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ABSTRACT

Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the
benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar
populations.
Aims. We aim to develop, test, and characterise of a new statistical tool (intelligent system) for the sifting and analysis of NYOC
populations.
Methods. Using a Bayesian formalism, with this statistical tool we were able to obtain the posterior distributions of parameters
governing the cluster model. It also used hierarchical bayesian models to establish weakly informative priors, and incorporates the
treatment of missing values and non-homogeneous (heteroscedastic) observational uncertainties.
Results. From simulations, we estimated that this statistical tool renders kinematic (proper motion) and photometric (luminosity)
distributions of the cluster population with a contamination rate of 5.8 ± 0.2%. The luminosity distributions and present day mass
function agree with the ones found in a recent study, on the completeness interval of the survey. At the probability threshold of
maximum accuracy, the classifier recovers ≈90% of the recently published candidate members and finds 10% of new ones.
Conclusions. A new statistical tool for the analysis of NYOC is introduced, tested, and characterised. Its comprehensive modelling
of the data properties allows it to get rid of the biases present in previous works. In particular, those resulting from the use of only
completely observed (non-missing) data and the assumption of homoskedastic uncertainties. Also, its Bayesian framework allows
it to properly propagate observational uncertainties into membership probabilities and cluster velocity and luminosity distributions.
Our results are in a general agreement with those from the literature, although we provide the most up-to-date and extended list of
candidate members of the Pleiades cluster.

Key words. methods: data analysis – methods: statistical – proper motions – stars: luminosity function, mass function –
open clusters and associations: individual: M 45

1. Introduction

The Pleiades is one of the most studied clusters in history1.
Its popularity comes from its unique combination of properties.
It is young (125 ± 8 Myr, Stauffer et al. 1998), close to the
sun (134.4+2.9

−2.8 pc, Galli et al. 2017), massive (870 ± 35 M�,
Converse & Stahler 2008), has low extinction (Av = 0.12,
Guthrie 1987), and an almost solar metallicity ([Fe/H]≈ 0,
Takeda et al. 2017). From Trumpler (1921) to date, it contin-
ues to yield new and fascinating results. Recently, Bouy et al.

? Full Table 1 is only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/617/A15
1 Probably just after Orion. The SAO/NASA Astrophysics Data Sys-
tem reports, at date, 2734 entries with keyword “Pleiades” since 1543
CE.

(2015b) found 812 new candidate members for a total of 2109
down to ≈0.025 M�. The discovery of these new candidate mem-
bers is rooted in their excellent multi-archive data (Bouy et al.
2013) and their leading-edge multidimensional statistical tool
(Sarro et al. 2014).

In the past, candidate members were selected using proper
motions (e.g. Moraux et al. 2001), or a combination of proper mo-
tions and cuts in the photometric space (e.g. Lodieu et al. 2012).
Only very recently with the works of Malo et al. (2013; and later
Gagné et al. 2014), Krone-Martins & Moitinho (2014) and Sarro
et al. (2014) the astrometric and photometric data started to be
treated simultaneously and consistently to infer cluster (or mov-
ing groups) membership probabilities. Since the early work of
Lodieu et al. (2012), photometric bands have proven to be cru-
cial in the identification of new open cluster members. Therefore
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we leave aside the discussion of the recent works of Sampedro
& Alfaro (2016) and Riedel et al. (2017) in which photometric
information is not included in their methodologies.

Briefly, Malo et al. (2013) establish membership probabil-
ities to nearby young moving groups using a naive2 Bayesian
classifier (BANYAN). Their classification uses kinematic and
photometric models of moving groups and field. They create
these models with the previously known bona fide members
and field objects. Their photometric model in the low mass
range is extended using evolutionary models. Later, Gagné et al.
(2014) developed BANYAN II, and improved Malo et al. (2013)
methodology to identify low-mass stars and brown dwarfs by
using redder photometric colours. They also included observa-
tional uncertainties, and correlations in the XYZ, and in UVW
spaces, separately (via freely-rotated ellipsoid Gaussian mod-
els which are mathematically equivalent to two separate 3D
multivariate Gaussian models), which reduces the naivety
of the classifier, amongst other improvements. Krone-Martins &
Moitinho (2014) establish cluster membership probabilities in a
frequentist approach using an unsupervised and data driven itera-
tive algorithm (UPMASK). Their methodology relies on cluster-
ing algorithms and the principal component analysis. Although
untested, the authors mention that their methodology is able to
incorporate proper motions and deal with missing data and dif-
ferent uncertainty distributions. Sarro et al. (2014) infer posterior
membership probabilities using a Bayesian classifier (refered to
here as SBB). Their cluster model is data driven and, since they
model some parametric correlations, it is also less naive than
that of Malo et al. (2013) and Gagné et al. (2014). Sarro et al.
(2014) construct the field and cluster proper motions models
with clustering algorithms and the photometric one with prin-
cipal curve analysis. Their treatment of uncertainties and miss-
ing values is consistent across observed features. Finally, they
infer the best parameter values of their cluster model using a
maximum-likelihood-estimator (MLE) algorithm.

The previous methodologies perform well on their desig-
nated tasks and successfully led to the identification of many
new high probability members of nearby clusters and associa-
tions. However, key aspects still need to be tackled or improved.

The probability of an object being a member of a class (e.g.
the cluster or field populations) depends on how the class is de-
fined. In parametric classifiers, the classes are defined by the re-
lations amongst their parameters, and the value of these later.
Therefore, the classification is sensitive to the parameters defin-
ing the class, with different parameter values resulting in dif-
ferent membership probabilities. The majority of the parametric
classifiers from the literature fail to report the sensitivity of the
recovered membership probabilities to the chosen value of their
parametric models.

Missing values can strongly affect any result based on data
that contains them. If the pattern of missing values is completely
random, then results based only on the complete (non-missing)
data are unbiased. However, the less random the missing pattern
is, the most biased the results are. See chapter 8 of Gelman et al.
(2013) for a discussion on missing at random and ignorability
of the missing pattern. In astronomy, measurements are strongly
affected by the brightness of the source in question. The physi-
cal limits of detectors lead to non-random distributions of miss-
ing measurements. At the bright end, saturation indeed makes
measurements useless, while at the faint end, sources beyond
the limit of sensitivity are not detected. In a multi-wavelength

2 Naive Bayes refers to a parametric classifier in which all parameters
are assumed independent.

data set, the intrinsic stellar colours add another level of corre-
lation between sensitivity limits in different filters. Thus, miss-
ing values are not completely random, although they could be in
some specific and controlled situations. Commonly, they occur
on measurements of bright and faint sources and depend on the
source colours. For these reasons, their treatment is of paramount
importance. Gagné et al. (2014) and Sarro et al. (2014) construct
their cluster (or kinematic moving group) and field model using
only complete data, and then estimate membership probabilities
for objects with missing values (only in parallaxes and radial ve-
locities in the case of Gagné et al. 2014). UPMASK does not in-
clude any treatment of missing values, although Krone-Martins
& Moitinho (2014) mention that, in the future, their methodol-
ogy will be able to incorporate them.

In general, models consist of relations among their vari-
ables (or parameters if they are parametric models) and the
data. We call these the underlying relations between modelled
and observed data. Traditionally, it is assumed that the un-
derlying relations correspond to those seen in the data, which
we call observed relations. For example, Sarro et al. (2014)
and Krone-Martins & Moitinho (2014) establish as underlying
relations in their models, the observed ones that they found
after applying the principal curve analysis and the PCA to
their data. Another possibility is to assume that the underly-
ing relations come from other models. However, using other
models may inherit their possible biases, while the observed re-
lations are strongly affected by observational uncertainties, es-
pecially when these are not homogeneous (heteroscedastic). For
example, the principal curve and principal components anal-
yses (present in UPMASK and SBB) are biased by individ-
ual observational uncertainties (Hong et al. 2016). Some reme-
dies include the popular σ-clipping procedure and the variance
scaling.

Inspired by the previous works and moved to address these
three major limitations, we now present a new Bayesian method-
ology aiming at statistically modelling the distributions of the
open cluster population. It obtains the cluster membership prob-
abilities as a by-product. Our methodology treats parametric
and observational uncertainties consistently in a bayesian frame-
work. In this framework, observational uncertainties propagate
into the posterior distributions of the parameters. Objects with
missing values are consistently included in all elements of our
methodology. Particularly, it allows us to construct our field and
cluster models with all objects in the data set, in spite of their
missing values. As mentioned in the previous paragraph, the ob-
served relation between modelled and observed data is subject of
bias. Instead, we aim at the “true”3 underlying parametric rela-
tions which render the observed data after being convolved with
the observational uncertainties. In other words, we aim at decon-
volving the true cluster distributions (see Bovy et al. 2011 for
another example of deconvolution).

In a Bayesian framework, priors must be established. To
avoid the subjectivity of choosing priors as much as possible,
we used the Bayesian hierarchical model formalism (see the
works of Jefferys et al. 2007; Shkedy et al. 2007; Hogg et al.
2010; Sale 2012; Feeney et al. 2013, for applications of HM
in astrophysics). On it, the parameters of the prior distributions
are given by other distributions in a hierarchical fashion. In the
words of Gelman (2006), Bayesian Hierarchical Models “allow
a more ‘objective’ approach to inference by estimating the pa-
rameters of prior distributions from data rather than requiring

3 True refers to that observed in the limit of theoretically perfect noise-
free observations.
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them to be specified using subjective information”. However,
it comes at a price: these models are computationally more ex-
pensive because they require far more parameters than standard
approaches.

This paper proceeds as follows: in Sect. 2 we briefly describe
the Pleiades data set and explain our methodology. Section 3
contains the results of applying our methodology to both syn-
thetic and the real Pleiades data. In Sect. 4 we discuss our results
and compare them with the literature. Finally, Sect. 5 contains
our conclusion and discussion of future perspectives.

2. Methodology

The data set used in this work is the second release (DR2) of
the Pleiades catalogue (see Appendix A of Bouy et al. 2015b)
from the DANCe survey (Bouy et al. 2013). Data from this sur-
vey have been successfully used to characterise the Pleiades
(Sarro et al. 2014; Bouy et al. 2015b; Barrado et al. 2016)
and M35 (Bouy et al. 2015a) clusters. Although this cata-
logue contains astrometric (stellar positions and proper motions)
and photometric (ugrizY JHKs) measurements for 1 972 245 ob-
jects, we used only proper motions and the iY JHKs bands.
Our selection aims at comparing our results to those of Bouy
et al. (2015b) who used the reduced RF-2 representation space
(µα, µδ, J,H,Ks, i−Ks,Y−J) of Sarro et al. (2014). Thus, our rep-
resentation space comprises the proper motions in right ascen-
sion and declination, µα, µδ, and the photometric colours and
magnitudes, i−Ks,Y, J,H,Ks. We modelled the photometry by
means of a set of parametric relations in which the colour index
i−Ks (CI hereafter) is the independent parameter. We selected
the CI from among the possible colour indices because of its
discriminant properties. Goldman et al. (2013) remarked the im-
portance of using colour indices with the largest difference in
wavelength in order to discriminate Hyades members from the
field population. They used the colour indices g−Ks, r−Ks and
i−Ks to perform their photometric selection of members. This
result has been confirmed by Sarro et al. (2014). Using a random
forest classifier, these authors determine that the colour indices
r−Ks, i−Ks and Y−J where amongst the most discriminant fea-
tures with mean decrease of node impurity of 156.0, 102.0, and
77.9, respectively (see their Table 2).

As will be explained later in this section, our parametric
model yields the photometric bands as functions (injective by
definition) of a true colour index. Thus, we proceeded to select
one colour index from the set of the most discriminant ones. On
the one hand, the r band is missing in 1 222 853 sources of the
DANCe DR2 catalogue, which is more than ∼50% missing en-
tries than in the i band. On the other hand, we attempted to model
the magnitudes of the cluster members as a function of the Y−J
colour index, but this resulted in large discrepancies with the
observed photometry. This is due to the high and almost verti-
cal slope in cluster CMDs resulting from the Y−J colour index,
which prevents our injective functions to correctly reproduce the
data. On the contrary, the cluster CMDs slope is less pronounced
when using the i−Ks colour index. Therefore, in the following
we work with the i−Ks colour index.

Since both photometry and proper motions carry crucial in-
formation for the disentanglement of the cluster population, we
restrict the data set to objects with proper motions and at least
two observed values in any of our four CMDs: Y, J,H,Ks vs. CI.
This restriction excludes 22 candidate members of Bouy et al.
(2015b), which have only one observed value in the photome-
try. Furthermore, we restrict the lower limit (CI = 0.8) of the
colour index to the value of the brightest cluster member. We

do not expect to find new bluer members in the bright part of
the CMDs. We set the upper limit (CI = 8) of the colour index
at one magnitude above the colour index of the reddest known
cluster member, thus allowing for new discoveries. Due to the
sensitivity limits of the DR2 survey in i and Ks bands, objects
with CI > 8 have Ks magnitudes ≥16 mag. These objects are
incompatible with the cluster sequence and therefore we discard
them a priori as cluster members.

Our current computational constraints and the costly compu-
tations associated to our methodology (described throughout this
section) prevent its application to the entire data set. However,
since the precision of our methodology, as that of any statistical
analysis, increases with the number of independent observations,
we find that 105 sources is a reasonable compromise for our data.
Although a smaller data set produces faster results, it also ren-
ders a less precise model of the field (in the area around the
cluster) and therefore, a more contaminated model of the clus-
ter. For these reasons, we restrict our data set to the 105 objects
with highest membership probabilities according to Bouy et al.
(2015b). Of this resulting data set, the majority (≈98%) are field
objects with cluster membership probabilities around zero. Thus,
the probability of leaving out a cluster member is negligible. For
the remaining of the objects in the Pleiades DANCe DR2, we
assigned membership probabilities a posteriori, once the cluster
model is constructed (see Sect. 2.4).

To disentangle the cluster and field population we create
parametric and independent models for both populations. These
models aim at reproducing the observed astrometric and photo-
metric properties of both populations. We infer the set of model
parameters, θ, based on the data, D = {dn}Nn=1 (with N the num-
ber of sources and dn = {µα,n, µδ,n, CIn, Yn, Jn, Hn, Ksn}), and
the probabilistic framework established by the Bayes theorem:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
. (1)

In this equation, p(θ|D) represents the posterior probability
of the parameters given the data, this is what we aim to infer. In
the right side, p(D|θ) stands for the probability of the data given
the parameters, also called the likelihood4 of the data, p(θ) repre-
sents the prior beliefs about the relative probabilities of different
parameter values, and p(D), also known as evidence or marginal
likelihood (since the parameters have been marginalised over),
works as a normalisation constant. Since this last one can be
computed by integrating the numerator of Eq. (1), we only focus
on the likelihood and the priors. We describe these terms in more
detail in the remainder of this section.

