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Abstract

The paper is devoted to the isotropic realizability of a regular gradient field ∇u or a
more general vector field b, namely the existence of a continuous positive function σ such
that σb is divergence free in Rd or in an open set of Rd. First, we prove that under some
suitable positivity condition satisfied by ∇u, the isotropic realizability of ∇u holds either
in Rd if ∇u does not vanish, or in the open sets {cj <u<cj+1} if the cj are the critical
values of u (including infRd u and supRd u) which are assumed to be in finite number.
It turns out that this positivity condition is not sufficient to ensure the existence of a
continuous positive invariant measure σ on the torus when ∇u is periodic. Then, we
establish a new criterium of the existence of an invariant measure for the flow associated
with a regular periodic vector field b, which is based on the equality b · ∇v = 1 in Rd. We
show that this gradient invertibility is not related to the classical ergodic assumption, but
it actually appears as an alternative to get the asymptotics of the flow.

Keywords: Isotropic realizability, dynamical system, invariant measure, asymptotics of the
flow
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1 Introduction

In this paper we study the problem of the isotropic realizability of a vector field b ∈ C1(Rd)d,
namely the existence of a positive function σ ∈ C0(Rd) solution to the equation

div (σb) = 0 in Rd, (1.1)

or in an open subset of Rd. When the vector field b is periodic with respect to Yd := [0, 1)d, i.e.

∀κ ∈ Zd, ∀x ∈ Rd, b(x+ κ) = b(x),

the problem of the isotropic realizability in the torus Rd/Zd, namely the existence of a positive
Yd-periodic function σ ∈ C0(Rd) solution to (1.1), is also addressed.
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In the case where b = ∇u is a gradient field, the reconstruction of a positive σ has been first
done in [2] and a rigorous way in [13] assuming that ∇u never vanishes and using the method
of characteristics. Alternatively, when the potential u satisfies a prescribed boundary condition
on a bounded smooth domain of R2 with a finite number of critical points, a conductivity σ has
been derived in [1] thanks to an approximation procedure adding a vanishing viscosity term.
More recently, the isotropic realizability of a non-vanishing gradient, i.e.

inf
Rd
|∇u| > 0, (1.2)

has been revisited in [6] both in the space Rd and in the torus Rd/Zd using specifically the flow{
X ′(t, x) = b

(
X(t, x)

)
, t ∈ R

X(0, x) = x ∈ Rd,
(1.3)

with b = ∇u. In particular, it was proved that the isotropic realizability in the torus is actually
stronger that the realizability in the space. Furthermore, again using the flow (1.3) we showed
in [4, Theorem 4.1] that in any dimension the presence of critical points for the potential u may
be an obstacle to the (even local) existence of a conductivity σ solution to (1.1) with b = ∇u.
The case of non-regular gradients has been also investigated in [5].

Beyond the negative results of [4] when the non-vanishing condition (1.2) does not hold, we
thus need extra conditions on the gradient ∇u to ensure its isotropic realizability in the whole
space Rd or at least in a subset of Rd. First, we prove (see Theorem 2.1) that if u ∈ C2(Rd)
has either all its non-negative partial derivatives or all its non-positive partial derivatives the
ratios of which are controlled from above and below (see more precisely condition (2.3) below),
and if u has exactly n critical values:

c0 := inf
Rd
u < c1 = u(ξ1) < · · · < cn = u(ξn) < cn+1 := sup

Rd

u, with ∇u(ξj) = 0,

possibly with infRd |∇u| = 0 (so that ∇u may vanish at infinity), then ∇u is isotropically
realizable:

• either in Rd when u has no critical point,

• or in the (n+1) open sets {cj < u < cj+1} for j = 0, . . . , n.

Then, we extend this result to the isotropic realizability of a vector field b ∈ C1(Rd)d. Assuming
the existence of an open interval I ⊂ R and a function u ∈ C1(Rd) such that for any x in the
inverse image {u ∈ I}, the function u(X(·, x)) is increasing and its range contains I, we show
(see Theorem 2.3) the isotropic realizability of b in the open set {u ∈ I}.

