
Noname manuscript No.
(will be inserted by the editor)

Unsupervised Extra Trees: a stochastic approach to
compute similarities in heterogeneous data.

Kevin Dalleau · Miguel Couceiro · Malika Smail-Tabbone

the date of receipt and acceptance should be inserted later

Abstract In this paper we present a method to com-

pute similarities on unlabeled data, based on extremely

randomized trees. The main idea of our method, Unsu-

pervised Extremely Randomized Trees (UET) is to ran-

domly split the data in an iterative fashion until a stop-

ping criterion is met, and to compute a similarity based

on the co-occurrence of samples in the leaves of each

generated tree. Using a tree-based approach to com-

pute similarities is interesting, as the inherent We evalu-

ate our method on synthetic and real-world datasets by

comparing the mean similarities between samples with

the same label and the mean similarities between sam-

ples with different labels. These metrics are similar to

intracluster and intercluster similarities, and are used to

assess the computed similarities instead of a clustering

algorithm’s results. Our empirical study shows that the

method effectively gives distinct similarity values be-

tween samples belonging to different clusters, and gives

indiscernible values when there is no cluster structure.

We also assess some interesting properties such as in-

variance under monotone transformations of variables

and robustness to correlated variables and noise. Fi-

nally, we performed hierarchical agglomerative cluster-

ing on synthetic and real-world homogeneous and het-

erogeneous datasets using UET versus standard simi-

This paper is an extended version of the PAKDD’2018 Long
Presentation paper ”Unsupervised Extremely Randomized
Trees”.

Universite de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,
France
E-mail: Kevin Dalleau
kevin.dalleau@loria.fr

Miguel Couceiro
miguel.couceiro@loria.fr

Malika Smal-Tabbone
malika.smail@loria.fr

larity measures. Our experiments show that the algo-

rithm outperforms existing methods in some cases, and

can reduce the amount of preprocessing needed with

many real-world datasets.

Keywords Similarity measure · clustering · un-

supervised classification · decision tree · extremely

randomized trees

1 Introduction and preliminaries

Many unsupervised learning algorithms rely on a met-

ric to evaluate the pairwise distance between samples.

Despite the large number of metrics already described

in the literature [1], in many applications, the set of

available metrics is reduced by intrinsic characteristics
of the data and of the chosen algorithm. The choice of a

metric may strongly impact the quality of the resulting

clustering, thus making this choice rather critical.

Shi and Horvath [2] proposed a method to com-

pute distances between instances in unsupervised set-

tings using Random Forest (RF). RF [3] is a popu-

lar algorithm for supervised learning tasks, and has

been used in many fields, such as biology [4] and im-

age recognition [5]. It is an ensemble method, combin-

ing decision trees in order to obtain better results in

supervised learning tasks with highdimensional data.

Let L = {(x1, y1), . . . , (xn, yn)} be a training set, where

X = {x1, . . . , xn} is a list of samples (i.e., feature vec-

tors) and Y = {y1, . . . , yn} is the list of corresponding

class labels. The algorithm begins by creating several

new training sets, each one being a bootstrap sample of

elements from X. A decision tree is built on each train-

ing set, using a random sample of mtry features at each

split. The prediction task is then performed by a ma-

jority vote or by averaging the results of each decision



tree, according to the problem at hand (classification

or regression). This approach leads to better accuracy

and generalization capacity of the model compared to

single decision trees, while reducing the variance [6].

The method proposed by Shi and Horvath in [2],

called unsupervised random forest (URF), derives from

the common RF algorithm. Once the forest has been

constructed, the training data can be run down each

tree. Since each leaf only contains a small number of

instances, and all objects of the same leaf can be consid-

ered similar, it is possible to define a similarity measure

from these trees: if two objects i and j are in the same

leaf of a tree, the overall similarity between the two ob-

jects is increased by one. This similarity is then normal-

ized by dividing by the number of trees in the forest. In

doing so, the similarities lie in the interval [0, 1]. The use

of RF is made possible in the unsupervised case thanks

to the generation of synthetic instances, enabling bi-

nary classification between the latter and the observed,

unlabeled instances. Two methods for synthetic data

generation are presented in [2], namely, addCl1 and ad-

dCl2.

In addCl1, the synthetic instances are obtained by

a random sampling from the observed distributions of

variables, whereas in addCl2 they are obtained by a

random sampling in the hyper-rectangle containing the

observed instances. The authors found that addCl1 usu-

ally leads to better results in practice. URF as a method

for measuring dissimilarity presents several advantages.

For instance, objects described by mixed types of vari-

ables as well as missing values can be handled. The

method has been successfully applied in fields such as

biology [7–9] and image processing [10].

Albeit its appealing character, the method suffers

from two main drawbacks. Firstly, the generation step

is not computationally efficient: since the obtained trees

highly depend on the generated instances, it is neces-

sary to construct many forests with different synthetic

instances and average their results, leading to a compu-

tational burden. Secondly, the synthetic instances may

bias the model being constructed to discriminate ob-

jects on specific features. For example, addCl1 leads to

forests that focus on correlated features.

P.Geurts, D.Ernst and L. Wehenkel [11] presented

a novel type of tree-based ensemble method that they

called Extremely Randomized Trees (or ExtraTrees, for

short). This algorithm is very similar to RF. In RF,

both instances and features are sampled during the con-

struction of each tree. In ExtraTrees (ET) another layer

of randomization is added: whereas in RF the thresh-

old of a feature split is selected according to some pu-

rity measure (the most popular ones being the entropy

and the Gini impurity), in ET these thresholds are ob-

tained totally or partially at random. Moreover, instead

of growing the trees from bootstrapped samples of the

data, ET uses the whole training set. At each node, K

attributes are randomly selected and a random split is

performed on each one of them. The best split is kept

and used to grow the tree.

