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ABSTRACT

In this article, we propose a semi-supervised version of spec-
tral clustering, a widespread graph-based unsupervised learn-
ing method. The semi-supervised spectral clustering has the
advantage of producing consistent classification of data with
sufficiently large number of labelled or unlabelled data, un-
like classical graph-based semi-supervised methods which are
only consistent on labelled data. Theoretical arguments are
provided to support the proposition of this novel approach, as
well as empirical evidence to confirm the theoretical claims
and demonstrate its superiority over other graph-based semi-
supervised methods.

Index Terms— semi-supervised learning, spectral cluster-
ing, graphs, consistency

1. INTRODUCTION

Semi-supervised learning aims to maximize the learning abil-
ity by using both labelled and unlabelled data, typically a
small amount of labelled data with abundant unlabelled data.
In many real-life machine learning tasks, the labeling pro-
cess is much more expensive than the collection of unabelled
data, it is thus of great practical value to study the semi-
supervised approach. A successful semi-supervised learning
method should be able to learn from both the labelled data
and the underlying clusters in the unlabelled data. Combining
these two types of information is conceptually more difficult
than one-sided learning perspectives focused on labelled or
unlabelled data. In this regard, some seemingly natural semi-
supervised approaches may have unexpected outcomes.

A recent random matrix analysis [1] notably shows that in
very high dimensions, a popular branch of graph-based semi-
supervised learning methods (here referred to as Laplacian
regularization) fails to exploit the clustering structure of un-
labelled data. Also, the results in [2] state that the Laplacian
regularization approach converges to a trivial solution in the
limit of infinite data. As such, the Laplacian regularization
methods tend to disregard additional unlabelled data which
we refer to as being inconsistent with respect to the unla-
belled dataset. As a consequence, given sufficient unlabelled
data, Laplacian regularization will be outperformed by spec-
tral clustering, an unsupervised method which learns from the

data graph by optimizing the same objective as Laplacian reg-
ularization but whose consistency is proven in [3].

The graph-based semi-supervised learning method pre-
sented in this article is based on spectral clustering, in order
to ensure its consistency with respect to unlabelled data. An
original strategy is proposed to incorporate the labelled data
in the learning process. The proposed method is easy to
implement with similar cost to spectral clustering. To demon-
strate its efficiency as a semi-supervised learning algorithm,
we provide a mathematical discussion along with experi-
mental confirmations, all showing that the semi-supervised
approach yields better partitions of data points than spectral
clustering as a result of exploiting labelled data.

The reminder of the article is organized as follows. We
start by introducing preliminary notions in Section 2. The
proposed semi-supervised spectral clustering method is pre-
sented in Section 3, along with theoretical justification and
corroborating simulations. Finally, we end the article with
concluding remarks in Section 4.

2. PRELIMINARIES

We present the common setting of graph-based methods in
Section 2.1. The principles and consistency properties of
spectral clustering, on which the proposed method is based,
are briefly explained and discussed in Section 2.2, followed
by a section on the Laplacian regularization methods.

2.1. Problem Setup

Graph-based methods represent data points as vertices in a
graph with their similarities reflected by the edges. In this pa-
per, we consider undirected and weighted graphs G = (V,E)
with set of vertices V = {x1, · · · , xn}, which is also the
dataset, and set of edges E = {(xi, xj , wij)|xi, xj ∈ V },
where (xi, xj , wij) denotes an edge of weight wij between
xi and xj , and wii = 0. The degree di of a node xi is de-
fined as di =

∑
j wij . The adjacency matrix W of the graph

is an n × n symmetric matrix with Wij = wij , and the de-
gree matrix D ∈ Rn×n is a diagonal matrix with Dii = di.
The Laplacian matrix L is defined as L = D − W . The
symmetric normalized form of the Laplacian matrix is Ls =



D− 1
2LD− 1

2 = I − Ws where Ws = D− 1
2WD− 1

2 is the
symmetric normalized adjacency matrix.

