
HAL Id: hal-01982043
https://hal.science/hal-01982043

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Actor’s View of Automated Planning and Acting: A
Position Paper

Malik Ghallab, Dana Nau, Paolo Traverso

To cite this version:
Malik Ghallab, Dana Nau, Paolo Traverso. The Actor’s View of Automated Planning and Acting:
A Position Paper. Artificial Intelligence, 2014, 208, pp.1 - 17. �10.1016/j.artint.2013.11.002�. �hal-
01982043�

https://hal.science/hal-01982043
https://hal.archives-ouvertes.fr

The Actor’s View of Automated Planning and Acting:
A Position Paper

Malik Ghallaba, Dana Naub, Paolo Traversoc

aLAAS/CNRS, University of Toulouse, France.
bDept. of Computer Science and Inst. for Systems Research, University of Maryland, College Park, MD, USA.

cFBK ICT IRST, Trento, Italy.

Abstract

Planning is motivated by acting. Most of the existing work on automated planning underestimates the reasoning
and deliberation needed for acting; it is instead biased towards path-finding methods in a compactly specified state-
transition system. Researchers in this AI field have developed many planners, but very few actors. We believe this is
one of the main causes of the relatively low deployment of automated planning applications.

In this paper, we advocate a change in focus to actors as the primary topic of investigation. Actors are not mere
plan executors: they may use planning and other deliberation tools, before and during acting. This change in focus
entails two interconnected principles: a hierarchical structure to integrate the actor’s deliberation functions, and
continual online planning and reasoning throughout the acting process. In the paper, we discuss open problems and
research directions toward that objective in knowledge representations, model acquisition and verification, synthesis
and refinement, monitoring, goal reasoning, and integration.

Keywords: Automated Planning and Acting.

1. Introduction

Automated planning is a rich technical field. It has benefitted from the work of a very active and growing research
community that has produced a number of already mature technologies. However, some areas in this field are over-
explored, and there are other areas where further investigation is critically needed if automated planning is to have a
wider impact on practical problems. One such area is the integration of planning and acting.

Planning is motivated by acting. It has been described as the “reasoning side of acting” [48]. However, most of the
literature on domain-independent automated planning is biased toward part of that reasoning side: there are numerous
planners, but very few actors.1 The importance of the acting part has been largely underestimated, and insufficient
attention has been given to the numerous AI problems that emerge when attempting to integrate acting with planning.
Consequently, in contrast with successful AI fields such as machine learning, the deployment of automated planning
techniques into fielded applications has remained relatively low despite its large potential.

Although this situation is unfortunate, there are some good reasons why it has occurred:

• Planning, informally, consists of choosing and organizing a set of actions for some purpose [100]. This requires
an ability to predict what effects various actions will have in various states. However, making good predictions
can be very difficult. The widely-used “preconditions-and-effects” representations2 provide predictive models
of actions that are often too abstract to be of great use to actors. The field of automated planning has focused
more on improving the performance of search algorithms in this abstract space than on improving the predictive
capabilities of its models.

Email addresses: malik@laas.fr (Malik Ghallab), nau@cs.umd.edu (Dana Nau), traverso@fbk.eu (Paolo Traverso)
1We use the term “actor” instead of the related term “agent” to underline the acting functions and distinguish from the broader meaning of

agents; the distinction is discussed in Section 2.
2Also called “STRIPS-style” or “classical” representations; see Section 3.1.1 for details.

Artificial Intelligence, Vol. 208, March 2014, pp. 1 - 17

• Planning is nicely formalized from an AI point of view, e.g., as a mapping from abstract domains and problems
into plans, while acting is much harder to formalize.

• Planning is abstracted away from the intricacies of observing and changing the world. There is a clear frontier
between planning and executing, i.e., execution functions that face no deliberation making problems. But the
borderline between acting and executing is much more blurred. The distinction between reasoning functions
and sensory-motor functions is more intricate for an actor than for a planner. It may even vary over time, e.g.,
with learning.

• Providing a plan as a service is in principle an easily packaged input-output function. But in open and dynamic
environments, helping actors with their reasoning requires many different information gathering, processing
and decision-making functions. The closed-world assumption can make sense for a planner, but much less so
for an actor. These actor’s deliberation functions are difficult to integrate.

One should certainly applaud the remarkable success of the search techniques developed in planning. They have
led to a mature technology for solving path-finding problems in huge state transition systems, compactly specified
by precondition-effect operators; a technology that has been applied to several areas apart from planning, such as
genomics [37, 55] and diagnosis [98, 56, 52]. But at the same time, numerous planning problems remain open that
request more attention.

Many papers before this one have recognized and discussed the problems of integrating planning and acting
[31, 88, 86, 78]. These problems are particularly critical in areas such as robotics where they have been addressed
through numerous publications [94, 15, 62, 33, 14, 58, 104]. The multi-agent community is also very active on the
issues of integrating planning and acting [32, 35, 81, 22]. However, these and similar contributions have not changed
the main focus of the field. Numerous acting problems remain open, not addressed by the remarkable advances in
planning and the significant scaling up of search techniques. We believe that the bottleneck is not anymore on search
issues; it is time to change our focus.

We are advocating here to concentrate research efforts on actors as the primary topic of investigation in automated
planning and acting, not on planners that actors may rely upon. Our focus is on acting from an AI point of view. We
are not concerned here with the design of a variety of systems needed to exert and control forces on the environment
in order to act (the executor’s functions). However, explicit models of these devices are often needed in the actor’s
deliberations. Our actor is a cognitive agent; we are interested in its deliberation capabilities.

A system that interacts with its environment through sensory-motor functions may or may not need deliberation.
Tele-operated devices, automated vacuum cleaners, lawn mowers and similar systems that deal with a fixed environ-
ment and/or a single task do not strictly need deliberation. Automation engineers have deliberately (and wisely) en-
gineered such problems out of the environment. In contrast, a system that performs a variety of tasks and interactions
autonomously in a diversity of open environments must reason and make decisions about its activity. Deliberation is
required for autonomy and diversity.

We are proposing to focus on the representations, modeling and reasoning techniques that a deliberate actor needs
in order to perform various tasks. Our actor may use several planning and decision-making techniques as well as
other computational tools, both before and while acting. Our proposed focus concerns automated planning integrated
with these other reasoning tools: a focus that enriches the field with a number of research challenges and allows it to
address significantly more relevant problems for real-world applications.

As an illustration, consider the reasoning activities of a traveler who is planning and making a trip, e.g., from
Trento, Italy, to Canberra, Australia:

• At the travel-preparation stage, the traveler decomposes the trip into several steps: (i) planning the intercon-
tinental flight to Sydney from a hub close to Trento, taking into account several criteria (cost, flight time,
preferences, etc.); (ii) extending this plan to include the tasks of traveling from from Trento (e.g., by car or by
train) to a travel hub such as Verona or Milano, and traveling (e.g., by bus or by air) from Sydney to Canberra;
and (iii) buying some of the tickets. Buying the tickets may seem like a routine activity, but it nonetheless
refines into several steps that follow different procedures depending on the mode of transportation (bus, train,
airplane) and the broker (travel agency, web service etc.). Several of these travel-preparation steps may require
planning, possibly by some other actors than our traveller.

2

• At this point the trip preparation stops, although it is not complete. The plan is partial because the traveler’s
models are necessarily incomplete and many of the steps cannot afford or do not require early anticipation,
e.g., where to have lunch in Milano airport before the flight, or how to go from the International Terminal in
Sydney to take a bus to Canberra. The actor needs to be confident that the missing steps can be completed while
traveling.

• Now the trip starts. Planned actions are refined into more concrete ones, e.g., “take the train” decomposes into
buy the train ticket, find the platform, get to the platform, wait for the train, find the train car, get into the car,
find the seat, etc. Other anticipated actions will be revised given the current context: e.g., skip lunch at Milano
airport because there is no time. New plans will be generated using information available only while acting,
e.g., what to do on a 12 hours flight will also depend on services proposed onboard. Finally, contingent events
may break the plan: e.g., a glitch in Hong Kong delays the arrival in Sydney beyond the last connection to
Canberra, forcing the actor to revise the plan.

This simple example shows that beyond the trip-preparation stage, the actor’s reasoning goes through numerous
interconnected steps, at different hierarchical levels. In order to be chosen and carried out, all these steps require
prediction, but possibly with different representations and models. Some of these steps need refinement into lower
level steps (e.g., take the train), possibly using different planning techniques, others are primitives that the actor
manages without explicit reasoning (e.g., sitting once at the seat).

The focus on the actor as the primary investigation topic entails two interconnected principles:

• Hierarchically organized deliberation. Regardless of the actor’s internal architecture, it will view, prepare, and
carry out its actions hierarchically. Each action in a plan may be a task that may need further refinement and
planning, which will usually be done online (see below) and may require different representations, tools, and
techniques from the ones that generated the task. Such a hierarchical deliberation process differs significantly
from hierarchical planning techniques (e.g., HTN planning) for reducing the search complexity of offline, non-
heterogeneous plan generation.

• Continual online planning and reasoning. Only in exceptional circumstances will the actor do open-loop exe-
cution of plans synthesized offline. Instead, it will monitor, refine, extend, update, change, and repair its plans
throughout the acting process. The actor will need to generate activities dynamically at run-time in order to
carry out other higher-level activities that it is currently performing. Planning will need to be tuned for plan
repair. An activity preparation stage will certainly be needed, but with the objective of allowing flexible repair.
The actor’s plans will remain partial as long as the cost of possible mistakes is lower than the cost of modeling,
information gathering and thorough planning.