Two parameters are of importance in ET: K, de-

fined above, and nmin, that is the minimum sample

size for a node to be split. Interestingly, the parameter

K, that takes values in {1, ..., nfeatures}, influences the

randomness of the trees. Indeed, for small values of K,

the dependence of the constructed trees on the class la-

bels gets weak. In the extreme case where K is set to 1

(i.e., only one feature is selected and randomly split),

the dependence of the trees on the observed label is re-

moved. Following the tracks of [2] on URF, we propose

to use ET with a novel approach where the synthetic

case generation is no longer necessary. We call it unsu-

pervised extremely randomized trees (UET). We also

extend this method to make it applicable on hetero-

geneous data. Handling this type of data is a frequent

issue in practice, and constitutes an active area of re-

search [12,13].

This paper is organized as follows. We begin by

presenting UET, and discuss how it can be used to

compute similarities between samples in unsupervised

settings. Moreover, we show how it can be applied to

heterogeneous data while avoiding both pre- and post-

processing phases. We then discuss some important pa-

rameters of UET and their optimization. It is notice-

able that the algorithm is essentially sensitive to one

parameter, the minimum number of samples for a node

to split, or smoothing strength. We then study the be-

havior of UET according to different aspects in Sec-

tion 3. We first validate its ability to discriminate sam-

ples from different clusters while keeping similarities

constant when there is no cluster structure. We then

verify empirically its robustness with respect to mono-

tone transformations, to variable correlations and to

noise (Subsection 3.1.1). Our experiments show that

UET is indeed robust to these common data alterations,

which is an interesting feature in practice. In Subsec-

tion 3.2 we evaluate the performance of UET on purely

numerical, purely categorical, and on synthetic hetero-

geneous datasets. Moreover, we apply UET to some

benchmark datasets, which reveals some outperforming

results compared to those in the literature (Subsection

3.3). Finally, we present a general discussion of results

and hint at some directions of current and future work.

2



2 Unsupervised Extremely Randomized Trees

2.1 Description of UET

In URF, two methods are used for the generation of syn-

thetic data: addCl1 and addCl2. Both methods work by

performing a random sampling in the observed data.

The synthetic data is assigned a label, while the ob-

served data is assigned another one, enabling binary

classification between observed and synthetic examples.

Instead of generating new instances, another approach

is to randomly assign labels to the observed data. This

method, that we propose and refer to as addCl3, can be

implemented as follows:

1. Let nobs be the number of instances in the dataset.

A list containing bnobs

2 c times the label 0 and nobs−
bnobs

2 c times the label 1 is generated.

2. For each instance in the dataset, a label is randomly

sampled without replacement from the aforemen-

tioned list.

This procedure ensures that the label distribution is

balanced in the dataset. However, this leads to the same

problem arising with addCl1 and addCl2 : the results

are highly dependent on the generation step, as dif-

ferent realizations of the instance-label association or

of the synthetic data may lead to completely different

forests. To circumvent this issue, one solution is to run

multiple forests on multiple generated datasets, and to

average the results. In [2], the authors found that av-

eraging the results from 5 forests, with a total of 5000

trees leads to robust results. Moreover, instead of run-

ning multiple forests on many generated datasets, it is

possible - and computationally more efficient - to run

a single forest with a large amount of generated data,

if some care is taken regarding the reweighting of each

class. This workaround was proposed by a reviewer of

[2], and is easier to implement when addCl3 is used.

Indeed, since no new instances are added, it is not nec-

essary to reweight each class.

With addCl3, the construction of the trees no longer

depends on the structure of the data: when addCl1

or addCl2 are used, the forests are trained to distin-

guish between observed and synthetic instances. In ad-

dCl3, the labels being assigned randomly, two similar

instances may be labeled differently and may fall in

different leaves. However, using Extra Trees (ET) with

the number of features randomly selected at each node

K = 1, the construction of the trees no longer de-

pends on the class label, as described previously section.

Hence, ET seems to be a suitable algorithm to use with

addCl3. Algorithm 1 describes UET. The algorithm is

split into two steps: (i) the ensemble of trees are con-

structed, and (ii) the similarity is computed using their

leaves.

Algorithm 1: Unsupervised Extremely Random-

ized Trees
Data: Observations O
Result: Similarity matrix S
D ←− addCl3(O);
T ←− Build an extra tree ensemble(D,K) // Here

K = 1;
S = 0nobs,nobs // Initialization of a zero matrix of size
nobs ;

for di ∈ D do

for dj ∈ D do
Si,j = number of times the samples di and dj
fall in the same leaf node in each tree of T =
{t1, t2, ..., tM};

end

end

Si,j =
Si,j

M
;

Let N be the number of instance of a dataset D. Com-

putational complexity of Build an extra tree ensemble

(D,K) is on the order of Nlog(N) [11]. As the simi-

larity matrix computation complexity is in O(N2), the

overall complexity of UET is O(N2). One of the inter-

esting features of this approach is the fact that a split

can be agnostic to the variable type, with a splitting

procedure defined accordingly. Indeed, for a continuous

variable with values in a finite set A = {a1, a2, . . . , an},
the random split can be done by sampling a cut-point

in U(min(A),max(A)), where U(a, b) is the continuous

uniform distribution with a and b as boundaries. Al-

though this splitting procedure makes sense in contin-

uous and ordinal settings, as there is a notion of order

between values of A, for purely categorical data there is

no such ordering between modalities. A good example

is given by L. Kaufman and P.J. Rousseeuw [14] :

[...] we could choose 1 = blue eyes, 2 = brown eyes,

3 = green eyes, and 4 = gray eyes. [...] it is not because

gray eyes are given a higher code number than brown

eyes that they would in some sense be better.

