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Abstract

It is generally observed that for a given confining pressure the friction angle at peak strength of 

dense sand deduced from triaxial compression test is smaller than the one obtained from extension 

tests. In fact, this conclusion depends essentially on the way one takes into account the global 

confinement condition. In this paper, we show that when there is no significant grain crushing, the 

dependence of the maximum friction angle with the average of minor and major principal effective 

stress is similar for compression and extension tests. A similar result is obtained for sandstones

when the failure mode involves a shear failure plane.
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1 Introduction

Comparison of results from extension and compression tests on sands is an old 

dispute: is the friction angle at peak higher in extension or in compression ? This 

question is a particular point in the wider debate on the relationship between the 

friction angle and the Lode angle or the factor b=(2-3)/(1-3) (Lade, 2006). 

Tests results collected by Wu and Kolymbas (1991) showed that for loose sand no 

general conclusion can be drawn and that for dense sand the friction angle is 

higher for extension tests than for compression tests performed at the same 

confining pressure. Special attention must be paid to the difficulties met when 

carrying out extension tests, the more specific one being the necking phenomenon 

which makes extension test unstable (Lade, 2006, Yamamuro and Lade, 1995, Wu 

and Kolymbas, 1991). Wu and Kolymbas (1991) listed the possible artefacts of 

extension tests such as the influence of the membrane, the effect of the weight of 

the sample, the effect of non-homogenous deformation. This last effect was 

corrected by measuring the local lateral deformation with a special device 

(Kolymbas and Wu, 1989) and evaluating the axial stress with a corrected area. 

Yamamuro and Lade (1995, 1996) avoided necking of the sample by using 

membranes reinforced by metal plates as described in (Lade et al., 1996). In this 

paper, the method of comparison of the measured friction angles is critically 

discussed in order to better understand the different values measured in the case of 

dense sands in dry or drained condition. High pressure tests where grain crushing 

can cause a change of behaviour (Yamamuro and Lade, 1996) are not considered 

in this study. The difference in measured friction angle appears to be due to the 

influence of stress level. Finally, the comparison is extended to cohesive granular 

media such as sandstones. For tests without brittle tension failure, the tangent

friction angle is compared for compression and extension tests. We emphasize the 

fact that the comparison is made for the maximum mobilized friction angle so that 

only the failure state is discussed and not the complete constitutive behaviour of 

the material. This failure state may be the result of strain localisation. In 

particular, we are interested in discussing the appropriate stress quantity which 

controls the stress-dependent character of the friction angle at failure.
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2 Comparison of experimental results for dense 

sand

Only a limited number of tests data allowing the comparison of extension and 

compression results are available in the literature. As stated above, extension tests 

are especially difficult to perform and we use here two data sets, one from 

(Kolymbas and Wu, 1990, Wu and Kolymbas, 1991), and the other one from

(Yamamuro and Lade, 1996). 

For both data sets, the samples were built using a pluviation technique. Wu and 

Kolymbas (1991) tested a dry Karlsruhe medium sand with D50=0.395 mm and 

average relative density 100%. We also refer to the compression tests of 

Kolymbas and Wu (1990) on the same material. Yamamuro and Lade (1996)

tested a water saturated Cambria sand in drained conditions. This sand is

uniformly graded with a grain size of 0.83 to 2 mm and an average relative 

density 89.5 %. Among the test data of Yamamuro and Lade, we selected those 

for which no important grain crushing was observed. This condition gives a limit 

of about 8 MPa for the shear stress 'a - 'rwhere 'a is the (effective) axial stress 

and 'r is the confining stress. In the following we will consider total stresses for 

dry samples and effective stresses for saturated samples tested in drained 

conditions. For simplicity, the total stress (for dry samples) and the effective stress 

(for saturated samples) are both denoted by . 