These arguments are developed in the rest of this paper which is organized as follows. Section 2 presents two
detailed examples that are close to actual applications, and supports our plea by illustrating the actor’s viewpoint and
explaining the relevance of its perspective. Section 3 develops open problems from the actor’s viewpoint in knowl-
edge representation, model acquisition and verification, synthesis and refinement, and monitoring and hierarchical
integration; and Section 4 concludes.

2. Examples

The two illustrative examples discussed in this section are quite different but they face similar open problems.
Both are organized as hierarchies of components (see Figure 1 and 2). In such a hierarchy, a component receives
tasks from the component above it, and decides what activities need to be performed in order to perform those tasks.
Performing a task may involve refining it into lower levels steps, issuing subtasks to other components below in the
hierarchy, executing commands in the real world, and reporting to the component that issued the task. In general,
tasks at different levels of the hierarchy may involve different state spaces and action spaces.

In order to carry out a task, a component may perform a variety of deliberation functions. These may include plan
synthesis or revision, plan verification, scheduling, monitoring, diagnosis, information gathering and analysis, and

3

so forth. Software packages are already available for some of these deliberation functions; additional ones are being
developed. We will call these software packages enablers.

To clarify the following discussion, let us state informally our terminology:

• An action, conceptually, is a world-transformation step that can be used to perform a task. Since components
at different levels may have different state spaces and action spaces, a primitive action at some level may be
considered at lower level as a complex task to be further refined. In Figure 1, for example, “Store” is an action
at the highest level of the hierarchy, but at a lower level it is refined into several interacting processes.

• A plan is a collection of actions organized into a simple structure, such as a totally or partially ordered sequence,
a policy, or a temporal network. Plans may be synthesized offline or online, or repaired online, by a planner
from the specification of a planning domain and problem. Plans may even be written by hand, e.g., the six-step
plan at the top of Figure 1. In this paper, planning means synthesizing or repairing a plan; a planner is the
software package (i.e., an enabler) that performs the synthesis or repair.

• A skill is also an organized collection of steps but it may have a more complex structure than a plan. A skill
such as the navigation skill in Figure 1 may involve sensing and actuating functions, loops and conditional
steps, concurrent interacting processes, etc. Hence, a plan can be seen as a special case of a skill.

An actor chooses and retrieves appropriate skills from a library that was developed offline; it instantiates and
adapts them to the current context. The offline development of a library of skills may use any combination of
specification and synthesis techniques, hand-programming, offline planning and learning.

• A component is an element in the hierarchical organization of an actor; some examples include each of the oval
boxes in Figure 1. A component uses enablers to perform its deliberation functions. In particular, it refines a
task either through online planning or through the retrieval and adaptation of an available skill.

• An actor is the integrated hierarchy of deliberation components with their enablers: for example, Figure 1 de-
picts a single actor. We use the term “actor” instead of “agent” to underline its acting functions and differentiate
it from the broader meaning of agents.

2.1. The Harbor Operation Management Facility

The example in this section is inspired by a Harbor Operation Management (HOM) facility for the sea port of
Bremen, Germany, originally presented in [18, 24]. The Bremen harbor is one of the most important European ports
for the transportation of cars. It covers an area of about 400,000 m2, with over 120,000 storage places and a dozen
technical treatment stations, servicing 6 Million cars of 18 different brands every year.

The task of the HOM facility is to supervise and control all the different operations performed in the harbor:
unload cars from ships, park them in storage areas, move them from one area to another or to a treatment area,
perform the treatment (e.g., repair a damaged car), process retailers’ orders and prepare the delivery of cars according
to the orders’ requirements, e.g., by loading them to trucks when they arrive at the harbor. Some of these operations
are performed by humans workers, others automatically by machines. For instance, the moving of cars from a storage
area to a treatment area can be performed by a truck manually driven, or by an Automated Ground Vehicle. Here, we
are not concerned with the automated operations (see next section). HOM focuses on the management of the harbor,
i.e., whether, when and how to perform a task, such as unloading cars from a ship, or moving cars from a storage area
to a treatment area, when and how to repair a car if damaged, what to do if a selected storage area is not available, etc.

While this environment is rather structured, it has several characteristics that make the operation management
complicated:

• It is customizable: e.g., the procedures of a delivery process can be customized according to the car brand,
model, or retailer-specific requirements.

• It is variable: procedures for unloading/loading cars at different gates depend on the car brands; storage areas
have different parking procedures, etc.

4

Unload Unpack Store WaitOrder Treatment Delivery

Registration Manager

Storage
Assignment
 Manager

Refinement

Booking Manager

Storage A Manager

Storage B Manager

Storage C Manager

Release Manager

Refinement

Navigate

Path Planner

Skill Handler

Shipment Manager

Refinement

Figure 1: Deliberation components for a Harbor Organization Management facility.

• It is dynamic: ships, cars, or trucks join the system dynamically, cars get moved to storage areas depending on
space availability, treatment procedures before delivery depend on the order requirements that arrive dynami-
cally.

• It is unpredictable, e.g., a car may be damaged and may therefore need to be repaired, storage areas may or not
be available, some retailer orders have unpredictable requirements, there may be unpredictable delays.

At a very high level, the whole operational management of the harbor can be described as a simple plan of abstract
actions (see Figure 1): 〈unload, unpack, store, wait-for-order, treatment, delivery〉. Generating such a plan is obvious
and unnecessary: it is invariant and easily specified by hand. The actor’s problem in HOM is the following: given
such a simple high-level sequential plan of abstract actions, refine it dynamically into concrete operations. In Figure
1, HOM refines the abstract action store into more detailed (and possibly executable) skills, e.g., for registering a
car to be stored, for moving it, etc. The different components implementing the skills interact among themselves by
message passing.

HOM has to deal with objects that dynamically appear in the environment, such as ships and trucks dynamically
entering and leaving the harbor. It has to deal with entities that can change their status dynamically, e.g., a car may
get damaged, a gate or an area for storing or treating cars may become available or unavailable, etc. Some of these
changes of status are controllable (e.g., cars can be moved from/to areas, they can be repaired). Others are caused by
exogenous events that are uncontrollable (e.g., a car can get damaged, an area can become unavailable, a gate may
not be available to unload some cars, a truck may not arrive on time to load cars to be delivered).

Moreover, management operations are carried out by different components (e.g., ships, gates, storage areas, vehi-
cles) that must interact among each other in order to accomplish a task. For instance, each ship has its own procedure
to unload cars to the gate. A gate has its own procedure to accept cars that are unloaded to the deck. These two
procedures interact in order to get cars into the harbor. Similarly, a gate may interact with the equipment on a truck to
inform the driver that some cars need to be moved to some storage areas. The truck has to interact with the procedure
of the storage area to register, accept and park cars (see Figure 1).

A possible advantageous design choice is therefore to model the domain in a distributed way, as a set of procedures
that each component performs by interacting with the procedures of other components. The interactions between the
ships and the gates, the gates and the trucks, the trucks and the storage areas, must be handled by the HOM facility that

5

manages, synchronizes, and controls the different distributed procedures. In order to do this task, HOM must deal with
a high degree of uncertainty and nondeterminism. This is not only due to exogenous events, but also to the fact that
each procedure may—from the point of view of the management facility—behave nondeterministically. For instance,
in the task to synchronize a ship with a gate to unload cars, the ship may send a request for unloading cars to the
unloading manager and the gate may reply either that the request meets its requirements and the unloading operation
can proceed according to some unloading specifications, or that the request cannot be handled. The management
facility cannot know a priori what the request, the unloading specifications, and reply will be.

All the available procedures described so far constitute the basic building blocks of HOM. Given a high-level plan
of abstract actions, and the set of available distributed and interactive procedures for each object that enters the system,
we need a refinement mechanism that transforms abstract actions into a composition of the available procedures, and an
adaptation mechanism that reacts to exogenous events and unforeseen situations. Both the refinement and adaptation
mechanisms can be designed through an approach based on our vision, where the HOM facility is an actor that can
be organized into a hierarchy of reasoning functions, where each abstract action can be a task to be further refined and
planned for, and where online planning and acting are performed continually in order to adapt and repair plans. We
need to embed one or several planners as enablers of components, which are called at run-time, when the system has
to refine an abstract action to adapt a new context. We need to provide refinement mechanisms that can be triggered
at run-time whenever an abstract action in a procedure needs to be refined or an adaptation needs to be taken into
account, in agreement with our idea that the actor (integrating planning and acting) should be the primary topic of
investigation.

In conclusion, here are some of the things needed in order to apply state-of-the-art approaches and techniques in
the HOM example:

• Effective and efficient techniques for supporting the refinement at run-time of high-level actions and plans
into lower-level components. For example, the simple sequence of high-level actions 〈unload, unpack, store,
wait-for-order, treatment, delivery〉 should be refined at run-time into components such as the registration
manager, the storage assignment manager and the storage manager. These components refine the action store
by interacting among themselves (see Figure 1). Notice that in many cases the refinement can be done only
online, since in such dynamic and uncertain environment HOM needs to gather information at run-time.