The objective of graph-based methods is to learn a data
representation that is in accordance with the graph structure,
meaning that data points connected with large weights have
similar representations. This is usually achieved by minimiz-
ing a loss function:

1

2

n∑
i,j=1

wij(fi − fj)
2 = fTLf (1)

where f is the representation function. A normalized formu-
lation of (1) writes as

1

2

n∑
i,j=1

wij

(
fi√
di

− fj√
dj

)2

= fTLsf. (2)

It is easily seen that the minimization of (1) imposes data
points connected with large weights to have close values on
the representation function f , so does (2) for closely con-
nected data points with similar degrees. In the following, we
will refer to (1) and (2) as the graph smoothness penalty terms
of f since their minimizations encourage f to have similar
values on neighboring vertices in the graph.

2.2. Spectral Clustering

Evidently, the graph smoothness penalty term (1) is mini-
mized when f has constant values on all data points, which
is obviously a useless data representation for the partitioning.
Similarly for the normalized Laplacian regularizer (2) with
the trivial solution fi =

√
di.

Therefore, the spectral clustering method states the prob-
lem as minimizing (1) or (2) in the subspace orthogonal to
the trivial solution for a fixed norm of f . This is equivalent
to finding the eigenvector associated with the second small-
est eigenvalue for L (unnormalized spectral clustering) or Ls

(normalized spectral clustering), as the trivial solutions are
the eigenvectors of Laplacian matrices associated with the
smallest eigenvalue 0. See [4] for more details.

The consistency properties of spectral clustering are in-
vestigated in [3], where the authors prove that under very mild
assumptions, the clusters constructed by normalized spectral
clustering converge to a limit clustering of the whole data
space as the number of sampled data tends to infinity. It is
also found that unnormalized spectral clustering is only con-
sistent under strong additional assumptions, which are not al-
ways satisfied in real data.

2.3. Laplacian Regularization

The Laplacian regularization approach [5–7] is very similar to
spectral clustering, in the sense that it searches the represen-
tation function f that minimizes the same graph smoothness

penalty terms (1) and (2) as spectral clustering. The differ-
ence is that for Laplacian regularization, the representation
function f has to also respect the labeling y[l] of the labelled
data, which leads to imposing f[l] = y[l]

1 [5], where f[l] is the
subset of f corresponding to the labelled data. The Laplacian
regularization algorithms consist thus in minimizing (1) or (2)
under the constraint f[l] = y[l].

Although seemingly a perfectly natural way to learn the
inherent clusters of the graph in a semi-supervised man-
ner, the Laplacian regularization methods have some unex-
pected behaviors when dealing with large dimensional data,
as demonstrated in [1] by random matrix arguments. The
main issue is that for datasets of sufficiently large dimen-
sion and size, an increase in the number of unlabelled data
has negligible contribution to the performance of Laplacian
regularization algorithms, implying that the Laplacian regu-
larization approach is inconsistent with respect to unlabelled
data. Another theoretical work [2] shows that the Laplacian
regularization methods yield flat solutions of f[u] (f[u] being
the part of f corresponding to the unlabelled data) in the limit
of infinite unlabelled data. Since a flat f[u] does not conform
to the inherent clusters in the graph, it is conjectured that the
same inconsistency problem of high dimensional data also
occurs in small dimensions. We refer the reader to [2] and [1]
for more details.

3. SEMI-SUPERVISED SPECTRAL CLUSTERING

Despite coming from the same idea of learning a data repre-
sentation that is smooth on the graph by using the smooth-
ness penalty terms (1) and (2), the Laplacian regularization
approach does not share the same consistency properties as
spectral clustering, as discussed in the above section. As an
answer to this problem, we propose in this section a semi-
supervised adaptation of the spectral clustering method. The
idea is to preserve the data representation learned from spec-
tral clustering while making use of labelled data, so that the
proposed method is consistent with respect to unlabelled data
as in the spectral clustering case. The challenge is to ensure
that the use of labelled data improves the performance of the
proposed algorithm, i.e., it should outperform spectral clus-
tering on the same datasets.

