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Abstract—Low-Power Wide Area Networks (LPWANs)
promise to enable nationwide low-power connectivity to Internet
of Things (IoT) devices. While transmission ranges meet expecta-
tions, concerns on the packet delivery ratio are voiced. Receiver-
side diversity is often thought as a solution to improve on delivery
ratio, as well as an enabler to the geolocation of devices. In this
context, we study the infrastructure density required to achieve
k-coverage of the IoT devices, which preludes k-reception. To that
purpose, we make use of k-order Voronoi diagram to compute an
estimate of the gateway density in reference deployment setups:
dense urban, urban and rural networks. We thus provide insights
on the feasibility of k-coverage deployment in those scenarios.
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I. INTRODUCTION

Trading higher bit rates for better link budgets, LPWANs
provide long range wireless connectivity to IoT devices. Such
networks provide a promising alternative to traditional cellular
or multi-hop networks and are indeed envisioned to provide
nationwide connectivity over industrial, scientific and medical
(ISM) bands to battery-powered IoT devices that transmit little
amount of data over long periods of time, e.g.,, water & gas
meters. As stated in European Telecommunications Standards
Institute (ETSI) requirements for smart city applications [1],
typical use cases exhibit stringent Quality of Service (QoS) re-
quirements, e.g.,, high packet delivery ratio, which pose a chal-
lenge to LPWANs such as [2, 3] that mostly rely on random,
uncoordinated access schemes. Those requirements, as well
as harsh propagation environments, e.g.,, meters deployed in
water pits, motivate the use of redundancy mechanisms at the
emitter side, i.e.,, retransmissions and the receiver side, i.e.,,
multiple-reception or receiver diversity. Unlike retransmission
mechanisms that apply a higher pressure on the medium usage,
receiver diversity comes at virtually no cost for IoT devices
and medium usage. However, receiver diversity requires a
higher infrastructure density and thus higher deployment costs.

In this context, we investigate the dimensioning of the
gateway density to ensure k-coverage, i.e.,, k gateways in
communication range of each IoT device. The number of IoT
devices being huge, we consider k-covering the network region
of IoT devices. To this purpose, we introduce some notions
based on k-order Voronoi diagram to express the inter-gateway
distance and gateway density in three regular deployment
patterns: triangular, square and hexagonal as a function of the
target coverage degree k and communication range r.

Our results provide an estimate of the infrastructure density
required in three real-world reference IoT scenarios : a dense
urban setup, an urban setup and a rural setup, by considering
only the factor of k-coverage. As we will see, the k-coverage
is not the primary dimensioning factor in some use cases.
Capacity of gateways should also be taken into account.

The paper is organized as follows. In section II, we provide
an overview of methodologies and results of related works in
the domain of wireless sensor networks (WSNs). In section
III, we introduce our problem setting and essential definitions
before proposing our methodology in section IV. Section
V is finally dedicated to the numerical application of our
methodology on three network dimensioning use cases.

II. RELATED WORKS

k-order Voronoi diagram and k-coverage in WSNs are
both well-studied subjects in the geometry and the network
litteratures respectively. Without pretending to be exhaustive
on the matter, we present works whose methodologies are
similar to that of this paper. WSNs have been first thought
to be a viable solution to monitor physical events, be it for
military or civil surveillance applications. From this context
arose the concept of sensing coverage, i.e.,, ensuring the
detection of events in a monitored area. The requirement
of k-coverage comes from the detection precision concern.
In [4–7], a dense network of randomly scattered sensors is
assumed and the authors propose algorithms, either distributed
or centralized, to compute minimal sets of active nodes to
ensure a complete k-coverage of the area of interest while
maximizing the network lifetime. While the coverage objective
is similar to covering an area of sensor nodes with gateways,
such algorithms are ill-suited to compute the minimal spatial
density of an infrastructure tailored to ensure k-coverage.

Pattern-based deployments have the advantage of guaran-
teeing regular inter-site distances [8]. It’s especially adapted
for planned infrastructure deployment. In [9], by combining
the notion of grid coverage and that of k-perimeter cover-
age, sufficient yet not necessary conditions for k-coverage
in regular deployment patterns are given. In this article, we
propose a different methodology based on k-order Voronoi
diagram that gives the necessary and sufficient condition for k-
coverage, thus resulting in minimal spatial densities of regular
deployments. Our results confirm those obtained in [10, 11] in



terms of optimal 1 and 2-coverage deployment patterns, and
can give some insights for the more general case of k ≥ 3.
k-order Voronoi diagram has been used to study distributed

and randomized k-coverage issues in WSNs [12, 13]. How-
ever, pattern-based deployments being more appropriate for
infrastructure deployment by requiring probably smaller de-
ployment density, we apply k-order Voronoi diagram to regular
patterns and find the optimal k-coverage pattern as well as an
overview of the deployment cost for achieving k-coverage.

