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A three dimensional numerical quantum mechanical model of electronic field emission from metallic surfaces with nanoscale corrugation

The effects on the electronic emission of the presence of nanoscale steps on a tungsten surface are investigated for the first time using three dimensional quantum mechanical models. The plane wave periodic version of the density functional theory is used to obtain the electronic wavefunctions and potentials for flat and corrugated structures. Local and averaged emitted current densities are obtained from them using time dependent perturbation theory. The orders of magnitude of the averaged current densities resulting from these calculations are similar for both flat and corrugated cases, however, strong enhancements are observed on the local current densities near the edges of the steps. These numerical results are compared with those of the analytical Fowler-Nordheim type models. The slopes of the Fowler-Nordheim plots are in good agreement for both numerical and analytical models, but the magnitudes of the emitted currents are significantly different. This is related to weaknesses in the description of the electronic structure of the metal in the analytical models.

I. INTRODUCTION

There has been recently a revival of interest in the nuclear fusion industry community 1,2 on the problem of electronic emission induced by static electric field 3,4 because it can cause electrical breakdown in vacuum. This poses challenges to the design of vacuum insulation structures in high voltage systems. These are parts of the heating systems of magnetically confined plasmas in tokamaks which are based on high energy hydrogen or deuterium atoms accelerated by the electric field of high voltage systems. Unfortunately, the performances of such heating systems are limited by damaging electron currents induced by field emission 1, [5][6][7] .

These currents can be reduced by raising the pressure in the vacuum system, typically from ultrahigh vacuum to pressures of the order of 10 -4 -10 -2 Pa 8-14 . This gas effect, known for quite some time, has been investigated recently in details for tungsten carbide and tungsten cathodes [15][16][17][18][19][20] . Accurate first principles emission models are required to understand better the correlations between emission properties and changes induced on the surface by the presence of the ambient gas. Unfortunately, most of the models currently available are too crude to provide such detailed information. Indeed, our understanding of electronic emission still relies mainly on the historical Fowler-Nordheim model 3,21 , corrected in ref. 22, extented We refer to these models globally as FN type models, sometimes distinguishing within them between the FN model (the historical Fowler-Nordheim one 3,21 ) and the MG one (Murphy and Good 4 ). It has been used widely and successfully over the years as a fitting model of experimental data, recent examples of applications are given in the citations of ref. 27. However, this model relies on a crude description of the emitting electrode by a single parameter, the work function. It is more a semi-empirical model than an ab initio one and it cannot correlate emission to surface structure details such as the presence of defects or adsorbates.

More quantitative models have been designed recently, in particular in the context of the development of carbon based nanomaterials and two-dimensional materials (for reviews, see ref. 28,29). Some are improvements of the FN analytical models 30,31 . Others are based on a Density Functional Theory (DFT) calculation of the Hartree and exchange-correlation potentials which drive electron emission, followed by emitted electron time dependent 20,[32][33][34] or time independent [35][36][37][38][39][40][41][42][43][44][45] dynamical models. In particular, we presented in a recent paper 20 a method using plane wave DFT followed by electronic wavepacket time propagation within the perturbation theory framework to compute currents emitted from structures modeled atom-by-atom. This method was tested on the emission from flat tungsten.

It is well known 8,46 that surface corrugation enhances locally the external electric field and thus emission levels. Recently, FN type models have been extended to such systems 47 .

Typically, local field enhancement factor β of several hundreds have been obtained for unpolished stainless steel 48 or copper 49 surfaces, whereas β of several tens have been measured for titanium, molybdenium 50 and niobium 51 , for rugosities of the order of ten nanometers or more. The role of protrusions has already been considered from a theoretical point of view (for a review see for instance ref. 52). In a recent study 19 , we considered from a theoretical point of view the correlations between surface corrugation at the nanoscale and field enhancement. In the present paper, we want to go further by addressing the more difficult correlations between corrugation and emission enhancement. To our knowledge, the present study represents the first application of DFT-type models beyond flat structures on corrugation in the field emission context. We describe in section II the computational method which we have implemented. We present in sub-section II A the formalism and we explain how to use the potentials and the states resulting from a DFT calculation to propagate a wavepacket in time within perturbation theory. Then, in sub-section II B, we provide details about the computational implementation of this formalism. In section III, we show the results of the implementation of the method for a W surface, either flat or corrugated by nano-scale steps. The comparison between both calculations allows to obtain information on the effect of corrugation on emission. We also compare the results of our model with the ones resulting from the FN type methods.

