t Ekwind

Epot

Ekin

t0 + 2 ∆ t Ekwind

Epot

Ekin

t0 + 3 ∆ t Ekwind

Epot

Ekin

t0 + 4 ∆ t Ekwind

Epot

Ekin

t0 + 5 ∆ t Ekwind

Epott0 + 6 ∆t Ekwind

time fig. 9

As the regime is stationary, although it is a transfer of energies, we have a summation of energies.

As there is a transfer of temporal energy Ekwind(t− 2∆ t) ⇒ Epot(t−∆ t) ⇒ Ekin(t), in the case of
an increase in the speed of the fluid, we have successively these energy variations

dEkwind(t− 2∆ t)

dt
> 0 ⇒ dEpot(t−∆ t)

dt
> 0 ⇒ dEkin(t)

dt
> 0

This formulation allows to be consistent with the conservation of energy.

remark : The kinetic energy Ekin(v) and the potential energy Epot(p) are not one energy and one
co-energy Borel (1965) Max Marty (2005) . The pressure varies according to the square of the speed.

p

v

Sa

Sb

fig. 10

When the fluid velocity increases, the energy variations are both positive, but the area of Sa is different from
Sb.
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5 Conversion of potential energy into additional kinetic energy
There can be energy production only if we have kinetic energy and potential energy.
For a sailboat, Betz’s theory applies Kimball (2009). The fluid flow due to the wind and the forward speed
of the sailboat creates an induced force on the sail. A small part of this force is used to move the sailboat
forward, the other part creates stress on the sail and causes the boat to heel. Constraints are created on the
keel to resist the heel. Instead of having static stresses on the keel, using hydrofoils allows a kinetic flow.
This flow lifts the sailboat, creates a reaction force against the tilt and greatly improves the performance of
the sailboat. The principle of transforming potential energy into kinetic energy increases performance and
the wind has not been doubled.

5.1 Conversion of potential energy
Potential energy is the source of stress in the turbine. It is possible to convert potential energy into kinetic
energy
In the case of horizontal wind turbines (HAWT, fast wind turbine type), the stress in the blades for a defined
wind speed, is constant.

dσ

dβ
= 0

σ Stress in turbine blade( N
m2 )

β rotation angle of the blades (rad)
In fact, some variations of the stress exist due to gravitational forces and the differencial velocity within

the boundary layer depending on the elevation.
In the case of vertical axis turbines (VAWT, Darrieus type) the stress on the blades and arms depends

on the rotation angle of the blades (for a given wind speed).

dσ

dβ
̸= 0

1

2 π

∫ 2 π

0

σdβ = ϵ (ϵ small)

During a half-turn, the arms are submitted to compression stress whereas extending stress is dominant
during the next half-turn.

In the case of a HAWT, the conversion is not possible with a dynamic mechanical system. The additional
stress is constant during a rotation for a given wind speed. Alternative stress, encountered in a vertical axis
wind turbine VAWT can allow the extraction of additional energy.

5.2 Total recoverable power of the turbine
To determine the power, one selects the power defined from the kinetic energy and, in the case of conversion
of stress into a mechanical movement, the power defined from the potential energy. It is possible to convert
potential energy into kinetic energy.
The total recoverable power coefficient is

Ctotal = Ckin + Cpot

Cp = 0 when constraints are not converted

Ptotal = Ctotal
1

2
ρSV 3

fluid = (Ckin + Cpot)
1

2
ρSV 3

fluid

In the case of horizontal wind turbines (HAWT, fast wind turbine type), the power coefficient CT HAWT

is

CTotal HAWT = Ckin = 4 a2 (1− a) Cpot = 0

In the case of vertical axis turbines (VAWT, Darrieus type)
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the power coefficient CT V AWT Darrieus is

CTotal V AWT Darrieus = Ckin = 4 a2 (1− a) Cpot = 0

In the case of vertical axis turbines (VAWT with conversion), this stress is converted into additional
energy, and the power coefficient CT V AWT with conversion is

CTotal V AWT with conversion = Ckin + Cpot = 8 a2 (1− a)

Depending on the turbine type, the power will be different by

P = Ctotal
1

2
ρSV 3

fluid (10)

PTotal HAWT = 4 a2 (1− a)
1

2
ρSV 3

fluid (11)

PTotal V AWT Darrieus = 4 a2 (1− a)
1

2
ρSV 3

fluid (12)

PTotal V AWT with conversion = 8 a2 (1− a)
1

2
ρSV 3

fluid (13)

6 HAWT-VAWT comparison and discusion
Following the work of Hau (2000), the power coefficient of different turbines is compared (a performance of
0.6 is applied for the supplementary energy recovery system).

