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Research

Despite international agreements intended to 
limit the release of persistent organic pollu-
tants (POPs) such as organochlorine pesti-
cides, polychlorinated biphenyls (PCBs), 
polychlorinated dibenzo-p-dioxins (PCDDs), 
and polychlorinated dibenzofurans (PCDFs), 
POPs still persist in the environment and food 
chains (Atlas and Giam 1981; Dougherty et al. 
2000; Fisher 1999; Jorgenson 2001; Schafer 
and Kegley 2002; Van den Berg 2009). Most 
human populations are exposed to POPs 
through consumption of fat-containing food 
such as fish, dairy products, and meat (Fisher 
1999). Humans bioaccumulate these lipo-
philic and hydrophobic pollutants in fatty tis-
sues for many years because POPs are highly 
resistant to metabolic degradation (Fisher 
1999; Kiviranta et al. 2005). The physiologi-
cal impact associated with chronic exposure 
to low doses of different mixtures of POPs is 
poorly understood, but epidemiological studies 
have reported that Americans, Europeans, and 
Asian patients with type 2 diabetes accumu-
lated greater body burdens of POPs, including 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 

2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB153), 
coplanar PCBs (PCB congeners 77, 81, 
126, and 169), p,p´-diphenyldichloroethene 
(DDE), oxychlordane, and trans-nonachlor 
(Fierens et al. 2003; Henriksen et al. 1997; 
Lee et al. 2006; Rignell-Hydbom et al. 2007; 
Turyk et al. 2009; Wang et al. 2008). 

The incidences of type 2 diabetes and the 
insulin resistance syndrome have increased at 
a globally alarming rate, and > 25% of adults 
in the United States have been estimated to 
be affected by metabolic abnormalities associ-
ated with insulin resistance (Ford et al. 2004). 
Impaired insulin action is a central dysfunc-
tion of the insulin resistance syndrome charac-
terized by abdominal obesity and defects in 
both lipid and glucose homeostasis, increas-
ing the risk for developing type 2 diabetes, 
cardio vascular diseases, non alcoholic fatty 
liver disease, polycystic ovarian disease, and 
certain types of cancer (Biddinger and Kahn 
2006; Reaven 2005). Although a sedentary 
lifestyle and consumption of high-fat food 
are considered major contributors to insulin 
resistance and obesity, these conventional risk 

factors can only partly explain the worldwide 
explosive prevalence of insulin resistance–
associated metabolic diseases. We therefore 
sought to elucidate whether the exposure to 
POPs present in a food matrix could con-
tribute to insulin resistance and metabolic 
disorders.

POPs accumulate in the lipid fraction of 
fish, and fish consumption represents a source 
of POP exposure to humans (Dougherty et al. 
2000; Hites et al. 2004; Schafer and Kegley 
2002). Therefore, certain European countries 
have dietary recommendations to limit the 
consumption of fatty fish per week (Scientific 
Advisory Committee on Nutrition 2004). 
On the other hand, n-3 polyunsaturated fatty 
acids present in fish oil have a wide range of 
beneficial effects (Jump 2002), including pro-
tection against high-fat (HF) diet–  induced 
insulin resistance (Storlien et al. 1987). 
Accordingly, we fed rats an HF diet contain-
ing either crude (HFC) or refined (HFR) fish 
oil obtained from farmed Atlantic salmon and 
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Background: The incidence of the insulin resistance syndrome has increased at an alarming rate 
worldwide, creating a serious challenge to public health care in the 21st century. Recently, epide-
miological studies have associated the prevalence of type 2 diabetes with elevated body burdens of 
persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link 
between POPs and the development of insulin resistance is lacking.

oBjective: We investigated whether exposure to POPs contributes to insulin resistance and meta-
bolic disorders.