The process of sampling a cut-point in the categor-

ical setting can be attained by randomly sampling a

modality out of all the possible modalities. A binary

split is then performed based on this value, i.e. all sam-

ples having this modality for this variable end up in

a first node, while the other samples are grouped in a

second node.

The procedure Build an extra tree ensemble(D,K)

is essentially the one presented by Geurts et al. in [11],

with a different splitting method, that we present in

Algorithm 2.

3



Algorithm 2: Random split procedure

Data: Values A, a type t
Result: a split s
if t == continuous or t == ordinal then

cut-point ac drawn from U(min(A),min(B));
return the split [a < ac] and [a ≥ ac];

end

if t == categorical then
cut-point ac drawn from set(A);
return the split [a ∈ set(A)\ac] and [a = ac];

end

Notice that a random label generation procedure such

as addCl3 is not even necessary. Indeed, as the gen-

erated labels do not carry any information about the

instances and K is set to 1, each split is performed

without any consideration of the label. This enables

further reduction of the algorithm’s overhead. Two pa-

rameters can influence the results of the method we

propose, UET:

1. The number of trees ntrees.

2. The minimum number of samples for a node to be

split nmin.

As the influence of these parameters on the similari-

ties computed by UET is not known, it is necessary to

evaluate the behaviour of the method when they vary.

2.2 Optimization of parameters

For each evaluation presented in this subsection, the

following process is repeated 10 times:

1. A similarity matrix is constructed using UET.

2. This similarity matrix is transformed into a distance

matrix using the relation DISij =
√

1− SIMij , as

used in [2].

3. An agglomerative clustering (with average linkage)

is performed using this distance matrix, with the

relevant number of clusters for the dataset.

For each clustering, Adjusted Rand Index (ARI) is com-

puted. The ARI quantifies the agreement between two

partitions of a dataset [15,16]. Let Table 1 be the con-

tingency table of two clustering results, where each value

nij is the number of instances associated with cluster i

of Y and cluster j of X. Given this table, the ARI is

defined by:

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

) (1)

ARI values of 1 indicates perfect agreement up to a

permutation, while a value of 0 indicates a result no

Y1 · · · Yq sums

X1 n11 · · · n1q a1
...

...
. . .

...
...

Xr nr1 · · · nqr ar
sums b1 · · · bq

Table 1 Contingency table of two clusterings

Dataset # samples # features # labels
Iris 150 4 3
Wine 178 13 3
Wisconsin 699 9 2

Table 2 Properties of used datasets

better than a random label assignment. Here, the ARI

values presented are multiplied by 100.

Three datasets are used for this evaluation process:

Iris [17], Wine [18] and Wisconsin [19]. These datasets

are described Table 2.2.

2.2.1 Influence of the number of trees

The influence of ntrees has also been studied in [11],

where this parameter is referred to as the averaging

strength M . For stochastic methods such as RF and ET

used in a supervised learning setting, the average error

is a monotonically decreasing function of M [3]. We

assessed the influence of this parameter on UET results,

using the protocol described above. Our experiments

show that there is no substantial gain for ntrees > 50.

We compared the ARI using the Kruskal-Wallis test

[20]. This non-parametric methods enables us to test

whether there is a statistically significant difference be-

tween the obtained ARI. The results show that the dif-

ference in ARI in Wine, Iris and Wisconsin datasets

are not significant (p > 0.1). This observation confirms

the one from Geurts et al. where values of ntrees > 40

outperforms Tree Bagging. However, as the time to con-

struct the tree ensemble grows linearly with the num-

ber of trees, it is a good option to choose small a value

of ntrees. We chose the value ntrees = 200 by default.

This value is way below the overall number of trees

recommended for URF, 5000. However, the best value

for ntrees may depend on the size of the dataset. The

results are presented Figure 1.

2.2.2 Influence of the minimum number of samples to

split

ET tends to produce trees having 3 to 4 times the num-

ber of leaves than those of RF. As UET computes simi-

larities by counting the number of times objects fall into

the same leaf, the results are impacted by this increase

in the number of leaves. It may be useful to stop the

4



(a)

(b)

(c)

Fig. 1 ARI performing UET and agglomerative clustering on
Wine (a), Iris (b) and Wisconsin (c) datasets when the total
number of trees varies. The ARI remains relatively constant.

tree growth in order to group similar instances in the

same leaves more often. The minimum number of ob-

jects to split a node nmin can control this growth. This

parameter nmin, also called the smoothing strength, has

an impact on the biais and the variance. As stated by

Geurts et al. [11], the optimal value for this parame-

ter depends on the level of noise in the dataset. They

showed in [11] that larger values of nmin are needed

when ET is applied to noisy data. In UET, the noise is

extreme, as the labels are assigned randomly. The same

statistical analysis that we performed previously show

that there is a significant difference in ARI in the tested

datasets according to nmin (p < 0.1). Values of nmin

between 20% and 30% of the number of instances seem

(a)

(b)

(c)

Fig. 2 ARI performing agglomerative clustering using dis-
tance matrices computed with UET on Wine (a), Iris (b) and
Wisconsin (c) datasets when the min. number of samples to
split increases. The values correspond to the percentage of
instances in each dataset.

to give better results. The ARI variations for the three

datasets according to nmin are presented Figure 2.