Assuming that data are independent5, given the parameters,
its likelihood can be expressed as

p(D|θ) = p({dn}Nn=1|θ) =

N∏
n=1

p(dn|θ). (2)

We call this the generative model to the likelihood of one da-
tum, p(dn|θ), because synthetic data can be drawn from it. For-
mally, this term must be p(dn|θ,M) with M standing for all other
information on which the probability distribution depends. This
information includes the standard uncertainty of each datum,

4 We use the term likelihood throughout to refer to the probability dis-
tribution of the data given the values of the parameters.
5 This assumption means that the probability of measuring certain
value of an object is independent of the measured value of another ob-
ject. The DANCe DR2 sample shows no significant correlation amongst
the observables it reports, for more details see Bouy et al. (2013).
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εn (e.g. εµα , εµδ , εCI, associated with the common ±σ Gaussian
uncertainties), and the assumptions we make in the construction
of the model. We assumed that each datum uncertainty is fixed,
which means that the differences between datum dn and new
measurements of the same source will be normally distributed
with mean zero and standard deviation εn. The following section
explains the rest of the information M, that we used to construct
the generative model.

2.1. Generative model

Since we aim to separate the cluster and the field, we modelled
these two overlapping populations separately. Their explicit dis-
entanglement would demand a set of N binary integers to ac-
count for the two possible states of each object in our data set:
either it belongs to the cluster or to the field population. Since
this would be prohibitive for the inference process (in compu-
tational terms), we marginalised6 them using a binomial prior.
This marginalisation renders only one parameter, π, which rep-
resents the fraction7 of field objects in the data set.

Thus, the generative model can be expressed as

p(dn|θ = {π, θf, θc}, εn) = π · pf(dn|θf, εn) + (1− π) · pc(dn|θc, εn),
(3)

where pf(dn|θf, εn) and pc(dn|θc, εn) are the field and cluster
likelihoods of the datum dn, given its standard uncertainty εn,
and the values of the field and cluster parameters θf and θc,
respectively. The next two sections explain briefly the genera-
tive models of the field and cluster. We refer the reader to the
Appendix A.1 for a more detailed explanation of both models
and the relations among their parameters.

In the following, we assume that the observed quantities are
drawn from a probability distribution centred in the true values.
These are then convolved with the probability distribution of the
observational uncertainties, which we assume to be a multivari-
ate Gaussian.

In the DANCe DR2 data set, proper motions and photomet-
ric bands are computed independently from each other. Thus,
it does not report correlations amongst the observable uncer-
tainties. For this reason, in the multivariate Gaussian describing
the observational uncertainties we set the off-diagonal elements
to zero, except those corresponding to the i−Ks colour index,
which by construction8 contain the correlation of the i and Ks
bands.

Our methodology aims to deconvolve the observational un-
certainties to obtain the intrinsic dispersion of the true values.
This intrinsic dispersion is the convolution of several processes
(e.g. unresolved binaries, extinction, variability), which we at-
tempt to separate in future versions of our model.

Due to its heterogeneous origin, the DANCe Pleiades DR2
has a high fraction of photometric missing values (see Table 1
of Sarro et al. 2014). In our data set, less than 1% of the
objects have values in all photometric bands (and it should
be remembered that only these complete sources are used in

6 Marginalisation is the process by which a parameter is integrated out
using a measure or prior.
7 In probability density functions, specified as mixtures of other den-
sities, the contribution of each density is called its fraction, weight or
amplitude. Throughout the text we use these terms indiscriminately.
8 Let A be the matrix of transformation from the photometric bands
vector X = {i, Y, J, H, Ks} to the photometric vector of colour index
and bands Z = {i−Ks, Y, J, H, Ks}. Then Z = A · X, and Cov(Z) =
A · Cov(X) · AT.

Bouy et al. (2015b) to construct the cluster model which is even-
tually applied to infer the membership probabilities of the in-
complete sources). Therefore, the treatment of objects including
missing values is of paramount importance to our methodology.
In the following, we deal with the missing values in these ob-
jects by setting them as parameters, which we marginalise over
all their possible values with the aid of priors. In general we use
uniform priors, otherwise, we give specific details.

2.1.1. Field population model

We have assumed that the field distributions of proper motion
and relative photometry are independent, and thus can be fac-
torised. This assumption is not entirely correct since the relative
photometry is affected by distance, and the later is correlated
with proper motions. Nevertheless, we assumed independence
amongst proper motion and photometric bands based on the fol-
lowing points: (i) the entire DANCe DR2 renders small (<0.1)
correlations amongst these observables, and (ii) assuming in-
dependence reduces the number of free parameters of the field
model from 728 to 366. Thus, although this assumption renders
a less accurate model, it reduces the complexity of the later by
∼50%.

We also assume that the distribution of proper motions and
relative photometry are described by Gaussian mixture models
(GMM). The flexibility of GMM to fit a variety of probabil-
ity distributions geometries make them a suitable model to de-
scribe the density of the heterogeneous data from the DANCe
DR2. We fitted these GMM to field objects in our data set. We
selected as field objects those having cluster membership
probability lower than 0.75 according to Bouy et al. (2015b),
approximately 98 000 objects. We verified that the number of
hypothetically misclassified objects is negligible compared to
the size of our data set (100 000 objects). With the contami-
nation and true positive rates reported by Sarro et al. (2014):
≈8% and≈96% respectively (at probability threshold p = 0.75),
and the number of candidate cluster members reported by Bouy
et al. (2015b), 2109, the number of misclassified objects would
be ≈258, which represents a negligible fraction (.0.26%) of our
data set. Furthermore, assuming that these misclassified objects
would be in the field-cluster “boundary”, we can safely assume
that they would be spread all over the cluster photometric se-
quence and over a halo around the proper motion of the cluster.
This assumption, together with their negligible fraction, leads us
to assume that their contribution to the field parameters is neg-
ligible. Thus, we keep the field parameters fixed throughout the
inference process. Due to our current computing power, this de-
cision is essential since it diminishes considerably (by 336) the
number of free parameters, and therefore the computing time.
However, it also leads to posterior distributions of cluster param-
eters that do not reflect the uncertainties associated to the field
model.

We determined the number of Gaussians in each GMM using
the Bayesian Information criterion (BIC, Schwarz 1978). This
is a figure-of-merit that combines the likelihood and the num-
ber of parameters in the model such that it penalises complex
models. Due to the presence of missing values in the photome-
try, we estimated the parameters of this photometric GMM us-
ing the algorithm of McMichael (1996). This is a generalisa-
tion of the expectation maximisation (EM) algorithm for GMM
in which data with missing values also contribute to estimate
the parameters. The number of Gaussians suggested by the BIC
for this mixture is 14 (amounting to 293 free parameters). The
right panel of Fig. 1 depicts a projection of this multidimensional
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(five dimensions) GMM in the subspace of Ks vs. CI. We notice
that, due to the high amount of missing values in the photometry,
most of the plotted Gaussians in the right panel are empty in this
particular projection space.

Furthermore, using our entire data set to construct the param-
eters of the field, allows us to remove biases associated with the
use of only the completely observed objects. To illustrate these
biases we proceed as follows. First, we took the GMM fitted
to the ≈98 000 field objects, as described in the previous para-
graphs. Since this model takes into account the missing values
we call it the incomplete data model. Then, we selected only the
complete sources in the ≈98 000 field data set (which amount up
to 1%) and fit a GMM with the same number of Gaussians, 14, as
the incomplete data model. We call this the complete data model.
Afterwards, for each model, we draw 105 synthetic data points,
we call them complete and incomplete, depending on the parent
model. In Fig. 2, we show the associated density of these two
synthetic data sets, complete (solid line) and incomplete (dashed
line), in the projected Ks vs. i−Ks (left) and Ks vs. J−Ks (right)
CMDs. As this figure shows, the complete data model under-
estimates the density in the faintest regions (where the missing
values happen the most), over estimate it in the middle ones
(11 < Ks < 15), and shift it at the brightest ones (Ks ≈ 10 in
the Ks vs. J − Ks CMD). As this figure illustrates, when missing
values do not happen at random, the density landscapes of com-
pletely observed objects and that of all objects (missing values
comprised) differ.

In the case of the proper motions, the BIC favours a model
with a large number of Gaussians with small weights and large
variances distributed all over the observed data space. In order
to circumvent this over-complex model, we decided to add a
uniform distribution to the GMM. When we apply the BIC to
this new mixture of distributions, the modification improves the
likelihood and reduces the number of Gaussians. The number of
Gaussians suggested by the BIC for this mixture is seven, plus
the uniform distribution (amounting to 42 free parameters). The
left panel of Fig. 1 shows the Gaussians of this mixture. As can
be seen in this figure, one of the Gaussians in the mixture is cen-
tred near the proper motions of the cluster ({µα, µδ} ∼ {16,−39}
mas yr−1). The weight of this Gaussian is small, 0.07, and only
marginally larger than the weight 0.03 of the Gaussian at the
upper right corner. Since there is no apparent reason for this
Gaussian to be coincident with the cluster population, it suggests
that within the objects that Bouy et al. (2015b) classified as field
population, there are some false-negatives with proper motions
compatible with those of the cluster population. In future works,
we will improve this classification to characterise and minimise
possible false-negatives.

2.1.2. Cluster population model

To model the cluster population, we assume independence be-
tween proper motions and photometry. This assumption is not
entirely correct since the cluster has a spread in distance, which
may introduce a correlation amongst these variables. However,
due to the distance to the cluster (134.4+2.9

−2.8 pc according to Galli
et al. 2017) we can assume that this spread has a negligible im-
pact in the photometry and proper motions of the cluster mem-
bers. This correlation and its possible inclusion in the model will
be explored in future works. Thus, similarly to the field model,
we factorise these two components. Sarro et al. (2014) show ev-
idence of an equal-mass binaries sequence in the Pleiades and
model it with a proportion fixed to 20%. We now model this se-
quence as a parallel cluster sequence displaced 0.75 magnitudes

to the brighter side. Furthermore, since binarity could affect the
proper motion of the system, we couple this photometric infor-
mation to the proper motions by constructing a separate proper
motions model for these equal-mass binaries. Additionally, we
set the fraction of equal-mass binaries as a free parameter of our
model. This allows us to investigate potential kinematical dif-
ferences between equal-mass binaries and the rest of the stars,
singles and non equal-mass binaries.

Photometric model of equal-mass binaries and single stars.
To model the cluster sequence in the CMDs we used one trun-
cated series of cubic splines for each of the Y JHKs vs. CI CMDs.
We chose splines because of their better fitting properties. We
tried several polynomial bases (Laguerre, Hermite, Chebyshev)
but regardless of their order, they lack the flexibility shown by
the splines, particularly in the high slope region around CI ≈ 3.
However, this flexibility comes at a price. Splines require us to
set, in addition to the coefficients of the series, a number of points
known as knots. Knots are the starting and ending points of each
spline section.

The simultaneous inference of spline coefficients and knots,
a problem known as free-knot splines, introduces multi-modality
in the parametric space (Lindstrom 1999). To avoid this
multi-modality, we kept the knots fixed throughout inference.
Nevertheless, we applied the Spiriti et al. (2013) methodol-
ogy9 to the Bouy et al. (2015b) members. Doing so, we ob-
tain the best number and position for the knots. These are
CI = {0.8, 3.22, 3.22, 5.17, 8.0}. We tested different number of
knots, ranging from two to nine, with five the best configuration
given by the BIC.

In Sarro et al. (2014) the cluster sequence was modelled non-
parametrically with a principal curve. It had a natural coordinate
(λ) which was not directly related to any physical parameter.
This coordinate no longer holds for the splines model in which
now the true CI is the independent parameter. Furthermore, as
explained in Sect. 1, the principal curve analysis returns the ob-
served relation in the data, not the underlying relation that gen-
erates the observations. Instead, splines allowed us to model the
true underlying relation in a parametric way.

Here, we have assumed that the observed photometric quan-
tities are drawn from a probability distribution resulting from
the convolution of the observed uncertainties, with an intrin-
sic distribution centred at the true photometric quantities. We
model this intrinsic distribution as a multivariate Gaussian,
whose covariance matrix is the intrinsic dispersion, the same
all along the cluster sequence. This intrinsic dispersion could
arise from different astrophysical processes such as age, metal-
licity and distance dispersions, unresolved binaries, transits, and
variability, amongst. Without this dispersion, we would have an
over-simplistic model in which the cluster sequence will be an
infinitely narrow line, and departures from it would only be ex-
plained by the observational uncertainties. In practice, this model
would underestimate the posterior membership probabilities of
hypothetical good candidates that depart from the ideal cluster
sequence. We can have access to this intrinsic dispersion only
after deconvolving the observational uncertainties.

The true CI of each object is unknown, even if its observed
value is not missing. This means that the true CI of each ob-
ject is a nuisance parameter which must be marginalised. We
show this marginalisation in Eq. (4). To marginalise these CI
we need a measure. We established this measure as a truncated

9 Implemented in the R package “freeknotsplines”.
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Fig. 1. Proper motion (left panel) and Ks vs. i−Ks CMD (right panel) projections of field models (ellipses and crosses depicting the covariance
matrices and means of the GMM) and the density of objects in our dataset (grey pixels in logarithmic scale, shown only to guide the eyes). The
colour scale shows the weight of each Gaussian in the GMM.
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Fig. 2. Densities in Ks vs. i−Ks (left panel) and Ks vs. J − Ks (right panel) CMDs of 105 synthetic sources. We drawn these from two different
models: complete (solid line) and incomplete (dashed line). We construct the incomplete model using all objects in our data set, even those with
missing values, while for the complete one we use only those object without missing values. The contour values (at 10−3, 10−2, 10−1, 4 × 10−1) are
the same for both complete and incomplete models.

(0.8 ≤ CI ≤ 8) univariate GMM with five components whose
parameters are also inferred from the data.

p(dph|θc, εph) =

∫
p(dph,CI|θc, εph) · dCI

=

∫
p(dph|CI, θc, εph) · p(CI|θc, εph) · dCI. (4)

In the previous equation, dph, εph, and θc correspond to
the photometric measurements, standard photometric uncer-
tainties, and the cluster parameters, respectively. The term
p(dph|CI, θc, εph) corresponds to the multivariate Gaussian asso-
ciated with the intrinsic dispersion of the cluster. The CI dictates

the true photometric quantities by means of the splines. The term
p(CI|θc, εph) correspond to the truncated GMM which we use as
a measure for the true CI. Appendix A.1 contains more details
on this marginalisation and the probability distribution involved
on it.