Methods: Sprague-Dawley rats were exposed for 28 days to lipophilic POPs through the con-
sumption of a high-fat diet containing either refined or crude fish oil obtained from farmed Atlantic 
salmon. In addition, differentiated adipocytes were exposed to several POP mixtures that mimicked 
the relative abundance of organic pollutants present in crude salmon oil. We measured body weight, 
whole-body insulin sensitivity, POP accumulation, lipid and glucose homeostasis, and gene expres-
sion and we performed micro array analysis.

results: Adult male rats exposed to crude, but not refined, salmon oil developed insulin resis-
tance, abdominal obesity, and hepatosteatosis. The contribution of POPs to insulin resistance was 
confirmed in cultured adipocytes where POPs, especially organochlorine pesticides, led to robust 
inhibition of insulin action. Moreover, POPs induced down-regulation of insulin-induced gene-1 
(Insig-1) and Lpin1, two master regulators of lipid homeostasis.

conclusion: Our findings provide evidence that exposure to POPs commonly present in food 
chains leads to insulin resistance and associated metabolic disorders.

key words: contaminants, farmed salmon, metabolic syndrome, nonalcoholic fatty liver, 
obesity, pollution, public health, type 2 diabetes. Environ Health Perspect 118:465–471 
(2010). doi:10.1289/ehp.0901321 [Online 19 November 2009]
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investigated the metabolic impacts of POPs 
and their ability to interfere with n-3 poly-
unsaturated fatty acids.

Materials and Methods
Tissue RNA from liver of rats fed HFC and 
HFR was extracted using Trizol, and micro-
array analysis was performed using the Operon 
Rat Oparray. Levels of specific mRNA were 
quantified using real-time polymerase chain 
reaction (PCR) as described previously (Rome 
et al. 2008). 3T3-L1 cells were exposed to 
different POP mixtures, and we measured 
insulin-stimulated glucose uptake and mRNA 
expression of target genes. Details of the 
methods are available in the Supplemental 
Material (doi:10.1289/ehp.0901321). 

Animals. All experimental protocols  
described below were approved by the 
Norwegian State Board of Biological 
Experiments with Living Animals, and the 
animals were treated humanely and with 
regard for alleviation of suffering. Male 
Sprague-Dawley rats (Taconic, Ry, Denmark) 
weighing 200–250 g were housed with a 
12-hr light/dark cycle and with free access 
to food and tap water. Animals were fed a 
standard diet (chow; 17% fat-derived calo-
ries, 3.4 kcal/g) or an HF diet (65% fat-
derived calories, 5.5 kcal/g) for 28 days 
(Lavigne et al. 2001). Two additional HF 
diets were made by substituting corn oil (20% 
wt/wt) with either crude or refined salmon 
oil. Crude salmon oil was obtained by heat-
ing the rest raw material of farmed Atlantic 
salmon to 92°C and separating oil from water 
and solid material. Refined salmon oil was 
obtained by bleaching, carbon filtering, and 
deodorizing the crude oil. HF, HFC, and 
HFR diets were supplemented with cellu-
lose (50 g/kg), choline bitartrate (2 g/kg), 
American Institute of Nutrition (AIN) vita-
min mixture 76 (14 g/kg), and AIN min-
eral mixture 76 (67 g/kg) (MP Biochemicals, 
Inc, Illrich, France) to meet the daily nutrient 
requirement levels of adult rats (Reeves et al. 
1993). Fatty acid composition of HF, HFC, 
and HFR diets was analyzed as previously 
described (Jordal et al. 2007).

Hepatic lipids. We determined levels of 
triacylglycerol, diacyl glycerol, and total choles-
terol in frozen liver samples of overnight-fasted 
rats using high-performance thin-layer chro-
matography as described previously (Berntssen 
et al. 2005). Frozen (O.C.T. compound; 
Sakura Finetek Europe, Zoeterwoude, the 
Netherlands) and fixed (paraffin-embedded) 
liver sections were stained with Oil red O and 
hematoxylin and eosin (H&E), respectively.

Determination of POP levels. We meas-
ured levels of POPs as described previously 
(Berntssen et al. 2005; Julshamn et al. 2004).

Determination of insulin action in periph-
eral tissues. We used soleus muscles and 

epididymal fat of overnight-fasted animals 
to assess insulin-stimulated glucose uptake 
as described previously (Buren et al. 2002; 
Ruzzin et al. 2005).