These experiments seem to indicate that UET is

robust with respect to the number of trees in the en-

semble, while being sensitive to the smoothing strength.

Now that we have an idea of the behaviour of the al-

gorithm with respect to its parameters, we focus on its

behaviour on various synthetic and real-world datasets.

5



3 Empirical evaluation

Our empirical evaluation of UET is divided into 4 parts.

In subsection 3.1, we assess if our method can effectively

discriminate clusters. Indeed, if that was not the case,

UET would not be useful in practice. We also assess

its robustness in three scenarios: presence of monotone

transformations of variables, correlated variables, and

noisy data. In Subsection 3.2, we evaluate the perfor-

mance of UET on numerical, categorical and hetero-

geneous datasets. We then compare clusterings using

UET as a base similarity measure and clusterings ob-

tained in the litterature in Subsection 3.3. Finally, we

compare clusterings obtained with UET with cluster-

ing using the euclidean distance in Subsection 3.4. This

step ensures that the method we propose here is com-

petitive with a naive, more popular measure.

3.1 Assessment of some characteristics of UET

All the experiments presented here are based on the

comparison of the mean intracluster similarities and

the mean intercluster similarities, as well as their differ-

ences, taking values in the interval [0, 1]. These metrics

enable a comparison that is agnostic to a subsequent

clustering method.

The mean difference is computed as follows. First,

the arithmetic mean of the pairwise similarities between

all samples having the same label is computed, cor-

responding to the mean intracluster similarity µintra.

Then the same process is done for samples with a differ-

ent label, giving the mean intercluster similarity µinter.

We finally compute the difference ∆ = |µintra−µinter|.
In our experiments, this difference ∆ is computed 20

times. In the following section, ∆̄ denotes the mean of

differences between runs, and σ its standard deviation.

3.1.1 Ability of UET to discriminate clusters

Three datasets were generated for this task. Two datasets

composed of 1000 samples each have no cluster struc-

ture, and differ only in the number of features, 4 and 50.

The columns are generated by a sampling from a nor-

mal distribution N (0, 1). These datasets are referred to

as NoC4 and NoC50, respectively. We generated an-

other dataset C4, where the first 500 lines are drawn

from a uniform distribution U(0, 0.5) for one column

and U(1, 2) for the second column. The other 500 lines

are drawn from U(0.5, 1) and U(0, 1). We then added

two columns, defined as a discretization of the previ-

ously generated columns. These columns are categori-

cal, and enable us to test our method on an heteroge-

neous dataset. The results are presented in Table 3.1.1.

Dataset ∆̄ σ

NoC4 0.00042 0.00003

NoC50 0.00007 0.00003

C4 0.68417 0.00341

Table 3 Mean difference between intercluster and intraclus-

ter similarities in different settings, on synthetic datasets.

In NoC50, ∆̄ ≈ 0, whereas we obtained a value of

∆̄ much higher and closer to 1 in the dataset with a

clear cluster structure. This result is not a formal proof

but demonstrates that UET is able to clearly discrimi-

nate clusters in the data when they exist and to return

no significant differences in similarities when no cluster

structure is present.

3.1.2 Invariance under monotone transformations

One interest of the proposed method is the invariance

to monotone transformations of individual variables.

Indeed, as stated by J.H Friedman in [21], this fea-

ture provides a resistance to the presence of outliers

in the data, as well as any change in the measurement

scales of the variables. Here, we assess this property on

two synthetic datasets generated by the make blobs and

make moons methods of the library Scikit-learn [22].

The first one, that we will refer to as blob500, contains

500 samples, 5 features and 3 clusters. The second one

describes moon-shaped clusters consisting of 500 sam-

ples, described by two features, that we will refer to as

moon500.

After a first computation of ∆̄ on the original data,

we iteratively multiply each column of the dataset by

a scalar drawn from U(2, 100), and recompute ∆̄. Re-

sults for the blob500 and moon500 datasets are pre-

sented Table 3.1.2. We observe that UET is effectively

robust with respect to monotone transformation of one

or many variables, the observed variations being due to

the stochastic nature of the method. These results were

expected as the split is insensitive to changes if every

value in the column is shifted the same way.

Operation Number of variables ∆̄ σ

Multiplication 0 0.2981 0.0044

Multiplication 1 0.2991 0.0029

Multiplication 2 0.2992 0.0036

Addition 0 0.2987 0.0037

Addition 1 0.2976 0.0045

Addition 2 0.2970 0.0035

Table 4 Influence of a multiplication or addition by a scalar

on ∆̄ for moon500 dataset

6



Fig. 3 Change of difference between mean intracluster and

mean intercluster similarities when (i) changing features by

linear combinations of other features and (ii) changing fea-

tures by random values. The x axis represents the number of

features modified by the procedure.