III. PROBLEM FORMULATION

As in [9], in order to model the gateway deployment, we
choose three regular patterns coming from the only three possi-
ble edge-to-edge tilings of the 2D plane by mutually congruent
regular square, triangle and hexagon polygons [8]. The vertices
of the polyons represent the positions of gateways, as shown
in figure 1. As the deployments thus obtained are spatially
periodical, single periods are shown. We first introduce several
definitions necessary to our problem formulation.

We denote the Euclidean distance between two points
p, q ∈ R2 by d(p, q). The region to provide k-coverage is
denoted by Ω ⊆ R2, that can be bounded or not. Let G
denote the deployment pattern of gateways, G = {gi}i∈I ,
where I ⊆ N. G is not necessarily limited to Ω, nor finite
(assuming that the pattern is regular, when Ω = R2 the
pattern is necessarily infinite). Let | · | denotes the cardinality,
and r the communication range which is supposed to be
identical for all devices. We denote by G(p, r) the subset of
G enclosed by a disc of radius r, centered at p ∈ Ω, i.e.,,
G(p, r) = {gi ∈ G | d(p, gi) ≤ r}. Finally, the k-distance of p
to set G is defined as dk(p,G) = min{r ≥ 0 | |G(p, r)| ≥ k}.
k-coverage means that every device in Ω is able to commu-

nicate with k gateways in G with communication range r as
stated by the following definition and proposition.

Definition 1 (k-coverage). Ω is said to be k-covered by
the deployment G, if for any p ∈ Ω representing a device,
|G(p, r)| ≥ k.

Proposition 1. The minimal communication range to k-cover
Ω is rk = max

p∈Ω
dk(p,G).

Proof. Note that since G is defined as a regular pattern, this
maximum is well defined as long as k ≤ |G|. If rk is the
minimal communication range achieving k-coverage, then we
have rk ≥ max

p∈Ω
dk(p,G): indeed, if rk < max

p∈Ω
dk(p,G), there

exists at least a point p such that |G(p, r)| < k and p is not k-
covered by definition. For r = max

p∈Ω
dk(p,G), we have for any

p ∈ Ω, r ≥ dk(p,G), according to the definition of dk(p,G),
we have |G(p, r)| ≥ k, thus Ω is k-covered.

In order to find rk, let’s introduce the following definitions.

Definition 2 (k-order Voronoi cell). Let us denote by
Pk(G) = {G ⊆ G | |G | = k} the collection of the sub-
sets of G having the cardinality k, with k ≥ 1. For any
G0 ∈ Pk(G), the k-order Voronoi cell of G0 is defined as
Ck(G0) = {p ∈ Ω | ∀G ∈Pk(G), dk(p,G0) ≤ dk(p,G )}.

Definition 3 (k-order Voronoi cell of a vertex). The k-order
Voronoi cell of a vertex gi ∈ G is defined as Vk(gi) =⋃
G3gi

Ck(G ).

Ck(G0) is the set of points that have G0 as the k nearest
gateways among G. Vk(gi) is the set of points that have gi as
one of its k nearest gateways among G. The classical Voronoi
polygon of gi is a special k-order Voronoi cell given by k = 1,
i.e.,, C1(gi) = V1(gi). Note that there is no overlap between
adjacent Ck, but Vk overlap in general except for V1. An
example of C3(G ), V3(gi) and C1(gi) = V1(gi) is shown in
figure 1. With all the necessary definitions given, in section IV
we express the minimal k-coverage ensuring density D(k, r)
in regular patterns by fixing a communication range r.

IV. ENSURING k-COVERAGE

We define the spatial density of a deployment as the number
of gateways per unit surface, i.e.,, D = |G|

SΩ
, where SΩ stands

for the surface of Ω. When Ω and G are infinite, D = 1
Svp

where Svp is the surface of the Voronoi polygon V1(gi) of the
regular pattern. In this section, we first consider the infinite
case Ω = R2. A realistic finite scenario with Ω chosen as a
rectangle region is briefly discussed at the end of the section.