Hyperinsulinemic–euglycemic clamps. 
Animals were catheterized, and hyper-
insulinemic–euglycemic clamps were per-
formed 7 days later (Brand et al. 2003; Ruzzin 
et al. 2007). After a 6-hr fasting period, 
conscious unrestrained catheterized animals 
were infused with a prime (6 µCi) continu-
ous (0.1 µCi/min for basal; 0.17 µCi/min for 
clamp) infusion of [3-3H]glucose from –90 to 
120 min for assessment of whole-body glucose 
disappearance (Rd) and appearance (Ra) using 
Steele’s non–steady-state equations (Steele 
et al. 1956). The hyperinsulinemic–euglyce-
mic clamp was performed (0–120 min) by a 
continuous infusion of human insulin (3 mU/
kg/min) (Actrapid, Novo Nordisk, Bagsvaerd, 
Denmark), and euglycemia (~ 115 mg/dL) 
was maintained by variable infusion rates of 
a 20% non labeled glucose solution [glucose 
infusion rate (GIR)]. At the end of the clamp, 
rats were given a lethal dose of pento barbital 
sodium; liver, epididymal fat, and gastroc-
nemius muscles were removed, frozen in liquid 
nitrogen, and stored at –80°C for determina-
tion of POP levels. Plasma glucose and insulin 
levels were analyzed by the glucose oxidase 
method (YSI 2300 STAT Plus glucose ana-
lyzer; YSI Incorporated, Yellow Spring, OH, 
USA) and an enzyme-linked immunosor-
bent assay kit (DRG Instruments, Marburg, 
Germany), respectively. To determine plasma 
[3-3H]glucose, plasma was deproteinized, 
dried to remove tritiated water, resuspended 
in water, and counted in biodegradable scin-
tillation fluid (Nerliens Meszansky, Oslo, 
Norway) on a beta scintillation counter (Tri-
Carb 1900TR; Packard, Meriden, CT, USA). 
All samples were run in duplicate. Hepatic 
glucose production (HGP) was calculated as 
tracer-determined Ra minus GIR.

Insulin resistance was further assessed by 
the homeostasis model assessment of insulin 
resistance (HOMA-IR) index as described by 
Lee et al. (2008).

Cultured adipocyte studies. We used cul-
tured and differentiated 3T3-L1 cells (Petersen 
et al. 2008) to assess insulin-stimulated glucose 
uptake and mRNA expression of target genes. 
On day 8 of the differentiation program, cells 
were exposed to vehicle (dimethyl sulfoxide) 
or POP mixtures for 48 hr, and glucose uptake 
was assessed.

Cytotoxicity. Membrane integrity of 
POP-treated adipocytes was determined 
by the release of lactate dehydrogenase into 
cell medium by a Tox7 kit (Sigma-Aldrich, 
Leirdal, Norway).

Statistical analysis. We examined differ-
ences between groups for statistical signifi-
cance using analysis of variance (ANOVA) 

with the least-square difference post hoc 
test. We used one-class statistical analysis of 
microarray to identify differentially expressed 
genes (Tusher et al. 2001) between HFC- and 
HFR-fed rats. We determined statistical sig-
nificance of the real-time PCR results using 
the Student’s t-test, and the threshold for sig-
nificance was set at p ≤ 0.05.

Results
Characteristics of animals exposed to POPs. 
As we expected, concentrations of POPs were 
consistently much higher in the HFC diet 
than in the HFR diet [Supplemental Material, 
Table 1 (doi:10.1289/ehp.0901321)], whereas 
the contents of n-3 polyunsaturated fatty acids 
and other fatty acids were similar in the two 
diets because both the crude and the refined 
fish oils were obtained from the same batch 
of farmed salmon (Supplemental Material, 
Table 2 (doi:10.1289/ehp.0901321).