We used the observed CI and magnitudes to reduce the com-
puting time of the marginalisation integral by avoiding regions
in which the argument is almost zero (i.e. far away from the
measured values). The process is the following: first, we com-
pared the observed photometry to the true one (i.e. the clus-
ter sequence given by the splines) and find the closest point, p,
using the Mahalanobis metric. This metric uses the sum of the
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observational uncertainty with the intrinsic dispersion of the
cluster sequence as covariance matrix. To define the limits of
the marginalisation integral, we used a ball of 3.5 Mahalanobis
distances around point p. Contributions outside this ball are neg-
ligible (<4 × 10−4).

Since we modelled the true photometric quantities of the
equal-mass binaries with a parallel sequence displaced 0.75 mag-
nitudes into the bright side (twice the luminosity implies an in-
crease of 0.75 in magnitudes), the only extra parameter needed is
the fraction of equal-mass binaries to the total of cluster members.

Proper motion model of equal-mass binaries and single stars.
We modelled the proper motions of equal-mass binaries and sin-
gle stars with a GMM whose parameters are inferred as part of the
hierarchical model. The number of Gaussians, however, remains
fixed throughout inference. Following the BIC criterion, we se-
lect four and two Gaussians for single and equal-mass binaries,
respectively. Furthermore, we also assumed that the Gaussians
in the proper motions GMM share the same mean, one for sin-
gle stars and one for equal-mass binaries (which need not be
equal).

The number of free parameters in our cluster and field mod-
els are 84 and 335, respectively. In addition, we used one free
parameter, π (Eq. (3)), to model the fraction of the field in the
cluster-field mixture. Thus, our generative model has 420 free
parameters. As explained in Sect. 2, due to computational con-
straints, we used maximum-likelihood techniques to obtain the
value of the 335 field parameters. For the remaining ones, we
used MCMC to infer their full posterior distribution. In the fol-
lowing section we described the priors used for the inference of
these 85 parameters.

2.2. Priors

In a Bayesian framework, each parameter in the generative
model has a prior, even if it is uniform or improper. The priors
we assumed are intended to fall in the category of weakly in-
formative priors. A weakly informative prior, following Gelman
(2006), is that in which “the information it does provide is inten-
tionally weaker than whatever actual prior knowledge is avail-
able”. Although there is no general method for specifying them,
a weakly informative prior can be constructed by diminishing
the current available information (see for example Gelman et al.
2008; Chung et al. 2015). In practice, we constructed a weakly
informative prior as follows. First, we chose the family distribu-
tion and its hyper-parameters such that it resembles the actual
prior information. Then, we tuned the hyper-parameters such
that the statistical variance of the distribution increases with re-
spect to the value found in the first step. In this way, the resulting
prior provides less restrictive information than the original one.
We chose this kind of priors due to their better properties regard-
ing the regularisation and stability of the posterior computation
when compared to reference priors (Simpson et al. 2017), and
other non-informative priors (Gelman 2006). We grouped priors
into three main categories, those for fractions, and those for pa-
rameters in the proper motion and in the photometrical models.
In the following, we explain the kind of distributions we use for
the priors. In Appendix A.2, we give details on the particular
parameter values we chose for these distributions.

Fractions are defined for mixtures, which can be GMM or
the cluster-field mixture (Eq. (3)), and quantify the contribution
of each element to the mixture. Thus, they must add to one and
be bounded by the [0, 1] interval. For priors of fractions we use
the multivariate generalisation of the beta distribution: the

Dirichlet distribution. This distribution is parametrised by the
vector α (where {αi}Ki=1 > 0, and K is the number of categories)
and its support is the set of K-dimensional vectors x defined in
the interval (0, 1) and with the property: ||x|| = 1 (the sum of
their entries equals one). We chose the Dirichlet distribution be-
cause it fits perfectly our needs, in addition its variance10 can be
diminished to tune it as a weakly informative prior.

We set the priors of means and covariance matrices in the
proper motions GMM as bivariate normal and Half–t distribu-
tions, respectively. According to Huang & Wand (2013), setting
arbitrarily large values of the A parameters in the later distribu-
tion leads to arbitrarily weakly informative priors on the corre-
sponding standard deviation terms. Thus, we obtained weakly
informative priors by allowing large values of the standard de-
viations σ and A parameters, in the bivariate normal and Half–t
distributions, respectively. See Appendix A.2 for more details.

Photometric priors include three categories, those concerning
the true CI, the splines coefficients, and the cluster sequence in-
trinsic dispersion. For the priors of the means and variances of
the true CI GMM, we used the normal and Half–Cauchy distri-
butions, respectively. The latter is the recommended choice for
a weakly informative prior according to Gelman (2006). In both
distributions we use large values for the variance and η parameters
(see Appendix A.2). Thus, both are weakly informative priors.

For the coefficients in the spline series we set the priors as
univariate normal distributions. Finally, we use the multivariate
Half–t distribution (Huang & Wand 2013) as a prior for the co-
variance matrix modelling the intrinsic dispersion of the clus-
ter sequence. Appendix A.2 shows the details on how we tuned
these distributions to obtain weakly informative priors.

2.3. Sampling the posterior distribution

There are three possible approaches to obtain the posterior dis-
tributions of the parameters in our model: an analytical solution,
a grid in parameter space, and the Markov chain Monte Carlo
(MCMC) methods. Given the size of our data set (105 objects)
and the dimension of our inferred model (85 parameters), the
analytical solution and the grid approach are discarded a priori.

The MCMC methods offer a feasible alternative to this prob-
lem. Briefly, they consist of a particle (or particles) which itera-
tively moves in the parameter space. Among the many MCMC
methods that exist, we selected the “stretch” move which is an
affine invariant scheme developed by Goodman & Weare (2010).
It is implemented to work on parallel in the Python routine em-
cee (Flegal et al. 2016). We chose emcee due to the following
properties: (i) the affine invariance allows a faster convergence
over common and skewed distributions (see Goodman & Weare
2010; Flegal et al. 2016, for details), (ii) the parallel computation
distributes particles over nodes of a computer cluster and thus
reduces considerably the computing time, and (iii) it requires
the hand-tuning of only two constants: the number of particles,
and a, the parameter of “stretch” distribution (see Eq. (9) of
Goodman & Weare 2010). We used 170 particles (twice the
number of parameters) and a value of a = 1.3. These keep
the acceptance fraction in the range 0.2−0.5, as suggested by
Flegal et al. (2016).

10 The variance of the Dirichlet distribution, Dir(X,α) is:

Var[Xi] =
αi · (α0 − αi)
α2

0 · (α0 + 1)
(5)

with α0 =
∑
αi.
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We used CosmoHammer (Akeret et al. 2013), a front-end
of emcee, to control the input and output of data and param-
eters, as well as the hybrid parallel computing. We ran it on
a 80 CPUs (cores) computer cluster with 3.5 GHz processors.
However, instead of using OpenMP as Akeret et al. (2013) did,
we use the multiprocessing package of Python to distribute the
computing of the likelihood among cores in each cluster node.
Since the evaluation of the likelihood is computationally expen-
sive (it takes approximately 30 days to run in the previously de-
scribed computer cluster11), we proceeded similarly to Akeret
et al. (2013). We provided emcee with an optimised set of val-
ues of the posterior distribution. These values can be thought
of as a ball around the maximum-a-posteriori (MAP) solution.
We found them with a modified version of the Charged Parti-
cle Swarm Optimiser (PSO) of Blackwell & Bentley (2002). It
avoids the over-crowding of particles around local best values.
The charged version retains the PSO exploratory property by re-
pelling particles that come closer than a certain user specified
distance to each other. The repelling force mimics an electro-
static force, thus the name charged PSO.

The modification that we introduce to the charged PSO re-
lates only to the measuring of distance between particles. The
algorithm of Blackwell & Bentley (2002) computes these dis-
tances in the entire parametric space. We find this approach
unsuitable for our problem. In it, parameters have different
length scales (for example, fractions and proper motions). There-
fore, we measured distance between particles and apply the
electrostatic force independently in each parameter. Thus, the
electrostatic force comes into action only when the relative dis-
tance between particles is smaller than 10−10. We chose this
value heuristically.

The PSO does not warrant the finding of the global max-
imum of the score function (see Blackwell & Bentley 2002;
Clerc & Kennedy 2002 and references therein). Therefore, we
iteratively ran PSO and 50 iterations of emcee (with the same
number of particles as the PSO) until the relative difference be-
tween means of consecutive iterations is lower than 10−7. The
iterations of emcee guarantee the spreading of the PSO solu-
tion without losing the information gained. After convergence of
the PSO-emcee scheme, we ran emcee with 175 walkers, until
convergence. Neither scheme, PSO alone or PSO-emcee, guar-
antees to find the global maximum and their solution could be
biased. However, we used them to obtain a fast estimate of the
global maximum, or at least, of points in its vicinity. Neverthe-
less, the final emcee run, during the burning phase, erases any
dependance on these initial solutions.

Convergence to the target distribution occurs when each pa-
rameter enters into the stationary equilibrium, or normal state.
The central limit theorem ensures that this state exists. See
Roberts & Rosenthal (2004) for guaranteeing conditions and
Goodman & Weare (2010) for irreducibility of the emcee stretch
move. The stationary or normal state is reached when, in at least
95% of the iterations, the sample mean is bounded by two stan-
dard deviations of the sample, and the variance by the two stan-
dard deviation of the variance12; see Fig. 3.

Once all parameters have entered the equilibrium state, we
stop emcee by using the criterion of Gong & Flegal (2016)13.
We chose this criterion because it was developed for high-

11 For comparison, the methodology of Sarro et al. (2014) would take
approximately two days in the same computer cluster.
12 SD(σ2) = σ2 √κ/n + 2/(n − 1) with κ the kurtosis and n the sample
size.
13 Implemented in the R package mcmcse (Flegal et al. 2016).

dimensional problems and tested on hierarchical Bayesian mod-
els. In this criterion, the MCMC chain stops once its “effective
sample size” (ESS, the size that an independent and identically
distributed sample must have to provide the same inference) is
larger than a minimum sample size computed using the required
accuracy, ε, for each parameter confidence interval (1− δ)100%.
Our emcee run stops once the ESS of the ensemble of walkers
is greater than the minimum sample size needed for the required
accuracy ε = 0.05 on the 68% confidence interval (δ = 0.32) of
each parameter.

2.4. Membership probabilities

The methodology detailed in the previous sections renders the
posterior distributions of the parameters in the models of cluster
and field populations. Cluster membership probabilities are then
computed from these distributions by means of Bayes’ theorem,
(Eq. (1)). Applying it to our classification problem, we obtain
that the probability of an object with measurement dn, to belong
to the cluster population, C, is,

p(C|dn) =
p(dn|C) · p(C)

p(dn|C) · p(C) + p(dn|F) · p(F)
, (6)

where F denotes the field population and, p(dn|C) and p(dn|F)
are the cluster and field likelihoods, respectively. Probabilities
p(C) and p(F) are the prior probabilities of the object to belong
to the cluster and field, respectively. For these prior probabilities
we used the fraction of field and cluster stars (i.e. the values of
π and 1 − π in Eq. (3), respectively), which the model infers at
each MCMC iteration. The same reasoning is then applied to the
probability of an object to be an equal-mass binary. In this case,
the two populations are the equal-mass binaries and the stars in
the main cluster sequence14.

All terms in Eq. (6) depend on the model parameters, even
the prior probabilities as mentioned before. Thus, each realisa-
tion from the joint posterior distribution of the model param-
eters (i.e. each iteration of the MCMC) results in a value for
both cluster and equal-mass binaries membership probabilities.
Therefore, upon convergence of the MCMC, sampling the joint
posterior distribution of the model parameters results also in
the sampling of the cluster and equal-mass binaries membership
probabilities of each object.

Once the generative model has been learned from the 105

sample (i.e. the MCMC has converged), we obtained the cluster
and equal-mass binaries membership probabilities of all the ob-
jects in the DANCe catalogue. Computing 1700 samples of the
membership probabilities for each of the approximately one and
a half million stars in the DANCe DR2 takes 4.11 h. In Table 1
(available entirely at the CDS) we summarise the cluster and
equal-mass membership probabilities of the DANCe DR2 ob-
jects marginalised over the posterior distribution of the cluster
parameters. We also report the sensitivity of these membership
probabilities to the cluster parameters by means of the standard
deviation of the 1700 samples obtained for each object in the
data set.

3. Results

In this section we analyse the results obtained by applying our
methodology on synthetic and real data. The synthetic data enable

14 We note that currently we only give the probability of star to be an
equal-mass binary (high mass ratio binary). Our methodology is not yet
able to disentangle single stars from binaries of low mass ratio.
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Fig. 3. Normalised mean (left panel) and variance (right panel) of each parameter in our model, given the DANCE DR2 data set as functions of
iterations in the MCMC. Each parameter is scaled using the mean and variance of its corresponding ensemble of particles positions at the last
iteration. Red lines show one and two sigma levels of these normalisation values. These figures depict the evolution of the Markov Chains from the
original values provided by the PSO to the convergence. This later shown by the last ∼200 iterations in which the mean and variances are within
the two-sigma levels. We notice that some parameters evolve (within the MCMC) in groups, which is related to their correlation.

us to quantify the reliability of the methodology and evaluate the
impact that missing values have on it. This synthetic analysis re-
quires at least three runs: one on the real data (to obtain the best
values from which we generate the synthetic data), and two on the
synthetic one. These last two runs correspond to data sets with and
without missing values. As mentioned before, our methodology
is computationally expensive. Therefore, for these three runs we
use 104 objects samples. The real data sample contains the ob-
jects with the highest membership probabilities as given by Bouy
et al. (2015b). These objects are closer to the cluster, in the sense
of membership probability, than the remaining 9× 104 objects.
Therefore, the field probability density in the region occupied by
the cluster is higher and more concentrated (around the cluster)
than the field density estimated using the larger and distant to the
cluster 105 objects sample. Thus, we assume that results obtained
on the smaller sample have higher contamination, and lower re-
covery rates than those obtained on the larger sample, the more
distant 105 objects. The higher contamination and lower recov-
ery rates arise from the concentration and higher values of the
field probability density around the cluster, respectively. There-
fore, results in the next subsection are upper and lower limits to
the contamination and recovery rates, respectively.