Operation Number of variables ∆̄ σ

Multiplication 0 0.3283 0.0072

Multiplication 1 0.3297 0.0060

Multiplication 2 0.3285 0.0067

Addition 0 0.3250 0.0053

Addition 1 0.3296 0.0046

Addition 0 0.3267 0.0059

Table 5 Influence of a multiplication or addition by a scalar

on ∆̄ for blob500 dataset

3.1.3 Robustness with respect to correlated variables

These experiments were conducted on the blob500 dataset,

with 10 features instead of 5. We replaced each column

of the dataset in an iterative fashion by a random lin-

ear combination of another column, and computed ∆̄

and σ. We also ran the same experiment replacing each

column by random values. Figure 3 summarizes the re-

sults of the experiments. We notice that the presence of

linearly correlated variables have little to no effect on

the overall ∆̄. This is an interesting feature, as it is not

necessary to perform feature selection prior to the com-

putation, hence reducing the number of preprocessing

tasks needed.

3.1.4 Robustness with respect to noise

As real-world datasets are often noisy, it is important

for any learning method to be robust to noise. To evalu-

ate how the proposed method behaves with noisy data,

we first generated 25 moon500 datasets. Each dataset

Fig. 4 The figure shows a representation of some of the

moon-shaped clusters used for evaluation, with their change

with respect to noise. When the standard deviation of the

Gaussian noise is greater than 0.20, the boundaries between

both clusters begin to merge.

is generated using the same seed. A Gaussian noise was

added, incrementing the value of its standard variation

from 0 (i.e, without noise) to 0.48. Figure 4 shows some

of the moon-shaped datasets used in our experiments.

We also assessed the robustness with respect to noise

on two other datasets: blob500, a synthetic one, and

Iris [17], a real-world dataset. As no method to generate

noise for these data exist in Scikit-learn, we manually

added noise. We did so by adding to each value x of the

dataset a value drawn from U(−st×x, st×x), st being

the strength of the noise.

The results we obtained are interesting. Indeed, while

we do have an expected decrease in ∆̄, the slope remains

acceptable. Moreover, in the case of the moon-shaped

clusters, even if for values of the standard deviation of

the Gaussian noise greater than 0.20 the boundaries be-

tween both clusters begin to merge, we notice that UET

is still able to discriminate between the two clusters.

7



Fig. 5 Evolution of the mean difference between intracluster

and intercluster similarity when the noise is increased in three

datasets (from left to right : blob500, moon500 and Iris.)

The characteristics we assessed here are interesting,

as they reduce the number of preprocessing steps that

may be needed for some datasets. In [23], Hastie et al.

described an “off-the-shelf” method as:

[...] one that can be directly applied to the data without

requiring a great deal of time- consuming data prepro-

cessing or careful tuning of the learning procedure

Among tree-based methods for similarity computa-

tion, UET is a good candidate for an “off-the-shelf”

method for clustering purposes.

3.2 Performance of UET on numerical, categorical and

heterogeneous data

Another interesting aspect of UET is that it can be

applied on different types of data, namely, numerical,

categorical or heterogeneous. Here, we focus on these

three different settings, and assess whether UET is ef-

fectively able to separate clusters.

3.2.1 Numerical datasets

We first assessed UET on purely numerical datasets,

described in Table 3.2.1. S1n, S2n and S3n are 3 gen-

erated datasets, where the values of each column for

each cluster are drawn from a different distribution.

Iris and Wisconsin dataset were downloaded from the

UCI website 1. The results show that, in these settings,

the method effectively returns a significant difference

of similarities between samples belonging to the same

cluster and other samples.

3.2.2 Categorical datasets

We applied UET on categorical-only datasets. S1c and

S2c are generated datasets, where the values for each

variable and for each cluster are drawn from different

multinomial distributions and has 3 modalities. We also

applied our method on Soybean dataset, downloaded

from the UCI website. These three datasets are de-

scribed in Table 3.2.2. The results (Table 3.2.2) shows

that UET effectively discriminates clusters in purely

categorical settings. Indeed, for S1c, S2c and Soybean,

the ∆̄ returned by UET are significantly greater than

0.

3.2.3 Heterogeneous datasets

We finally used UET on heterogeneous on both gen-

erated and real-world data to assess its results. The

datasets parameters and the results are presented Ta-

ble 3.2.3. The synthetic datasets S1h, S2h and S3h
are generated in a similar fashion than the synthetic

continuous and categorical. Both real-world datasets,

Credit and CMC, were downloaded from the UCI web-

site. We notice that the discriminative power of UET

in the heterogeneous case remains similar to the ho-

mogeneous one, in most cases. However, for the CMC

dataset, ∆̄ is close to 0, meaning that almost no differ-

ence is found between instances that belong to different

classes. This may be due to the fact that there is no in-

herent cluster structure in this dataset. Indeed, both

real-world datasets used in this settings are primarily

used for classification tasks. The labels may not corre-

spond perfectly to some natural clustering of the data.

1 https://archive.ics.uci.edu/ml/index.php

8



Name # samples # variables # Classes ∆̄ σ

S1n 500 2 2 0.4685 0.0015

S2n 450 2 3 0.5290 0.0007

S3n 500 4 2 0.4873 0.0082

Iris 150 4 3 0.4312 0.0056

Wisconsin 699 9 2 0.2259 0.0048

Table 6 Mean differences between intracluster and intercluster similarities computed with UET, denoted by ∆̄, while σ denotes

the standard deviation.

Name # samples # variables # Classes ∆̄ σ

S1c 500 2 2 0.3878 0.0056

S2c 500 4 2 0.3387 0.006

Soybean 266 35 19 0.2370 0.0062

Table 7 Mean differences between intracluster and intercluster similarities computed with UET, denoted by ∆̄, while σ denotes

the standard deviation.