After 28 days, rats fed the HFC diet 
appeared normal, although they tended to 
gain more weight than rats fed the HFR 
diet despite similar daily energy intake 
(Figure 1A,B). Intake of the HFC diet, but not 
HFR diet, enhanced the accumulation of vis-
ceral adipose tissue induced by HF consump-
tion (Figure 1C,D). Profound dys regulation 
in lipid homeo stasis was further observed in 
livers of HFC-fed rats, which exhibited ele-
vated levels of triacyl glycerol, diacyl glycerol, 
and total cholesterol compared with HF-fed 
rats; livers of HFR-fed rats tended to exhibit 
a reduced lipid accumulation (Figure 1E–G). 
Histological examinations highlighted the 
development of severe hepatosteatosis in rats 
fed HFC (Figure 1H) and confirmed that the 
presence of POPs in salmon oil provokes sig-
nificant impairment of lipid metabolism.

To gain further insight into the pheno-
typical changes of animals exposed to POPs, 
we performed a comparison of gene expres-
sion profiles in the liver of rats fed the HFC 
and HFR diets, using oligonucleo tide micro-
arrays. The expression of genes involved in 
drug metabo lism was affected, indicating 
dietary POP exposure [Supplemental Material, 
Table 3 (doi:10.1289/ehp.0901321)]. We 
also observed major differences for genes 
involved in lipid metabo lism and for several 
genes linked to lipid deposition (Supplemental 
Material, Table 3). Of interest, POPs induced 
robust down-regulation of insulin-induced 
gene-1 (Insig-1) and Lpin1, two master reg-
ulators of lipo genesis and synthesis of trig-
lyceride and cholesterol (Croce et al. 2007; 
Engelking et al. 2004; Finck et al. 2006; Lee 
and Ye 2004). Real-time PCR analysis con-
firmed the strong repression of Lpin 1 and 
Insig-1 genes in the liver of rats consuming the 
HFC diet (Table 1). Similarly, in adipose tis-
sue of HFC-fed rats, expression of Lpin1 and 
Insig-1 genes was repressed compared with 
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HFR-fed animals [mean ± SE, 78 ± 8 vs. 55 ± 
5 (n = 9, p = 0.02) for Insig-1 and 98 ± 11 vs. 
64 ± 8 (n = 9, p = 0.03) for Lpin1 for HFR- 
and HFC-fed rats, respectively]. Furthermore, 
POPs induced a significant increase in the 
expression level of SREBP1C (sterol regula-
tory element-binding protein 1C), the mas-
ter regulator of the lipogenic pathway, and 
FAS (fatty acid synthase), a well-known target 
gene of SREBP1C (Table 1). Interestingly, the 

hepatic expression of LXRα (liver X receptor 
alpha) was not affected, suggesting that the 
oxy sterol pathway was not modified by POP 
exposure (Table 1). Altogether, these results 
demonstrate that POP exposure signifi cantly 
affects the expression of critical genes involved 
in the regulation of lipid homeostasis. Gene 
set enrichment analysis further revealed sig-
nificant effects on several biological pathways 
[Supplemental Material, Table 4 (doi:10.1289/

ehp.0901321)]. This analysis demonstrated 
a highly significant up-regulation of path-
ways designated “pathogenic Escherichia coli 
infection” (EPEC/EHEC). The core genes 
up-regulated in the pathways include TLR5, 
ROCK2, CD14, and YWHAZ, a gene encod-
ing a member of the 14-3-3 family of proteins 
reported to interact with insulin receptor sub-
strate-1 and thereby regulating insulin signal-
ing. Similarly, the roles of toll-like receptors, 

Figure 1. Characteristics of rats fed salmon oil containing POPs. Body weight gain (A) and daily energy intake (B) in rats fed chow or the HF, HFR, or HFC diets 
over a 4-week period. (C) Exposed ventral view of a representative rat from each diet group showing increased visceral adipose tissue after consumption of 
the HFC diet. (D) Quantification of visceral fat (epididymal and perirenal fat pads). (E–G) Levels of hepatic triacylglycerol (E), diacyl glycerol (F), and total choles-
terol (G). (H) Representative histological sections of liver stained with Oil red O (top) or H&E at low (middle) and high (bottom) magnifications; the three sections 
for each treatment group are from the same liver sample. All data are shown as mean ± SE; n = 8–9. 
*p < 0.02 compared with control. **p < 0.04 compared with HF.
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CD14, and rho kinases in regulating insulin 
signaling and establishment of insulin resis-
tance in response to chronic low-grade inflam-
mation are well documented (Begum et al. 
2002; Cani et al. 2007; Furukawa et al. 2005; 
Petersen et al. 2008; Tzivion et al. 2001).