For cohesionless materials, the friction angle for each test has been simply 

evaluated in the Mohr plane as the secant angle at maximum shear stress 

sin /( )a r a r       . This definition does not imply a priori the validity of 

Mohr-Coulomb criterion, nor the independence from the intermediate principal 

value of the stress tensor. 

The results of Wu and Kolymbas (1990, 1991) are presented in Figs. 1, and 2

where the maximum friction angle in compression and in extension is plotted vs. 

the confining stress r and vs. the mean stress p = (2r+a)/3 at peak. As shown 

by these plots, the difference between the friction angle in compression and in 
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extension plotted against the confining pressure r is reduced when the friction 

angle is plotted against the mean stress. 

Figure 1

Figure 2

The difference is reduced even more by plotting the measured values of friction 

angle as a function of s = (a+r)/2 (Fig. 3). The same remarks can be made for 

the test results by Yamamuro and Lade (Figs. 4-5) for a large range of pressures. 

Figure 3

Figure 4

Figure 5

3 Comparison of experimental results on sandstone

The same approach is now applied to sandstone which can be viewed as a

cohesive granular material. Two sets of tests results have been published by 

Bésuelle (1999) and Bésuelle et al. (2000) for Woustwiller sandstone on one hand 

and by Sulem et al. (1999) and by Papamichos et al. (2000) on Red Wildmoor 

sandstone on the other hand. Their data are analysed in the following.

As it can be seen on Fig. 6 for Woustwiller sandstone, it is not possible to define a 

secant friction angle or a tangent friction angle for extension tests at relatively low 

confining pressure as for r=10, 20 and 30 MPa, tensile failure occurs on a quasi-

horizontal plane (Bésuelle et al., 2000). Thus, only the tests at higher confining 

pressure where shear failure occurs are considered hereafter. It is also observed on 

Fig. 6 that a unique envelope surface cannot be drawn for the Mohr circles of 

compression and extension tests with failure in the compressive regime.

Consequently, the discussion herein will refer to the tangent friction angle. 

Figure 6
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The tangent friction angle is evaluated by considering the tangent line to two 

adjacent Mohr circles. This quantity is plotted as function of the X-coordinate of 

the middle point of the centre of the two circles (Figs. 7-8). The plots of Figs. 7,

and 8 show that the friction angles in compression and extension lay on a unique 

curve when plotted as a function of (a+r)/2 (centre of the Mohr circle).

Figure 7

Figure 8

4 Discussion

4.1 Axisymmetric triaxial tests on loose sand or on dense 

sand at high confining pressure

The above results do not apply to loose sands. This has been checked for the tests 

of Wu and Kolymbas (1990) and of Lade and Bopp (2005). Fig. 9 shows the 

secant friction angle plotted versus (a+r)/2 for tests by Lade and Bopp (2005)

on Cambria sand with an initial relative density of 30%. Even at low confining 

pressure, extension tests and compression tests do not lie on a single curve. The 

gap between the two curves is even larger when the friction angle is plotted versus 

the radial stress r or the mean stress p. 

On Fig. 9, a clear change is observed for the slope of the curve at high confining 

pressure (>10MPa) for the compression tests. In this range of confining pressure 

the friction angle is larger in compression than in extension. The same 

phenomenon is also observed for dense sands at high confining pressure

(Yamamuro and Lade, 2006). The change of response at high confining pressure 

can be attributed to particles breakage which is different in compression and in 

extension. (Yamamuro and Lade, 2006).

For these two cases, a simple stress quantity cannot be found for describing the 

stress dependency of the friction angle in compression and in extension.

Figure 9
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4.2 True triaxial tests on rocks and on sand

For different type of rocks tested in true triaxial conditions, Haimson (2006) has 

studied the effect of the intermediate principal stress on the maximal octahedral 

shear stress. He has shown that the octahedral shear stress at failure is a unique 

function of the mid-sum of the two extreme principal stresses. This does not imply 

that the failure criterion is independent of the intermediate stress as this quantity is 

accounted for in the expression of the octahedral shear stress. In particular for 

both compression and extension conditions the octahedral shear stress is a r  .