Name # samples # Continuous #Categorical # Classes ∆̄ σ

S1h 500 2 2 2 0.3009 0.0061

S2h 500 2 4 2 0.3210 0.0058

S3h 500 4 4 2 0.3557 0.0063

Credit 690 7 6 2 0.0648 0.0026

CMC 1473 5 4 3 0.0118 0.0003

Table 8 Mean differences between intracluster and intercluster similarities computed with UET, denoted by ∆̄, while σ denotes

the standard deviation.

3.3 Comparative evaluation with results from the

literature

In the previous sections, we compared empirically the

distances between intra- and inter-cluster similarities.

Although this metric is appealing, as it reduces the bias

associated with a specific choice of clustering method,

it is interesting to compare some results on real-life

clusterings with the litterature, obtained using common

similarity measures.

We adopted the following protocol. For each dataset,

UET was run 10 times, and the similarity matrices were

averaged. The thus obtained matrix was then trans-

formed into a distance matrix using the equationDISij =√
1− SIMij , and an agglomerative clustering with the

relevant number of clusters was performed. The qual-

ity of the clustering was then evaluated with respect

to normalized mutual information (NMI). Equation (2)

shows how this metric is computed, where X is the

class labels, Y the clusters, H() denotes the Shannon’s

entropy, and I(X,Y ) the mutual information, where

I(X,Y ) = H(X) − H(X|Y ). NMI values lie in the

range [0, 1]. Here, the values presented are multiplied

by 100.

NMI(X,Y ) =
2× I(X,Y )

H(X) +H(Y )
(2)

The clustering is run 20 times, and we provide the mean

and standard deviation of the NMI. This evaluation was

performed using scikit-learn [22] and our implemen-

tation of UET. This implementation will be available

upon request.

The ten datasets used in this section are available

on the UCI website 2 and presented Table 3.3.

In [24], NMI obtained by running k-means 20 times

and averaging the results are provided for each dataset.

We compared our results to the ones obtained without

feature selection, as none has been performed in our

setting. As the results from [24] are used only for a clus-

tering performance comparison, we did not perform any

time comparison. Moreover, the method presented in

their paper being a feature selection one, a fair compar-

ison between execution time is not trivial. The results

are presented Table 3.3. They show that NMI scores

obtained using UET are competitive in most cases. It

is noteworthy that in some cases, UET without feature

2 https://archive.ics.uci.edu/ml/index.php

9



Dataset # samples # features # labels

Iris 150 4 3

Wine 178 13 3

Wisconsin 699 9 2

Lung 32 56 3

Breast tissue 106 9 6

Isolet 1559 617 26

Pima 768 8 2

Parkinson 195 22 2

Ionosphere 351 34 2

Segmentation 2310 19 7

Table 9 Datasets used for benchmarking

Dataset UET - NMI Literature - NMI

Wisconsin 78.33 ± 3.25 73.61 ± 0.00

Lung 29.98 ± 6.17 22.51 ± 5.58

Breast tissue 74.48 ± 2.92 51.18 ± 1.38

Isolet 61.22 ± 1.47 69.83 ± 1.74

Parkinson 25.50 ± 6.14 23.35 ± 0.19

Ionosphere 13.47 ± 1.11 12.62 ± 2.37

Segmentation 69.62 ± 2.14 60.73 ± 1.71

Table 10 Comparative evaluation with the results from [24].

Best obtained values are indicated in boldface. In case of a

tie, both values are in boldface.

selection gives better results than the ones obtained by

[24] after feature selection. For instance, this is the case

for Breast tissue dataset.

3.3.1 Comparison with URF

To compare UET and URF, we used the R implemen-

tation provided by Shi and Horvath 3, and compared

the ARI obtained after running the partitioning around

medoids (PAM) algorithm on the distance matrices ob-

tained by both methods. 2000 trees and 100 forests are

used for URF, with a value of mtry = b√nfeaturesc 4.

We set UET parameters to ntrees = 200 and nmin =

bnsamples

3 b, and averaged the similarity matrices of 20

runs. These experiments were run on a computer with

an Intel i7-6600U (2.6 Ghz) and 16 Go of 2133 MHz

DDR4 RAM.

We compared both ARI and time (in seconds) for

each method. The results are presented Table 3.3.1.

UET outperforms URF time-wise, while giving simi-

lar or better clusterings. Regarding the Isolet dataset,

3 https://labs.genetics.ucla.edu/horvath/RFclustering/

RFclustering.htm
4 mtry is the number of variables used at each node when

a tree is grown in RF.

Dataset UET (ARI - Time) URF (ARI - Time)

Wisconsin 87.13 - 128.42 s 82.92 - 968.71 s

Lung 23.24 - 5.23 s 6.52 - 86.93 s

Breast tissue 58.85 - 9.15 s 39.05 - 99.40 s

Isolet 28.04 - 692.82 s * - * s

Parkinson 25.21 - 16.27 s 12.68 - 279.30 s

Ionosphere 6.04 - 39.13 s 7.28 - 727.30 s

Table 11 Comparative evaluation between URF and UET.

Best obtained values are indicated in boldface. In case of a

tie, both values are in boldface.