Effects of POPs on insulin action in vivo. 
Next, we assessed the impacts of POPs on 

whole-body insulin action. In the basal state, 
intake of the HFC diet exacerbated the hyper-
insulinemia induced by HF consumption, 
whereas animals fed HFR and control diets 
had similar plasma insulin levels (Figure 2A). 
Basal plasma glucose levels were similar in 
all groups (Figure 2B), but the HOMA-IR 
index was significantly increased in rats fed 

the HFC diet (7.1 for control rats, 11.2 for 
rats fed HF, 8.4 for rats fed HFR, and 15.5 
for rats fed HFC; p < 0.04). 

The performance of hyperinsulinemic– 
euglycemic clamp, the gold standard for 
investigating and quantifying insulin resis-
tance (Kraegen et al. 1983), revealed that the 
consumption of the HFC diet aggravated 
HF-induced reduced GIR, whereas HFR-fed 
rats showed no impairment of insulin action 
compared with control rats (Figure 2C). 
Reduced GIR reflects decreased insulin- 
mediated suppression of HGP, reduced insulin- 
stimulated peripheral glucose disposal rates, 
or both. Analysis of these parameters revealed 
that basal HGP was similar in all groups 
(Figure 2D), whereas suppression of HGP 
by insulin was impaired in animals consum-
ing both HFC and HF diets (Figure 2E). 
Moreover, intake of HFC led to impaired 
insulin-mediated glucose disposal in peripheral 
tissues, which mainly include skeletal muscles 
and adipose tissue (Figure 2F). To investigate 
this further, we determined the rates of glucose 
uptake in isolated soleus muscles and primary 
adipocytes. We found that insulin-stimulated 
glucose uptake was reduced to a similar extent 
in skeletal muscle of animals fed HFC and 
HF diets (Figure 2G). In contrast, rats fed 
the HFR diet were protected against muscle 
insulin resistance (Figure 2G). In adipose tis-
sue, the ability of insulin to stimulate glucose 
uptake was impaired in both the HFR and HF 
groups, and this metabolic defect was wors-
ened by the consumption of the HFC diet 
(Figure 2H). Thus, exposure to POPs present 
in HFC exacerbated the deleterious metabolic 
effects of HF and attenuated the protective 
effects of n-3 polyunsaturated fatty acids, 
which indicates that the presence of environ-
mental organic contaminants may influence 
the outcomes of food and dietary products.

There is growing evidence that mitochon-
drial dysfunction contributes to insulin resis-
tance (Lowell and Shulman 2005). To assess 
the impact of POPs on hepatic mitochon-
drial content, we measured mitochondrial 
DNA levels by quantitative polymerase chain 
reaction (qPCR), using primers specific for 
the COXII gene, and determined the ratio 
between mitochondrial DNA and nuclear 
DNA as previously validated (Bonnard et al. 
2008). We found no apparent modification 
of the amount of mitochondrial DNA in the 
liver of the animals fed HFC (ratio COXII/
PPIA, 1.1 ± 0.2 (mean ± SE) for rats fed HFR 
and 0.9 ± 0.1 for rats fed HFC, p = 0.189). 
However, despite this apparent lack of change 
in mitochondrial content, we observed sig-
nificant reduction in the expression of sev-
eral genes related to mitochondrial function, 
such as PGC1α (peroxisome proliferator- 
activated receptor gamma-coactivator-1 
alpha), citrate synthase, medium-chain acyl 

Table 1. Real-time PCR determination of mRNA expression of a set of relevant genes in the liver of rats 
fed HFR or HFC diets (n = 9 per group). 