Here are some notations that will be used in the following.
Data points xi are separated into k classes C1, · · · , Ck. For
a ∈ {1, · · · , k}, let na denote the number of data in class Ca,
with n[l]a labelled ones and n[u]a unlabelled ones. The total
numbers of labelled and unlabelled data are n[l] =

∑
a n[l]a,

n[u] =
∑

a n[u]a. The vector ja ∈ Rn is defined as the indica-
tor vector for data points in Ca with [ja]i = 1 if the data point
xi belongs to Ca, otherwise [ja]i = 0. Similarly, j[l] ∈ Rn

(resp., j[l] ∈ Rn) is the indicator vectors for labelled (resp.,

1This condition can be relaxed by adding a penalty term of the form
∥f[l] − y[l]∥2 to the optimization objective [8].



unlabelled) data points with [j[l]]i = 1 if xi is labelled, oth-
erwise [ja]i = 0. The same is understood with the indicator
vectors j[l]a, j[u]a ∈ Rn for labelled and unlabelled data in
Ca. The operator D(v) = D{va}ka=1 is the diagonal matrix
having v1, · · · , vk as its ordered diagonal elements.

3.1. Proposed Method

As explained in Section 2.2, spectral clustering consists in
conducting first an eigendecomposition of the Laplacian ma-
trix L or the normalized Laplacian matrix Ls, then selecting
a few eigenvectors associated with the smallest eigenvalues
except the first one to construct feature vectors of data, before
the final partitioning step. Since the normalized spectral clus-
tering algorithm is consistent [3], so is the learned data repre-
sentation (i.e., the eigenvectors). In order to maintain the con-
sistency property of normalized spectral clustering, the natu-
ral move is to base the semi-supervised learning algorithm on
the eigenvectors of Ls.

In fact, there exist already such algorithms. Like spectral
clustering, the manifold-based method [9] also uses the eigen-
vectors of Laplacian matrices V = {v1, · · · , vm} associated
with the m smallest eigenvalues except the first one. Since
eigenvectors with small eigenvalues are considered smooth
on the graph, the manifold-base method constrains the rep-
resentation function f to live in the subspace constructed by
a certain number of eigenvectors with small eigenvalues, as
a means to control the smoothness of f . This strategy can
also be interpreted from a graph signal processing perspec-
tive [10, 11], where it is justified as limiting the “frequency”
of f . The function f = V a is determined by minimizing
∥f[l] − y[l]∥, with a solved by the method of least squares.

The disadvantage of this method resides in the delicate
choice of the number of selected eigenvectors. If the number
is large, eigenvectors with relatively high eigenvalues are in-
cluded, which induces a risk of hurting the smoothness of f ;
on the other hand, a decrease in the number of selected eigen-
vector will lead to greater loss of information contained in the
discarded eigenvectors.

We propose here an algorithm based also on the eigenvec-
tors of Laplacian matrices, but without the aforementioned
disadvantage of the manifold-based method. In other terms,
the algorithm should focus on the smoothest eigenvectors, and
in the meantime, allow to leverage the whole Laplacian ma-
trix. Obviously, a perfect data representations is composed of
the class indicator vectors ja. The consistency of normalized
spectral clustering [3], as well as recent large dimensional ar-
guments [12], implies that there exist informative eigenvec-
tors of Ls which can be seen as a weighted sum of ja plus
noise. As we already know the class of labelled data, we can
denoise the eigenvectors by replacing their labelled subsets
with weighted sums of j[l]a, the class indicator vectors for la-
belled data. In a subsequent step, the information on labelled
points is propagated through the graph by multiplying the

denoised eigenvectors with the normalized adjacency matrix
Ws, similarly to the label propagation procedure of [6, 13].
The proposed semi-supervised spectral clustering is summa-
rized in Algorithm 1.

Algorithm 1 Semi-supervised spectral clustering
1: Input: Normalized Laplacian matrix Ls. Number k of

classes. Class indicator vectors j[l]1, · · · , j[l]k for labelled
data.