A. Necessary and sufficient condition of k-coverage

Proposition 2. We denote the inter-gateway distance in regu-
lar patterns by a, i.e.,, the distance between nearest gateways.
By fixing an a, the necessary and sufficient condition for R2

to be k-covered is that every point gi in G covers Vk(gi).
rk equals to the distance between an arbitrary vertex gi
and the most distant points from gi in Vk(gi). We have
rk(a) = max

p∈R2
dk(p,G) = max

p∈Vk(gi)
d(p, gi).

The proof of propostion 2 is inspired from [14] and included
in the document [15]. It is omitted here due to limitation of
space. Trivially, the coverage condition is scale-invariant and
thus rk(a) is proportional to a, i.e.,, rk(a) = β(k) a where
β(k) depends only on k and on the pattern.

Proposition 3. Given a communication range r, the minimal
densities D(k, r) ensuring k-coverage in regular patterns is
given by D(k, r) = 1

Svp(ak(r)) , where ak(r) = r
β(k) is the

maximal inter-gateway distance that guarantees k-coverage.

Proof. If a = ak(r) = r
β(k) , we have r = β(k)a = rk(a),

according to proposition 2, we guarantee k-coverage.

We illustrate an example of 3-coverage by proposition 3 in
figure 1. Obviously, D(k, r) is proportional to 1

ak(r)2 , and thus

to 1
r2 , i.e.,, D(k, r) = α(k)

r2 . α(k) is the k-coverage coefficient
which depends only on k and on the pattern. D(k, r) can be
expressed as: Dsqr(k, r) = 1

ak(r)2 , so that αsqr(k) = βsqr(k)2

for the square pattern; Dtri(k, r) = 2
√

3
3 ak(r)2 , so that αtri(k) =

2
√

3 βtri(k)2

3 for the triangular pattern; Dhex(k, r) = 4
√

3
9 ak(r)2 ,

so that αhex(k) = 4
√

3 βhex(k)2

9 for the hexagonal pattern.



D(k, r) is thus directly linked to β(k) which can be deter-
mined exactly by some algorithm of the literature on k-order
Voronoi diagrams (see for instance [16]).

Fig. 1. Illustration of three regular patterns based deployments. Black
points are the positions of gateways. Polygons with blue edges are C3(G ).
Regions painted in light blue are V3(gi), i.e.,, ∪G3giC3(G ). Polygons
with dashed black edges are C1(gi) = V1(gi). Red points are p =
argmaxp∈V3(gi)

d(p, gi). r denotes a given communication range. a3(r)
is maximal inter-gateway distance for 3-coverage with the given r.

B. Numerical results

α(k) for three regular patterns are listed in table I. We
observe that αtri(1) ≈ 0.385 is the smallest for 3 regular
patterns, which confirms the theory of [10], i.e.,, the regu-
lar triangular pattern is asymptotically optimal in terms of
the number of discs necessary to provide 1-coverage on a
plane. We define the minimal k-coverage achieving coef-
ficient in mutually congruent patterns as αmin. Obviously,
we have αmin(1) = αtri(1). In [11], the authors find that
αmin(2) = 4

3
√

3
, which coincides with 2αtri(1), meaning

a superposition of two 1-coverage regular triangular patterns
gives αmin(2). Note that regular hexagonal pattern can be seen
as a superposition of two regular triangular patterns, that’s why
we have αhex(2) = 2αtri(1) = αmin(2). The advantage of
regular hexagonal pattern over any two randomly superposed
regular triangular patterns is that the inter-gateway distance
can not be arbitrarily small. Since αmin(1) and αmin(2) are
found among regular patterns, we conjecture that for k ≥ 3,
αmin(k) = min {αsqr(k) , αtri(k) , αhex(k)}.