Haimson’s observation corroborates our finding that sin a r

a r

 


 





is a unique 

function of   / 2a r  . For true triaxial tests on Santa Monica Beach sand 

(Wang and Lade, 2001), it has been observed that shear banding appears in 

hardening regime for 0.15<b<0.85, with )/()(b 3132  . In a quite 

similar way as for rocks, the octahedral shear stress seems to be better correlated 

with  1 3 / 2  than with  1 2 3 / 3    (Fig 10).

Figure 10

4.3 Choice of (a+r)/2 for describing stress-dependent 

friction

In triaxial condition, the study of the Mohr circles reduces to the study of the 

circle in any plane containing the axial direction. If the failure envelope can be 

drawn, for each value of secant angle there is a unique Mohr circle, the centre of 

which has its X coordinate equal to (a+r)/2 for both extension and compression 

loading cases. The failure envelope is very simply described by the secant friction

angle as a function of (a+r)/2. It is the only natural choice which makes it 
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possible to check immediately whether the failure criterion is the same in 

compression and extension. 

Stress dependency of the friction angle is commonly expressed in terms of the 

mean stress. This invariant is chosen by Yamamuro and Lade (1996) for 

comparing compression and extension tests. For isotropic materials, a functional 

basis of independent invariants consists of 3 elements. The usual basis is 

kk3

1
p  , jiijs2 ss

2

1
J  where ijijij ps  is the deviatoric stress tensor and 

kjjkijs3 sss
3

1
J  . The mean stress p is the only linear stress invariant for isotropic 

systems. For axisymmetric triaxial tests, it can be easily proved that 2/)( ra 

can be written in terms of stress invariants: 

s2

s3ra

J

J

4

3
p

2



(1)

Thus the choice of (a+r)/2 is natural and is not in contradiction with invariant 

tensor theory. 

4.4 Comparison of tests data and predicted values in the 

case of sands

All values of sin() (extension and compression, Wu and Kolymbas and 

Yamamuro’s tests) can be globally fitted as a power law of 2/)(s ra  . The 

best fit was found to be: 

0.0645sin 0.62  (with  in MPa)s s   (2)

Equation (2) can be rewritten as
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0.9355

1.24  (with ,  in MPa)
2

a r
a r a r

        
 

(3)

The axial stress can be expressed as: 

))s(sin1(sa  (compression); ))s(sin1(sa  (extension) (4)

Using equation (3), we get: 

0.9355

1.24  (with ,  in MPa)
2

a r
a r a r

        
 

(compression); (5a)

0.9355

1.24 (with ,  in MPa)
2

a r
a r a r

        
 

(extension) (5b)

The predicted values of a versus r given by (5) are compared with tests results 

in Fig. 11. 

Figure 11

Predicted values and experimental data appear to be in good accordance on a large 

range of confining pressure for both extension and compression tests, even for 

data corresponding to the two different sands (Karlsruhe sand and Cambria sand). 

4.5 Failure mechanism and tests results

Different failure mechanisms induce different maximal shear values for triaxial 

tests (e.g. Suzuki and Yamada, 2006) and for true triaxial tests (Lade, 2006). In 

the above related tests different failure modes (with no shear band, with an 

incomplete partially developed shear band, with a fully developed single shear 

band or with a system of several shear bands) have been obtained.

The tests data used for sand were not focussed on tracking shear band formation 

and evaluating its inclination. But Wu and Kolymbas (1991) mentioned shear 
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banding in extension tests for dense sand. It is well known that dense sand triaxial 

tests involve shear banding (Vardoulakis and Sulem, 1995). Concerning tests on 

Woustwiller sandstone, for the tests that have been compared (i.e. compression 

and extension tests with similar value of (a+r)/2), it has been found that the 

failure pattern is a unique failure plane in both cases. For Wildmore sandstone, all 

triaxial tests presented here have a shear band failure pattern (Papamichos et al., 

2000). 