3.1. Reliability and impact of missing values

We measure the performance of our methodology as a classifier
(member vs. non member) by means of synthetic data on which
members and non-members are known. To generate the synthetic
data we draw 104 random samples of the generative model (see,
Sect. 2.1), whose parameters were found using the 104 sample
of real data.

As explained in Sect. 2, our data set has a high frac-
tion of missing values. The pattern of missing values is not
random and depends on the magnitudes and colours of the
objects. Therefore, we reproduced in each synthetic datum
the pattern of missing values of one of its closer neigh-
bours in the real data, closer in the euclidean sense. We
found the following closer neighbours in each of the CMDs:

{Ks, J−Ks}, {J, J−H}, {Ks, H−Ks}, {J,Y−J}, {Ks, i−Ks}. These
are, in decreasing order, the bands and colours with the fewer
missing values. Assigning the missing pattern of the nearest real
neighbour results in a biased sample in which objects with com-
plete (non missing) values are underestimated. This bias roots
in the fact that euclidean distances are smaller, or at most equal,
when measured in subspaces (missing values) compared to those
measured in the entire space (non-missing values). To avoid this,
for each of the previous CMDs we: (i) find the real objects with
non-missing values and calculate their fraction, fr, from the total
real data, (ii) take a sample, from the synthetic data, whose frac-
tion, fs, from the total synthetic data, is equal to fr, (iii) assign to
the objects in this synthetic sample the pattern of missing values
of the nearest neighbour from among the real objects found in
(i). In this way, the synthetic data has similar fractions of miss-
ing and non-missing values to those of the real data.

Uncertainties are assigned as follows. We set the proper mo-
tions uncertainties to those of the nearest neighbour in the real
data. This scheme, however, cannot be applied in the case of
photometry. In the photometric space and due to the presence
of missing values, the nearest neighbour scheme returns uncer-
tainties that are biased towards the less precise measurements.
Again, the euclidean metric results in the preferential choosing
of objects with missing values. Since these missing values occur
mostly at the faint end, where uncertainties are larger, it results
in a bias towards larger uncertainties. To avoid this, we first fit-
ted polynomials (8th degree) to the uncertainties as a function
of the magnitudes. Then, we used these polynomials to assign
uncertainties to the synthetic photometric data.

To estimate the performance of our classifier to recover clus-
ter members, we applied our methodology to synthetic data sets
with and without missing values. In these results, we count the
positives (cluster members, TP), negatives (field members, TN),
false positives (field members classified as cluster members, FP)
and false negatives (cluster members classified as field members,
FN). With them we calculated the true positive rate (TPR), con-
tamination rate (CR), accuracy (ACC) and precision (or positive
predictive value, PPV), which are defined as follows
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TPR =
TP

TP + FN
(7)

CR =
FP

FP + TP
(8)

PPV =
TP

TP + FP
(9)

ACC =
TP+TN

TN + FN + TP + FP
(10)

We used the mode to summarise membership probability
distributions. To quantify the uncertainties of the previous quan-
tities, we draw five realisations of the synthetic data set with
missing values. Since we used the results of the non-missing val-
ues data set only for comparisons, we draw it only once.

The left panel of Fig. 4 shows the TPR (solid lines) and
CR (dashed lines) in the presence (red lines) and absence (blue
lines) of missing values. We measured both quantities as func-
tions of the probability threshold used to define members and
non-members. In the missing value case, the lines and the shaded
grey regions depict the mean and deviations, respectively, of the
results from the five synthetic data sets. As it is shown, the miss-
ing values have a negative impact in our classification process
by diminishing the TPR and increasing the CR. Nevertheless,
our methodology delivers low (.8%) contamination rates above
the probability threshold p ≈ 0.75. In this figure and for the sake
of comparison, we also show the CR and TPR (as black dots)
reported in Table 4 of Sarro et al. (2014). This figure shows that,
the TPR of our methodology measured on data without missing
values is similar to that of Sarro et al. (2014). This is expected
since those authors use only completely observed objects to con-
struct their model. However, we measured the TPR on missing
values data, at pt = 0.84, is ≈4% lower than that of Sarro et al.
(2014) and the one we measure on non-missing values data. On
the other hand, the CR of our methodology above p = 0.8 out-
performs the CR reported by Sarro et al. (2014) in spite of the
missing values in our data sets. Nonetheless, we stress the fact
that this comparison is not straight forwards because of the fol-
lowing reasons. First, Sarro et al. (2014) infer their cluster model
using only non-missing-value objects, later they apply it over
objects with and without missing values. Second, their synthetic
data set and ours are essentially different. They are constructed
with different generative models, different number of elements,
and different missing value patterns.

The right panel of Fig. 4 shows the ACC and the PPV of our
classifier when applied on synthetic data with missing values.
The lines and the grey regions depict the mean and the maxi-
mum deviations of the results on the five synthetic data set. As
this panel shows, the probability threshold with higher accuracy
is pt = 0.84. In what follows, and only for classification pur-
poses, we use it as our cluster membership probability threshold.
At this threshold the CR is 4.3 ± 0.2%, the TPR is 90.0 ± 0.05%,
the ACC is 96.5 ± 0.1%, and the PPV is 95.6 ± 0.2%. The
quoted uncertainties correspond to the maximal deviations from
the mean of results in the five missing-values synthetic data
sets.

We investigated further the impact of missing values. In
Fig. 5 we compare the cluster membership probabilities we re-
cover in the presence of missing values (vertical axis) to those
without missing values (horizontal axis). As can be seen in
this figure, the missing values impact our results by spread-
ing the membership probabilities. This spread is expected since
in general, decisions are compromised by the loss of informa-
tion. The box (region above pt) contains the objects which can
be considered as the contaminants (at p = pt) resulting from

missing values. These objects have a small impact, represent-
ing only 1.8% of the contamination (indicated by the difference
between the CR for missing and complete cases in left panel
of Fig. 4 at pt). We note that objects lacking just one observ-
able appear to have larger biases than those lacking two or three.
However, this is an artefact of the relative frequencies of their
numbers. The most striking difference between both probabili-
ties comes from objects lacking the CI (enclosed in black). Our
methodology uses the true CI to prescribe the true photometry,
and the observed CI to constrain the marginalisation integral of
the true CI. Thus, it is expected that a missing CI will produce
a probability spread. These missing CI objects show two differ-
ent behaviours. In one case, there are sources with membership
probabilities pcomplete ≈ 0 which have overestimated probabili-
ties in the incomplete case (vertical axis). In the other case, the
sources in the combed area below the line of unit slope have un-
derestimated probabilities in the incomplete case. While the first
case contributes to the CR the second one diminishes the TPR.
The first case reaches the maximum difference at p ≈ 0 (differ-
ence between red and blue dashed lines in Fig. 4), thus its impact
in our results is marginal. The second case, however, represents
the unavoidable (in our model) loss of members due to the miss-
ing values (4% at pt = 0.84). In a future version we will try
to reduce this breach. In spite of the mentioned behaviours, the
root-mean-square (rms) of the difference between membership
probabilities of both data sets (with and without missing val-
ues) is 0.12, which we consider an small price given the gained
improvements due to the inclusion of missing values. This rms
drops to only 0.02 for objects with completely observed values
(red squares) in both data sets. The previous effects show an
overall agreement between results on data sets with and with-
out the missing values, nonetheless, care must be taken when
dealing individually with objects lacking this colour index.

Finally, as explained in Sect. 1, our methodology aims to de-
termine the statistical distributions of the cluster population. Our
model returns these distributions without any threshold in cluster
membership probabilities. In our methodology, each object con-
tributes to the cluster distributions proportionally to its cluster
membership probability. In this sense our results are free of any
possible bias introduced by hard cuts in the membership prob-
ability. Nevertheless, contamination is still present and must be
quantified. To quantify it, we compute the expected value of the
CR.15 It is 〈CR〉 = 5.8 ± 0.2%. In it, each CR contributes pro-
portionally to the probability threshold at which it is measured.

3.2. Pleiades results

In the previous section we characterised the effectiveness of our
methodology, quantified its contamination and found an objec-
tive probability threshold based on synthetic data. In this section,
we present the results of applying this methodology to the real
data set of Sect. 2. First, we give the cluster and equal-mass bi-
naries membership probabilities together with a summary of the
probability distributions describing the cluster population. Af-
terwards, we derive the luminosity functions in the J, H and Ks
bands.

The high dimensionality of our results prevents their di-
rect graphical representation. Nevertheless, in what follows we
15 To compute the 〈CR〉 we used the formula

〈CR〉 =

∫ 1

0
CR(p) · p · dp,

with p the probability threshold used to obtain the CR.
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Fig. 4. Left: TPR (solid line) and CR (dashed line) of our methodology when applied on synthetic data sets with and without missing values (red
and blue lines, respectively). Black dots show the TPR and CR reported by Sarro et al. (2014) for their non-missing values model. Right: accuracy
and precision as a function of probability threshold for our classifier when applied on synthetic data with missing values. The highest accuracy is
obtained at pt = 0.84 (red dot). In both panels, the grey areas show the maximum deviations from the mean of the results of the five missing-values
synthetic data sets.
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Fig. 5. Comparison between the cluster membership probabilities re-
covered from the synthetic data with missing values (incomplete) and
without them (complete). The colour and shape indicate the amount of
missing values. The symbols enclosed in black indicate a missing CI.
The top left box contains objects considered as contaminants due to
missing values, at the probability threshold pt = 0.84.

present them projected onto the subspaces of proper motions and
the Ks vs. i−Ks CMD.

Once the MCMC converged (see Sect. 2.3), we used the
last ten iterations (1700 samples of the parameters) to compute
the cluster and equal-mass binaries membership probabilities
(Eq. (6)) for the one and a half million objects in the
DANCe DR2. These membership probabilities are summarised
in Table 1, which also contains a flag indicating if the object has
a missing CI (see Sect. 3.1 for a discussion on the impact of the
missing CI). In addition, Figs. 6 and 7 show the cluster and equal-
mass binaries membership probabilities for those objects consid-
ered as cluster candidate members. The figures are projected into

the subspaces of proper motions and Ks vs. i−Ks CMD, and also
show the modes of the posterior distributions for parameters in
the cluster and equal-mass binaries models (with dashed and dot-
ted lines, respectively). We considered an object to be a candidate
member if its membership probability plus its sensitivity to the
cluster parameters (Pc +σPc ) is larger than the probability thresh-
old pt = 0.84. In the DANCE DR2 data set there are 1973 objects
fulfilling this criterion, in the following we refer to them as the
High Membership Probability Sample (HMPS). We considered
that an object is an equal-mass binary if its equal-mass binary
probability is greater than 0.5. Figure 8 gives the fraction of can-
didate members, in bins of CI, classified as equal-mass binaries
by our methodology. Uncertainties are Poissonian.

We summarise the posterior distributions of cluster parame-
ters in Table B.1. It contains the mode and uncertainty of each
parameter in our model. Uncertainty is expressed by the 16 and
84 percentiles of the parameter marginal posterior distribution.
In Appendix A we give details of these parameters and their
definition. Briefly, the first six correspond to the fractions of
field, cluster sequence (Cs) and to the weights in the proper mo-
tions GMMs of single stars and equal-mass binaries. The next
14 describe the true colour index distribution, (fractions, means
and variances). The following 14, from Mean PM Cs[1,1] to
Variance Cs[4,3], and eight, from Mean PM Bs[1,1] to Vari-
ance Bs[2,3], describe, respectively, the proper motions GMM
of cluster and equal-mass binaries. The next 28 correspond to
the coefficients of the cubic splines, with seven coefficients for
each band (Y, J, H and Ks). The final 15 correspond to the entries
of the Cholesky decomposition of the covariance matrix which
represents the intrinsic dispersion of the cluster sequence, Σclus.

In Fig. 9 we show some of these distributions. It depicts ob-
jects and models in the subspaces of proper motions an Ks vs.
i−Ks CMD. The grey ellipses delineate the GMM of the field
model. We notice that, due to the high amount of missing val-
ues, most of the plotted ellipses are empty. The orange lines por-
tray a sample of 100 realisation of the posterior distributions of
the cluster parameters. We plot, in black triangles and grey dots
respectively, those objects that we classify as candidate mem-
bers and as field population. We draw the mode of the posterior
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Table 1. Cluster and equal-mass binaries membership probabilities.

Bouy+2015 ID Sarro+2014 ID Pc PEMB SD pc SD pEMB Missing CI

J035422.48+233812.0 5169343 0.9995 0.0218 4.5598e−05 4.0915e−03 FALSE
J035437.36+231332.7 5053887 0.9997 0.0797 3.2831e−05 1.3454e−03 FALSE
J035203.59+250113.5 5283439 0.9993 0.0053 6.3711e−05 1.0784e−03 FALSE

Notes. Columns 1 and 2 show the Bouy et al. (2015b) and Sarro et al. (2014) identifiers. Columns 3 and 4 show the cluster Pc and equal-mass
binaries PEMB membership probabilities. Columns 5 and 6 represent the sensitivity of the membership probability to the cluster parameters.
Finally, Col. 7 is a flag for a missing CI (see discussion on Sect. 3.1). The full table is available at the CDS.
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Fig. 6. Proper motion (left) and Ks vs. i−Ks CMD (right) of our candidate members (HMPS, see text). Grey dots depict candidate members whose
cluster membership probability is below the probability threshold pt but are only included because it sensitivity to the cluster parameters reaches
the pt. The lines represent the MAP of the parameters in the equal-mass binaries (dot-dashed line labelled as MAP EMB) and single stars (dashed
line labeled as MAP Singles) models. Standard uncertainties in photometry are in general smaller than symbols.

distributions of parameters modelling single stars and equal-
mass binaries with dashed blue and dot-dashed maroon, respec-
tively. Although the number of Gaussians describing the cluster
proper motions for the single stars is four, one of them collapses
to fractions and covariances near zero.

For the sake of clarity, the right panel of Fig. 9 does not show
the parameters related to the width of the cluster sequence. Thus,
this last one appears as a narrow line. Also, and as explained in
Sect. 2.1.1, we built the field photometric model using the five
photometric dimensions of our data set and, more importantly,
we took into account the missing values. For these reasons the
grey ellipses of the right panel apparently lack objects inside and
in their vicinity.

3.3. Luminosity functions

We derived the distributions of the apparent magnitudes J,H,
and Ks using the posterior distributions of the parameters in
our photometric model. Briefly, we do this by transforming
the true CI distribution into the J,H,Ks distributions using the
splines series and the intrinsic dispersion of the cluster sequence.
Appendix A.3 describes in detail how we do this transformation.