• Effective and efficient run-time adaptation mechanisms for reacting dynamically, in a context-dependent way,
to exogenous events and unforeseen situations. Current approaches in the planning literature either tend to
foresee all possible events and situations, which is unpractical in realistic complex domains, or they tend to
replan any time something unexpected occurs, which is hard to do in practice at run-time. Some adaptation
approaches (e.g., [12, 29, 72]) require analyzing all the possible adaptation cases at design time, and handcoding
the corresponding adaptation activities. This is hard to do a priori in a very dynamic and uncertain environment.

• Effective techniques for representing and reasoning about heterogeneous models, as well as effective techniques
for mapping high-level representations into finer-grained state spaces and action spaces. These are needed, for
example, in the refinement of the storage manager into the navigate component in Figure 1.

• Techniques for effectively combining different reasoning techniques at different levels of the hierarchical struc-
ture. For instance, at one level it may be convenient to abstract away certain sources of uncertainty, e.g.,
exogenous events, and use efficient planners for deterministic domains. At a lower level, we may need instead
to consider exogenous events. While some approaches address the problem of combining hierarchical reason-
ing with planning in nondeterministic domains (e.g., [63, 64]), how to combine different forms of reasoning at
different levels of a hierarchical system is still an open issue.

2.2. A Factotum Robot
A few harbors around the world are already equipped with Automated Ground Vehicles (AGVs) performing some

of the transshipment operations discussed in the previous section. One of the earliest developments in this robotics
area took place in Rotterdam, the experimental site of the Martha project (see [2, 105] and Section 20.4 of [48]).
For the sake of our argument, let us abstract here the issues of multi-robots task and resource sharing, which are
important in this application. Let us focus on a single kind of robot that we will call a factotum, whose purpose is

6

to carry out a variety of transportation and logistics missions autonomously. Such a factotum is a mobile platform
equipped with several sensors (lasers, cameras, etc.) and actuators (forklift, arms, etc.) that can move around in open
environments such as harbors or warehouses. It may need to perform tasks such as fetching objects, putting them into
boxes, assembling small boxes into bigger ones or into containers to prepare orders. It may also need to move boxes
and containers around, deliver them or pile them up in storage areas.

Such tasks can be performed with a few parameterized actions, such as these:

• map the environment (extend or update the map);

• localize itself in the environment map;

• move along a path;

• detect and avoid obstacles;

• identify and locate items (an object, a box, a shelf);

• grasp and ungrasp items;

• push items.

These actions are far too complex to be modeled only as finite-state transitions with preconditions-and-effects opera-
tors. One needs more detailed descriptive and operational models. For example, move works if it is given waypoints
in free space or an obstacle-free path that meet kinematics and localization constraints, e.g., the path has visual land-
marks or geometric features as required by localize, path segments without external localization capabilities should
be small enough to allow for a drift error in the position estimate below an acceptable threshold; avoid can handle
moving obstacles, provided that their velocity relative to the robot is not too high and the environment in front of the
robot is not too cluttered. These conditions need to be checked and monitored while performing the actions. Further,
concurrency has to be managed. For example, move should run in parallel with detect, avoid and localize.

These actions need domain-specific planners, e.g., a motion planner for move, a manipulation planner for grasp
(with possibly several locate, push, grasp and move steps). Corresponding plans are more than a sequence or a
partial order of actions; they require closed-loop control and complex monitoring.

A factotum robot has to choose and reason about its actions in order to perform its activities efficiently. At this
abstract level, automated planning techniques should hold the stage. Instead of addressing this need, a significant part
of the field has adopted implicitly a position akin to the following: “let us assume that factotum manufacturers will
package low-level commands into actions such as goto, put and take that are amenable to our classical representations;
we will carry on from there.” But this position should be revised.

Indeed, given the advances of automated planning, the hard research issues are now precisely at the actor’s level,
rather than at the planner’s level. Furthermore, robotics manufacturers have not packaged low-level commands into
well behaving state-transition actions. They wisely went around hard problems and put together nicely engineered
environments such as automated warehouse solutions.3 But these hard AI problems remain open and their solutions
are needed urgently for more versatile and easily deployable factotum robots. They correspond to the actual challenges
of the field and provide a rationale for the change of focus we are advocating.

At the mission-preparation stage (the root node in Figure 2), it is legitimate to view a logistics task as an organized
set of abstract subtasks for collecting, preparing, conveying and delivering the goods. It can be reasonable to further
decompose each subtask into a sequence of still abstract actions such as goto, take, goto, put, etc. We believe that the
state of the art for solving the mission preparation stage at this abstract level is satisfactory.

However, the mission preparation stage is just the visible part of an “iceberg of deliberation problems” faced by
our factotum robot in order to perform the entire task correctly. Consider that a goto action can be performed in many
different ways depending on the environment properties: it may or may not require a planned path, it may use different
localization, path following, motion control, detection and avoidance methods (“Move” node in Figure 2). A goto
after a take is possibly different from the one before (because of the held object). Let us assume that the robot has a set

3See for example http://www.kivasystems.com

7

http://www.kivasystems.com

Monitors

Planners

Planners

Motion planner

Planners

Monitors

Localize & Map

Move

Grasp

Find

Push

Open

Prepare order

Mission manager

Navigate

Refinement

Refinement

Refinement

Refinement

•••

Skill handler

Skill handler

Planners

Skill handler

Planners

Dynamic refinements

Components interactions

Skill handler

Manipulation
planner

Figure 2: Deliberation components for a factotum robot.

of navigation skills into which a goto can be refined. The same goto may start with a skill then switch to more adapted
skills when required by the environment and the context. Such a switch between skills may be a normal progression of
the goto action or a retrial due to complications. Our factotum robot will also need a collection of skills for take, put,
open, close, etc., and any other action it may need to perform. All these skills should come with predictive models
and possibly with additional knowledge to allow the robot to choose the best one with the right parameters.

These skills may use complex control constructs with concurrent processes (loops, conditionals, semaphores,
multi-thread and real-time locks). They can be developed from high-level specifications in some representation and/or
with plan synthesis techniques. For example, [76] illustrates the use of HTN techniques for generating candidate
navigation skills, while [101] uses probabilistic planning methods. Most often, skills in actual robotics platforms are
developed from specifications in procedural languages, such as PRS [59] or TCA [95], or in Petri nets and automata-
based representations, e.g., PLEXIL [104] or SMACH [19]. Different representations and methods may be useful to
cover the skills needed by a factotum robot. Machine learning techniques are mandatory for improving the skills,
acquiring their models, and adapting the factotum to a new trade.

Coming up with the needed skills and their explicit models does not solve all the problems in the hidden part of
the already mentioned deliberation iceberg, it solves only the issue of refining actions into lower level commands.
Several other problems remain for using these skills online, e,g., instantiation of the parameters from sensor readings,
constraint propagation, synchronization, time management, and action revision.

In addition to acting appropriately with the right skills, there are monitoring problems at various levels, from
the primitive and skill levels to the task and mission levels, and possibly to the goal level. Monitoring compares
predictions to observations; it diagnoses discrepancies and triggers appropriate recovery actions. In order to do that,
predictions of what is needed to correctly perform ongoing activities should be made beforehand. Making the right
predictions from the combined models of actions and skills, as well as from additional models of the environment, is
a difficult problem that involves heterogeneous representations.

Finally, autonomous acting requires extended perception capabilities: sensing actions as well as querying and
information gathering steps, combined into a consistent interpretation of the environment. Open perception problems
are not limited to signal processing and pattern recognition issues. They include in particular AI problems such as
anchoring and symbol grounding (i.e., establish, maintain and revise signals-to-symbols relations), reasoning on what
is observable and what is not, integrating knowledge-gathering actions to environment changing actions, acting in
order to maintain a consistent interpretation of self and the world, dynamic situation and plan-recognition problems.

8

In summary, this example illustrates some of the challenges of deliberate action. It reveals that the bottleneck for
the design of a factotum robot is not at the level of more sophisticated path-finding techniques in compactly specified
state-transition systems. Coming up with better domain-independent heuristics and more efficient search algorithms
will not solve what we referred to as the actor’s deliberation problems. Instead, one needs in particular:

• descriptive models of actions and environments that are elaborate enough to allow for the synthesis of complex
skills, possibly making use of domain-specific knowledge;

• operational models that make it possible to run these skills, make context-dependent choices, and monitor their
execution;

• online algorithms that interleave reasoning and acting, to make it possible to refine and monitor a task at different
hierarchical levels and to revise dynamically its lookahead predictions.

Next, we will discuss these and other open problems of a research agenda focused on actors.

3. Open Problems

As mentioned in previous sections, the change of focus from planners to actors stresses hierarchical online rea-
soning. The main cognitive functions an actor has to perform seem to be the following:

• refine a task or an abstract action into lower level actions and primitives;

• monitor current state of the world it perceives with respect to predictions;

• revise its previous refinements.

Refinement and revision may involve the online synthesis of plans and more complex programs. They may also
involve the optimized choice of skills, previously synthesized and/or learned, and their parameters. These functions
require predictive domain models that may use several knowledge representations.

In the sequel of this section we will discuss open problems that we foresee for the design of actors regarding the
following issues:

• knowledge representations for needed models;

• modeling, knowledge acquisition and verification techniques;

• synthesis techniques required;

• monitoring techniques;

• integration issues.

Needless to say, this decomposition does not reflect the steps of a research roadmap. Its purpose is mainly to structure
the argument and present the problems that need to be tackled.