The isotropic realizability in the torus Rd/Zd of a Yd-periodic vector field b ∈ C1(Rd)d is
more intricate. In this case by the uniqueness of the Cauchy-Lipschitz theorem the flow X
solution to (1.3) satisfies

∀κ ∈ Zd, ∀ (t, x) ∈ R× Rd, X(t, x+ κ) = X(t, x) + κ,

so that the image of X(t, x) by the canonical surjection Π : Rd → Rd/Zd is independent of any
representative x in the class Π(x). Hence, equation (1.3) is well posed in the torus. Then, by
virtue of Liouville theorem (see, e.g., [7, Chap. 2, Theorem 1]) the isotropic realizability (1.1)
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in the torus is equivalent to the existence of a positive Yd-periodic function σ ∈ C0(Rd) which is
called an invariant measure for the flow X, such that for any Yd-periodic function ϕ ∈ C1(Rd),

∀ t ∈ R,
ˆ
Yd

ϕ(X(t, x))σ(x) dx =

ˆ
Yd

ϕ(x)σ(x) dx. (1.4)

Furthermore, the natural extension to any vector field b of the condition (2.3) relating to a
gradient field, is the boundedness from below by a positive constant of the coefficients bk for
k = 1, . . . , d, either the coefficients − bk. However, it turns out that this boundedness condition
is not sufficient to get the existence of an invariant measure as show Proposition 3.1 and
Example 3.2.

Actually, assuming that the Yd-periodic vector field b ∈ C1(Rd)d satisfies the gradient in-
vertibility

b · ∇v1 = 1 in Rd, (1.5)

for some Yd-periodic gradient ∇v1 ∈ C0(Rd)d, we prove (see Theorem 3.3) that the existence
of an invariant measure (1.4) for the flow X is equivalent to the existence of a vector ξ ∈ Rd

and d linearly independent Yd-periodic gradients ∇wk ∈ C0(Rd)d such that

b · ∇wk = ξk in Rd, for k = 1, . . . , d. (1.6)

At this point, we need to replace in dimension d ≥ 3 the equation (1.1) by the more restrictive
condition that b is proportional to a cross product of (d− 1) gradients. As a by-product,
under condition (1.5) the former equivalence shows (see Corollary 4.1) that the existence of an
invariant measure for X implies the asymptotics

lim
|t|→∞

X(t, x)

t
= ξ for any x ∈ Rd,

and not only almost everywhere in Rd as obtained by the Birkhoff ergodic theorem. Surprisingly,
although the limit ξ is constant, it appears (see Example 4.3) that the flow X is not in general
ergodic in dimension d ≥ 2. Indeed, we may construct a non-constant Yd-periodic function
which is invariant by the flow X. Therefore, it seems that the gradient invertibility (1.5) can
be regarded as a substitute for the classical ergodic assumption (see Remark 4.2). This allows
us to recover some of the two-dimensional ergodicity results of [16, 11] by a new and non-
ergodic approach, and to extend partially them to higher dimension. As a natural extension
of Corollary 4.1 the homogenization of a linear transport equation with oscillating coefficients
(see Corollary 4.4) is derived by the non-ergodic approach. Condition (1.5) in any dimension
still plays the same role as the irrationality of the so-called rotation number (see Remark 4.2 3.)
in the two-dimensional homogenization results of [3, 10, 16] which are based on the ergodicity
of the flow.

Notations

• (e1, . . . , ed) denotes the canonical basis of Rd.

• · denotes the scalar product in Rd.

• Id denotes the unit matrix of Rd×d, and R⊥ denotes the clockwise 90◦ rotation matrix in
R2×2.

• For M ∈ Rd×d, MT denotes the transpose of M .
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• Yd := [0, 1)d, and 〈f〉 denotes the average-value of a function f ∈ L1(Yd).

• |A| denotes the Lebesgue measure of a measurable subset A of Rd.

• Ck
] (Yd) denotes the space of the Yd-periodic functions of class Ck in Rd.