Then, we obtained the luminosity distributions using the
magnitude distributions, the parallax and extinction of the clus-
ter. We assumed that the parallax is normally distributed with
mean, 7.44 mas, and standard deviation 0.42 mas (Galli et al.
2017). This parallax distribution is convolved with the magni-
tude distributions to obtain the absolute magnitude distributions.
We notice that this scheme results in a smoother distribution than
the hypothetical one resulting from the transformation of rela-
tive to absolute magnitudes by means of individual parallaxes;
the smoothness results from a lack of information. However,
we do so because we do not have individual parallaxes. Finally,
we deredenned them employing the canonical value, Av = 0.12
(Guthrie 1987), which we transform to the J, H, Ks values using
the extinction law of Cardelli et al. (1989).

Since our methodology prescribes the true photometric quan-
tities based on the true colour index CI, therefore, the complete-
ness limits of this CI dictate those of the photometric bands. The
upper completeness limits that Bouy et al. (2015b) estimate for i
and Ks are i ≈ 23 mag and Ks ≈ 18 mag (see their Appendix A).
As they also mention, due to the heterogeneous origins of the
DANCe DR2 survey, its completeness is not homogeneous over
its entire area. To overcome this issue, they identified a region,
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Fig. 7. Proper motion (left) and Ks vs. i−Ks CMD (right) of our candidate members classified as equal-mass binaries. Captions as in Fig. 6.
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naries as a function of the CI (binned intervals). Uncertainties are
Poissonian.

the inner three degrees of the cluster, with homogeneous spatial
and depth coverage and restricted their sample to it. Here, instead
of restricting the sample, we assumed that the UKIDSS survey
provides the homogeneous spatial coverage at the faint magni-
tudes, and quote more conservative completeness limits at the
bright end. Figure 10 shows the Ks and i density for all sources
in the Pleiades DANCe DR2. The upper completeness limits
correspond to the point with maximum density, i = 21.4 mag,
Ks = 18.1 mag. For the lower completeness limits we choose
i = 13.2 mag and Ks = 11.0 mag because the density of brighter

objects shows a sharp decline, probably due to saturation. Thus,
we defined the CI completeness interval as that of all the points,
along the cluster sequence in the Ks vs. i−Ks CMD, for which i
and Ks are bounded by their upper and lower completeness lim-
its, respectively. This results on 2.7 < i−Ks < 5.6 mag. With it
and the cluster sequence, we derived the completeness intervals
for the J, H, Ks. Finally, we transform these intervals to absolute
magnitudes and de-redden them.

The luminosity distributions in J, H, Ks together with their
completeness limits are depicted (orange lines, hereafter con-
tinuous BHM-Bayesian Hierarchical Model) in Fig. 11. For the
sake of comparison we also show the luminosity distributions
of: (i) our candidate members (HMPS, as a black dashed line),
and, (ii) the candidate members of Bouy et al. (2015b, blue dot-
dashed line). We impute the missing values of the discrete cases
using the nearest euclidean neighbour. The difference between
the continuous BHM function and the HMPS comes from the
imputed missing values and the objects used to obtain them. The
BHM uses all objects proportionally to their cluster member-
ship probability while the HMPS uses only the high probability
candidate members. We expect differences since the HMPS is
not a random sample of the continuous BHM, therefore their
distributions are not exactly alike. The differences between the
HMPS and that of Bouy et al. (2015b) arise mainly at the bright
and faint end (Ks ≈ 4 mag and Ks ≈ 11 mag). We argue that
the origin of these differences lay in our new candidate mem-
bers and the rejected ones of Bouy et al. (2015b) (as discussed
in Sect. 4).

4. Discussion

In this section we focus on the differences between our results
and those found by Bouy et al. (2015b) on the DANCe DR2 data
set. First, we discuss the differences in the cluster membership
probabilities, particularly on the new candidate members and the
rejected ones. Later, we obtain the present day mass function,
compare it with theoretical and empirical ones, and elaborate on
the statistical differences that we found.
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4.1. Comparison with previous results

Our work, and that of Bouy et al. (2015b), although essen-
tially different, have common elements which allow their com-
parison. Despite the differences, the two works agree on ≈90%
of the recovered candidate members (the upper right corner of
Fig. 12). In what follows, we detail the differences for individual
objects.

In Fig. 12 we directly compare, for objects in our data set,
the cluster membership probabilities recovered by both works.
Although our results on the posterior distributions of the clus-
ter population do not depend on this probability threshold, we
use it here only to illustrate differences in the classification pro-
cesses. As shown in this figure, there is an overall outstanding,
99.6% agreement between both methodologies, which is shown
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Fig. 11. Luminosity functions from J,H,Ks derived from the model (or-
ange lines labelled BHM). Also shown the regions of incompleteness
and the luminosity functions computed from: the candidate members of
Bouy et al. (2015b; dot-dashed blue line), and our candidate members
(HMPS, dashed black line).

by the upper right and lower left boxes of Fig. 12. Nonetheless,
the differences are worthy of discussion.

The rejected candidates of Bouy et al. (2015b, at the
lower right box of Fig. 12) amount to 12% of their candidate

A15, page 14 of 29

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201830972&pdf_id=9
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201830972&pdf_id=10
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201830972&pdf_id=11


J. Olivares et al.: The seven sisters DANCe. IV.

●

●

●

●●

●

●

●

●

●●●
●

●

●

●●
●●

●

●
●●

●

●

●

●

●

●

●

●●●●●●

●

●●●●
●

●
●

●●●●
●
●●●

●

●

●

●

●●●

●

●●●●

●

●

●

●
●

●

●

●●
●●●●●●

●

●
●

●

●

●
●●●●

●

●

●

●

●●●●

●

●●●●●●●

●

●●●

●

●●

●

●
●
●●●

●

●
●
●

●

●
●

●

●●

●

●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●
●
●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●

●

●

●●●●●

●

●
●
●●
●●

●

●

●●●●●●

●

●
●
●

●
●

●●●

●

●●●
●
●●●●●●●●●●●●●●●
●
●●●●●
●

●

●●●●●●●●

●

●●●●●●

●
●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●
●
●

●

●

●●●

●

●

●

●●
●●
●●

●

●●●

●●

●●●

●
●
●
●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●
●
●●●●●
●
●

●

●●●●●●●●●●

●

●

●
●
●
●
●●●●●
●
●●
●
●●●●●●●●●●●●●

●

●

●●

●●●●

●
●
●

●●●●●●
●
●●

●●●●
●
●●

●

●●●
●
●●●
●
●●●●●●
●
●
●
●●
●
●●
●
●
●

●●

●

●●
●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●

●

●
●
●●●
●
●●●●

●

●●●●●●●●●

●

●●
●
●●●
●
●●●
●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●
●●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

208

223

1765

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Bouy+2015

BH
M

Missing

●

0
1
2
3

Membership probabilities

Fig. 12. Recovered membership probabilities compared to those of
Bouy et al. (2015b). Lines show the 0.75 and pt = 0.84 probability
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common candidate members (top right).

members. This value is higher than the contamination rate re-
ported by Sarro et al. (2014), 7.3 ± 1.4%. Also, the fraction
of our new candidates (upper left box), 10%, is higher than the
4.3 ± 0.2% CR reported on Sect. 3.1. We plot the new candidates
and the rejected ones of Bouy et al. (2015b) in Figs. 13 and 14,
respectively. In what follows we address these differences.

The new candidate members have proper motions uncertain-
ties (median µα,δ = {1.37, 1.37}mas yr−1) two times larger than
those of the candidate members in common (median µα,δ =
{0.68, 0.68}mas yr−1). Also, as shown by Fig. 13, the majority
of them (171) have probabilities lower than 0.95, are located in
a halo around the locus of the cluster proper motions and on top
of the cluster sequence in the Ks vs. i−Ks CMD. On the contrary,
the new candidates with probabilities higher than 0.95 (37), lay
in the centre of the cluster proper motions and fall above the
cluster sequence in the Ks vs. i−Ks CMD. Thus, we hypothesise
that, (i) objects with photometry compatible with the cluster se-
quence but in the proper motions halo, have higher membership
probabilities in our methodology due to the increased flexibility
of the cluster proper motions model (four Gaussians instead of
the two of Bouy et al. 2015b), and (ii) objects at the centre of the
cluster proper motions but above the cluster sequence are multi-
ple systems (probably triple systems which can amount to 4% of
the population Duquennoy and Mayor 1991) with an increased
probability of membership due to our more flexible photometric
model of the cluster and equal-mass binaries sequences.

The rejected candidates of Bouy et al. (2015b), as it is
shown in Figs. 14 and 15, have proper motions uncertainties
(median µα,δ = {3.19, 3.20}mas yr−1) more than four times
larger than those of the candidates in common and are dis-
tributed along the cluster sequence. The relatively high mem-
bership probability among these objects occurs at the middle
of the cluster sequence (green squares of Fig. 15) while the
lowest probabilities occur at the bright and faint ends (blue
and red triangles of Fig. 15, respectively), where the missing
values happen the most. We stress that Bouy et al. (2015b)
construct their field model using a sample of ≈20, 000 objects

without missing values. Proceeding in that way underestimates
the photometric field density in the regions where missing values
happen (see Fig. 2). Underestimating the photometric field like-
lihood leads to an increase in the cluster field likelihood ratio,
and therefore it increases the cluster membership probabilities.
Furthermore, the proper motions uncertainties of objects at the
bright end (median µα,δ = {4.10, 4.21}mas yr−1 and depicted
as blue triangles), faint end (median µα,δ = {3.4, 3.4}mas yr−1

depicted as red triangles), and at the middle magnitudes (me-
dian µα,δ = {2.6, 2.6}mas yr−1 depicted as green squares) are
approximately six, five, and four times larger than those of the
candidates in common. Thus, we hypothesise that higher proper
motion uncertainties and field likelihoods are responsible for our
lower membership probabilities of Bouy et al. (2015b) rejected
candidates. However, we stress the fact that, although the proba-
bility threshold pt = 0.84 returns the maximum accuracy of our
methodology, at this value the TPR is just 90.0 ± 0.05%. Thus, the
rejected candidate members of Bouy et al. (2015b) cannot be dis-
carded as potential members. To solve this discrepancy it is neces-
sary to have lower proper motion uncertainties and fewer missing
values. Future steps will be taken to try to solve this issue.

Finally, the discrepancies in the individual membership prob-
abilities of both works, Bouy et al. (2015b) and ours, arise
from the subtle but important differences between them. The in-
clusion of missing values in our methodology have two main
consequences. First, the use of missing values in the field photo-
metric model leads to lower membership probabilities than those
of Bouy et al. (2015b) in the regions where missing values hap-
pen the most. Second, the use of missing values in the construc-
tion of the cluster model allow us to include the information of
good candidate members that were otherwise discarded a priori.
This last point, together with the higher flexibility of our cluster
model allow us to rise the membership probability of the pre-
viously discarded candidates. Furthermore, as shown by the red
squares in the upper left corner of Fig. 12, the higher flexibility of
our cluster model allow us to include as new candidate members
previously rejected objects with complete (non-missing) values.

4.2. Present day mass function

Now, we proceed to compare the photometric distributions of
the cluster population to those present in the literature. First, we
computed the present day system mass function (PDSMF) and
compare it to the initial mass functions (IMF) of Chabrier et
al. (2005) and Thies & Kroupa (2007). Then, we analyse and
discuss the differences between the Pleiades PDSMF and those
of the Trapezium and Hyades clusters.

We obtained the PDSMF, independently in the J,H,Ks
bands, by transforming the continuous luminosity distributions
obtained in Sect. 3.3. These are transformed into system mass
functions using the mass-luminosity relations given by the BT-
Settl models of Allard et al. (2012, the grid CIFIST2011bc for
the 2MASS Vega photometric system, and i band from the SDSS
AB sytem), whit exactly the same grid used by Bouy et al.
(2015b, priv. comm.). Since the luminosity functions of Sect. 3.3
correspond to the luminosity of systems (single and binary stars)
and the mass-luminosity relation is not a linear one, we derive
the PDSMF by adding the mass distributions of single stars to
those of the equal-mass binaries taking into account the pro-
portion of equal-mass binaries inferred by the model. We notice
that: (i) working with only two mass ratios, 0 and 1, is an over-
simplistic assumption that we plan to remedy in future versions
of our methodology, and, (ii) the PDSMF is derived from the
luminosity functions, which in turn are derived from the
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Fig. 13. Proper motion (left) and Ks vs. i−Ks CMD (right) showing the new candidate members found in this work. Captions as in Fig. 6.
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Fig. 14. Proper motion (left) and Ks vs. i−Ks CMD (right) showing the rejected candidate members of Bouy et al. (2015b). Captions as in Fig. 6.

posterior distributions of the cluster parameters. Thus, the
uncertainties in the PDSMFs result from the propagation of
those of the cluster parameters. In the literature it is customary
to derive the mass distribution from individual masses of stars
or systems, and then assign Poisson uncertainties accordingly.
The methodology introduced in this work is conceptually differ-
ent. The uncertainties in our mass distribution result from those
of the posterior distribution of the cluster parameters, which

in turn are propagated from those of the data and the model
itself.

We assumed an age of 120 Myr for the Pleiades together
with solar metallicity. We notice that, due to the uncertainty
in the age (125 ± 8 Myr; Stauffer et al. 1998) and metallicity
of the Pleiades, the previous assumptions are over-simplistic.
The mass-luminosity relation must incorporate all sources of
uncertainty (e.g. models, metallicities, ages). However, the
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Fig. 15. Proper motion (left) and Ks vs. i−Ks CMD (right) showing the rejected candidate members of Bouy et al. (2015b). The colours and
shapes are a proxy for their Ks magnitude. The dot-dashed and dashed lines labelled MAP EMB and MAP Singles correspond to the MAP of the
equal-mass binaries and single star models, respectively.

analysis of these uncertainties and their impact in the PDMF is
outside the scope of the present work. Here, we make these sim-
plistic assumptions to directly compare our results with those
of Bouy et al. (2015b). The transformation from luminosities to
masses is proportional to the derivative of the mass-luminosity
relation, and indeed very sensitive to it (see D’Antona 1998 for
some words of caution). Therefore, we decided to fit the BT-Settl
grid with splines, and obtain the derivatives from this fit.