3.1. Knowledge Representations
An actor needs to reason about its actions and to perform them. It needs models for choosing, organizing, moni-

toring, repairing and revising its actions and plans. It also needs operational specifications for refining its actions into
lower-level executable steps or mapping them into skills. The specifications needed for reasoning, referred to here as
descriptive models, address the “what”, the “when”, and possibly the “why” issues, i.e., conditions, effects, motiva-
tions, rewards and costs of actions. The specifications needed for achieving actions, referred to as operational models,
address the “how” issues, i.e., modus operandi for actions in their context. Some models may offer both descriptive
and operational specifications. The knowledge representations required by actors should facilitate the specification of
the “know-what” as well as the “know-how” models of actions in a general and consistent way. They should allow
for efficient deliberation algorithms.

Note that both types of models need to take into account the actor’s environment. They must either describe it
directly, or be integrated with separate models (see Section 3.1.3) in order to account for the environment’s dynamics,
exogenous events, causal relationships, effects and possible interference with the actor’s actions.

9

3.1.1. Descriptive Models
Descriptive models for domain-independent planning (for background on this topic, see [48, 89]) can be specified

using various representations, among which are these:

• Precondition-and-effect representations such as Strips, ADL, and the PDDL family of languages [41, 42];

• Formal action languages, which stem mainly from the situation calculus and the event calculus in first-order
logic, e.g., Golog [68], and related Action Description languages, such asA,C+,K [51, 50, 49], etc.;

• Timelines over state-variables, e.g., the planners [47, 43, 45] and the ANML language [97];

• Nondeterministic and probabilistic representations, e.g., the PPDDL, and RDDL [91] languages.

There are several open problems regarding the comparative expressiveness of these representations for planning.
From the actor’s viewpoint other urgent issues need to be addressed. All of these representations are designed for
allowing an efficient computation of the state resulting from an action, but at a too abstract level. It is unclear how
relevant these representations remain for expressing detailed actions with links to sensing, control and monitoring.

Furthermore, these representations need to be integrated with domain-specific representations and algorithms.
An actor should be able to query specialized enablers for checking feasibility of actions and making its predictions.
For example, a factotum robot needs among other specialized enablers a motion planner, a manipulation planner,
a perception planner (visibility, sensing modalities, etc.); all these need to be consistently integrated with the other
enablers.

Most of the planning representations listed above assume a static environment or can handle some limited exten-
sions of this assumption. Several problems remain for grasping the proper dynamics of the environment. Exogenous
events need to be among the main building blocks of descriptive models. Furthermore, these representations generally
rely on the closed world assumption, i.e., the assumption that all facts about the world are either explicitly stated,
or derivable from explicitly stated facts. This assumption may be reasonable for planning at an abstract level, but it
is hardly acceptable for acting. An actor should be able to reason about unknown facts, in particular about missing
information that it can arrange to acquire with observation and information gathering actions. Some work has been
done along this line, e.g., [17, 13, 4, 74, 92]. However, most of these works rely on assumptions that can be applied
only in specific domains. For instance, [74] assumes that the gathered information persists for a reasonable period of
time, and none of the actions causes this assumption to be violated.

We already mentioned that planning for an actor is to be viewed as a continual online process giving partially
refined plans, provided that the actor is confident that the missing steps in its plans can be completed while acting. This
confidence should be derivable from the descriptive models. Adequate representations should be added to available
formalisms to express when and which steps are critical and need to be refined down to some level before committing
to a plan and starting to act. The level of criticality of a step may vary widely depending on the foreseen context of its
execution.

3.1.2. Operational Models
Operational models for acting can be specified with representations such as:

• Procedural representations, e.g., PRS [59], RAP [39], TCA [94], RMPL [58], etc.;

• Automata, Petri nets, workflow and distributed processes, e.g., PLEXIL [104], RMPL, BPEL [6, 109], APFL
[23], SMACH [19], etc.;

• Adaptive and partial programming languages and systems, such as Alisp [5] or A2BL [96], that couple specifi-
cation with reinforcement learning techniques.

In robotics for example, procedural representations are quite popular for refining actions into hand specified skills,
possibly with monitoring and repair actions. But these kind of specifications are not very generic over a variety of
actions and environments. They seldom provide models of actions and causal relationships for the dynamics they
specify.

10

There is a significant overlap between operational models for low-level reactive systems and those for deliberative
actors. The same representations can be used for both, e.g., state charts [53], and their more recent extensions toward
behavioral programming [54], can be used for specifying the know-how for simple embedded systems as well as
for more complex behaviors. The specifics of the actors we are interested in stem from the diversity in tasks and
environments. Representations for operational models should allow for handling such diversity.

It is interesting to note that methods in HTN planning, i.e., directives for refining a task into subtasks, offer in
principle an operational component in a descriptive model. However, these constructs have been used mostly for
reducing the search complexity through heuristic domain knowledge. More is needed on how to extend HTN methods
to acting functions.

The relationships between the operational and descriptive specifications of an actor’s models cover several open
problems. For example, one would like to be able to extend a descriptive model towards its operational counter-
part. Conversely, it should be possible to synthesize the descriptive specifications of an operational model, making it
possible to reason about it and perhaps to generalize it and use it more generically. Here also there are open prob-
lems regarding the environment dynamics, usually taken into account in operational models in hard-coded and ad-hoc
ways. An interesting perspective would be to combine a generic model of an environment with an actor’s operational
models, to verify their consistency, to synthesize knowledge needed for monitoring, etc.

3.1.3. Environment Models
Different planning and acting problems may require different kinds of models of the same environment. For

example, a factotum robot (see Section 2.2) needs environment maps at the geometric, topologic and semantic lev-
els. It would need object models describing the geometry and shape of objects, their functions and possible uses.
Both the robot and the HOM facility would also require models of exogenous events that normally take place in the
environment. Their interaction with humans would demand an additional range of models.

The traditional approach in automated planning is to integrate the relevant part of the environmental model, viewed
at an abstract relational level, within the planning problem specifications. This approach does not work for open
environments, such as the environments in which the robot or the HOM facility would operate. An actor should be
able to access additional models when needed, e.g., by querying online ontologies or downloading additional object
and event descriptions. For example, the Bremen harbor system may need to issue queries for information about
incoming ships or new cars. An actor should be able to acquire new skills when needed, e.g., how to operate a device
that the robot is not familiar with, or how to deal with a new unloading or storage procedure. The integration of these
additional models with the other actor’s models is not straightforward, even with standardized representations.

We mentioned that in principle, the same model may be used as both a descriptive and an operational specification.
This interesting possibility is related to the preceding set of open problems. Complex environments are often modeled
operationally through simulation models; the results of simulations can be used—e.g., by sampling techniques—to
provide descriptive predictions for use in reasoning, planning and optimization. This is illustrated, for example, by
the sampling techniques in the configuration space for motion and manipulation planning that are the basis of the
powerful probabilistic roadmaps and rapidly-exploring random tree algorithms. This avenue of research, not enough
explored, opens promising perspectives.

3.2. Model Acquisition and Verification
The acquisition of descriptive and operational models of an actor is a critical issue that can determine the feasibil-

ity, the effectiveness, and the correctness of automated acting and planning techniques. A fundamental step supporting
model acquisition is model verification. Informally, model verification is the task that checks whether the model is
”good”, that is, it provably meets some properties.4

Model acquisition and verification can be carried out in different ways. Model acquisition can be done manually,
through the definition of a model in a proper specification language (see the previous section), with the support of
software engineering tools (e.g., for the definition of requirements), or it can be supported by tools for learning from
examples and interactions with a teacher.

4As explained in the rest of this section, model verification becomes even more vital if the models are hierarchical and heterogeneous and if
online planning and acting is required.

11

Machine learning techniques are critical components, possibly with simulators, for the acquisition of operational
models with adaptive and partial programming approaches. Reinforcement learning, learning from demonstration and
active imitation offer promising perspectives in that direction, e.g., [7, 60, 107] and approaches mentioned in Section
3.1.2. Learning descriptive models of actions and skills is an active area of research, e.g., [112, 61, 66, 110, 111], in
which many challenges remain to address in the integrative actor’s requirements.

Model verification can be done through testing, simulation, or through automated techniques based on formal
methods (e.g., model checking or theorem proving). Extensive work has been done in the computer automated ver-
ification community using approaches such as automated theorem proving and model checking [36, 26]. Different
techniques have been used for modeling and verification of models of different kinds of environments (e.g., continu-
ous variables in CAD models, discrete variables in state-transition models). In planning, some work has been done
to address the problem of verifying properties of models [46] and verifying the correctness of plans. Properties can
include temporal conditions on states predicted by plans (e.g., never get into a dangerous state, maintain some desired
requirements) but also some properties related to reliability, robustness, possibility to recover from failure. In the
case of nondeterministic or probabilistic models properties should be verified on sets of histories or other complex
structures.

Our vision, which concentrates on actors as the primary topic of investigation, poses a variety of new research
challenges in model acquisition and verification. These are summarized below.

Hierarchical structure and heterogeneous models. Some new challenges are due to the hierarchical structure of an
actor as a fundamental integrative organization. Model acquisition and verification must take into account such hier-
archical structure and, as a consequence, the need to provide mappings between different representations at different
levels. While verification is helpful for acquiring abstract models in general, it becomes mandatory when we rely on a
hierarchy of several heterogeneous models. Model verification must be able to check whether models at one level sat-
isfy some conditions at another level. Moreover, at different levels we may have different representation mechanisms
and different descriptive and/or operational representations. For instance, in order to navigate autonomously, a fac-
totum robot needs different environment maps using different spatial representations. This heterogeneity may result
in the need for different tools for supporting model acquisitions, e.g., tools supporting the construction of topological
mapping systems combined with localization, tools for metric and topological simultaneous localization and mapping
and semantic labeling techniques. Similarly, different verification techniques may be required to check properties of
the acquired model. In some cases, hybrid models and hybrid verification techniques can be required, e.g., when we
have discrete variables at one level and continuous variables at another.