HFR HFC p-Value
Genes related to mitochondrial function
PGC1α 0.73 ± 0.3 0.05 ± 0.02 0.043
PPARα (peroxisome proliferator-activated receptor α) 76 ± 7 75 ± 18 0.988
CS (citrate synthase) 316 ± 19 214 ± 10 0.002
SDHA (succinate dehydrogenase) 74 ± 2 63 ± 4 0.038
MCAD (medium chain acyl CoA dehydrogenase) 332 ± 30 170 ± 18 0.003
Genes related to lipogenesis
SREBP1C 3.0 ± 0.3 4.6 ± 0.6 0.021
LXRα 50 ± 3 51 ± 7 0.932
FAS 1.1 ± 0.1 1.9 ± 0.2 0.01
Lpin 1 96 ± 17 22 ± 10 0.0017
Insig-1 123 ± 23 43 ± 12 0.0071

Figure 2. Effects of salmon oil and POPs on insulin action and glucose metabolism evaluated by hyperin-
sulinemic–euglycemic clamps performed in rats fed chow or HF, HFR, or HFC diets over a 4-week period. 
(A) Basal insulinemia. (B) Basal glycemia. (C) GIR. (D) Basal HGP. (E) HGP during the clamps. (F) Glucose 
disposal rate (Rd). (G) Insulin-stimulated glucose uptake in soleus muscles. (H) Insulin-stimulated glucose 
uptake in primary adipocytes. All data are shown as mean ± SE; n = 6–9. 
*p < 0.04 compared with chow control. **p < 0.04 compared with HF. #p < 0.05 compared with HFR. ##p < 0.03 compared 
with HF.
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CoA dehydrogenase, and SDHA (succinate 
dehydrogenase) (Table 1), indicating the pres-
ence of alterations in mitochondrial function 
and oxidative capacities in the liver of the rats 
exposed to POPs.

Analysis of POPs distribution in these 
animals revealed that whereas both liver and 
adipose tissue stored organochlorine pesti-
cides, indicator PCBs, mono-ortho-substituted 
PCBs, and non–ortho-substituted PCBs, 
the liver preferentially retained PCDDs or 
PCDFs [Supplemental Material, Table 5 
(doi:10.1289/ehp.0901321)].

Effects of POPs on insulin action in vitro. 
To further demonstrate the contribution of 
lipophilic POPs to the development of insu-
lin resistance–associated metabolic distur-
bances, we exposed differentiated adipocytes 
to a POP mixture that mimicked the relative 
abundance of organic contaminants found 
in crude salmon oil. Incubation of adipo-
cytes with this POP mixture impaired the 
ability of insulin to stimulate glucose uptake 
(Figure 3A), which is in agreement with the 
reduced insulin–stimulated glucose uptake 
observed in adipose tissue of rats fed the 
HFC diet (Figure 2H). We then determined 
whether POP exposure, as observed in rats 
fed the HFC diet, could affect the expres-
sion of Lpin1 and Insig-1 mRNA in cultured 
adipo cytes. After 48-hr treatment with the 
POP mixture, Lpin1 and Insig-1 mRNA lev-
els were dose-dependently reduced in adipo-
cytes [Supplemental Material, Figure 1 
(doi:10.1289/ehp.0901321)], which con-
firms the ability of POPs to interfere with key 
regulators of lipid metabolism. Importantly, 
the metabolic defects observed in adipocytes 
exposed to POPs were independent of cyto-
toxicity, as demonstrated by the absence of 
an increased release of lactate dehydrogenase 
into the cell culture media (Supplemental 
Material, Figure 2). Altogether, these find-
ings clearly establish the capacity of POPs to 
impair insulin action and associated metabolic 
abnormalities in a cell-autonomous manner.