2: Output: Classification of the unlabelled dataset.
3: Compute the k + 1 eigenvectors v0, v1, · · · , vk corre-

sponding to the k + 1 smallest eigenvalues of Ls.
4: For a, b = 1, · · · , k, define mab = vTa j[l]b/n[l]b.
5: For a = 1, · · · , k, compute v̂a =

∑k
b=1 mabj[l]b +

D(j[u])va and ṽa = Wsv̂a/∥Wsv̂a∥.
6: Let Ṽ = [ṽ1, · · · , ṽk] ∈ Rn×k.
7: For i = 1, · · · , n, define ϕi ∈ Rk as the feature vector

for data point xi and affect it with the i-th row of Ṽ .
8: Cluster (ϕi)i=1,··· ,n with k-means algorithm (or other

clustering techniques) into C1, · · · , Ck.

3.2. Theoretical Arguments

The objective of this section is to provide more technical de-
tails to the intuitive justification of the semi-supervised spec-
tral clustering method given in Section 3.1 and to explain
the success of this semi-supervised approach in leveraging la-
belled data to improve the performance of spectral clustering.

In common statistical modeling, the data in the same class
Ca are considered to be drawn independently according to a
certain probability measure Pa. Since wij measures the sim-
ilarity between xi, xj , it is considered as a function of xi, xj ,
i.e., wij = g(xi, xj) where g is a symmetric function with
g(xi, xj) = g(xj , xi). Therefore, for all pair of xi, xj belong-
ing to the same combination of classes, g(xi, xj) follow the
same distribution. Otherwise speaking, the graph G = (V,E)
is statistically invariant to the exchange of data points in the
same class. The adjacency matrix W is consequently written
as

W = E{W}+B =
k∑

a,b=1

qabjaj
T
b +B

for some scalars qab with qab = qba, and B is a noise matrix
with E{B} = 0. And so is the normalized adjacency matrix
Ws:

Ws = E{Ws}+B′ =

k∑
a,b=1

rabjaj
T
b +B′. (3)

for some scalars rab with rab = rba, and B′ is a noise matrix
with E{B′} = 0.

The key steps of Algorithm 1 are the steps 4 and 5, in
which the class information of labelled data are employed to



modify the selected eigenvectors of Ls, before they are used
as feature vectors for the final clustering step. In order to un-
derstand the purpose of these key steps and to demonstrate
the performance gain achieved by them, we consider a se-
lected eigenvector va of Ls with λava = Lsva, where λa is
the associated eigenvalue of va. Recalling that Ls = I −Ws,
we have

Wsva = (I − Ls)va = (1− λa)va, (4)

va is thus an eigenvector of Ws with the corresponding eigen-
value 1− λa. Following the discussion above, the data points
in the same class are interchangeable on Ws, it is easily de-
duced that va can be expressed as

va = E{va}+ βa =

k∑
b=1

cabjb + βa. (5)

for some scalars cab, and βa is a noise vector with E{βa} = 0.
Evidently, βa is useless to the recovery of the underlying data
clusters, due to the fact E{βa} = 0. It is thus reasonable
to assume that it produces no information when propagated
though the graph, i.e., β̃a = Wsβa is also non-informative
noise.

Since labelled data within the same class as unlabelled
ones share the same statistical properties, the quantities mab

defined in Algorithm 1 are estimators for cab in (5); these esti-
mators are asymptotically consistent as the number of labelled
data grows. As such, the vector v̂a computed in the step 5 can
be written as

v̂a =
k∑

b=1

cabjb +
k∑

b=1

(mab − cab)j[l]b +D(j[u])βa. (6)

To put it simply, v̂a is an estimation of E{va} plus the pro-
jection of βa on the unlabelled points. If cab are satisfyingly
estimated by mab, we have

ṽa = Wsv̂a ≃ Ws

[
E{va}+D(j[u])βa

]
. (7)

Finally, we obtain from (4), (5) and (7) that

(1− λa)va ≃ ṽa +WsD(j[l])βa. (8)

As discussed before, the term LsD(j[l])βa only introduces
additional noise, va is thus less informative than ṽa as features
of data points, suggesting that the semi-supervised spectral
clustering method has a superior learning ability than spectral
clustering.