The heterogeneity induced by the hierarchical structure is not only a matter of representation. At different levels
there may be different models of the environment, and different ways of obtaining these models. Models may be
generated with tools that support their construction, may be defined manually, or may be developed with a mix of
automated and manual (e.g., editing) techniques. Alternatively, models may be given by external systems or inherited
from a different hierarchical level.

Assumption-based modular acquisition and verification. In a complex planning and acting system based on a hier-
archical structure, it is possible to verify that one module or part of the system satisfies some properties, provided
that some assumptions about different modules or parts of the system guarantee some behaviors. This idea resembles
some “assume guarantee” techniques used in model checking [82] and techniques for assumption-based automated
composition, e.g., [85]. In the HOM example, we can assume an action for storing cars completes its task successfully,
and on this base plan for the delivery step. This challenge in verification is highly related to model acquisition.

Semantic annotations and dynamic models. A further challenge is the model acquisition and verification with respect
to domain ontologies. The knowledge representations discussed in the previous section are suited to describe dynamic
domains, i.e., the evolution of a system through actions and events. One also needs to represent static properties of
a domain. These are conveniently grasped with ontologies and description logic expressing the semantics of terms
[11]. It is clear that both types of representations are needed by an actor. Several attempts have been made to extend
languages suited to define dynamic models with languages used to describe static properties, e.g., see the work on
WSDL-S, METEOR-S, and BPEL-S [69, 93, 83, 84]. However, extending the expressiveness of languages in one or
the other direction results in both conceptual and practical problems. A different approach can be based on the idea

12

to keep separate the description of the behavior of the domain and the semantic description of objects in the domain
and bridge the two descriptions with semantic annotations of the dynamic models of behaviors. For instance, in the
HOM example, we can have an ontology describing the different types of cars and the treatment needed, and a plan
can query such ontology to understand the next steps to be performed.

Run-time vs. offline verification. Further challenges are due to the need for continual online planning and reasoning.
Due to the need of continual planning and monitoring, important information is available only in certain moments and
in some situations. Planning and reasoning must be done according to some assumptions. If we explicitly represent the
assumptions under which our model has been constructed, then we can verify that such assumptions are maintained,
e.g., at run-time or in different contexts.5

Moreover, some verification can be done only at run-time [17]. Run-Time Verification [67, 25] takes place while
the actor is planning and/or acting. Properties to be verified at run-time can be generated by planning for monitoring
purposes.

Finally, there is a balance between defining detailed models that are used to generate plans that are guaranteed
to satisfy some conditions (these models are supposed to be “complete” and plans are correct by construction), and
having models that allow us to generate plans with more relaxed constraints, and then verify (either at design or at run
time) whether those plans satisfy some conditions. Since the actor is continuously monitoring, refining and repairing
plans, relaxing some conditions and abstracting away some details from the model may be important in order to
determine quickly and dynamically a useful plan. For instance, in HOM we can abstract away possible effects of
exogenous events (such as a car being damaged, or a storage area being not available) and plan accordingly to a more
simple model than the nondeterministic one.

3.3. Synthesis and Refinement
For the synthesis of plans and skills in a dynamically changing world, several important issues need to be further

explored. Some of them include the integration of domain-independent planners with task planners such as motion
and manipulation planners, replanning and plan revision, temporal planning, external information sources, and how
to use domain knowledge.

Flexibility and robustness. In a world that is dynamically changing and whose properties are only partially known,
states of the world may occur during execution of a plan or skill that do not match what was predicted. In such
situations, robustness and flexibility are quite important. The mismatch may make the actor’s objectives easier to
perform, making it desirable to revise the plan to take advantage of this—or it may interfere with the successful
achievement of those objectives, making it necessary to revise the plan or to replan (i.e., discard the rest of the current
plan, and synthesize a completely new one). Despite a number of recent works on replanning and plan revision,
e.g., [102, 103, 40, 71, 10, 9, 22], substantial open problems remain. For example, much more work is needed to
understand and address the tradeoffs between constructing a large and complicated plan that will succeed under all
known contingencies, or postponing part of the planning process until some of the plan has been executed, to get a
better idea what contingencies will actually occur. Similar tradeoffs between very cautious plans that are costly and
optimized plans that are risky, as in the branched conditional plans of [27], need to be explored.

Temporal planning. Temporal planning is needed because actions are naturally durative and take place concurrently
with other actions and events. Temporal planning opens several expressivity and algorithmic problems for which re-
searchers have developed extensions of state-based representations, such as in [70, 28], or timelines on state variables.
From the actor’s viewpoint and in the context of continual online planning, time has a triple role as:

• a resource that is needed by every action, and requires specific representations and reasoning methods;

• a computational resource that is needed for deliberation;

• a real-time constraint on the execution dynamics as well as on the actor’s deliberations.

Although research has been done on each of these characteristics individually, synthesis algorithms need to integrate
these three characteristics of time. The state of the art does not yet allow such integration.

5This run-time verification is related to monitoring.

13

Information queries, open worlds. Some AI planning formalisms, such as POMDPs, include the notion of making
observations during plan execution, but these formalisms have several limitations. For example, they typically do not
model the time delays that can occur before information is returned from a sensor, web service, or other information
source, nor the notion that such information may remain valid only for a limited period of time, and they often assume
a closed world in which all of the possible objects, states, events, and action outcomes are given in advance. In an
open world, it may be necessary to perform some of the information-gathering at planning time rather than postponing
it until plan-execution time. Although some work has been done on this, the existing models are still limited [65, 99],
or quite specific [90]. If the world can change while planning is going on, this can present problems that in the worst
case are complicated or even undecidable [8, 9], but still must somehow be dealt with.

Effective use of domain knowledge. AI planning research has traditionally striven to develop domain-independent
planning techniques. These techniques need to be combined with techniques that provide a more explicit role for
domain knowledge. Partly this can be done by paying more attention to the notion of hierarchy, especially in regard
to online planning.

To the extent that AI planning research has dealt with hierarchy, it has usually assumed that every level of the
hierarchy has the same state space and action space. However, in practical hierarchical systems, the lower levels
generally require different state and action spaces, in order to reason with the appropriate representations about details
that would be both irrelevant and problematic at the higher, more abstract levels.

3.4. Monitoring and Goal Reasoning

The motivations for monitoring and goal reasoning derive naturally from the principle of continual online planning
and plan revision. Deliberate action relies on a feed-forward control model, i.e., make predictions then take corrective
actions triggered by monitoring the differences with observations. The precise role of monitoring is thus (i) to detect
discrepancies between predictions and observations, (ii) to assess and diagnose these discrepancies, and (iii) to decide
about first recovery actions while plan repair is triggered. The problems to address here relate in particular to the
following issues:

• the knowledge that is needed to do monitoring;

• focus-of-attention mechanisms;

• diagnosis techniques;

• recovery mechanisms;

• integration of monitoring into acting.

Let us discuss these issues successively.

Some of the conditions that need to be monitored are in principle derivable from descriptive and operational
models of actions, but there may be an overwhelming number of such conditions. Their dependency relationships
may not be derivable from action models, and neither would the effects of exogenous events that can interfere with
actions. Moreover, conditions not specific to any action, such as the internal functioning status of the actor, have also
to be surveyed.

For all these reasons, monitoring knowledge has to be specified jointly with planning knowledge. What can
be derived from the latter needs to be combined with the former. This is the case, for example, with plan-invariant
conditions, i.e., conditions predicted and required to hold for part of the plan, as in [44, 21, 34, 16]. The consistency of
the two types of knowledge has to be verified, preferably within the knowledge specification and acquisition process.
This leads to the issue of knowledge representations allowing such verification while permitting to take into account
heterogeneous hierarchical levels. There are numerous open problems here and possible trade-offs, insufficiently
investigated.

Combining monitoring and planning knowledge should allow the synthesis of plans with both functional properties
(i.e., achieving the goals) and nonfunctional properties such as permitting monitoring and diagnosis. In many cases

14

specific actions are needed to allow errors to be traced. This has been illustrated in the approach of “safe assumption-
based plans” of [3] for nondeterministic planning where explicit assumptions are made to restrict plan search.

Monitoring a dynamic evolution requires a close link to perceiving and information gathering, as illustrated in
[57]. Focus of attention mechanisms should give the environment features to perceive and the information to acquire.
They should provide the properties and constraints that need to be checked and the correct timing for that. Focus
of attention should allow a look-ahead in monitoring (detect forthcoming problems as early as possible), supported
by a cost-benefit analysis with respect to ongoing activities. Finally, these focus mechanisms rely on monitoring
knowledge as well as on other domain models, such as perception models. This adds additional requirements on the
design of such models.

The interpretation of discrepancies between predictions and observations is a major monitoring function. Diag-
nosis mechanisms cannot rely on nominal models alone. To get to the causes of a detected anomaly requires more
general causal models. Model-based diagnosis techniques address this issue. They have been applied successfully
to autonomous agents, e.g., in the Deep-Space-One probe [77, 106]. However, these techniques are limited to the
diagnosis of the internal state of the actor (proprioceptive monitoring). They need to be extended to the diagnosis
of the actor-environment interactions. This is very hard. But fortunately, the actor does not need a deep explanation
of every detected anomaly. Its purpose is seldom to make a full repair, but mainly to explain enough the anomaly in
order to go ahead with its activity.