With a =
2

3
Ckin ≈ 60% Cpot ≈ 60%

notation Cpot w.c = Cpot with conversion
case Coef. HAWT VAWT Darrieus VAWT with conversion
perfect Ckin 60% 60% 60%
perfect Cpot w.c 0% 0% 60%
perfect Ctotal = 60% = 60% = 120%

in practice Ckin 0.8× 60% ≈ 48% 0.7× 60% ≈ 42% 0.7× 60% ≈ 42%
in practice Cpot w.c 0% 0% 0.6× 0.7× 60% ≈ 25%
in practice Ctotal = 48% = 42% = 67%
. . . . . . . . . . . . . . . .
gain/HAWT + 0% −12 % + 39%
gain/Ckin(Betz) − 20% −30 % + 11%

With a ≈ 0.8 Ckin ≈ 50% Cpot ≈ 50%

case Coef. HAWT VAWT Darrieus VAWT with conversion
in practice Ckin 0.8× 50% ≈ 40% 0.7× 50% ≈ 35% 0.7× 50% ≈ 35%
in practice Cpot w.c 0% 0% 0.6× 0.7× 50% ≈ 21%
in practice Ctotal = 40% = 35% = 56%
. . . . . . . . . . . . .
gain / HAWT + 0% −12 % + 27%
gain / Ck − 20% −30 % + 12%
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0.4 0.9
a0

0.5

1.2

CT V AWT with conversion 0.7 ( Ckin + 0.6 Cpot)

CT Maxi 1.0 (Ckin + Cpot)

Ckin Betz 1.0 Ckin

CT HAWT 0.8 Ckin

CT V AWT Darrieus 0.7 Ckin

Ckin = 4 a2 (1 − a)

Cpot = 4 a2 (1 − a)] Tip speed ratio
performance curve;

fig. 11

6.1 The Active lift turbine project
The "Active lift turbine" project" is an example of transformation of potential energy into kinetic energy
(see preprint : Simplified theory of an active lift turbine with controlled displacement (Lecanu et al. (2016).

Ckin =
9π

27
b3 − 23

3
b2 +

π

2
b

Cpot =
e

R
λ(

9π

27
b3 − 22

3
b2 +

π

2
b)

Cactive.lift.turbine = (1 +
e

R
λ)(

9π

27
b3 − 22

3
b2 +

π

2
b)

with b = σλ σ =
Nc

R
λ =

Rθ̇

Vfluid
b ≤ 4

3

σ stiffness coefficient
N Number of blades
c Chord of profil
λ Tip speed ratio
e eccentric distance
R Turbine radius
θ rotation angle of the turbine

numerical application
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if e = 0.2 and σ = 0.25

dCactive.lift.turbine

db
=

d[(1 + e
R

b
σ )(

9π
27 b

3 − 22

3 b2 + π
2 b)]

db
= 0 b1 ≈ 0.84 Cactive.lift.turbine ≈ .85

0 4
3

b

λ
5.33.42.80

0.840.71

0.85

0.55

Cp

σ = 0.25 e = 0.2 (Active Lift Turbine)

σ = 0.25 e = 0 (Darieus Turbine)

fig. 12

6.2 Synthesis scheme:
6.2.1 Low speed turbine λ < 1 :

case : λ < 1 — turbine type Anemometer with cups Ekin wind ⇒ Epot & Ekin

For a constant wind speed, if the load of the electric generator is decreased, then we have simultaneously
these energy variations :

dEpot

dt
< 0 &

dEkin

dt
> 0

14



Fluid
energy Pfluid = 1

2ρSV
3
fluid

Kinetic
energy

U = ω R

Potential
energy

Vfluid − U

Pkinetic + Ppotential < Pfluid

λ < 1 λ = ω R
Vfluid

optimum λ = 1
2 Coef = 1

2

P ∗
kin (max) = Coef 1

2ρSV
3
fluid

Energy
production

Material
strength

Conversion

Potential energy in kinetic energy

Energy
Production

Eventually

fig. 13

∗ to obtain an energy production

6.2.2 Fast speed turbines HAWT or VAWT λ > 1 :

case : λ > 1 — large wind turbines HAWT or VAWT
Temporal transfer of energy Ekwind ⇒ Epot ⇒ Ekin

For a constant wind speed, if the load of the electric generator is decreased, then we have successively
these energy variations :

dEpot

dt
> 0 ⇒ dEkin

dt
> 0

Fluid
energy Pfluid = 1

2ρSV
3
fluid

Potential
energy

Pkin = Coef 1
2ρSV

3
fluid

Generally Coef ≤ CkBetz CkBetz = 16
27

Kinetic
energy

Pkinetic + Ppotential > Pfluid

λ > 1 λ = ω R
Vfluid

Energy
production

Material
strength

Conversion

Potential energy in kinetic energy

Energy
Production

Eventually

fig. 14
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In the case of a turbine with a lambda lower than 1, a part of the recoverable energy, is transformed
into kinetic energy and the other part into potential energy (stress in the turbine). Eventually a part of this
potential energy could be transformed into kinetic energy.