II. COMPUTATIONAL METHOD

A. General framework

We consider the electrons of a metallic slab at 0 K temperature. This slab is infinite in the x and y directions but it is not necessarily of constant thickness in z and can present periodic features. Such features can be for instance periodic steps on the surface or adsorbates. This slab is subjected to an external field F parallel to z which induces an electronic current flowing from the metal into the vacuum. Bold-face symbols refer to vectors, the corresponding standard symbols refer to their norms. We assume that this current is weak enough so that the perturbation theory can be used to model accurately this process and we use its time dependent version.

We assume that the electrons occupy orbitals Ψ m (r, F = 0) which are the Bloch functions (p. 179 in ref. 53) defined by : When the external field is applied, the electrons experience a potential U (r, F) given by : U (r, F) = U (r, F = 0) + ∆U (r, F). ∆U (r, F) is the perturbation associated with the external field : it vanishes inside the metal and it is linear far away from the metal. In practice, we observe stability problems in the DFT calculation at large field. Therefore, we compute the potential for a lower reference field F 0 (typically 1 V/nm) and we obtain ∆U (r, F) by linear extrapolation : ∆U (r, F) = F F 0 ∆U (r, F 0 ). As a result of this perturbation, metal electrons can tunnel and leak into the vacuum.

(T + U (r, F = 0)) Ψ m (r, F = 0) = ϵ m Ψ m (r, F = 0) (1 
The leakage rate of each orbital is a "state current" I m given within the frame of the time dependent perturbation theory as the Fourier transform of the correlation function C m (t) :

I m = e 2 ∫ +∞ -∞ dt e i ϵmt C m (t) (2) C m (t) =< Φ m |e -i T +∆U (r,F)+Uvac t |Φ m > ( 3 
)
U Fourier transform (eq. 2) on a short time window (typically of the order of a few 10 fs).

However, on some occasions, a tail of the wevapacket remains stuck in the metal region, enlarging Fourier time window and slowing down computing speed. We therefore added a repulsive potential in the metallic region to restore fast convergence, and we checked that this modification does not significantly change the current values.

The total current emitted by Ω is : I = 2 ∑ m I m (the factor 2 is due to spin degeneracy) and the corresponding averaged current density is : J = I N k Auc , where A uc is the emitting area of the unit cell. An averaged current density Jm can be defined similarly from I m for each state Ψ m (r, F = 0). We can also define local current densities J(x, y) from the correlation function C m (t). Indeed, is obtained the 3 dimensional spatial quadrature which defines C m (t) in eq. 3 can separated in a 1 dimensional quadrature in z and in 2 dimensional one in x, y quadratures.

To do so, we introduce a local correlation function c m (x, y, t) :

c m (x, y, t) = ∫ dzΦ * m (r, F)e -i T +∆U (r,F)+Uvac t Φ m (r) (4) 
so that :

C m (t) = ∫ dx ∫ dy c m (x, y, t) (5) 
A local state current density J m (x, y) can be obtained from the Fourier transform of c m (x, y, t) :

J m (x, y) = e 2 ∫ +∞ -∞ dte i ϵmt c m (x, y, t) (6)
The total local current density is then :

J(x, y) = 2 ∑ m J m (x, y). It is easy to check that : J = ∫ dx ∫ dy J(x,y) N k Auc
, as expected.

The present formalism has similarities with the Bardeen Transfer Hamiltonian (BTH) model of tunneling 54 because it also relies on a perturbative formalism. The BTH formalism is an ingredient of the Tersoff-Haman model 55 used in the context of scanning tunneling microscopy to obtain current density maps. Similarly, local density J(x, y) maps can be obtained from the present formalism in the context of electronic field emission. Current maps obtained by application of this new formalism will be presented below.