Figure 16 shows the logarithmic PDSMF (ξL) for the J,H,Ks
bands normalised on the completeness limits of the survey (see
Sect. 3.3). Figure 17 shows the PDSMF in the Ks band, super-
imposed to the PDSMF proposed by Bouy et al. (2015b) and,
the IMFs of Thies & Kroupa (2007) and Chabrier et al. (2005).
For this last one, we show its standard uncertainty (taken from
Chabrier 2003) as a sample of blue lines. As shown in this
figure, the PDSMFs of this work compare well with each oth-
ers, and, in the overlap interval, with that proposed by Bouy
et al. (2015b). However, the difference that the PDSMFs show
above 0.3 M� (−0.5 < log M/M�) may have its origin on the
new and rejected candidate members, which are preferentially
M stars (with masses in the range 0.075−0.6 M� or −1.12 <
log M/M� < −0.22). Also, similarly to what Bouy et al. (2015b)
pointed out, there is a possible flattening in the PDSMF be-
low 50 MJup (log M/M� < −1.3). However, due to the level
of uncertainty in this region we have not enough evidence to
claim it.

Using PyMultiNest16 (Buchner et al. 2014), we fit three mod-
els to synthetic samples of our Ks band PDSMF in the com-
pleteness interval: a log-normal distribution and two power-law
distributions, m−α, with two and three segments. Table 2 show

16 PyMultiNest is a Python implementation of the MultiNest code
(Feroz et al. 2009). MultiNest is a multi-modal nested sampling algo-
rithm that computes the evidence, with its uncertainty, and posterior
samples of possible multi-modal distributions.
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Fig. 16. Normalised PDSMF in J,H,Ks bands.

the parameters of these models together with their evidence. In
addition and for comparison, this table also includes the BIC
value for the power-law models of Bouy et al. (2015b) and
Kroupa (2001), and the log-normal model of Chabrier et al.
(2005). Judging by the evidence in our models the best fits are
the two and three segment power-laws (black lines in Fig. 17,
labelled as 2Spls and 3Spls, respectively). Judging by the BIC
values the best model is the power-law, particularly the two and
three slopes models of this work and the one of Bouy et al.
(2015b). However, given the uncertainties of both the evidence
and BIC, each of the three previous models is equally good at
describing our data set. Under this similarity of evidences, the
prejudice of simplicity can be used to choose the two-slopes
power-law over the three-slopes power-law. This distributions is
similar to that found by Bouy et al. (2015b), except for the flat
part in the low-mass range and the less step slope in the high
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Table 2. Parameters, evidences and BIC values of models fitted to the ten synthetic samples of the PDSMF.

Reference Model Parameters Log Evidence BIC

This work Log Normal mc = 0.35 ± 0.03
σ = 0.45 ± 0.04 −155 ± 31 311 ± 60

This work Power law α0 = −0.19 ± 0.11 m ∈ [0.04, 0.20 ± 0.02]
Two segments α1 = 1.12 ± 0.08 m ∈ [0.20 ± 0.02, 0.56] 1950 ± 20 −3899 ± 42

This work Power law α0 = −1.11 ± 0.47 m ∈ [0.04, 0.076 ± 0.05]
Three segments α1 = −0.07 ± 0.51 m ∈ [0.076 ± 0.05, 0.20 ± 0.13]

α2 = 1.14 ± 0.45 m ∈ [0.20 ± 0.13, 0.56] 1950 ± 20 −3897 ± 43
Bouy et al. (2015b) Power law α0 = 1.13 ± 0.6 m ∈ [0.035, 0.05]

Four segments α1 = 0.22 ± 0.1 m ∈ [0.05, 20]
α2 = 1.23 ± 0.1 m ∈ [0.20, 0.6]
α3 = 3.56 ± 0.1 m > 1.58 −3891 ± 47

Kroupa (2001) Power law α0 = 1.3 m < 0.5
Two segments α1 = 2.3 m > 0.5 −2289 ± 124

Chabrier et al. (2005) Log Normal mc = 0.25+0.021
−0.016

σ = 0.55+0.05
−0.01 566 ± 25

Notes. The BIC and evidence values and its uncertainties correspond to the mean and the sample standard deviation obtained from the ten
realisations of the synthetic samples, each containing the expected number of cluster members (3290). The uncertainty of the evidence also
contains, added in quadrature, the value reported by the MultiNest algorithm (Feroz et al. 2009). For comparison, we also show the parameters of
the power-laws and log normal functions of Bouy et al. (2015b), Kroupa (2001) and Chabrier et al. (2005).
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Fig. 17. Normalised PDSMF in Ks band together with the IMFs of
Chabrier et al. (2005); Thies & Kroupa (2007) and fits to the PDSMF
found by us and Bouy et al. (2015b).

mass range. The best models found here are in clear discrep-
ancy with the IMFs of Chabrier et al. (2005) and of Thies &
Kroupa (2007). We notice that this apparent discrepancy may
have its origin on the not yet established uncertainties in the
mass-luminosity relationships, on dynamical effects associated
with age, or most probably in a combination of both of them.

Our PDSMF allows us to give a lower limit to the mass of
the cluster. The average and mode mass of the cluster members
(computed within the completeness limits) are 0.24 ± 0.01 M�
and 0.26 ± 0.09 M�, respectively. We computed the expected
number of cluster members as the integral, over the whole range
of membership probabilities, of number of objects at each mem-
bership probability, and its value is 3290 ± 140 objects. The
product of the mean mass times the expected number of mem-
bers is 795+40

−28 M�. Since we still lack the high mass range of
the PDSMF, this value is a lower limit to the mass of the clus-
ter. However, we cannot make any further claim based on our

results because the quoted uncertainties are probably underes-
timated. They do not take into account the uncertainties in the
mass-luminosity relations, which are yet to be established.

4.3. Comparison with empirical mass functions.

Dynamical effects may have an impact on the cluster mass
function. Figure 18 (left panel) compares the PDSMF from the
Pleiades (120±8 Myr, Stauffer et al. 1998) derived here, to those
of the younger (0.2 to 1.4 Myr, Muench et al. 2002) and farther
(414 ± 7 pc, Menten et al. 2007) Trapezium, and to the older
(648±45 Myr, De Gennaro et al. 2009) and closer (47.5±3.6 pc,
McArthur et al. 2011) Hyades clusters. These PDSMFs corre-
spond to those of Fig. 11 of Bouy et al. (2015b, priv. comm.). As
mentioned by Bouy et al. (2015b), the abundance of low-mass
stars and brown dwarfs in the range 0.03−0.1 M�(log M/M� ≈
{−1,−1.4}) seems to diminish with time (since the PDSMF is
normalised, this produces a relative increase of low-mass stars
in the range −0.4 < log M/M� < −0.2). This effect is con-
sistent with the classical scenario in which low-mass stars and
brown dwarfs are ejected as the cluster relaxes (see for example
Moraux et al. 2004; Terlevich 1987). To test the validity of this
scenario, at least the statistical significance of the observed dif-
ferences among the PDSMF of this three clusters, we tested the
null hypothesis that the Trapezium and the Hyades have the same
PDSMF as the Pleiades. Since we just have the cluster model of
the Pleiades, we were not able to perform model comparison
in a Bayesian fashion. Thus, to do the statistical comparison of
these three clusters PDSMF we use the Kolmogorov-Smirnov
and Anderson-Darling tests.

The right panel of Fig. 18 shows the cumulative distri-
bution functions (CDFs) of the Trapezium, Pleiades (only in
Ks band) and Hyades PDSMFs. Also and for comparison, we
show the CDFs of Chabrier et al. (2005) and Thies & Kroupa
(2007) IMFs. The grey area around the Pleiades CDF shows the
hypothesis test in which we compare each CDF with that of
the Pleiades. The null hypothesis is that each compared CDF is
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Fig. 18. Left: PDSMFs of the Pleiades (derived here for J,H,Ks bands), Trapezium, and Hyades, from Bouy et al. (2015b). They are normalised
in the interval of completeness. Right: cumulative distribution functions (CDF) of the PDSMFs from left panel and that of Chabrier et al. (2005)
and Thies & Kroupa (2007) system initial mass function (normalised also in the interval of completeness). The Pleiades CDF shown is just from
Ks band. The grey area depicts the area in which the null hypothesis of same PDSMF as that of the Pleiades can not be rejected (at α = 0.01).

exactly that of the Pleiades. We used the Kolmogorov-Smirnov
statistic (Pearson & Hartley 1954) with the alpha value α = 0.01,
to compute the maximum vertical distance dα from the Pleiades
CDF (shown as the grey region in Fig. 18). The null hypoth-
esis is rejected only if the tested CDF lies entirely outside the
grey region around the Pleiades CDF. As can be seen, nei-
ther the IMFs nor the PDSMF of the Trapezium and Hyades
lay entirely within the grey area, thus we can reject the null
hypothesis that they share the same PDSMF of the Pleiades.
Furthermore, since the Kolmogorov–Smirnov test uses only the
maximum distance between CDFs, we also applied the more ro-
bust Anderson–Darling test (Anderson & Darling 1952). In this
test, the distance is computed placing more weight in the obser-
vations at the tails of the distribution. To transform this distance
into a probability we use the statistic and critical values given
by Scholz & Stephens (1987)17. This test also rejects the null
hypotheses, with probabilities of p < 0.004, that the Trapezium
and Hyades PDSMFs, and the Chabrier et al. (2005) and Thies
& Kroupa (2007) IMFs have the same CDF as the Pleiades.

Furthermore, we performed the Anderson-Darling test but
only in the low-mass regime (M/M� < 0.1). This test rejects the
null hypothesis that the PDSMF of the Pleiades, in this low-mass
regime, was drawn from the IMFs of Thies & Kroupa (2007) and
Chabrier et al. (2005) with p < 0.05 and p < 0.004, respectively.
However, this test does not entirely reject the null hypothesis that
the PDSMFs of Hyades, Trapezium and Pleiades are drawn from
the same distribution in the low-mass regime. The maximum

17 In the AD test, the distance between two distributions F(x) and G(x)
is computed as

A2 =
m · n

N
·
∫ ∞

−∞

(F(x) −G(x))2

H(x) · (1 − H(x))
dH(x)

with n, m and N the samples of F, G and the total of them. The A2

distance is transformed to the T2N statistic following the formula

T2N =
A2 − 1
σN

where the σN and the critical values of T2N are given in Eq. (4) and
Table 1 of Scholz & Stephens (1987), respectively.

probabilities render by the uncertainties in the Pleiades PDSMF
are p < 0.13 and p < 0.1 for the Hyades and the Trapezium,
respectively. Nevertheless, these results must be analysed in the
light of better constrained uncertainties. In particular those con-
cerning the Hyades and the Trapezium PDSMFs.

The previous tests show that there is mild evidence to claim
for differences among the PDSMFs of these three clusters and
from IMFs and Pleiades PDSMF. Thus suggesting that these
differences may have an origin on dynamical effects associ-
ated with age and relaxation. Nevertheless, to claim for reli-
able evidence supporting these differences the census of the
Trapezium and Hyades must be done using the same methods.
Also, the uncertainties must be properly established both for the
other PDSMFs and for the mass-luminosity relation from which
all these PDSMF are derived.

5. Conclusions and perspectives

In this work we have created a methodology which models the
photometric and astrometric data of the heterogeneous multi-
archive DANCe survey (Bouy et al. 2013). We modelled these
data with most of its inherent characteristics: missing values,
non-homogeneous observational uncertainties (heteroscedastic-
ity) and correlations (whenever available). This enables us not
just to dramatically increase the number of objects used to con-
struct the cluster and field models (105 compared to the 2 × 104

and 1662 of Sarro et al. 2014, for their field and cluster model,
respectively), but also to obtain results that minimise the biases
associated to the lack of treatment for missing values and non-
uniform uncertainties. The Bayesian framework used here, to-
gether with the MCMC techniques, enables us to accomplish
our first objective: sample the posterior distribution of the pa-
rameters in the cluster model. This sampling also resulted in the
accomplishment of our second objective: the cluster and equal-
mass binaries membership probabilities. Finally, we compared
our results to those of previous works and found a general agree-
ment. Since our luminosity functions and PDSMF do not use
any probability threshold, they are free of any possible bias as-
sociated to it. We also provide the list of candidate members
which is the most complete up to date. We estimate that at the
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probability threshold of pt = 0.84 (at which our methodology
performs the best as a classifier) the contamination and true pos-
itive rates are 4.3 ± 0.2% and 90.0 ± 0.05%, respectively. We
stress the fact that at this probability threshold, up to 10% of
true cluster members may still have membership probabilities
below it.

The main limitations of our methodology are:
– The computing power it demands.
– The accuracy of our PDSMF and mass dependent results.

The later are now limited by the accuracy of the mass-
luminosity relationship, which still needs to be confirmed
and calibrated at low masses and very young ages.

– The lack of uncertainty in the field model, which remains
fixed at the MLE value.

– The lack of treatment of correlations amongst photometric
and proper motions observables, which assumes that cluster
members are located in a tight distribution of distances.

The methodology presented here represents the ground upon
which we will continue improving our data and cluster mod-
elling. In terms of data modelling, future steps will aim to
include the spatial, radial velocities, and parallaxes distribu-
tions, together with their correlations. This will allows us
to deal with more complicated configurations, like two (or
more) supper imposed clusters, and to apply our methodology
to data from other surveys. Regarding the cluster modelling,
in future works we will include: extended photometrical and
kinematical treatments of binaries (regardless their mass ra-
tio), multiple systems, white dwarfs, and the treatment of ex-
tinction. In particular, this last one will enable us to apply
our methodology to even younger and embedded star forming
regions.
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Appendix A: Methodology details

This appendix gives specific details of the field and cluster gen-
erative models explained in Sect. 2.1, the priors introduced in
Sect. 2.2, and the transformations of colour into magnitude dis-
tributions mentioned in Sect. 3.3. Also, in Table A.2 we sum-
marise the parameters in our model, their symbols and the priors
we use for them. Additionally, at the end of this appendix, we
schematically represent the relations among parameters in our
model by means of probabilistic graphical models.

A.1. Details of the generative model

In what follows, the subscripts pm and ph stand for proper mo-
tion and photometry, respectively. Thus, an object with measure-
ments d has proper motions dpm and photometry dph. Also, we
represent the standard uncertainties as the associated covariance
matrix ε. In it, almost all off-diagonal elements are zero, with
the exception of those of the colour index i−Ks and Ks. Thus,
εpm and εph refer to the covariance matrices of proper motions
and photometric standard uncertainties.