Thus for the tests considered in this paper, when the appropriate data are 

available, the failure mode is similar for compression and extension when the

secant friction angles (for sand) or tangent friction angles (for sandstone) are 

identical in compression and extension. 

In the pre-localisation regime, triaxial tests conditions impose fixed principal 

stress directions whereas strain localisation allows for principal stress rotations.

This phenomenon can be used for calibration out of plane shear moduli 

(Vardoulakis, 1980, Sulem et al. 1999, Desrues and Chambon, 2002). However an 

out of plane stress increment does not affect much the principal stresses. If we 

assume, as it is done here, that the failure criterion is isotropic then stress rotation 

induced by the strain localisation process does not affect the relation between the 

axial stress and the radial stress at failure. On the other hand, strain localisation

can result in a stress-induced anisotropy of the material inside the shear band and 

could thus lead to an anisotropic failure criterion. A recent paper of Gajo et al. 

(2007) shows that although stress induced anisotropy affects the conditions for 

onset of strain localisation, the global response of sample is not much affected. 

Therefore, it is expected that stress induced anisotropy will not affect much the 

axial stress at failure.

5 Conclusion
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The comparison of compression and extension triaxial tests on dense dry sands 

shows that when special care has been taken to prevent or to correct the effects of 

necking, the secant friction angle at failure is a unique function of (a+r)/2 for 

both loading cases. The comparison of compression and extension triaxial tests on 

sandstones shows also that the friction tangent angle is very similar in both cases 

(for the same value of (a+r)/2), when failure occurs with shear banding. When 

strain localisation occurs, a transition between the imposed axisymmetric strain 

mode and a plane strain mode takes place and thus our results suggest that 

whether the failure plane is formed in extension or in compression does not affect 

the stress-dependency of the maximum mobilized friction angle. Therefore, 

constitutive models which incorporate stress-dependency of the friction angle 

should be compatible with this result. This result does not hold for loose sands or 

for sands at high pressures. In the case of loose sands, this can be explained by the 

fact that the failure mechanism is different from the one of dense sands as no peak

is observed in the stress-strain curve and no failure plane is formed. For the case

of sands tested at high pressures, one could relate the different response to the 

different mechanism of particle breakage in compression and in extension.
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Fig. 1 Secant friction angle as a function of radial stress; data from Wu and Kolymbas (1991), 

Kolymbas and Wu (1990)

Fig. 2 Secant friction angle as a function of mean stress p; data from Wu and Kolymbas (1991) 

Kolymbas and Wu (1990)

Fig 3 Secant friction angle versus (a+r)/2; data from Wu and Kolymbas (1991) Kolymbas and 

Wu (1990)

Fig. 4 Secant friction angle as a function of mean stress p’; data from Yamamuro and Lade (1996)

Fig. 5 Secant friction angle versus ('a+'r)/2; data from Yamamuro and Lade (1996)

Fig. 6 Mohr circles for Woustviller sandstones; solid lines: extension tests; dashed lines: 

compression tests (data from Bésuelle, 1999)

Fig. 7 Tangent friction angle versus (a+r)/2; Woustwiller sandstone; data from Bésuelle et al. 

(2000)

Fig. 8 Tangent friction angle versus (a+r)/2; Red Wildmoor sandstone; data from Papamichos et 

al. (2000)

Fig. 9 Secant friction angle versus ('a+'r)/2 for loose Cambria sand; data from Lade and Bopp, 

(2005)

Fig 10 Octahedral stress versus mean stress (left) and versus (1+3)/2 (right): true trial test on 

Santa Monica Beach sand (Dr=74%); data from (Wang and Lade, 2001)

Fig. 11 Predicted values of a vs. r compared to test results: compression (left); extension (right)
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