Humans and other organisms are chroni-
cally exposed to a variety of organic pollutants. 
To investigate which POPs contributed sig-
nificantly to the impairment of insulin action, 
we incubated adipocytes with different POP 
mixtures. Although adipocytes exposed to a 
PCDD or PCDF mixture showed normal 
insulin action (Figure 3B,C), those exposed 
to non-ortho- substituted and mono-ortho-
 substituted PCB mixtures had reduced insulin 
action (Figure 3D,E). Impaired insulin action 
was independent of the total toxic equivalent 
(TEQ) concentration (Van den Berg et al. 
2006) of the mixtures; up to 6.027ng WHO 
2005 TEQ/mL for the PCDF mixture com-
pared with 0.0016ng WHO 2005 TEQ/mL 
for the mono-ortho-PCB mixture. These find-
ings demon strate that risk assessment based 

on TEQ assigned to dioxins and dioxin-like 
PCBs (Van den Berg et al. 2006) is unlikely 
to reflect the risk of insulin resistance. Further 
investigations showed that insulin-stimulated 
glucose uptake was dramatically reduced in 
adipocytes treated with both the mixture of 
organochlorine pesticides (Figure 3F) and 
dichloro diphenyl trichloroethanes (DDTs) 
(Figure 3G), whereas the mixture of indica-
tor PCBs had less inhibitory effects on insulin 
action (Figure 3H).

Discussion
In this study, we demonstrate for the first time 
a causal relationship between POPs and insulin 
resistance in rats. In vivo, chronic exposure to 
low doses of POPs commonly found in food 
chains induced severe impairment of whole-
body insulin action and contributed to the 
development of abdominal obesity and hepato-
steatosis. Treatment in vitro of differentiated 
adipocytes with nano molar concentrations of 
POP mixtures mimicking those found in crude 

Figure 3. Effects of POPs on insulin action in adipocytes shown as the ability of differentiated 3T3-L1 adipocytes to 
take up radioactive-labeled glucose in response to insulin measured after 48 hr exposure to several POP mixtures 
found in crude oil from farmed Atlantic salmon. (A) POP mixture, (B) PCDD mixture, (C) PCDF mixture, (D) non–
ortho-substituted PCB mixture, (E) mono–ortho-substituted PCB mixture, (F) Pesticide mixture, (G) DDT mixture, 
or (H) PCB mixture. Concentrations of POP mixtures are shown according to the highest contaminant compound 
present in the mixture, as well as the World Health Organization (WHO) 2005 TEQ for dioxins and dioxin-like PCBs 
(Van den Berg et al. 2006). Glucose uptake was determined in eight parallel wells for each mixture and for each 
concentration. Data are expressed as relative glucose uptake and presented as mean ± SE. 
*p < 0.05 compared with vehicle (dimethyl sulfoxide)-treated cells.
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salmon oil induced a significant inhibition of 
insulin-dependent glucose uptake. These data 
provide compelling evidence that exposure to 
POPs increases the risk of developing insulin 
resistance and metabolic disorders.

Despite intense investigations and estab-
lishment of both preventive and therapeutic 
strategies, insulin resistance–associated meta bo-
lic diseases such as type 2 diabetes, obesity, and 
non alcoholic fatty liver disease have reached 
alarming proportions worldwide (Angulo 
2002; Ford et al. 2004; Zimmet et al. 2001). 
By 2015, the World Health Organization 
(WHO) estimates that > 1.5 billion people 
will be overweight and that 338 million people 
will die from chronic diseases such as diabe-
tes and heart disease (WHO 2005). Although 
physical inactivity and regular intake of high-
energy diets are recognized contributors (Hill 
and Peters 1998; Roberts and Barnard 2005), 
these lifestyle factors can only partially explain 
the explosive and uncontrolled global increase 
in metabolic diseases. Recently, the develop-
ment of insulin resistance and inflammation 
was found to be exacerbated in humans and 
animals exposed to air pollution (Kelishadi 
et al. 2009; Sun et al. 2009). Furthermore, 
the widespread environmental contaminant 
bisphenol A was reported to impair pancreatic 
beta cells and trigger insulin resistance (Alonso-
Magdalena et al. 2006). Our data, together 
with the finding that type 2 diabetics accu-
mulate significant body burdens of POPs (Lee 
et al. 2006), provide additional evidence that 
global environmental pollution contributes to 
the epidemic of insulin resistance–associated 
metabolic diseases.