A.1.1. Field population model

As explained in Sect. 2.1.1, we model the field photometry and
proper motions as independent distributions. We used mixtures
of distributions for both these models. A GMM for the photomet-
ric model and a mixture of Gaussians and uniform distributions
for the proper motions model. Thus, the field likelihood of an
object with measurements d and standard uncertainties ε is

pf(d|θf, ε) =
[
c · πf,pm,0

+

Mpm∑
i=1

πf,pm,i · N(dpm|µf,pm,i,Σf,pm,i + εpm)


×

Mph∑
i=1

πf,ph,i · N(dph|µf,ph,i,Σf,ph,i + εph)

 . (A.1)

In this equation, θf refers to the set of field parameters, with
πf,µf,Σf standing for the fractions, means and covariance ma-
trices, respectively. The first and second brackets contain the
models of proper motions and photometry, respectively. The first
term of the proper motion model corresponds to the uniform dis-
tribution. In it, c is a constant determined by the inverse of the
product of the proper motions ranges, and πf,pm,0 is the fraction of
this uniform distribution. The second term in the same bracket is
the mixture of Mpm Gaussians with means µf,pm and covariance
matrices Σf,pm + εpm. The parameters of the photometric GMM,
in the second bracket, are similar to those in the proper motion
model, except for the uniform distribution.

A.1.2. Cluster population model

In the cluster, we also assumed independence between the pho-
tometric and proper motions models. The photometric model
is a mixture of cluster (subindex Cs) and the equal-mass bi-
naries (subindex Bs). We modelled each element of this mix-
ture with multivariate normal distributions, where the means are
given by the true photometric quantities both of cluster, tph;Cs,
and equal-mass binaries, tph;Bs. The covariance matrices of these
multivariate normal distributions result from the addition of the
covariance matrix of the standard photometric uncertainties, εph,
with the modelled covariance matrix Σclus. We assumed that
this last one describes the intrinsic dispersion of both cluster

and equal-mass binaries sequences. Since by definition, covari-
ance matrices are symmetric and positive semi-definite, then the
Cholesky decomposition allows us to describe Σclus with only 15
independent parameters which we infer from the data.

The photometric model of the cluster. In the photometric
model, we prescribe the true photometric quantities both for the
cluster sequence, tph;Cs = {CI, Y, J, H, Ks}, and the equal-mass
binaries, tph;Bs = {CI, Y − 0.75, J − 0.75, H − 0.75, Ks − 0.75},
by means of the cubic spline series, S. These series specify the
true photometric quantities by means of the colour index CI,
the knots and seven coefficients for each magnitude, βY, J,H,Ks .
Thus, Y = SY (CI, βY ), J = SJ(CI, βJ),H = SH(CI, βH), and
Ks = SKs (CI, βKs ). We denote the coefficients of all the splines as
the 4 × 7 matrix, β. Since the true photometry of the equal-mass
binaries is a linear transformation, TBs, of the true photometry of
cluster sequence, no extra parameters are required. Therefore,

tph;Cs = S(CI,β) (A.2)
tph;Bs = TBs(S(CI,β)). (A.3)

Thus, the cluster and equal-mass binaries likelihoods of an
object with photometric measurements dph and standard uncer-
tainties εph are

pCs(dph|CI,β,Σclus, εph) = N(dph|tph;Cs, εph + Σclus),
pBs(dph|CI,β,Σclus, εph) = N(dph|tph;Bs, εph + Σclus), (A.4)

where tph;Cs and tph;Bs are given by Eqs. (A.2) and (A.3), respec-
tively.

Modelling the true CI for each object in our data set de-
mands a computing power that we currently lack. Instead, we
marginalised them with the aid of a truncated GMM whose frac-
tions (πCI), means (µCI) and variances (σCI) we also infer from
the data. This GMM is

pCI(CI|πCI,µCI,σCI) =

5∑
i=1

πCI,i · Nt(CI|µCI,i, σCI,i). (A.5)

In Eq. (A.5) above, the symbol Nt stands for the truncated
(0.8 < CI < 8) univariate normal distribution.

Then, the marginalisation of CI runs as follows:

pCs(dph|θc, εph) =

∫
pCs(dph,CI|θc, εph) · dCI

=

∫
pCs(dph|CI, θc, εph) · pCs(CI|θc, εph) · dCI

pBs(dph|θc, εph) =

∫
pBs(dph, CI|θc, εph) · dCI

=

∫
pBs(dph|CI, θc, εph) · pBs(CI|θc, εph) · dCI.

(A.6)

In these equations, θc stands for all cluster parameters, and the
first and second terms of the integrals in the last equalities cor-
respond to Eqs. (A.4) and (A.5), respectively. Since CI depends
only on πCI,µCI,σCI, thus, the cluster and equal-mass binaries
likelihoods of datum dph are

pCs(dph|πCI,µCI,σCI,β,Σclus, εph)

=

∫
N(dph|S(CI,β), εph + Σclus)

×
5∑

i=1

πCI,i · Nt(CI|µCI,i, σCI,i) · dCI

A15, page 22 of 29



J. Olivares et al.: The seven sisters DANCe. IV.

pBs(dph|πCI,µCI,σCI,β,Σclus, εph)

=

∫
N(dph|TBs(S(CI,β)), εph + Σclus)

×
5∑

i=1

πCI,i · Nt(CI|µCI,i, σCI,i) · dCI. (A.7)

The proper motions model of the cluster. For the proper moti-
ons models of both cluster and equal-mass binaries we
use GMM with four and two Gaussians, respectively. Each
with its own fractions, π, means, µ and covariance matri-
ces, Σ. However, Gaussians within each GMM share the
mean. Since covariance matrices are symmetric, only three
independent parameters are needed to describe them. Thus, the
cluster and equal-mass binaries likelihoods of object with mea-
surements dpm and uncertainties εpm are

pCs(dpm|πCs,µCs,ΣCs, εpm) =

4∑
i=1

πCs,i · N(dpm|µCs,ΣCs,i + εpm)

pBs(dpm|πBs,µBs,ΣBs, εpm) =

2∑
i=1

πBs,i · N(dpm|µBs,ΣBs,i + εpm).

(A.8)

Finally, the total cluster likelihood of an object with mea-
surement d and uncertainties ε is

pc(d|θc, ε) = πCB · pCs(dpm|πCs,µCs,ΣCs, εpm)
× pCs(dph|πCI,µCI,σCI,β,Σclus, εph)
+ (1 − πCB) · pBs(dpm|πBs,µBs,ΣBs, εpm)
× pBs(dph|πCI,µCI,σCI,β,Σclus, εph), (A.9)

where πCB is the parameter representing the fraction of single
cluster sequence stars Cs (the non equal mass binaries in the
cluster). The photometric and proper motions likelihoods are
given by Eqs. (A.7) and (A.8), respectively.

A.2. Details of the priors

In Sect. 2.2 we give the kind of distributions we use for setting
our prior beliefs. Here, we give details on the parameter values
we chose for these distributions. In the hierarchical Bayesian
model formalism, the parameters of the distributions govern-
ing the priors are called hyper-parameters, here, we stick to that
convention. We classified the priors of our parameters into three
categories: fractions, means, and covariance matrices.

As mentioned in Sect.2.2, we use the Dirichlet distribution
to set the priors of the fractions. For the field-cluster mixture we
set the hyper-parameters to α = {98, 2}. The means of the field
and cluster fractions distributions resulting from these hyper-
parameters, correspond to the fraction of objects in our data set,
that Bouy et al. (2015b) classified as field an candidate mem-
bers, respectively. For the cluster-equal-mass binaries mixtures,
we used as hyper-parameter values, αCB = {8, 2}, this induce a
distribution for the fraction of equal-mass binaries whose mean
is at 20%, as suggested by Bouy et al. (2015b). For fractions in
the cluster and equal-mass binaries proper motions we set their
hyper-parameters to αCs = {1, 1, 1, 1} and αBs = {1.2, 8.8}. The
first values result in equal priors to all components while the sec-
ond one induce similar means to those recovered after fitting a
GMM to the Bouy et al. (2015b) candidate members. Since the
Gaussians in proper motion model of single stars could be inter-
changed and we observe that a posteriori the fraction of one of

Table A.1. Hyper-parameters for different blocks of the Hierarchical
Bayesian Model.

Hp. Value

αCs {1, 1, 1, 1}
αBs {1.2, 8.8}
Apm {105, 105}
µµpm {16.30,−39.62}
Σµpm {36.84, 1.18, 40.71}
αCI {1, 1, 1, 1, 1}
rgCI {0.8, 8}
η 100
µβY {7.65, 11.47, 10.66, 16.33, 16.49, 21.44, 22.49}
µβJ {7.61, 11.52, 10.20, 15.66, 15.58, 19.88, 21.16}
µβH {7.63, 10.88, 9.50, 15.19, 15.04, 18.68, 20.64}
µβK {7.55, 10.81, 9.32, 14.79, 14.62, 17.63, 20.24}
σβ {1, 1, 1, 1, 1, 0.5, 0.1}
Aph {10, 10, 10, 10, 10}
α {98, 2}
αCB {8, 2}
ν 3

Notes. The upper and middle blocks correspond, respectively, to hyper-
parameters of the proper motions and photometric models. The lower
block to hyper-parameters shared by both last models.

them goes to zero, we adopt an even less informative prior for
these fractions and set all αCs to one. Despite this less informa-
tive prior, one of the Gaussians still has a negligible contribution
in the posterior solution (see Table B.1).

Although the means of the distributions correspond to what
Bouy et al. (2015b) found, the variances of these priors allow us
to explore wide ranges of values (except for the fraction of field
objects), as it is shown in Fig. A.1. However, the narrow variance
in the cluster-field mixture correspond to our prior belief about
the fraction candidate members within our large data set which
we expect to be very small ≤2%. For the fraction in the GMM
of the CI distribution, we set all the hyper-parameter values to
1, (αCI = {1, 1, 1, 1, 1}), which results in equal means and large
variances for all of them alike.

We selected the bivariate normal distribution as prior for
the parameters representing the means of the GMM, both for
cluster and equal-mass binaries. We set the hyper-parameters
of this bivariate normal as those found after fitting a bivari-
ate normal to the candidate members of Bouy et al. (2015b),
both cluster and equal-mass binaries together. These values are
µµpm

= {16.30,−39.62} and Σµpm = {{36.84, 1.18}, {1.18, 40.71}}.
We used the Half–t (ν, A) distribution as prior for the covari-

ance matrices in the proper motions GMM. We set the hyper-
parameter to ν = 3 and Apm = {105, 105}. According to Huang &
Wand (2013), a value of ν = 3 leads to marginal squared root dis-
tributions for all correlation terms of the covariance matrix. And
also, arbitrarily large values of A lead to arbitrarily weakly in-
formative priors on the corresponding standard deviation terms.

For the means and variances in the GMM of the CI, we use
uniform and Half–Cauchy (0, η) distributions, respectively. The
uniform distribution is defined over the CI span (0.8 < CI < 8)
while for the scale of the Half–Cauchy we used a value ofη = 100.

Again, we make use of the Half–t (ν, A) distribution to estab-
lish the prior for the intrinsic dispersion of the cluster sequence,
Σclus. ν is again 3. However, we use Aph = {10, 10, 10, 10, 10},
which are large values compared to those of the photometric
uncertainties.
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Fig. A.1. Prior distribution of fraction parameters. From top left to bottom right, the distributions of field fraction (π), equal-mass binaries fraction
(1 − πCB), and the cluster (πCs) and equal-mass binaries (πBs) fractions in their proper motion GMM, respectively.

We used univariate normal distributions to establish the pri-
ors for the coefficients in the spline series. To find the values
of the hyper-parameters, we proceeded as follows. First, we
discarded equal-mass binaries from Bouy et al. (2015b) can-
didate members. To do this, we iteratively fit the cluster se-
quence and remove objects above 0.75 magnitudes. Then, to ob-
tain an empirical prior in the region were no members have been
found, we complement our list with the brown-dwarfs from the
Faherty et al. (2012) sample that have the same bands as our
data set. Finally, we fit the splines, and used the coefficients of
this fit as means, µβ of the univariate normal distributions. We set
the standard deviation to σβ = {1, 1, 1, 1, 1, 0.5, 0.1}. These val-
ues provide a reasonable compromise between cluster sequences
compatible with the previously known candidates and those far
away or with exotic shapes. We showed a sample of this pri-
ors in Fig. A.2. This figure also shows the brown-dwarfs from
Faherty et al. (2012) and the sequence (dashed line) we use to

provide the means of the univariate normal distributions. Finally,
in Table A.1, we summarise all the hyper-parameter values of our
Bayesian Hierarchical Model.

A.3. Derivation of the magnitude distributions

To derive the J,H,Ks magnitude distributions, we used the dis-
tribution of the colour index, CI, and the cluster and equal-mass
binaries photometric sequences (the spline series). We exemplify
this derivation on the Ks band, but similar transformations apply
to the rest of the bands. To obtain the distribution of Ks for the
cluster objects, we introduced the colour index CI, as a nuisance
parameter and then we marginalised it. Thus,

p(Ks|θc) =

∫
p(Ks,CI|θc) · dCI

=

∫
p(Ks|CI, θc) · p(CI|θc) · dCI.
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Fig. A.2. CMD Ks vs. i−Ks showing a sample of the prior for the co-
efficients in the splines series. Also shown the brown-dwarfs we add
from Faherty et al. (2012) sample, and the cluster sequence (dashed
line) found after fitting the splines to the brown-dwarfs and candidate
members below the equal-mass binaries sequence.

The term p(Ks|CI, θc) corresponds to the GMM modelling the
distribution of CI (Eq. (A.5)), while p(Ks|CI, θc) is the proba-
bility of Ks given the CI and the cluster parameters θc. Since
our photometric model takes into account the equal-mass bina-
ries, we included them proportionally to their fraction, (1−πCB).
Thus,

p(Ks|θc) =

∫ [
πCB · pCs(Ks|CI, θc) + (1 − πCB) · pBs(Ks|CI, θc)

]
· pCI(CI|θc) · dCI.

= πCB

∫
pCs(Ks|CI, θc) · pCI(CI|θc)dCI

+ (1 − πCB)
∫

pBs(Ks|CI, θc) · pCI(CI|θc) · dCI.

(A.10)

In this equation, Cs and Bs stand for cluster and equal-mass
binaries sequences, respectively. The terms inside the integrals
correspond to Eqs. (A.4) and (A.5). However, since here we
focus only on the distribution of Ks, we marginalised the rest
of the bands. Also, we changed the integration limits to those
of the truncated colour distribution (CImin = 0.8,CImax = 8).
Finally, we obtain

p(Ks|θc) = πCB

∫ CImax

CImin


 5∑

i=1

πCI,i · Nt(CI|µCI,i, σCI,i)


×

∫
Ỹ ,J̃,H̃

N({CI, Ỹ , J̃, H̃,Ks}|S(CI,β),Σclus) dỸ dJ̃ dH̃
]
· dCI

+ (1 − πCB)
∫ CImax

CImin


 5∑

i=1

πCI,i · Nt(CI|µCI,i, σCI,i)


×

∫
Ỹ ,J̃,H̃

N({CI, Ỹ , J̃, H̃,Ks}|TBs(S(CI,β)),Σclus) dỸ dJ̃ dH̃
]
· dCI.