B. Numerical implementation

We now illustrate the use of our method on bcc tungsten, and we consider emission from flat (001) surfaces as well as corrugated ones. Tungsten is a commonly used material for electrodes and has already been the subject of numerous studies using DFT (see our recent In the flat case (fig. 4), the topmost layer (layer # 7) atom is at the center of the figure (x, y = a/2, a/2), atoms belonging to layer # 6 are at the corners. The highest emission point is located at the topmost atom, lowest emission points are at the layer # 6 atom locations.

However, the contrast between low and high emission is limited, less than 7 %, as expected for a flat surface. The averaged current density is 1.69 × 10 -5 A/nm 2 . Fig. 5 The scaled current densities represented in lin-log scale as a function of the inverse field have the usual linear behavior typical of the Fowler-Nordheim model, with the addition of a saturation effect visible above 15 V/nm in the corrugated case. Interestingly, this saturation does not appear in the flat case nor in the vicinity of the trough for the corrugated case. In the latter case, it appears on the ridge current density which it is very high in this area as well as on the averaged density, as a consequence of the important contribution of the ridge to it. A similar saturation effect at large field has also been observed in other emission models.

One of them is the simple self consistent one dimensional DFT calculation performed with a local exchange-correlation functional where the metal is modeled by a jellium, i.e. where the nuclei localized positive charges are replaced by a uniform distribution (fig. 4 in ref. 37).

The present results can be compared with those of the Fowler-Nordheim (FN) 3,21,22 and Murphy-Good (MG) 4 models. In both cases, the current density is independent of the x, y location and is obtained as :

J = e 3 (βF ) 2 16π 2 φ(t(y F )) 2 exp ( - 4 3e 
( 2m 2 )1 2 φ 3 2 v(y F ) βF ) (7) 
In the FN model v(y) = 1 ; in the MG model, it is a function of the variable y = in the FN and MG models. These analytical models reproduce reasonably well the slopes of our numerical results : in particular, due to a larger field enhancement near the ridge and slightly smaller work function, the decrease of the emitted is smaller in the corrugated case than in the flat one in both numerical and analytical models.

Similarly, in both types of models, the slope of the current density is smaller near the trough than near the ridge where the field enhancement is smaller.

Although the global emitted current density from the FN analytical model and our numerical model look qualitatively similar, they differ significantly if more detailed observables like emitted current density energy distribution (CDED) are considered. In the FN type models, the ED is given by (eq. 7 in ref. 20) :

dJ dϵ = e m(ϵ F -ϵ) 2π 2 3 exp ( - 4 3e ( 2m 
2

) 1 2 (φ + ϵ F -ϵ) 3 2 v(y) βF ) (8)
It is shown on fig. 7. The increase of the CDED (as energy increases) far below the Fermi level is controlled by the tunnel transmission, and its decrease close to Fermi level by the decrease of the density of states of the 2 dimensional free electron gaz describing the metal electrons. The CDED is shown for 2 field strengths, 15 V/nm and 4 V/nm. For 4 V/nm, the distribution corresponds of course to lower amplitudes due to weaker tunneling, but is also more confined in energy in the vicinity of the Fermi level.

In our numerical model, the continuum of electron metal states is discretized and the energy distribution becomes a set of points (ϵ m , Jm ), each associated to an orbital Ψ m (r, F) (eq. 1). This set of points is shown on fig. 7 for the external field 15 V/nm. The current densities have been premultiplied by the degeneracy of the states. The total current density is thus the sum of the 192 individual densities shown on the figure. This distribution has two striking features. First, its shape resembles more the FN CDED for 4 V/nm than for 15 V/nm. This may be related to the fact that the field experienced by the metal electrons is much smaller than 15 V/nm in the vicinity of the metal, as shown on fig. 3 and on the contrary an anti-correlation for the p x and d xy cases, as indicated by the signs of the slopes of the linear fits shown on these figures. As the weights of the z-pointing orbitals differ greatly from one state to another one even in a narrow energy interval, the emitted current can vary greatly between states even close in energy. Such fine detailed properties of the emitting states cannot be accounted for in the simple FN type models.