Consider a factotum robot performing an open(door) action. The action refines into a skill with steps such as
finding the door, identifying the door’s opening direction (left/right, in/out), locating the handle, identifying the type
of handle, grasping the handle, turning it, and moving the robot arm and base while holding the handle to open the
door. Complex monitoring and diagnosis have to take place throughout the performance of these steps. For example,
the last step may fail in several different ways. A failure may be due to a locked door. If the door started to turn, the
failure may be due to an obstacle. If the door turns inward, then the robot may try to locate the obstacle and remove
it from the path.

Recovery actions are needed to handle a detected failure temporarily, in order to allow for a proper plan repair.
These reactive recovery actions will need to be adapted to diagnosed situations. Response time constraints may
require offline synthesis and caching of possibly parametrized state-action pairs (as a recovery policy or a universal
plan). Here also the research agenda of what needs to be specified and synthesized at each level of an actors hierarchy
is rich in open problems.

Finally, the monitoring functions of focus, detection, diagnosis and recovery need to be integrated into the hierar-
chy of Figure 2. If monitoring is centralized, it has to map its functions to the hierarchy. If it is distributed along the
hierarchy, then there is a local monitoring at the level of each actor node and some propagation mechanisms to allow
for coordinated monitoring. Questions to be addressed are for example: what each enabler (planner, scheduler etc.)
gives to the corresponding monitor; how that monitor changes the performed actions, locally and elsewhere, to allow
for the focus and information gathering mechanisms; how the recovery actions are propagated.

Goal reasoning. Goal reasoning (also called goal-driven autonomy [75]) is an abstract form of monitoring, at the
level of the actor’s objectives. The idea is to keep the actor’s goals in perspective with respect to the evolution of the
environment. When failures, conflicts or opportunities arise, the actor has to assess what is feasible, what compromises
are possible, how to reassess its previous commitments [86], and whether to make new commitments or goals [30]. A
simplified view of an actor’s motivations can be given by a goal state or a cost criterion. A more general view would
consider several possibly conflicting objectives, with preferences and a hierarchical scale.

For example, a factotum robot has to prepare a set of delivery orders (items packaged into boxes); it has also
received a few demands from persons it is servicing; this in addition to background chores such as maintaining the
environment in good order. The robot manages its to-do list as a dynamic priority scheme. A request for a coffee can
be postponed after higher priority jobs while informing the requester; if the latter happen to leave the place then that
coffee request is no longer relevant.

The agenda of open problems here includes in particular the following:

• How to specify and formalize this dynamic hierarchy of motivations;

• How to monitor the current goals, adapt and drop if needed some objectives;

15

• How to generate new goals given a higher level motivation.

3.5. Integration

We have argued that the change of focus from planners to actors stresses hierarchical online reasoning. The
design and implementation of the deliberation functions needed for example by the HOM system or a factotum robot
involve several components and enablers at different levels of the hierarchy. This naturally brings up more complex
organization and integration problems than the design of a task planner. Among these problems there are in particular
the following issues:

• How to organize the hierarchy of components implementing an actor. The hierarchy may include parts that
are static, e.g., parts in which some components can trigger execution functions (have executors among their
enablers). But other parts may change over time, or in different domains and problems. For example, learning
a frequently performed task could provide a skill that could be used instead of repeatedly generating plans in
slightly different contexts.

• How to handle distribution and concurrency of components.

• How to integrate observed real time constraints for reasoning and acting. These issues are the consequences at
the integration level of the problems discussed in Section 3.3.

Several organizational paradigms from other areas of computer science may be useful for addressing these prob-
lems. Some examples include networked message-passing organization, data- and control-flow streaming mecha-
nisms, blackboards and other shared memory architectures, and various combinations of the above. It is unclear
whether there is a dominant architecture for an actor’s deliberation issues. Different domain-specific considerations
as well as engineering and community development issues (e.g., software reuse) play a critical role.

The HOM system for example is designed around a message-passing architecture. In Figure 1, the top part shows
the procedure for the whole operational management as a simple sequential plan of abstract actions: 〈unload, unpack,
store, wait-for-order, treatment, delivery〉. The operation management facility refines these abstract actions into
more detailed (and possibly executable) skills, e.g., for registering a car to be stored, for moving it, etc. The different
components implementing the skills interact among themselves by message passing.

Several hierarchical online reasoning problems have been addressed in the area of architectures and languages for
multi-agent systems, e.g., [108, 80, 81, 35]. At a high level, some of these architectures can be applied to systems such
as the HOM example. However, many open issues remain, e.g., how to refine automatically at run-time a high-level
action such as store into a composition of lower-level components, or how to adapt such components to exogenous
events and unforeseen situations.

Many experimental robot platforms implement sophisticated architectures, e.g., hierarchical (or three-tier) archi-
tectures [20, 1, 79], teleo-reactive architectures [38, 73], reactive architectures extended for deliberation [62], and
shared-memory architectures [87]. It is very reasonable to design an actor-based deliberation system with one of the
first two categories, and possibly even with the other types. For our factotum robot, one may devote a component to
each type of action, e.g., a navigation component, a simple pick-and-place manipulation component, an object finding
component, an appliance or furniture manipulation component, a dialogue and communication component. These
will provide services to components dealing with higher level tasks such as an order preparation component, or an
assembly component. On top of these, a mission preparation and following component will be in charge of the overall
jobs of the robot.

Finally, let us mention that we focused the above discussion on actors with autonomous deliberation functions and
their architectural needs. Some applications may require also addressing environments with high dynamics and strong
real-time constraints, e.g., for a flying robot. For such domains, techniques from real-time systems would be needed
not only for the executor’s level but possibly also for the low-level components. One may imagine an organization into
nested loops with the higher-frequency dynamics at the lowest level. Furthermore, some domains may have critical
safety constraints. A natural design is to circumscribe these constraints into specific enablers and components that are
developed using adaptations of methods that were initially designed to prove safety properties, e.g., [54].

16

4. Conclusion

Although automated planning has been very successful in developing search techniques in abstract “preconditions-
and-effects” state-transition spaces, these achievements have not had as much application impact as one might desire.
Our analysis of this situation stresses several issues that others have previously recognized:

• “preconditions-and-effects” operators remain too abstract to model concrete actions adequately;

• there is more to deliberate action than just planning;

• it is important to address in a systematic and integrative way the problems involved with acting deliberately,
which remains one of the main objectives of AI.

In this paper we have advocated a focus on the design and development of actors, as opposed to planners, executors
or other enablers that an actor may use to perform its activities. Our two motivating examples, in service robotics and
management of a large facility, illustrate how relevant the actor’s viewpoint is for most planning applications.

In summary, our proposed focus entails two principles:

• Hierarchically organized deliberation. This principle goes beyond existing hierarchical planning techniques;
its requirements and scope are significantly different. The actor performs its deliberation online; it requires
heterogeneous models and mappings to perform refinements into finer-grained state spaces and action spaces.
Methods and tools are needed to support the construction of models and mappings and the run-time reasoning.

• Continual planning and deliberation. The actor monitors, refines, extends, updates, changes and repairs its
plans throughout the acting process, using both descriptive and operational models of actions. Ways are needed
to acquire and verify these models, automatically extend them so that the actor can operate in an open environ-
ment, and do monitoring and goal reasoning.

We believe the time is ripe for the change of focus that we are advocating. We hope this paper will be useful in
helping readers to understand the need for this change and the pressing problems to be addressed.

Acknowledgments

We are grateful to the anonymous reviewers for their thorough reading and insightful comments, which contributed
to improving this paper.

This work was supported in part by EU FP7 SAPHARI under grant agreement no. ICT-287513, ARO grant
W911NF1210471, ONR grants N000141210430 and N000141310597, and a UMIACS New Research Frontiers
Award. The information in this paper does not necessarily reflect the position or policy of the funders; no official
endorsement should be inferred.

References

[1] Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F., 1998a. An architecture for autonomy. Internat. Jour. of Robotics Research 17,
315–337.

[2] Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F., 1998b. Multi Robot Cooperation in the Martha Project. IEEE Robotics and
Automation Magazine 5, 36–47.

[3] Albore, A., Bertoli, P., 2004. Generating safe assumption-based plans for partially observable, nondeterministic domains, in: Proc. AAAI,
pp. 495–500.

[4] Ambite, J.L., Knoblock, C.A., Muslea, M., Minton, S., 2005. Conditional constraint networks for interleaved planning and information
gathering. IEEE Intelligent Systems 20, 25–33.

[5] Andre, D., Russell, S.J., 2002. State abstraction for programmable reinforcement learning agents, in: Proc. AAAI.
[6] Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeravarana,

S., 2003. Business Process Execution Language for Web Services, http://msdn.microsoft.com/en-us/library/ee251594(v=bts.10).aspx.
[7] Argall, B.D., Chernova, S., Veloso, M.M., Browning, B., 2009. A survey of robot learning from demonstration. Robotics and Autonomous

Systems 57, 469–483.
[8] Au, T.C., Nau, D.S., 2006. The incompleteness of planning with volatile external information, in: Proc. ECAI, pp. 839–840.
[9] Au, T.C., Nau, D.S., 2007. Reactive query policies: A formalism for planning with volatile external information, in: IEEE Symp. on

Computational Intelligence and Data Mining (CIDM), pp. 243–250.