TABLE I
α(k) IN FUNCTION OF k FOR THREE REGULAR PATTERNS

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

αsqr(k) 1
2

1 5
4

25
18

5
2

5
2

αtri(k) 2
√
3

9
2
√
3

3
2
√

3
3

8
√

3
9

7
√
3

6
98
√
3

81

αhex(k) 4
√
3

9
4
√
3

9
7
√

3
9

196
√
3

225
4
√
3

3
4
√
3

3

In literature, many heuristics for optimal general k-coverage
have been proposed by superposing k regular triangular pat-
terns [17, 18]. Superposed patterns may be optimal for k = 3,
as 3αtri(1) = min {αsqr(3) , αtri(3) , αhex(3)} = αtri(3).
Note that a 3-coverage regular triangular pattern can be decom-
posed to three 1-coverage regular triangular patterns. For k =
4, 4αtri(1) ≈ 1.540 > min {αsqr(4) , αtri(4) , αhex(4)} =
αsqr(4) ≈ 1.389. For k = 5, 5αtri(1) ≈ 1.925 <
min {αsqr(5) , αtri(5) , αhex(5)} = αtri(5) ≈ 2.021. For k =
6, 6αtri(1) ≈ 2.309 > min {αsqr(6) , αtri(6) , αhex(6)} =

αtri(6) ≈ 2.096. For k = 4, 6, superposition heuristics result
in greater densities. For k = 5, they require smaller density
but the resulting patterns neither are necessarily mutually
congruent nor guarantee a non arbitrarily small inter-site
distance. Although it’s not our primary objective to deduce
optimal k-coverage pattern, our work can give some guidelines
for this effort. In Figure 2 we can see that α(k) increases
almost linearly with k, revealing the scalability of k-coverage
deployment cost.

Fig. 2. α(k) in function of k in three regular patterns

C. Edge effect consideration

In this section, we consider a realistic finite scenario. We
first provide the following proposition.

Proposition 4. Let Ω ⊂ R2 be a bounded region and r a given
communication range. If gateways are deployed following
any regular pattern with inter-gateway distance ak(r) inside
Ω⊕r = {y ∈ R2 | ∃x ∈ Ω, d(x, y) ≤ r}, defined as the
dilation of Ω by r, then Ω is k-covered.

Fig. 3. Illustration of edge effect. Region enclosed by black solid line is Ω,
by black dashed line Ω⊕r . The area between black and blue dashed line is
the border area.

The proof of this proposition is evident and included in [15].
Let’s take an example of providing 3-coverage with regular
triangular pattern to a rectangle region Ω of dimensions 5km
× 2.5km. r is chosen to be a realistic communication range
for LPWANs in dense urban scenario, i.e.,, 0.79 km, see table
II. a3(r) = r = 0.79km for triangular pattern. One way to
interpret this proposition is to consider Ω as the region of



interest filled with sensor nodes to provide 3-coverage. This
proposition provides a way to fully 3-cover Ω by deploying
gateways in the dilation of it, i.e.,, Ω⊕r. “Gateway density”
in this scenario can be calculated as Dfull =

|G∩SΩ⊕r |
SΩ

=
48

12.5km2 = 3.84/km2, which is much greater than the density
calculated in infinite case, i.e.,, Dtri(3, r) = 2

√
3

3r2 ≈ 1.155
r2 ≈

1.85/km2. However, if we consider Ω⊕r as the area of interest,
certainly the border area of it is not 3-covered, but the center
area Ω is fully 3-covered, see figure 3. In this scenario we have
Drealistic =

|G∩SΩ⊕r |
SΩ⊕r

≈ 48
26.31km2 ≈ 1.82/km2. In the fully 3-

covered area Ω, Dcenter = |G∩SΩ|
SΩ

≈ 24
12.5km2 ≈ 1.92/km2. In

reality, the border area being usually less populated, it’s not
necessary and realistic to perfectly k-cover it, especially when
the cost is too high compared to the realistic case. Moreover,
it’s difficult to consider edge effect which depends on region
shapes etc. It’s of little interest when providing general scaling
laws. In section V, we neglect the edge effect and stick to the
approximation D(k, r) = 1

SV P (ak(r)) in order to evaluate the
efficiency of a real LPWANs k-coverage deployment .

V. APPLICATION

In this section, by applying our results in IV, we aim at
visualizing the dimensioning of a real LPWANs deployment
according to the k-coverage criterion in some real-world
scenarios. In order to quantify the efficiency of a deployment
we introduce the average number of sensor nodes per gateway
when k-coverage is achieved, denoted by Navg = ds/D(k, r),
in which ds indicates the sensor node density in an area. Since
D(k, r) depends on r, we consider 3 scenarios, i.e.,, dense
urban, urban and rural, in which the sensor node density ds
and typical communication range r are intrinsically different,
due to different population density and radio environment.