Dataset UET - NMI Euclidean - NMI

Wisconsin 79.32 ± 2.12 66.03 ± 0.00

Lung 28.64 ± 4.90 28.20 ± 0.00

Iris 98.21 ± 1.5 80.58 ± 0.00

Wine 95.01 ± 4.74 41.58 ± 0.00

Parkinson 30.37 ± 3.90 0.00 ± 0.19

Soybean 85.02 ± 1.58 71.86 ± 0.00

Pima 2.80 ± 0.90 0.00 ± 0.00

Table 12 Comparative evaluation between URF and eu-

clidean distance. Best obtained values are indicated in bold-

face. In case of a tie, both values are in boldface.

we had to stop URF’s computation as we weren’t able

to obtain results in an acceptable amount of time on

our machine. However, we performed the computation

on a more powerful machine, and were able to obtain

an ARI of 28.39.

3.4 Comparison with euclidean distance

We finally compared the clusterings obtained using UET

with clusterings using other similarity or distance met-

rics. The procedure was the following: for continuous

datasets, we performed HAC using the euclidean dis-

tances. For categorical ones, we first used One-Hot en-

coding to transform the features, and then applied HAC

using the euclidean distances. We finally compared the

NMI obtained using these methods with the NMI ob-

tained using UET. The results are presented Table 3.4.

These datasets are either small or low-dimensional

ones. As it is interesting to assess how the method be-

haves on larger datasets, we performed the same ex-

periments on two other high-dimensional datasets pre-

sented Table 3.4. For both datasets, the clustering ob-

tained using UET outperforms the clustering obtained

using euclidean distance (p < 0.01). Yet, the advantage

of using euclidean distance is its non stochasticity. In-

deed, it is not necessary to repeat the experiment as

10



Dataset # samples # features # labels UET - NMI Euclidean - NMI

Olivetti faces 400 4096 40 79.32 ± 2.12 73.69 ± 0.00

Digits 1797 64 10 94.54 ± 0.99 71.61 ± 0.00

Table 13 NMI obtained on images datasets. Best obtained values are indicated in boldface. In case of a tie, both values are

in boldface.

the distance will remain the same in each run, hence

the standard deviation of 0.

4 Conclusion and perspectives

In this work, we presented a novel method to compute

pairwise similarities using stochastic decision trees. This

approach extends the unsupervised random forest method,

by using extremely randomized trees as a base estima-

tor. In URF, the generation of synthetic instances was

needed and performed by two different approaches, Ad-

dCl1 or AddCl2. With UET, the generation of instances

is no longer necessary: by setting the number of at-

tributes to be drawn at each split K = 1, extremely

randomized trees can be made independent of the la-

bels. We therefore present a way to bypass the need for

instance and label generation, which results in a signif-

icant reduction in running time.

UET also enables the computation of pairwise similar-

ities between samples in both homogeneous and hetero-

geneous datasets, and has some interesting properties

that we assessed empirically in this work. Some of these

properties are appealing since they drastically reduce

the preprocessing burden. For instance, the invariance

with respect to monotone transformations of individual

or multiple variables remove the need for scaling that

exists for euclidean distance-based methods such as k-

means. Moreover, in practice, questions regarding the

management of highly correlated attributes arise. The

robustness of the method in cases where variables are

redundant indicates a potential solution in these cases.

The performance evaluation of our method showed

that essentially one parameter influenced the results,

the smoothing strength nmin. This is explained by the

fact that higher values of nmin give better results in the

presence of noise. In our case, the data is highly noisy,

as the splits are randomly performed without any la-

bel consideration. We found that a value of
nsamples

4 ≤
nmin ≤ nsamples

3 gives good clusterings. Other parame-

ters, such as the number of trees per forest ntrees did

not impact much the results of the procedure for values

of ntrees > 50, while increasing the time to perform the

procedure.

We compared the quality of clusterings between our

method and (i) results found in the literature and (ii)

results obtained by URF on multiple datasets. The qual-

ity was measured by normalized mutual information or

adjusted rand index, according to the metric available

in the literature. This empirical evaluation gave good

results, with overall similar or better NMI and ARI.

The advantages of our method over URF are twofold.

First, the generation of synthetic data is no longer nec-

essary. Second, the method is 1.5 to more than 10 times

faster than URF.

Although the empirical evaluation of UET provided

good overall results, there are still some issues that

are currently being considered. Specifically, for some

datasets, we obtained some unexpected results since

the method was unable to effectively discriminate clus-

ters. In such cases, some fine-tuning of the smoothing

strength may improve the results. Indeed, high values

of nmin might be unsuitable for some datasets, as only

a few variables are drawn overall in the trees growth.

We also observed a discrepancy in some heterogeneous

datasets. These results may be caused by some of their

characteristics that are still being investigated.

Complexity issues are currently being considered.

Indeed, the size of the similarity matrix returned by

UET can become cumbersome for datasets with a large
number of instances (> 10, 000, typically). Moreover,

the computational complexity of UET may be an is-

sue for these datasets. We already made some improve-

ments taking advantage of the sparsity of the matrices

and rewriting our implementation. Moreover, UET be-

ing an ensemble method, all computations can easily be

distributed across a cluster of machines.

Finally, KM Ting et al. [25] recently proposed a sim-

ilar approach to compute a mass-based dissimilarity be-

tween instances, based on isolation forests [26]. While

their approach is similar to the one we present here, it

differs on some key points, such as the fact that self-

similarities are not constant in mass-based dissimilar-

ity, as me(x, x) ∈ [0, 1] depends on the distribution of

the data. This feature is interesting and provides good

results in some cases, must notably for density-based

clustering where clusters are of varying densities, but

makes it hard to trivially transform dissimilarities to

similarities. Although they differ on some specific fea-

tures, the ideas behind both methods are very similar

11



and it would be interesting to compare them exten-

sively.