17

[10] Ayan, N.F., Kuter, U., Yaman, F., Goldman, R.P., 2007. Hotride: Hierarchical ordered task replanning in dynamic environments, in: Proc.
3rd Workshop on Planning and Plan Execution for Real-World Systems.

[11] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (Eds.), 2003. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press.

[12] Baresi, L., Guinea, S., 2011. A3: self-adaptation capabilities through groups and coordination, in: India Software Engr. Conf. (ISEC), pp.
11–20.

[13] Barish, G., Knoblock, C.A., 2008. Speculative plan execution for information gathering. Artificial Intelligence 172, 413–453.
[14] Beetz, M., 1999. Structured reactive controllers: controlling robots that perform everyday activity, in: Proceedings of the third annual

conference on Autonomous Agents, pp. 228–235.
[15] Beetz, M., McDermott, D., 1994. Improving robot plans during their execution, in: Proc. AIPS.
[16] Bernardini, S., Smith, D., 2011. Finding mutual exclusion invariants in temporal planning domains, in: Seventh International Workshop on

Planning and Scheduling for Space (IWPSS).
[17] Bertoli, P., Cimatti, A., Traverso, P., 2004. Interleaving execution and planning for nondeterministic, partially observable domains, in: Proc.

ECAI, pp. 657–661.
[18] Boese, F., Piotrowski., J., 2009. Autonomously controlled storage management in vehicle logistics applications of RFID and mobile

computing systems. Internat. Jour. of RF Technologies: Research and Application 1, 57–76.
[19] Bohren, J., Cousins, S., 2010. The SMACH high-level executive. IEEE Robotics and Automation Mag. 17, 18–20.
[20] Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D., Slack, M., 1997. Experiences with an Architecture for Intelligent, Reactive

Agents. Jour. of Experimental and Theoretical AI 9, 237–256.
[21] Bouguerra, A., Karlsson, L., Saffiotti, A., 2007. Semantic knowledge-based execution monitoring for mobile robots, in: IEEE Internat.

Conf. on Robotics and Automation (ICRA), pp. 3693–3698.
[22] Brenner, M., Nebel, B., 2009. Continual planning and acting in dynamic multiagent environments. Autonomous Agents and Multi-Agent

Systems 19, 297–331.
[23] Bucchiarone, A., Lluch-Lafuente, A., Marconi, A., Pistore, M., 2009. A formalisation of adaptable pervasive flows, in: Web Services and

Formal Methods, pp. 61–75.
[24] Bucchiarone, A., Marconi, A., Pistore, M., Raik, H., 2012. Dynamic adaptation of fragment-based and context-aware business processes,

in: Internat. Conf. on Web Services, pp. 33–41.
[25] Cimatti, A., Giunchiglia, F., Pecchiari, P., Pietra, B., Profeta, J., Romano, D., Traverso, P., Yu, B., 1997. A provably correct embedded

verifier for the certification of safety critical software, in: Internat. Conf. on Computer Aided Verification (CAV), pp. 202–213.
[26] Clarke, E.M., Wing, J.M., 1996. Formal methods: State of the art and future directions. ACM Computing Surveys 28, 626–643.
[27] Coles, A.J., 2012. Opportunistic branched plans to maximise utility in the presence of resource uncertainty., in: Proc. ECAI, pp. 252–257.
[28] Coles, A.J., Coles, A., Fox, M., Long, D., 2012. COLIN: planning with continuous linear numeric change. Jour. of AI Research 44, 1–96.
[29] Colombo, M., Nitto, E.D., Mauri, M., 2006. Scene: A service composition execution environment supporting dynamic changes disciplined

through rules, in: Internat. Conf. on Service Oriented Computing (ICSOC), pp. 191–202.
[30] Cox, M.T., 2007. Perpetual self-aware cognitive agents. AI Mag. 28, 32–46.
[31] Dean, T.L., Wellman, M., 1991. Planning and Control. Morgan Kaufmann.
[32] desJardins, M., Durfee, E.H., Ortiz, C.L., Wolverton, M., 1999. A survey of research in distributed, continual planning. AI Mag. 20, 13–22.
[33] Despouys, O., Ingrand, F., 1999. Propice-Plan: Toward a unified framework for planning and execution, in: European Workshop on

Planning.
[34] Doherty, P., Kvarnström, J., Heintz, F., 2009. A temporal logic-based planning and execution monitoring framework for unmanned aircraft

systems. Autonomous Agents and Multi-Agent Systems 19, 332–377.
[35] Durfee, E.H., 2001. Distributed problem solving and planning, in: European Agent Systems Summer School (EASSS), pp. 118–149.
[36] Emerson, E.A., 1990. Temporal and modal logic, in: van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal

Models and Semantics. Elsevier. chapter 16, pp. 995–1072.
[37] Erdem, E., Tillier, E.R.M., 2005. Genome rearrangement and planning, in: Proc. AAAI, pp. 1139–1144.
[38] Finzi, A., Ingrand, F., Muscettola, N., 2004. Model-based executive control through reactive planning for autonomous rovers, in: IEEE/RSJ

Internat. Conf. on Intell. Robots and Systems (IROS), pp. 879–884.
[39] Firby, R.J., 1987. An investigation into reactive planning in complex domains, in: Proc. AAAI, pp. 202–206.
[40] Fox, M., Gerevini, A., Long, D., Serina, I., 2006. Plan stability: Replanning versus plan repair, in: Proc. ICAPS, pp. 212–221.
[41] Fox, M., Long, D., 2003. PDDL2.1: An extension to PDDL for expressing temporal planning domains. Jour. of AI Research 20, 61–124.
[42] Fox, M., Long, D., 2006. Modelling mixed discrete-continuous domains for planning. Jour. of AI Research 27, 235–297.
[43] Frank, J., Jónsson, A.K., 2003. Constraint-Based Attribute and Interval Planning. Constraints 8.
[44] Fraser, G., Steinbauer, G., Wotawa, F., 2005. Plan execution in dynamic environments, in: Innovations in Applied AI, Springer. pp. 208–217.
[45] Fratini, S., Cesta, A., De Benedictis, R., Orlandini, A., Rasconi, R., 2011. APSI-based deliberation in Goal Oriented Autonomous Con-

trollers, in: Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA).
[46] Gerevini, A., Schubert, L., 1998. Inferring state constraints for domain-independent planning, in: Proc. AAAI, pp. 26–30.
[47] Ghallab, M., Laruelle, H., 1994. Representation and control in IxTeT, a temporal planner, in: Proc. AIPS, pp. 61–67.
[48] Ghallab, M., Nau, D.S., Traverso, P., 2004. Automated Planning: Theory and Practice. Morgann Kaufmann.
[49] Giunchiglia, E., 2000. Planning as satisfiability with expressive action languages: Concurrency, constraints and nondeterminism, in: Internat.

Conf. on Principles of Knowledge Representation and Reasoning (KR), pp. 657–666.
[50] Giunchiglia, E., Kartha, G.N., Lifschitz, V., 1997. Representing action: Indeterminacy and ramifications. Artificial Intelligence 95, 409–438.
[51] Giunchiglia, E., Lifschitz, V., 1998. An action language based on causal explanation: Preliminary report, in: Proc. AAAI, pp. 623–630.
[52] Grastien, A., Haslum, P., Thiébaux, S., 2012. Conflict-Based Diagnosis of Discrete Event Systems: Theory and Practice., in: Internat. Conf.

on Principles of Knowledge Representation and Reasoning (KR).
[53] Harel, D., 1987. Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 231–274.

18

[54] Harel, D., Marron, A., Weiss, G., 2012. Behavioral programming. Communications of the ACM 55, 90–100.
[55] Haslum, P., 2011. Computing genome edit distances using domain-independent planning, in: ICAPS Scheduling and Planning Applications

Workshop.
[56] Haslum, P., Grastien, A., 2011. Diagnosis as planning: Two case studies, in: ICAPS Scheduling and Planning Applications Workshop.
[57] Heintz, F., Kvarnström, J., Doherty, P., 2010. Bridging the sense-reasoning gap: DyKnow - Stream-based middleware for knowledge

processing. Advanced Engineering Informatics 24, 14–26.
[58] Ingham, M.D., Ragno, R.J., Williams, B.C., 2001. A reactive model-based programming language for robotic space explorers, in: Internat.

Symp. on AI, Robotics and Automation in Space (ISAIRAS).
[59] Ingrand, F., Chatilla, R., Alami, R., Robert, F., 1996. PRS: A High Level Supervision and Control Language for Autonomous Mobile

Robots, in: IEEE Internat. Conf. on Robotics and Automation (ICRA), pp. 43–49.
[60] Judah, K., Fern, A.P., Dietterich, T.G., 2012. Active Imitation Learning via Reduction to IID Active Learning, in: Proc. Uncertainty in AI,

pp. 428–437.
[61] Kambhampati, S., Yoon, S.W., 2010. Explanation-based learning for planning, in: Sammut, C., Webb, G.I. (Eds.), Encyclopedia of Machine

Learning. Springer, pp. 392–396.
[62] Konolige, K., Myers, K., Ruspini, E., Saffiotti, A., 1997. The Saphira architecture: a design for autonomy. Jour. of Experimental and

Theoretical AI 9, 215–235.
[63] Kuter, U., Nau, D.S., Pistore, M., Traverso, P., 2005a. A hierarchical task-network planner based on symbolic model checking, in: Proc.