IV. CONCLUSION

We have studied the effect of the presence nanoscale steps on the electronic emission of a tungsten surface using a three dimensional quantum mechanical model using periodic DFT (VASP) coupled to a perturbation theory wavepacket propagation method. The orders of magnitude of the averaged current density emitted from the corrugated surface are similar to the ones obtained from the flat one. However, strong enhancements are obtained on local current densities near the edges of the steps.

Both the present numerical DFT type models and the FN type analytical ones thus provide results in qualitative agreement, but they have different strengths and weaknesses.

The DFT type models have the advantage to provide results relying only on the definition of the emitting structure at the atomic level, without any additional adjustable parameter.

From this point of view, they provide ab-initio emitted current densities. This class of methods has a large flexibility of applications : it has been used here to study the effect of corrugation on emission, but it could be used as well to study other problems such as the effect of contaminants on surfaces 18 or anomalous emission properties from 2D materials 30 .

On the other hand, in many engineering applications, the emitting structure is not fully controlled at the atomic level and it is difficult to obtain valuable information from DFT models in this context. The FN type analytical models are then still very valuable in that they allow to grasp an essential part of the physics of the problem with a few parameters.
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  to thermo-ionic emission by Murphy and Good in ref. 4, to curved emitters in ref. 23. A generalization using the local density of states at the surface has been proposed in ref. 24. Convenient simplifications of the analytical model have been given in ref. 25 and a universal formulation in ref. 26.
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  is the electronic kinetic energy operator and U (r, F = 0) is the total potential energy in the absence of external field experienced by an electron of the material located at r. m is a composite index which comprises the electron momentum in the first Brillouin zone (p. 37 in ref. 53) and the band number. Periodic conditions are applied at the boundary of a volume Ω consisting of N k unit cells, where N k is the number of k-points used to sample the first Brillouin zone. The orbitals are normalized such that they correspond to one electron charge over Ω.

  vac is the vacuum potential (the work function if the 0-energy is the Fermi energy), e the electron charge, the reduced Planck constant. The correlation function C m (t) is a matrix element of the evolution operator associated to the perturbing potential. It involves the state |Φ m (r, F) > which results from the action of the perturbation on the field-free electronic orbitals : |Φ m (r, F) >= ∆U (r, F)|Ψ m (r, F = 0) >. |Φ m (r, F) > is expelled quickly into vacuum and the correlation function C m (t) decreases quickly to 0, allowing for a converged

  Fig. 3 shows the z component of the induced electric field along z, for selected x, y locations on the flat and corrugated surfaces. These fields have characteristics consistent with those already observed in ref. 19. In the flat case, the field has, as expected, little dependence on the surface x, y location. It decreases from its asymptotic value to 0 on a layer 2-3 Å thick above the topmost atoms, due to the screening of the external field by the delocalized metal electrons. For the corrugated case, also as expected, the field is enhanced

  corresponds to the corrugated case. The ridge line is located at x = b 2 and the troughs at x = 0 and x = b. The atoms facing vacuum are depicted by disks increasingly larger and darker as their height increases. There is now a strong dependence of the emitted current density on the x, y location, the density at the ridge is more than one order of magnitude larger than at the troughs. Interestingly, although atoms from both layers #7 (at x, y = b/2, 0 and x, y = b/2, a) and #6 (at x, y = b/2, a/2) are located on the ridge, only limited variations of the current density are observed along this line. In fact, the current density is found slightly larger in the vicinity of the atom at the center of the cell which belongs to layer #6 than in the vicinity of the atoms belonging to layer # 7 (at x, y = b/2, 0 and x, y = b/2, a). The averaged emitted current density J is 1.81 × 10 -5 A/nm 2 , which is only 7 % larger than the emitted current density in the flat case. Although corrugation induces field and electronic emission enhancements locally, it barely modifies global emission from the surface.