We consider a real LPWANs technology LoRaWANTM,
which operates on 868 MHz frequency band in Europe and has
a typical link budget of 154 dB [2]. For the path loss model,
we choose Hata model for 150 MHz ≤ f ≤ 1000 MHz
as recommended by ETSI for GSM 900 MHz [19]. We add
shadowing margin as it’s not included in the Hata model and
penetration loss as sensor nodes are mostly deployed indoor.
Typical values of these two parameters are found in [20]. The
parameters and calculated typical r are listed in table II.

TABLE II
PATH LOSS PARAMETERS FOR LORAWANTM

Parameters dense urban urban rural
shadowing margin (dB) 13 13 13
penetration loss (dB) 18 15 10
typical r (km) 0.79 0.92 2.43

ds can be calculated as the product of the house density
and number of sensor nodes per house. For house density, we
gather some statistics from INSEE [21] for different scenarios.
For dense urban scenario, we take the city of Paris in 2013
as an example. For urban and rural scenarios, we average

statistics from several cities and villages. The estimations of
number of sensor nodes per house are also listed in table III.

TABLE III
STATISTICS AND ESTIMATIONS IN DIFFERENT SCENARIOS

Statistics dense urban urban rural
house density (/km2) 10946 2845 102
sensor nodes /house 10 8 5
ds (nodes/km2) 109460 22760 510

Navg = ds
D(k,r) = dsSvp(ak(r)), which is the number of

sensor nodes in the Voronoi polygon of a gateway gi. These
sensor nodes are nearer to gi than to any other gateways.
However, the number of sensor nodes that can actually com-
municate with gi should be calculated as Nreal = dsπr

2. Navg

and Nreal are both represented in figure 4. Navg reflects the
number of sensor nodes “allocated” to gi. D(k, r) increases
with k, Navg thus decreases with k. A denser deployment can
in fact reduce the number of sensor nodes “allocated” to every
gateway, thus reducing it’s traffic pressure.

1 2 3 4 5 6
103

104

105

106

Fig. 4. Comparison of Navg and Nreal in 3 scenarios

A gateway can only support packets from a limited number
of sensor nodes, i.e.,, the load-capacity of gateway denoted by
Cload. It depends on the number of frequency channels avail-
able, the duration of packets, the interference phenomenon
between packets etc. Note that Cload of a gateway also
increases with k in that packets benefit from an increase
in reception diversity. One can imagine an increasing curve
representing Cload in figure 4, which probably crosses the
Nreal and Navg curves. As sensor nodes in LPWANs send
their packets using uncoordinated access schemes, the level
of interferences increases with Nreal and Navg. When Nreal

and Navg are too high compared to Cload, we are in the
interference-limited regime. Even with k-reception, there can
be heavy packet loss. Therefore the position of Cload curve
is essential to decide when the dimensioning factor is the k-
coverage or Cload. In dense scenarios, even though we deploy
gateways to achieve a certain k-coverage, Nreal and Navg may



be too high compared to Cload. One solution is to allocate
more frequency resources to gateways, which is not always
available. Another solution is to reduce the communication
range r by a tilt of the gateway antenna or an artificial
reduction of the reception sensibility etc., in order to reduce
Nreal and Navg and thus the interferences, but more gateways
need to be deployed in this case. The primary dimensioning
factor is thus Cload. In sparse cases, by achieving k-coverage,
Nreal and Navg don’t exceed Cload of gateways, no more
gateways need to be deployed. The primary dimensioning
factor is thus k-coverage.

In [22], the phenomenon of interferences between packets
is studied using a stochastic geometry model for typical
LPWANs access schemes, in order to deduce Cload without
considering k-reception. An extra reference Cload curve can
be drawn by combining the interference model in [22] and k-
coverage model in this article in order to give a more refined
study of the dimensioning factors of LPWANs.

VI. CONCLUSION AND FUTURE WORKS

In this article, we study the problem of minimal gateway
density ensuring k-coverage in regular deployment patterns
in order to give some insights of the dimensioning of the
LPWANs. We notice that the gateway density increases almost
linearly with coverage degree, revealing that the cost of k-
coverage is almost linear and thus scalable. Our method gives
the optimal k-coverage patterns among the three regular ones.
which confirm the results obtained in [10, 11]. We thus
conjecture that minimal density for general k-coverage among
mutually congruent patterns is always achieved among the
three regular patterns.

From three real-world scenarios, we show that k-coverage
alone is unable to dimension the gateway density, especially
in dense populated scenarios, load-capacity of gateway being
another essential factor. In future works, we are going to
combine the load-capacity model and k-coverage model in
order to give a more refined dimensioning of LPWANs.
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