Although rats chronically fed the HFC 
diet for 28 days were exposed to a rela-
tively high intake of organic pollutants, the 

concentrations of PCDDs/PCDFs and indi-
cator PCBs in adipose tissue of these animals 
did not exceed those observed in Northern 
Europeans 40–50 years of age (Kiviranta et al. 
2005), thereby indicating that doses of POP 
exposure sufficient to induce detrimental 
health effects were not excessive. Whether the 
exposure to lower levels of POPs would induce 
similar detrimental effects as those observed in 
the present study remains to be investigated.

Dietary interventions are current strate-
gies to prevent or treat metabolic diseases, 
and nutritional guidelines are usually based 
on energy density and glycemic index of the 
diet; however, the levels of POPs present in 
food has received less attention. Given that 
POPs are ubiquitous in food chains (Fisher 
1999), such under estimation may interfere 
with the expected beneficial effects of some 
dietary recommendations and lead to poor 
outcomes. For instance, the presence of POPs 
in food products may, to some extent, explain 
the conflicting results regarding the protec-
tive effects of n-3 polyunsaturated fatty acids 
against the incidence of myocardial infarction 
(Guallar et al. 1999; Rissanen et al. 2000). 
Overall, better understanding of the inter-
actions between POPs and nutrients will help 
improve nutritional education of patients with 
insulin resistance syndrome.

To protect consumer health, the presence 
of contaminants in food is internationally 
regulated. In the European Union legislation, 
certain POPs including dioxins and dioxin-like 
PCBs are regulated in foodstuffs (European 
Union 2006). Risk assessment of these organic 
pollutants is based on the ability of individual 
compounds to produce hetero geneous toxic 
and biological effects through the binding of 
the aryl hydrocarbon receptor. Interestingly, 

we found that cultured adipo cytes exposed to a 
PCDF or PCDD mixture have normal insulin 
action, even though the TEQ of these mixtures 
could be up to 3,500 times higher than the 
TEQ of the non-ortho-substituted and mono-
ortho-substituted PCB mixtures that impaired 
insulin action. These findings demonstrate that 
risk assessment based on WHO TEQs assigned 
to dioxins and dioxin-like PCBs is unlikely to 
reflect the risk of insulin resistance and the pos-
sible development of metabolic disorders.

Although the production of organo-
chlorine pesticides has been restricted since 
the 1970s, the global production and use of 
pesticides are poorly controlled (Jorgenson 
2001; Nweke and Sanders 2009), and the 
presence of these environmental chemicals in 
seafood still remains unregulated in European 
countries (European Union 2008). Of the 
POP mixtures tested in vitro, organochlorine 
pesticides were the most potent disruptors of 
insulin action. This powerful inhibitory effect 
of pesticides on insulin action likely explains 
the common finding emerging from several 
independent cross-sectional studies reporting 
an association between type 2 diabetes and 
the body burdens of p,p´-DDE, oxychlordane, 
or trans-nonachlor (Lee et al. 2006; Rignell-
Hydbom et al. 2007; Turyk et al. 2009). 
Therefore, widespread pesticide exposure to 
humans appears to be of particular global con-
cern in relation to public health. 

We draw two main conclusions from 
these observations. First, exposure to POPs 
present in the environment and food chains 
are capable of causing insulin resistance and 
impair both lipid and glucose metabolism, 
thus supporting the notion that these chemi-
cals are potential contributors to the rise in 
prevalence of insulin resistance and associated 
disorders (Figure 4). Second, although benefi-
cial, the presence of n-3 polyunsaturated fatty 
acids in crude salmon oil (in the HFC diet) 
could not counteract the deleterious metabolic 
effects induced by POP exposure. Altogether, 
our data provide novel insights regarding the 
ability of POPs to mediate insulin resistance– 
associated metabolic abnormalities and pro-
vide solid evidence reinforcing the importance 
of international agreements to limit the release 
of POPs to minimize public health risks.
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