In the case of a turbine with a lambda higher than 1, the recoverable energy defined by Betz, is transformed
into potential energy. This energy creates kinetic but also potential energy (stress in the turbine). This is
possible because a rotation speed which is higher than the speed of the fluid is created. A part of this
potential energy (due to the stress) can be transformed into kinetic energy.

6.3 Synthesis on the extracted power:
With a mechanical conversion system, the power is, for each turbine type

PT HAWT = 4 a2 (1− a)
1

2
ρSV 3

fluid

PT V AWT Darrieus = 4 a2 (1− a)
1

2
ρSV 3

fluid

PT V AWT with conversion = 8 a2 (1− a)
1

2
ρSV 3

fluid

Compared to a HAWT turbine, the gain of a VAWT Turbine with an energy recovery system is in practice
from 20% to 50%.

Concerning a vertical axis turbine with a conversion system, the power factor is higher than the one
defined by Betz.

In the comparative table, a yield of 0.6 was chosen for the mechanical conversion system of the potential
energy into mechanical energy. By choosing an efficient technology, this yield can be greatly increased, which
will improve the performance of the turbine.

The definition of the maximum power coefficient is the one established by Betz which remains valid for
horizontal axis turbines HAWT but not for vertical axis turbines VAWT. The given results examined a con-
version of the potential energy into kinetic energy through a mechanical system which is not applicable for
horizontal axis turbines HAWT. The calculation of the powers are the sum of the powers taken into account.

In order to obtain productive kinetic energy, kinetic energy and potential energy are needed.
The maximum productive kinetic power is equal to

Pk−max−productive ≤ min( Pk , Pp )

The limit of this depends on whether it is a low or high speed turbine

Pk(max) = Coef
1

2
ρSV 3

fluid

Coef = 1
2 for low speed turbines (λ < 1)

Coef = 16
21 for high speed turbines (λ > 1)

The maximum power coefficient for a wind or tidal turbine is

CTotal maxi λ<1 =
100

100
(≈ 100%)

CTotal maxi λ>1 =
32

27
(≈ 118.5%)

CTotal maxi is a limit value with Cpot ≤ Ckin.

Using piezo-electric materials would make it possible to transform potential energy into electrical energy.
However, in order to achieve higher efficiency, the potential energy should be transformed into kinetic energy.

Thus, the power coefficient will be Ctotal = Ckin + Cpot whatever the type of turbine.
Note : In the case of a turbine in a channel (see appendix 15 ), the maximum kinetic power coefficient is

to 1. The maximum total power coefficient is then 200%.
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7 Conclusion
The article presents a new formulation for power calculation of wind or water turbines.
Taking into account the potential energy allows to establish that the conservation of energy is well verified.
This was not the case in the formulation presented by Betz.
A new power coefficient has been defined for the turbines depending on their type,low or high speed.
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A : Appendix

Maximum wind power recovered from kinetic energy

Ek =
1

2
mV 2

dEk

dt
=

1

2

dm

dt
V 2 +

1

2
m

dV 2

dt

dV

dt
= 0

dEk

dt
=

1

2
ṁ V 2 =

1

2
ρS V 3

V Wind speed at the turbine level
Force applied by the wind on the rotor

F = m
dV

dt
= ṁ∆V = ρSV (Vfluid − Vwake)

Vwake streamwise velocity in the far wake

P = FV = ρSV 2 (Vfluid − Vwake)

P =
∆E

∆t
=

1
2
mV 2

fluid − 1
2
mV 2

wake

∆t

P =
∆E

∆t
=

1

2
ṁ(V 2

fluid − V 2
wake) =

1

2
ρSV (V 2

fluid − V 2
wake)

From theses equalities

V = V̄ =
Vfluid + Vwake

2

F = ρSV (Vfluid − Vwake) =
1

2
ρS(V 2

fluid − V 2
wake)

P = FV = ρSV 2 (Vfluid − Vwake)

defining a = V
Vfluid

Vwake = Vfluid (2 a − 1) as Vwake ≥ 0 a ≥ 1

2

P = 4 a2 (1− a)
1

2
ρSV 3

fluid

defining power coefficient Ck = P
1
2
ρSV 3

fluid

= 4 a2 (1− a)