• Lp] (Yd), p ≥ 1, denotes the space of the Yd-periodic functions in Lploc(Rd), and H1
] (Yd)

denotes the space of the functions ϕ ∈ L2
] (Yd) such that ∇ϕ ∈ L2

] (Yd)
d.

• For any open set Ω of Rd, C∞c (Ω) denotes the space of the smooth functions with compact
support in Ω.

• For u ∈ L1
loc(Rd) and U = (Uj)1≤j≤d ∈ L1

loc(Rd)d,

∇u := (∂x1 , . . . , ∂xd) and DU :=
[
∂xiUj

]
1≤i,j≤d. (1.7)

• For ξ11 , . . . , ξ
d in Rd, the cross product ξ2 × · · · × ξd is defined by

ξ1 ·
(
ξ2 × · · · × ξd

)
= det

(
ξ1, ξ2, . . . , ξd

)
for ξ1 ∈ Rd, (1.8)

where det is the determinant with respect to the canonical basis (e1, . . . , ed), or equiva-
lently, the kth coordinate of the cross product is given by the (d−1)× (d−1) determinant

(
ξ2 × · · · × ξd

)
· ek = (−1)k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ21 ··· ξd1
...

...
...

ξ2k−1 ··· ξdk−1

ξ2k+1 ··· ξdk+1

...
...

...

ξ2d ··· ξdd

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.9)

2 Isotropic realizability of a vector field in Rd under pos-

itivity properties

2.1 Isotropic realizability of a gradient in Rd

Let u ∈ C1(Rd). In this section we assume that the gradient field b = ∇u has the following
positivity properties:

∀ k ∈ {1, . . . , d}, ∂xku ≥ 0 in Rd or ∀ k ∈ {1, . . . , d}, ∂xku ≤ 0 in Rd, (2.1)

and there exist positive fonctions αk, βk ∈ C0(R) with

ˆ ±∞
0

αk(t) dt =

ˆ ±∞
0

βk(t) dt = ±∞, (2.2)

such that for any x ∈ Rd, up to renumber the coordinates xk,

∀ k ∈ {1, . . . , d− 1}, αk(xk)

αk+1(xk+1)

∣∣∂xku(x)
∣∣ ≤ ∣∣∂xk+1

u(x)
∣∣ ≤ ∣∣∂xku(x)

∣∣ βk(xk)

βk+1(xk+1)
. (2.3)

Note that in (2.3) the partial derivatives of u may vanish but the ratios between two consecutive
partial derivatives are controlled.

We have the following result.
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Theorem 2.1. Let u ∈ C2(Rd) be a function satisfying conditions (2.1) and (2.3).

i) Assume that u has no critical point in Rd, i.e. ∇u does not vanish in Rd. Then, ∇u is
isotropically realizable in Rd with a positive function σ ∈ C1(Rd).

ii) Assume that u has a unique critical point x0, i.e. ∇u(x0) = 0 and ∇u does not vanish in
Rd \ {x0}. Then, ∇u is isotropically realizable with a positive C1-function σ in the open sets
{u > u(x0)} and {u < u(x0)}.
iii) More generally, assume that there exists a positive integer n such that

u
({
x ∈ Rd : ∇u(x) = 0

})
=
{
c1, . . . , cn

}
with inf

Rd
u =: c0 < c1 < · · · < cn < cn+1 := sup

Rd

u.
(2.4)

Then, ∇u is isotropically realizable with a positive C1-function σ in the sets {cj < u < cj+1}
for j = 0, . . . , n.

Example 2.2.

1. Let u : R2 → R be the function defined by

u(x) := arctan(x1) + arctan(x2) for x = (x1, x2) ∈ R2.

We have

∀x ∈ R2,
∂x2u(x)

∂x1u(x)
=
x21 + 1

x22 + 1

such that condition (2.3) holds true with α1(t) = α2(t) = β1(t) = β2(t) = t2 + 1.
Therefore, ∇u is isotropically realizable in R2 while infR2 |∇u| = 0.