Fig. 6

 6 Fig. 6 is a Fowler-Nordheim plot which compiles our numerical results for different field strengths. The averaged current density J is shown for the flat and corrugated cases (full lines without markers). In the corrugated case, the current density depends strongly on the emission points. It is shown for the trough (x, y = 0, 0) and ridge (x, y = b/2, a/2) locations as dashed lines connecting, respectively, upward and downward pointing triangles.
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  expressed in terms of complete elliptic integrals but it can also be approximated by simpler expressions 25 . Also : t(y) = v(y) -2 3 y dv(y) dy . Fig.6shows the results of these models for two couples of input data : φ = 4.25 eV , β = 1 and φ = 4.02 eV , β = 1.5, which correspond to the flat surface and to the corrugated surface near the ridge. As is well known, the attractive charge-image interaction reduces the tunneling barrier and enhances the emitted current density in the MG model which includes it, as compared to the FN one which neglects it. In the present case, saturation is reached for the MG model, especially when β = 1.5. The results of our numerical model are larger than the FN ones and smaller than the MG ones. A similar result has already been observed for instance in the one dimensional DFT model of ref. 37 (see fig. 4 there). Interestingly, the FN current density for φ = 4.02eV , β = 1.5 is very close to our averaged density in the corrugated case. This may be fortuitous, the FN density is expected at best to model the one at the ridge. The slope of the FN plots is directly related to the work function and local field enhancement and is

  : the external field is screened by a space charge layer of the order of 3 Å thick. It is this screened field that the electrons experience when tunneling away from the metal. The second striking feature of the CDED is the great variability of the state current density on energy : in a narrow energy band, the state current density can fluctuate from almost 0 to large values. This means that characteristics of the states |Ψ m (r, F) > different from their energy must be important factors influencing the current density level. To investigate this further, we consider for the flat surface case on fig. 8 and fig. 9 the projections of the states |Ψ m (r, F = 0) > on selected orbitals. We consider only orbitals centered on the atoms facing vacuum to probe the electron density in the vicinity of the metal-vacuum interface, which corresponds to the area expected to have the largest influence on emission. We show on fig. 8 the projections on the orbitals pointing along z toward vacuum (p z and d z 2 spherical harmonics) on fig. 9 the projections on those pointing toward the surface (p x and d xy spherical harmonics). The orbitals pointing toward vacuum are expected to transfer electrons from the metal to vacuum and enhance electron emission, whereas the ones pointing toward the surface are expected to confine the electrons in the metal. The results shown on fig. 8 and 9 confirm this hypothesis : there is a correlation between state current density and the weight of the contribution of the p z and d z 2 orbitals to the emitting state,

FIG. 1 :FIG. 3 :FIG. 4 :

 134 FIG. 1: The flat tungsten structure considered in the present study. It is a slab consisting in the superposition of 3 cubic cells (lattice parameter a) along one direction, but infinitely (only twice on the figure) repeated by periodicity along the two others. The slab thus consists of 7 atomic planes, separated by a distance a 2 . Light and dark gray colors are used to help distinguishing tungsten atoms belonging to successive layers. The external field F is applied on this structure parallel to the z axis chosen perpendicular to the slab.
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 5 FIG. 5: Same as fig. 4 but for the corrugated structure of fig. 2. The figure is restricted to the rectangular b × a unit cell b = 3 √ 2a, a = 3.179 Å. The disks represent the locations of the atoms facing vacuum, they belong to different atomic planes with different heights (the height between adjacent planes is a √ 2). Atoms belonging to increasingly high planes are represented by increasingly dark and large disks.
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 67 FIG. 6: Fowler-Nordheim plots of the field emitted current density from the flat (black curves) and corrugated (blue) structures. Full lines without markers : averaged emitted current density J resulting from the present numerical model for the flat and corrugated surfaces. Dashed lines with up and down pointing triangles : local current densities for the corrugated case at (x, y) = (0, 0) and (x, y) = (b/2, a/2) respectively. Local densities are not shown for the flat structure because they do not differ significantly from the averaged one in this case (see fig. 4). Dotted lines with disks : results of the Fowler-Nordheim model for the cases : work function φ = 4.25 eV , enhancement factor β = 1 and φ = 4.02 eV , β = 1.5 ; they are chosen to represent the flat and corrugated (respectively) cases. Dash-dotted lines with stars : results of the Murphy-Good model for φ = 4.25 eV , β = 1 and φ = 4.02 eV , β = 1.5.