Search of maximum power coefficient

dCk

da
= 0 a (2 − 3 a) = 0 a = 0 or a =

2

3

a =
2

3
Ck =

16

27
= 0.593

The maximum power coefficient Ckmaxi is defined by Betz

Ckmaxi = CkBetz =
16

27
≈ 60%

The maximum power of the fluid is
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Pfluid =
1

2
ρSfluidV

3
fluid

Sfluid = S V
Vfluid

= a S

The power of the turbine is

P =
Ck

a
Pfluid = Ck

1

2
ρ
Sfluid

a
V 3
fluid = Ck

1

2
ρSV 3

fluid

The maximum power of the turbine is

Pmax =
Ck Betz

2
3

Pfluid =
8

9
Pfluid = Ck Betz

1

2
ρSV 3

fluid =
16

27
(
1

2
ρSV 3

fluid)

Pmax = Ck Betz
1

2
ρSV 3

fluid (14)
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B : Appendix

Maximum wind power for a turbine in a channel (from kinetic energy)

V = Vfluid V Vwake

S S Swake

Ek =
1

2
mV 2

dEk

dt
=

1

2

dm

dt
V 2 +

1

2
m

dV 2

dt

dV

dt
= 0

dEk

dt
=

1

2
ṁ V 2 =

1

2
ρS V 3

V Wind speed at the turbine level
Force applied by the wind on the rotor

F = m
dV

dt
= ṁ∆V = ρSV (V − Vwake)

Vwake streamwise velocity in the far wake

P = FV = ρSV 2 (V − Vwake)

P =
∆E

∆t
=

1
2
mV 2 − 1

2
mV 2

wake

∆t

P =
∆E

∆t
=

1

2
ṁ(V 2 − V 2

wake) =
1

2
ρSV (V 2 − V 2

wake)

From theses equalities

Vwake =
1

2
V Swake =

S V

Vwake
= 2 S

F = ρSV (Vfluid − Vwake) =
1

2
ρS(V 2

fluid − V 2
wake)

P = FV = ρSV 2 (Vfluid − Vwake)

P =
1

2
ρSV 3

fluid

defining power coefficient

Ck =
P

1
2
ρSV 3

fluid

= 1 (15)
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C : Appendix

Additional recovery power (from potential energy)
The fluid creates stresses in the blade. They are due to thrust force. The energy of this force is

Ep = m
fs
ρ

fs thrust force
For HAWT horizontal wind turbines (fast wind turbine type), the thrust force Fs are constant.

dEp

dt
= 0

For a VAWT, the thrust force depends on the time or the rotation angle Fs(t) or Fs(β) β = ω t

ω = dβ̇
dt

angular frequency

dEp

dt
̸= 0 and

1

2 π

∫ 2 π

0

Ep(β)dβ = ϵ (ϵ small)

As

Fs = fsS = Cx
1

2
ρ S V 2

fluid

Ep = m Cx
1

2
V 2
fluid

V fluid speed at the level turbine
The power is

Pp =
dEp

dt
dm = ρSV dt

Pp =
dEp

dt
=

dm

dt
Cx

1

2
S V 2

fluid + m Cx
1

2
S

dV 2
fluid

dt

dVfluid

dt
= 0

Pp = a Cx
1

2
ρ S V 3

fluid with a =
V

Vfluid
(16)

1

2 π

∫ 2 π

0

Ep(β)dβ = ϵ (ϵ small) Ep−max ≈ − Ep−min

the power depends on a potential energy difference

Pp =
∆Ep

∆t
T =

2 π

ω
Pp ≤ Ep−max − Ep−min

T
Pp ≤ Ep−max

π
ω

for a half-turn

Ep(β) R dβ = dEp π R

in particular

Ep−max =
dEp

dβ
π =

dEp

dt

π

ω

As
dEp

dt
= a Cx

1

2
ρ S V 3

fluid and Pp ≤ Ep−max

π
ω

Pp ≤ a Cx
1

2
ρ S V 3

fluid
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D : Appendix

Variation of energy in opposite sense

Along a streamline, the Bernoulli’s equation is see Bernoulli (1738)

p

ρ
+

v2

2
= constant with z = 0

By multiplying by m

m
p

ρ
+ m

v2

2
= constant

The differential of this equation is

d(
1

2
m v2) = − d(m

p

ρ
) (17)

the variations of energy vary simultaneously and in opposite sense.

As
dV

dt
= 0 and

dp

dt
= 0 p = − 1

2
ρ v2
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