2. Let u : R3 → R be the function defined by

u(x) := x31 + x32 + x33 + x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 for x = (x1, x2, x3) ∈ R3.

We have

∀x ∈ R3,


∂x1u(x) = 3x21 + x22 + x23 + 2x1x2 + 2x1x3

∂x2u(x) = x21 + 3x22 + x23 + 2x1x2 + 2x2x3

∂x3u(x) = x21 + x22 + 3x23 + 2x1x3 + 2x2x3.

The partial derivatives of u thus turn to be 3 quadratic forms on R3 associated with 3 symmetric
matrices of R3×3 the eigenvalues of which are 0 < 2−

√
3 < 1 < 2 +

√
3. Hence, the function u

has (0, 0, 0) as unique critical point. Moreover, we deduce that for any x ∈ R3 \ {(0, 0, 0)},

2−
√

3

2 +
√

3
≤


∂x2u(x)

∂x1u(x)
=
x21 + 3x22 + x23 + 2x1x2 + 2x2x3
3x21 + x22 + x23 + 2x1x2 + 2x1x3

∂x3u(x)

∂x2u(x)
=
x21 + 3x22 + 3x23 + 2x1x3 + 2x2x3
x21 + 3x22 + x23 + 2x1x2 + 2x2x3

 ≤
2 +
√

3

2−
√

3
,

such that condition (2.3) holds true with constant functions α1, α2, α3, β1, β2, β3.
Therefore, ∇u is isotropically realizable by a positive continuous function in the open sets

{u > 0} and {u < 0}.
3. Let f ∈ C3(R) be an increasing function such that

{x ∈ R : f ′(x) = 0} = {0, 1}.
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Define the function u ∈ C3(R3) by

u(x) :=
f(x1+x2+x3)+f(x1+2x2+x3)+f(x1+x2+3x3)+f(x1+4x2+5x3)

4
for x ∈ R3.

Due to the non-negativity of f ′ it is easy to check that ∇u(x) = 0

⇔ f ′(x1+x2+x3) = f ′(x1+2x2+x3) = f ′(x1+x2+3x3) = f ′(x1+4x2+5x3) = 0

⇔ x1+x2+x3, x1+2x2+x3, x1+x2+3x3, x1+4x2+5x3 ∈ {0, 1}

⇔ x1 ∈ {0, 1}, x2 = x3 = 0.

It follows that (0, 0, 0) and (1, 0, 0) are the only critical points of u with u(0, 0, 0) = f(0) and
u(1, 0, 0) = f(1) > f(0). Moreover, we have for any x ∈ R3 \ {(0, 0, 0), (1, 0, 0)},

1 ≤ ∂x2u(x)

∂x1u(x)
=
f ′(x1+x2+x3)+2f ′(x1+2x2+x3)+f ′(x1+x2+3x3) + 4f ′(x1+4x2+5x3)

f ′(x1+x2+x3)+f ′(x1+2x2+x3)+f ′(x1+x2+3x3)+f ′(x1+4x2+5x3)
≤ 4

1

4
≤ ∂x3u(x)

∂x2u(x)
=
f ′(x1+x2+x3)+f ′(x1+2x2+x3)+3f ′(x1+x2+3x3)+5f ′(x1+4x2+5x3)

f ′(x1+x2+x3)+2f ′(x1+2x2+x3)+f ′(x1+x2+3x3)+4f ′(x1+4x2+5x3)
≤ 5,

such that condition (2.3) holds true with constant functions α1, α2, α3, β1, β2, β3.
Therefore, ∇u is isotropically realizable by a positive continuous function in the open sets

{u < f(0)}, {f(0) < u < f(1)}, {u > f(1)}.

Proof of Theorem 2.1. Let u ∈ C2(Rd).