ICAPS, pp. 300–309.
[64] Kuter, U., Nau, D.S., Pistore, M., Traverso, P., 2009. Task decomposition on abstract states, for planning under nondeterminism. Artificial

Intelligence 173.
[65] Kuter, U., Sirin, E., Nau, D.S., Parsia, B., Hendler, J., 2005b. Information gathering during planning for web service composition. Jour. of

Web Semantics 3, 183–205.
[66] Knik, T., O’Rorke, P., Shapiro, D.G., Choi, D., Nejati, N., Langley, P., 2009. Skill transfer through goal-driven representation mapping.

Cognitive Systems Research 10, 270–285.
[67] Legay, A., Bensalem, S. (Eds.), 2013. Proc. Internat. Conf. on Runtime Verification (RV). volume 8174 of Lecture Notes in Computer

Science, Springer.
[68] Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R., 1997. Golog: A logic programming language for dynamic domains. Jour. of

Logic Programming 31, 59–84.
[69] Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J.A., Sheth, A.P., 2006. Designing semantic web processes: The WSDL-S approach, in:

Semantic Web Services, Processes and Applications, pp. 161–193.
[70] Little, I., Aberdeen, D., Thiébaux, S., 2005. Prottle: A probabilistic temporal planner, in: Proc. AAAI, pp. 1181–1186.
[71] Little, I., Thiébaux, S., 2007. Probabilistic planning vs. replanning, in: ICAPS Workshop on IPC.
[72] Marconi, A., Pistore, M., Sirbu, A., Eberle, H., Leymann, F., Unger, T., 2009. Enabling adaptation of pervasive flows: Built-in contextual

adaptation, in: Internat. Conf. on Service Oriented Computing (ICSOC/ServiceWave), pp. 445–454.
[73] McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R., 2008. A deliberative architecture for AUV control, in: IEEE

Internat. Conf. on Robotics and Automation (ICRA), pp. 1049–1054.
[74] McIlraith, S.A., Son, T.C., 2002. Adapting Golog for composition of semantic web services, in: Internat. Conf. on Principles of Knowledge

Representation and Reasoning (KR), pp. 482–496.
[75] Molineaux, M., Klenk, M., Aha, D., 2010. Goal-driven autonomy in a Navy strategy simulation, in: Proc. AAAI, pp. 1548–1554.
[76] Morisset, B., Ghallab, M., 2008. Learning how to combine sensory-motor functions into a robust behavior. Artificial Intelligence 172,

392–412.
[77] Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C., 1998. Remote Agent: to boldly go where no AI system has gone before. Artificial

Intelligence 103, 5–47.
[78] Myers, K.L., 1999. CPEF: A continuous planning and execution framework. AI Mag. 20, 63–69.
[79] Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., 2003. CLARAty and Challenges of Developing Interoperable Robotic

Software, in: IEEE/RSJ Internat. Conf. on Intell. Robots and Systems (IROS).
[80] Paolucci, M., Shehory, O., Sycara, K.P., 2000. Interleaving planning and execution in a multiagent team planning environment. Electron.

Trans. Artif. Intell. 4, 23–43.
[81] Pappachan, P.M., Durfee, E.H., 2000. Interleaved plan coordination and execution in dynamic multi-agent domains, in: ICMAS, pp.

425–426.
[82] Pasareanu, C.S., Dwyer, M.B., Huth, M., 2013. Assume guarantee model checking of software: A comparative case study, in: The Spin

Workshop.
[83] Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K., 2004. METEOR-S web service annotation framework, in: WWW, pp. 553–562.
[84] Pistore, M., Spalazzi, L., Traverso, P., 2006. A minimalist approach to semantic annotations for web processes compositions, in: Euro.

Semantic Web Conf. (ESWC), pp. 620–634.
[85] Pistore, M., Traverso, P., 2007. Assumption-based composition and monitoring of web services, in: Test and Analysis of Web Services, pp.

307–335.
[86] Pollack, M.E., Horty, J.F., 1999. There’s more to life than making plans: Plan management in dynamic, multiagent environments. AI Mag.

20, 1–14.
[87] Rockel, S., Neumann, B., Zhang, J., Dubba, K.S.R., Cohn, A.G., Konecny, S., Mansouri, M., Pecora, F., Saffiotti, A., Gunther, M., Stock, S.,

Hertzberg, J., Tomé, A.M., Pinho, A., Seabra Lopes, L., von Riegen, S., Hotz, L., 2013. An Ontology-Based Multi-Level Robot Architecture
for Learning from Experiences, in: AAAI Spring Symposium, pp. 1–6.

[88] Rosenschein, S.J., Kaelbling, L.P., 1995. A situated view of representation and control. Artificial Intelligence 73, 149–173.
[89] Russell, S., Norvig, P., 2009. Artificial Intelligence, A Modern Approach (Third Edition). Prentice-Hall, Upper Saddle River, NJ.
[90] Samadi, M., Kollar, T., Veloso, M., 2012. Using the web to interactively learn to find objects, in: Proc. AAAI, pp. 2074–2080.

19

[91] Sanner, S., 2010. Relational Dynamic Influence Diagram Language (RDDL): Language Description. Technical Report. NICTA.
[92] Sardiña, S., Giacomo, G.D., Lespérance, Y., Levesque, H.J., 2004. On the semantics of deliberation in Indigolog - from theory to imple-

mentation. Annals of Math. in AI 41, 259–299.
[93] Sheth, A.P., Gomadam, K., Ranabahu, A., 2008. Semantics enhanced services: METEOR-S, SAWSDL and SA-REST. IEEE Data Engr.

Bull. 31, 8–12.
[94] Simmons, R., 1992. Concurrent planning and execution for autonomous robots. Control Systems Mag., IEEE 12, 46–50.
[95] Simmons, R., 1994. Structured control for autonomous robots. IEEE Trans. on Robotics and Automation 10, 34–43.
[96] Simpkins, C., Bhat, S., Isbell, Jr., C., Mateas, M., 2008. Towards adaptive programming: integrating reinforcement learning into a pro-

gramming language, in: Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, pp. 603–614.

[97] Smith, D.E., Frank, J., Cushing, W., 2008. The ANML Language, in: Proc. ICAPS.
[98] Sohrabi, S., Baier, J.A., McIlraith, S.A., 2010. Diagnosis as planning revisited, in: Internat. Conf. on Principles of Knowledge Representation

and Reasoning (KR).
[99] Sohrabi, S., McIlraith, S.A., 2010. Preference-based web service composition: A middle ground between execution and search, in: The

Semantic Web–ISWC 2010. Springer, pp. 713–729.
[100] Tate, A., 1999. Planning, in: MIT Encyclopedia of the Cognitive Sciences, pp. 652–653.
[101] Teichteil-Königsbuch, F., Kuter, U., Infantes, G., 2010. Incremental plan aggregation for generating policies in MDPs, in: Autonomous

Agents and Multi-Agent Systems (AAMAS), pp. 1231–1238.
[102] Tonino, H., Bos, A., de Weerdt, M., Witteveen, C., 2002. Plan coordination by revision in collective agent based systems. Artificial

Intelligence 142, 121–145.
[103] Van Der Krogt, R., De Weerdt, M., 2005. Plan repair as an extension of planning, in: Proc. ICAPS.
[104] Verma, V., Estlin, T., Jónsson, A.K., Pasareanu, C., Simmons, R., Tso, K., 2005. Plan execution interchange language (PLEXIL) for

executable plans and command sequences, in: Internat. Symp. on AI, Robotics and Automation in Space (ISAIRAS).
[105] Vidal, T., Ghallab, M., Alami, R., 1996. Incremental mission allocation to a large team of robots., in: IEEE Internat. Conf. on Robotics and

Automation (ICRA).
[106] Williams, B.C., Nayak, P.P., 1996. A model-based approach to reactive self-configuring systems, in: Proc. AAAI, pp. 971–978.
[107] Wilson, A., Fern, A.P., Tadepalli, P., 2012. A Bayesian Approach for Policy Learning from Trajectory Preference Queries. Advances in

neural information processing systems , 1142–1150.
[108] Wooldridge, M.J., 2009. An Introduction to MultiAgent Systems (2. ed.). Wiley.
[109] WSBPEL Technical Committee, 2007. Web Services Business Process Execution Language, Version 2.0 - OASIS Standard.
[110] Zhuo, H.H., Hu, D.H., Hogg, C., Yang, Q., Muoz-Avila, H., 2009. Learning HTN method preconditions and action models from partial

observations., in: Boutilier, C. (Ed.), Proc. IJCAI, pp. 1804–1810.
[111] Zhuo, H.H., Yang, Q., Pan, R., Li, L., 2011. Cross-domain action-model acquisition for planning via web search., in: Bacchus, F., Domshlak,

C., Edelkamp, S., Helmert, M. (Eds.), Proc. ICAPS.
[112] Zimmerman, T., Kambhampati, S., 2003. Learning-Assisted Automated Planning: Looking Back, Taking Stock, Going Forward. AI Mag.

24, 73.

20

	Introduction
	Examples
	The Harbor Operation Management Facility
	A Factotum Robot

	Open Problems
	Knowledge Representations
	Descriptive Models
	Operational Models
	Environment Models

	Model Acquisition and Verification
	Synthesis and Refinement
	Monitoring and Goal Reasoning
	Integration

	Conclusion