3.3. Experimentation

In this section, we provide simulations conducted on synthetic
and real datasets. For simplicity, we focus here on binary
tasks. The synthetic data are generated from a Gaussian mix-
ture model, i.e., xi ∈ Ca ⇔ xi ∼ N (µa, Ca). The real

datasets tested come from the MNIST database [14], a stan-
dard database of hand-written digits.

To guarantee the generality of the experimental results,
we use simple settings. The similarities wij are computed
with a Gaussian kernel function: wij = exp(−∥xi−xj∥2/p)
where p is the dimension of data vectors xi. All possible
numbers of selected eigenvectors are tested for the manifold-
based method in order to find the best performance2. Even
though performance gains are observed when using multiple
eigenvectors for the proposed spectral clustering algorithm,
notably on MNIST datasets, we report only results with one
eigenvector.

The first purpose of the experimentation is to verify em-
pirically that the proposed semi-supervised spectral cluster-
ing algorithm learns indeed from both labelled and unlabelled
data, by showing that it surpasses the unsupervised spectral
clustering on the same datasets, as theoretically claimed in
Section 1. To illustrate this point, the accuracy3 curves as a
function of the ratio of labelled data n[l]/n are given in Fig-
ure 1 and Figure 2, where semi-supervised spectral clustering
is shown to have a growing performance gain over spectral
clustering as the ratio of labelled data increases.
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Fig. 1. Accuracy as a function of n[l]/n for 2-class Gaussian
data vectors of dimension p = 200 with ∥µ1 − µ2∥ = 2
and C1 = C2 = Ip, n = 600, n[l]1 = n[l]2, n[u]1 = n[u]2.
Averaged over 500 iterations.
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Fig. 2. Accuracy as a function of n[l]/n for 2-class MNIST
data (6,9), n = 600, n[l]1 = n[l]2, n[u]1 = n[u]2. Averaged
over 500 iterations.

After confirming the proposed method as a valid semi-
supervised approach, we now move to compare it with the

2Thus the provided manifold performances can be seen as oracle ones
3The accuracy refers to the proportion of correctly classified unlabelled

data.



two most classic graph-based semi-supervised techniques:
the Laplacian regularization method [5] and the manifold-
based method [9]. Figure 3 and Figure 4 show that unlike
Laplacian regularization, the semi-supervised clustering al-
gorithm and the manifold-based method both benefit from
an increasing number of unlabelled data, with the manifold-
based method consistently outperformed by the proposed
approach. It should be mentioned that the extremely poor
performances displayed by the Laplacian approach are due to
the very small n[l] of the tested datasets.
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Fig. 3. Accuracy as a function of n[u] for 2-class Gaussian
data vectors of dimension p = 200 with ∥µ1 − µ2∥ = 2 and
C1 = C2 = Ip, n[l]1 = n[l]2 = 5, n[u]1 = n[u]2. Averaged
over 500 iterations.
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Fig. 4. Accuracy as a function of n[u] for 2-class MNIST data
(6,9), n[l]1 = n[l]2 = 2, n[u]1 = n[u]2. Averaged over 500
iterations.

4. CONCLUDING REMARKS

Mixing labelled and unlabelled data makes the design of
semi-supervised techniques an interesting but difficult ques-
tion. Some common semi-supervised methods, such as Lapla-
cian regularization, do not really learn from both types of
data. This article proposes a semi-supervised spectral cluster-
ing method which is consistent with respect to both labelled
and unlabelled data, with significantly better performance
over other classical graph-based semi-supervised approaches.

The semi-supervised spectral clustering algorithm pre-
sented in this article contains some new critical steps, entirely
different from existing graph-based semi-supervised strate-
gies. A more systematic analysis, as a follow up of [1, 15],

on the asymptotic performances of the proposed method, is
however needed to quantitatively evaluate further the gains
as well as the limitations of the approach, which will be the
subject of forthcoming investigations.
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