Proof of i). Fix x ∈ Rd. Let 0 ∈ (τ−, τ+) be the maximal interval on which the gradient flow
X(·, x) is solution to equation (1.3) with b = ∇u. The times τ− and τ+ do depend on x, but
their dependence is omitted for the sake of simplicity. Define the function f

f(t) := u(X(t, x)) for t ∈ (τ−, τ+). (2.5)

First, let us prove that the range of f agrees with the interval (infRd u, supRd u), i.e.{
f(t) : t ∈ (τ−, τ+)

}
= (infRd u, supRd u). (2.6)

In [6] it is immediate that the range of f is R, since the derivative f ′ = |∇u(X(·, x))|2 is defined
over the whole interval R and is bounded from below by a positive constant. Here, the flow
X(·, x) is only defined on the interval (τ−, τ+), and we may have infRd |∇u| = 0. For the sake
of simplicity we write X(t) in place of X(t, x) in the sequel.

Assume by contradiction that the flow X(t) is bounded in the neighborhood of τ+. Then,
τ+ = ∞, otherwise X ′(t) is bounded in the neighborhood of τ+ and the flow X(t) could be
extended beyond τ+ (see, e.g., [9, Section 17.4]). Then, the derivative f ′(t) = |∇u(X(t))|2
is bounded from below by a positive constant in the neighborhood of ∞, which implies that
f(t) = u(X(t)) tends to ∞ as t → ∞, a contradiction. Therefore, there exists an increasing
sequence tn ≥ 0 which tends to τ+ such that |X(tn)| tends to ∞ as n→∞.

From now on, we assume that all the partial derivatives of u are non-negative. The non-
positivity case of condition (2.1) is quite similar. Denote by Ak (respectively Bk) a primitive
of the function αk (respectively βk) in condition (2.3). We have for any k ∈ {1, . . . , d− 1},{

Ak
(
Xk(tn)

)
− Ak+1

(
Xk+1(tn)

)
≤ Ak(xk)− Ak+1

(
xk+1)

Bk

(
Xk(tn)

)
−Bk+1

(
Xk+1(tn)

)
≥ Bk(xk)−Bk+1

(
xk+1).

(2.7)
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Hence, by virtue of condition (2.2) the non-decreasing sequences Xk(tn) and Xk+1(tn) either are
both bounded or both tend to ∞. This combined with |X(tn)| → ∞ thus implies that all the
sequences Xk(tn) tend to∞ as n→∞. As a consequence, since u is separately non-decreasing,
we get that for any y ∈ Rd,

f(tn) = u(X(tn)) ≥ u(y) for any large enough n,

which yields sup(τ−,τ+) f = supRd u. Similarly, we deduce from (2.7) that inf(τ−,τ+) f = infRd u.
Therefore, since f is increasing, we obtain the desired equality (2.6).

Now, fix a constant cu in the interval (infRd u, supRd u). Then, for any x ∈ Rd, there exists
a unique τ(x) ∈ (τ−, τ+) such that

f(τ(x)) = u
(
X(τ(x), x)

)
= cu ∈ (infRdu, supRdu).

Note that by virtue of the C2-regularity of u, the flow X(t, x) is a C1-function (see, e.g., [9,
Chap. 17.6]) such that ∂tX is non-vanishing. Thus, the implicit functions theorem implies that
τ belongs to C1(Rd).

Then, the proof of the isotropic realizability of ∇u follows the same scheme that the proof
of [6, Theorem 2.15] with the time τ(x). More precisely, by the semi-group property of the flow

X(s,X(t, x)) = X(s+ t, x) for any s, t close to 0, (2.8)

combined with the uniqueness of τ(x) we have for any x ∈ Rd,

τ
(
X(t, x)

)
= τ(x)− t for any t close to 0. (2.9)

Then, the C1-function σ defined by

σ(x) := exp

(ˆ τ(x)

0

∆u
(
X(s, x)

)
ds

)
for x ∈ Rd, (2.10)

by (2.8) and (2.9) satisfies for any t close to 0,

σ
(
X(t, x)

)
= exp

(ˆ τ(x)−t

0

∆u
(
X(s+ t, x)

)
ds

)
= σ(x) exp

(
−
ˆ t

0

∆u
(
X(s, x)

)
ds

)
. (2.11)

Hence, differentiating the former equality with respect to t and taking t = 0, we get that for
any x ∈ Rd,

∇σ(x) · ∇u(x) = −σ(x) ∆u(x) or equivalently div (σ∇u) (x) = 0. (2.12)

Therefore, ∇u is isotropically realizable in Rd with the positive function σ ∈ C1(Rd).