Overall, UET can be a good candidate method in

exploratory data analysis where handling heterogeneity

and preprocessing tasks often reveal to be cumbersome.

Acknowledgements

Kevin Dalleau’s PhD is funded by the RHU FIGHT-

HF (ANR-15-RHUS-0004) and the Region Grand Est

(France).

On behalf of all authors, the corresponding author

states that there is no conflict of interest.

References

1. M. M. Deza and E. Deza. Encyclopedia of distances. In

Encyclopedia of Distances, pages 1–583. Springer, 2009.

2. T. Shi and S. Horvath. Unsupervised learning with

random forest predictors. Journal of Computational and

Graphical Statistics, 15(1):118–138, 2006.

3. L. Breiman. Random forests. Machine learning, 45(1):5–

32, 2001.

4. B. Percha, Y. Garten, and R. B. Altman. Discovery and

explanation of drug-drug interactions via text mining. In

Pacific Symposium on Biocomputing, pages 410–421, 2012.

5. M. Pal. Random forest classifier for remote sensing

classification. International Journal of Remote Sensing,

26(1):217–222, 2005.

6. J. Friedman, T. Hastie, and R. Tibshirani. The elements

of statistical learning, volume 1. Springer series in statis-

tics New York, 2001.

7. H. L. Kim, D. Seligson, X. Liu, N. Janzen, M.H. Bui,

H. Yu, T. Shi, A. S. Belldegrun, S. Horvath, and R.A.

Figlin. Using tumor markers to predict the survival of

patients with metastatic renal cell carcinoma. The Jour-

nal of urology, 173(5):1496–1501, 2005.

8. M. C. Abba, H. Sun, K. A. Hawkins, J. A. Drake, Y. Hu,

M. I. Nunez, S. Gaddis, T. Shi, S. Horvath, and A. Sahin,

et al. Breast cancer molecular signatures as determined

by sage: correlation with lymph node status. Molecular

Cancer Research, 5(9):881–890, 2007.

9. S. I. Rennard, N. Locantore, B. Delafont, R. Tal-Singer,

E. K. Silverman, J. Vestbo, B. E. Miller, P. Bakke,

B. Celli, and P.M. Calverley, et al. Identification of

five chronic obstructive pulmonary disease subgroups

with different prognoses in the eclipse cohort using clus-

ter analysis. Annals of the American Thoracic Society,

12(3):303–312, 2015.

10. K.Y. Peerbhay, O. Mutanga, and R. Ismail. Random

forests unsupervised classification: The detection and

mapping of solanum mauritianum infestations in planta-

tion forestry using hyperspectral data. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote

Sensing, 8(6):3107–3122, 2015.

11. P. Geurts, D. Ernst, and L. Wehenkel. Extremely ran-

domized trees. Machine learning, 63(1):3–42, 2006.

12. Vineet K Raghu, Joseph D Ramsey, Alison Morris, Dim-

itrios V Manatakis, Peter Sprites, Panos K Chrysanthis,

Clark Glymour, and Panayiotis V Benos. Comparison of

strategies for scalable causal discovery of latent variable

models from mixed data. International Journal of Data

Science and Analytics, pages 1–13, 2018.

13. Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani,

and Ioannis Tsamardinos. Constraint-based causal dis-

covery with mixed data. International Journal of Data

Science and Analytics, pages 1–12, 2018.

14. L. Kaufman and P. J Rousseeuw. Finding groups in data:

an introduction to cluster analysis, volume 344. John Wiley

& Sons, 2009.

15. W. M. Rand. Objective criteria for the evaluation of

clustering methods. Journal of the American Statistical

association, 66(336):846–850, 1971.

16. L. Hubert and P. Arabie. Comparing partitions. Journal

of classification, 2(1):193–218, 1985.

17. R.A. Fisher and M. Marshall. Iris data set. RA Fisher,

UC Irvine Machine Learning Repository, 1936.

18. M. Forina, et al. An extendible package for data explo-

ration, classification and correlation. Institute of Pharma-

ceutical and Food Analysis and Technologies, 16147, 1991.

19. O.L. Mangasarian and W.H. Wolberg. Cancer diagnosis

via linear programming. Computer Sciences Department,

University of Wisconsin-Madison, 1990.

20. W.H. Kruskal and W.A. Wallis. Use of ranks in one-

criterion variance analysis. Journal of the American sta-

tistical Association, 47(260):583–621, 1952.

21. Jerome H Friedman. Recent advances in predictive (ma-

chine) learning. Journal of classification, 23(2):175–197,

2006.

22. F. Pedregosa, et al. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

23. Hastie Trevor, Tibshirani Robert, and Friedman JH. The

elements of statistical learning: data mining, inference,

and prediction, 2009.

24. H. Elghazel and A. Aussem. Feature selection for un-

supervised learning using random cluster ensembles. In

2010 IEEE 10th International Conference on Data Mining

(ICDM), pages 168–175. IEEE, 2010.

25. Kai Ming Ting, Ye Zhu, Mark Carman, Yue Zhu, Takashi

Washio, and Zhi-Hua Zhou. Lowest probability mass

12



neighbour algorithms: Relaxing the metric constraint

in distance-based neighbourhood algorithms. Machine

Learning, 2018.

26. Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isola-

tion forest. In 2008 Eighth IEEE International Conference

on Data Mining, pages 413–422. IEEE, 2008.

13