The derivation of the J and H magnitude distributions is
similar to the procedure described for Ks. We notice that, the
derivation of these magnitude distributions takes into account the
equal-mass binaries and the systems which could have different
mass ratios. Therefore, these distribution are the system magni-
tude distributions.

A.4. Probabilistic graphical model

A probabilistic graphical model is a graph which expresses the
relationships, either deterministic or stochastic, among random
variables in a model: parameters and observations. Figure A.3
shows the probabilistic graphical model of our hierarchical
Bayesian model. In this figure, the following characteristics ap-
ply: (i) conditional relations are depicted with arrows, solid when
the condition is stochastic (i.e. given by a probability distribution
function) and dashed when it is deterministic, (ii) random vari-
ables are surrounded by circles (also known as nodes) while con-
stants by rectangles; the marginalised parameter (CI) is drawn
as a square inside a circle, (iii) black dots indicate that cate-
gorical variables have been marginalised, (iv) the dimension of
constants or independent parameters is written in brackets in-
side the nodes, (v) figures filled with grey indicate that their
value is known (e.g. data), and (vi) plates join variables which
repeat together, the number of repetitions is indicated in one
corner.

The left panels of Fig. A.3 represents the set of model param-
eters that we use to describe the field population. Since these pa-
rameters remain fixed throughout the inference (see Sect. 2.1.1),
we consider them constants, thus we depict them with grey
squares. The right panels show the parameters of the cluster
population. The top right and bottom right panels describe the
photometric and kinematic models, respectively. The top inner
plate inside the photometric panel shows the GMM that we use
to describe the CI distribution. The bottom left and right panels
show the cluster and equal-mass binaries proper motion mod-
els, respectively. The plates inside them designate the covariance
matrices of each GMM. Because each Gaussian in the mixture
shares the mean, it lies outside the plate. Finally, the middle (yel-
low) plate depicts the comparison between the true quantities
and the measured ones. Therefore, it is here where we compute
the likelihood of each elements in the data set.
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Table A.2. Parameters names, symbols, and priors.

Name Symbol Prior Name Symbol Prior

Field fraction π Dirichlet (α) Coefficient [1,1] βY,1 Normal (µβ, σβ)
Cs fraction πCB Dirichlet (αCs) Coefficient [1,2] βY,2 Normal (µβ, σβ)
Cs PM fraction 1 πCs,1 Dirichlet (αCs) Coefficient [1,3] βY,3 Normal (µβ, σβ)
Cs PM fraction 2 πCs,2 Dirichlet (αCs) Coefficient [1,4] βY,4 Normal (µβ, σβ)
Cs PM fraction 3 πCs,3 Dirichlet (αCs) Coefficient [1,5] βY,5 Normal (µβ, σβ)
Bs PM fraction 1 πBs,1 Dirichlet (αBs) Coefficient [1,6] βY,6 Normal (µβ, σβ)
Colour fraction 1 πCI,1 Dirichlet (αCI) Coefficient [1,7] βY,7 Normal (µβ, σβ)
Colour fraction 2 πCI,2 Dirichlet (αCI) Coefficient [2,1] βJ,1 Normal (µβ, σβ)
Colour fraction 3 πCI,3 Dirichlet (αCI) Coefficient [2,2] βJ,2 Normal (µβ, σβ)
Colour fraction 4 πCI,4 Dirichlet (αCI) Coefficient [2,3] βJ,3 Normal (µβ, σβ)
Mean colour 1 µCI,1 Unifrom (rgCI) Coefficient [2,4] βJ,4 Normal (µβ, σβ)
Mean colour 2 µCI,2 Unifrom (rgCI) Coefficient [2,5] βJ,5 Normal (µβ, σβ)
Mean colour 3 µCI,3 Unifrom (rgCI) Coefficient [2,6] βJ,6 Normal (µβ, σβ)
Mean colour 4 µCI,4 Unifrom (rgCI) Coefficient [2,7] βJ,7 Normal (µβ, σβ)
Mean colour 5 µCI,5 Unifrom (rgCI) Coefficient [3,1] βH,1 Normal (µβ, σβ)
Variance colour 1 σCI,1 HalfCauchy (0,η) Coefficient [3,2] βH,2 Normal (µβ, σβ)
Variance colour 2 σCI,2 HalfCauchy (0,η) Coefficient [3,3] βH,3 Normal (µβ, σβ)
Variance colour 3 σCI,3 HalfCauchy (0,η) Coefficient [3,4] βH,4 Normal (µβ, σβ)
Variance colour 4 σCI,4 HalfCauchy (0,η) Coefficient [3,5] βH,5 Normal (µβ, σβ)
Variance colour 5 σCI,5 HalfCauchy (0,η) Coefficient [3,6] βH,6 Normal (µβ, σβ)
Mean PM Cs [1,1] µCs,1 Normal (µµpm ,Σµpm ) Coefficient [3,7] βH,7 Normal(µβ, σβ)
Mean PM Cs [1,2] µCs,2 Normal (µµpm ,Σµpm ) Coefficient [4,1] βK,1 Normal(µβ, σβ)
Variance Cs [1,1] ΣCs,1,1 Half–t (ν, Apm) Coefficient [4,2] βK,2 Normal (µβ, σβ)
Variance Cs [1,2] ΣCs,1,2 Half–t (ν, Apm) Coefficient [4,3] βK,3 Normal (µβ, σβ)
Variance Cs [1,3] ΣCs,1,3 Half–t (ν, Apm) Coefficient [4,4] βK,4 Normal (µβ, σβ)
Variance Cs [2,1] ΣCs,2,1 Half–t (ν, Apm) Coefficient [4,5] βK,5 Normal (µβ, σβ)
Variance Cs [2,2] ΣCs,2,2 Half–t (ν, Apm) Coefficient [4,6] βK,6 Normal (µβ, σβ)
Variance Cs [2,3] ΣCs,2,3 Half–t (ν, Apm) Coefficient [4,7] βK,7 Normal (µβ, σβ)
Variance Cs [3,1] ΣCs,3,1 Half–t (ν, Apm) Covariance Phot [1] Σclus [1] Half–t (ν, Aph)
Variance Cs [3,2] ΣCs,3,2 Half–t (ν, Apm) Covariance Phot [2] Σclus [2] Half–t (ν, Aph)
Variance Cs [3,3] ΣCs,3,3 Half–t (ν, Apm) Covariance Phot [3] Σclus [3] Half–t (ν, Aph)
Variance Cs [4,1] ΣCs,4,1 Half–t (ν, Apm) Covariance Phot [4] Σclus [4] Half–t (ν, Aph)
Variance Cs [4,2] ΣCs,4,2 Half–t (ν, Apm) Covariance Phot [5] Σclus [5] Half–t (ν, Aph)
Variance Cs [4,3] ΣCs,4,3 Half–t (ν, Apm) Covariance Phot [6] Σclus [6] Half–t (ν, Aph)
Mean PM Bs [1,1] µBs,1 Normal (µµpm ,Σµpm ) Covariance Phot [7] Σclus [7] Half–t (ν, Aph)
Mean PM Bs [1,2] µBs,2 Normal (µµpm ,Σµpm ) Covariance Phot [8] Σclus [8] Half–t (ν, Aph)
Variance Bs [1,1] ΣBs,1,1 Half–t (ν, Apm) Covariance Phot [9] Σclus [9] Half–t (ν, Aph)
Variance Bs [1,2] ΣBs,1,2 Half–t (ν, Apm) Covariance Phot [10] Σclus [10] Half–t (ν, Aph)
Variance Bs [1,3] ΣBs,1,3 Half–t (ν, Apm) Covariance Phot [11] Σclus [11] Half–t (ν, Aph)
Variance Bs [2,1] ΣBs,2,1 Half–t (ν, Apm) Covariance Phot [12] Σclus [12] Half–t (ν, Aph)
Variance Bs [2,2] ΣBs,2,2 Half–t (ν, Apm) Covariance Phot [13] Σclus [13] Half–t (ν, Aph)
Variance Bs [2,3] ΣBs,2,3 Half–t (ν, Apm) Covariance Phot [14] Σclus [14] Half–t (ν, Aph)

Covariance Phot [15] Σclus [15] Half–t (ν, Aph)
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Fig. A.3. Probabilistic graphical model. The left grey plates show the field model. The middle yellow plate shows the node where the likelihood is
computed for each datum, d. The right plates describe the relations among parameters in the cluster model. The photometric cluster model (red) is
on top, while the proper motions cluster (blue) and equal-mass binaries (green) are at the bottom left and right, respectively. See description in the
text for more details.
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Appendix B: Additional table

Table B.1. Mode, 16 and 84 percentiles of each parameter posterior distribution.

Parameter Mode p16% p84%

Field fraction 0.967626 0.966728 0.968706
Cs fraction 0.901310 0.893141 0.913867
Cs PM fraction 1 0.001348 0.001348 0.001349
Cs PM fraction 2 0.554420 0.526243 0.564641
Cs PM fraction 3 0.226456 0.176031 0.253682
Bs PM fraction 1 0.104137 0.103853 0.104189
Colour fraction 1 0.086417 0.076100 0.096909
Colour fraction 2 0.535425 0.355132 0.568704
Colour fraction 3 0.255825 0.237339 0.295576
Colour fraction 4 0.045698 0.021080 0.202029
Mean colour 1 1.296733 1.239353 1.338206
Mean colour 2 3.286141 3.110532 3.324626
Mean colour 3 3.349153 3.328641 3.363734
Mean colour 4 3.778554 3.665767 3.883132
Mean colour 5 5.672365 5.470019 5.756913
Variance colour 1 0.091936 0.078186 0.173507
Variance colour 2 0.358799 0.301102 0.434674
Variance colour 3 0.026534 0.026429 0.026586
Variance colour 4 0.270303 0.269459 0.271854
Variance colour 5 0.311564 0.276107 0.461157
Mean PM Cs[1,1] 16.271646 16.200754 16.354460
Mean PM Cs[1,2] −39.547045 −39.709392 −39.450590
Variance Cs[1,1] 0.000000 0.000000 0.000000
Variance Cs[1,2] 0.000000 −0.000000 0.000000
Variance Cs[1,3] 0.000000 0.000000 0.000000
Variance Cs[2,1] 193.906953 193.372914 194.660560
Variance Cs[2,2] 17.062073 6.833801 27.315831
Variance Cs[2,3] 259.170334 258.826603 259.569312
Variance Cs[3,1] 5.611323 4.612911 6.838203
Variance Cs[3,2] −2.397476 −3.634720 −1.733489
Variance Cs[3,3] 11.683655 11.681949 11.686234
Variance Cs[4,1] 1.745191 1.620717 1.909607
Variance Cs[4,2] −0.844115 −0.853521 −0.836687
Variance Cs[4,3] 2.955694 2.581374 3.487740
Mean PM Bs[1,1] 15.790953 15.594552 16.288392
Mean PM Bs[1,2] −40.284523 −40.413779 −40.146048
Variance Bs[1,1] 172.438086 97.796259 292.228562
Variance Bs[1,2] −0.466568 −0.502744 −0.426990
Variance Bs[1,3] 153.522924 65.163766 323.783775
Variance Bs[2,1] 6.531003 6.493103 6.577238
Variance Bs[2,2] −0.477653 −2.424205 −0.030562
Variance Bs[2,3] 13.029726 11.597810 13.665141
Coefficient [1,1] 6.861635 6.709436 6.997937
Coefficient [1,2] 12.598796 12.575167 12.610011
Coefficient [1,3] 10.646387 10.630062 10.657488
Coefficient [1,4] 16.326419 16.284197 16.333162
Coefficient [1,5] 16.879828 16.803494 16.942147
Coefficient [1,6] 21.089951 20.961436 21.142862
Coefficient [1,7] 23.308945 23.287670 23.329476
Coefficient [2,1] 7.590568 7.581280 7.621498
Coefficient [2,2] 11.632580 11.573835 11.678375
Coefficient [2,3] 10.213682 10.211374 10.215566
Coefficient [2,4] 15.671901 15.637808 15.675306
Coefficient [2,5] 16.133208 16.070742 16.186593
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Table B.1. continued.

Parameter Mode p16% p84%

Coefficient [2,6] 19.294644 19.184446 19.329717
Coefficient [2,7] 22.204061 21.851121 22.391354
Coefficient [3,1] 7.555386 7.535184 7.567120
Coefficient [3,2] 11.042313 11.010642 11.119179
Coefficient [3,3] 9.488983 9.481286 9.497607
Coefficient [3,4] 15.177808 15.138846 15.182508
Coefficient [3,5] 15.339961 15.279761 15.397310
Coefficient [3,6] 18.630147 18.560011 18.687693
Coefficient [3,7] 19.520324 19.420499 19.559654
Coefficient [4,1] 7.509144 7.488793 7.518872
Coefficient [4,2] 10.918408 10.895172 11.004896
Coefficient [4,3] 9.342386 9.330147 9.345062
Coefficient [4,4] 14.789592 14.757252 14.795049
Coefficient [4,5] 14.972319 14.917123 15.027838
Coefficient [4,6] 17.582518 17.538436 17.679884
Coefficient [4,7] 18.539285 18.175453 18.825374
Covariance Phot [1] 0.127928 0.127801 0.128069
Covariance Phot [2] 0.030551 0.027874 0.032170
Covariance Phot [3] 0.007303 0.006981 0.007456
Covariance Phot [4] −0.000587 −0.001206 0.000065
Covariance Phot [5] −0.012082 −0.012178 −0.012055
Covariance Phot [6] 0.000000 0.000000 0.000000
Covariance Phot [7] −0.009338 −0.009368 −0.009275
Covariance Phot [8] −0.025712 −0.027672 −0.024934
Covariance Phot [9] −0.027181 −0.029058 −0.025045
Covariance Phot [10] 0.000027 0.000010 0.000164
Covariance Phot [11] −0.001027 −0.004293 0.002920
Covariance Phot [12] −0.000516 −0.004143 0.002762
Covariance Phot [13] 0.024515 0.024512 0.024523
Covariance Phot [14] 0.022874 0.022207 0.023354
Covariance Phot [15] 0.000592 0.000587 0.000595
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