Proof of ii). Let x ∈ Rd be such that u(x) > u(x0). Let us prove that the range of the function
f defined by (2.5) contains the interval (u(x0), supRd u), i.e.(

u(x0), supRd u
)
⊂
{
f(t) : t ∈ (τ−, τ+)

}
. (2.13)

First, note that
∀ t ∈ (τ−, τ+), f ′(t) = |∇(X(t, x))|2 > 0. (2.14)

Indeed, if f ′(t0) = 0 for some t0, then X(t0, x) = x0 = X(t0, x
0). Hence, by the uniqueness

of the Cauchy-Lipschitz theorem, X(t, x) = x0 for any t ∈ (τ−, τ+) and x = X(0, x) = x0, a
contradiction.
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The inequality (2.14) combined with the first argument of case i) implies that the flow
X(t) is not bounded in the neighborhood of τ+. Thus, as in the case i) with (2.7) we get that
sup(τ−,τ+) f = supRd u. Moreover, if the flow X(t) is not bounded in the neighborhood of τ−,
then we obtain similarly that inf(τ−,τ+) f = infRd u. In this case the range of f thus agrees with
(infRd u, supRd u), which implies (2.13).

It thus remains to study the case where the flow X(t) is bounded in the neighborhood of τ−,
which implies that τ− = −∞. Moreover, the function f ′ is not bounded by below by a positive
constant in the neighborhood of −∞, otherwise f(t) = u(X(t)) tends to −∞ as t → −∞.
Hence, there exists a decreasing sequence tn ≤ 0 which tends to −∞ such that X(tn) tends
to some point x̄ and f ′(tn) = |∇u(X(tn))|2 tends to 0 as n → ∞. At the limit we get that
∇u(x̄) = 0, which implies that x̄ = x0 and inf(−∞,τ+) f = u(x0). Therefore, by the increase of
f we obtain that the range of f is (u(x0), supRd u), which establishes (2.13).

Fix a constant cu in (u(x0), supRd u). Then, for any x ∈ Rd such that u(x) > u(x0), there
exists by (2.13) a unique time τ(x) ∈ (τ−, τ+) such that

f(τ(x)) = u
(
X(τ(x), x)

)
= cu ∈

(
u(x0), supRdu

)
.

Finally, we prove the isotropic realizability of ∇u in the open set {u > u(x0)} following the
argument between (2.9) and (2.12) with the time τ(x). The proof of the isotropic realizability
of ∇u in the open set {u < u(x0)} is quite similar.

Proof of iii). Let x ∈ Rd be such that cj < u(x) < cj+1 for some j = 0, . . . , n. Repeating the
arguments of i) and ii) we have the following alternative satisfied by the function f defined
by (2.5):

• X(t) is not bounded in the neighborhood of τ+ (resp. τ−), then sup(τ−,τ+) f = supRd u
(resp. inf(τ−,τ+) f = infRd u),

• X(t) is bounded in the neighborhood of τ+ (resp. τ−), then τ+ = ∞ (resp. τ− = −∞),
and sup(τ−,τ+) f ≥ cj+1 (resp. inf(τ−,τ+) f ≤ cj).

Contrary to case ii), here we have only an inequality since cj+1 (respectively cj) is the
smallest (respectively largest) critical value which can be attained asymptotically by the
function f .

Hence, we deduce that
(cj, cj+1) ⊂

{
f(t) : t ∈ (τ−, τ+)

}
. (2.15)

Finally, we conclude as before by considering a constant cu ∈ (cj, cj+1), the time τ(x) such that
u(X(τ(x), x)) = cu, and the conductivity σ defined by (2.10) in the open set {cj < u < cj+1}.
�

2.2 Isotropic realizability of a vector field in Rd

In this section we consider the isotropic realizability of a vector field b ∈ C1(Rd)d. Consider
the flow associated with the vector field b defined by (1.3). In the sequel, 0 ∈ (τ−(x), τ+(x))
denotes the maximal interval on which the solution X(·, x) to (1.3) is defined.

In the spirit of the former proof we have the following extension of Theorem 2.1.

Theorem 2.3. Let b ∈ C1(Rd)d and let I be a non-empty open interval of R. Assume that
there exists a function u ∈ C1(Rd) such that for any x ∈ {u ∈ I}, the function fx := u(X(·, x))
satisfies f ′x > 0 in (τ−(x), τ+(x)) and

∀x ∈ {u ∈ I}, I ⊂
{
fx(t) : t ∈ (τ−(x), τ+(x))

}
, (2.16)
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where {u ∈ I} denotes the inverse image of I by u. Then, the vector field b is isotropically
realizable in the open set {u ∈ I} with a positive function σ ∈ C1({u ∈ I}).

Proof of Theorem 2.3. Fix a constant cI in the interval I, and let x ∈ {u ∈ I}. By (2.16)
and the increase of fx, there exists a unique τ(x) ∈ (τ−(x), τ+(x)) such that

u(X(τ(x), x)) = cI . (2.17)

By the semi-group property (2.8) of the flow X combined with the uniqueness of τ the equality
(2.9) still holds true. Moreover, by the implicit functions theorem τ belongs to C1({u ∈ I}).
Therefore, following (2.10), (2.11), (2.12) with b instead of ∇u, the C1-function σ defined by

σ(x) := exp

(ˆ τ(x)

0

(div b)
(
X(s, x)

)
ds

)
for x ∈ {u ∈ I}, (2.18)

is solution to the equation div (σb) = 0 in the open set {u ∈ I}. �

Example 2.4. Consider the gradient field b = ∇v in R2 defined by

v(x) :=
1

3
(x31 + x32) for x ∈ R2.

Then, the flow X defined by (1.3) is given by

X(t, x) =

(
x1

1− tx1
,

x2
1− tx2

)
, t ∈ (τ−(x), τ+(x)) =



(−∞, 1
max(x1,x2)

) if x1 > 0, x2 > 0

( 1
min(x1,x2)

,∞) if x1 < 0, x2 < 0

( 1
x1
, 1
x2

) if x1x2 < 0

( 1
x1
,±∞) if ∓ x1 > 0, x2 = 0

( 1
x2
,±∞) if x1 = 0, ∓x2 > 0

R if x = (0, 0).

It is clear that the function v satisfies condition (2.1) but not condition (2.3).
Define the function u by u(x) := x1 + x2 for x ∈ R2. The function fx := u(X(·, x)) satisfies

for any x 6= (0, 0),

∀ t ∈ (τ−(x), τ+(x)), f ′x(t) = (∇u · ∇v)(X(t, x)) = (X1(t, x))2 + (X2(t, x))2 > 0,

and

{
fx(t) : t ∈ (τ−(x), τ+(x))

}
=



(0,∞) if x1 > 0, x2 > 0

(−∞, 0) if x1 < 0, x2 < 0

R if x1x2 < 0

(0,±∞) if ± x1 > 0, x2 = 0

(0,±∞) if x1 = 0, ±x2 > 0

{0} if x = (0, 0).

Hence, the function u satisfies the conditions of Theorem 2.3 with I = (0,∞) and I = (−∞, 0).
Define cI := ±1 if I := (0,±∞), and let x ∈ I. Moreover, it is easy to check that the solution
τ(x) of (2.17) is given by

τ(x) =
x1 + x2 − 2x1x2 −

√
(x1 − x2)2 + 4x21x

2
2

2x1x2
for x1 + x2 6= 0.
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Therefore, using formula (2.18) we obtain that the gradient field b = ∇v is isotropically re-
alizable in the open set {x1 + x2 6= 0} with the conductivity σ ∈ C1({x1 + x2 6= 0}) defined
by

σ(x) =
1(

1− τ(x)x1
)2(

1− τ(x)x2
)2 for x1 + x2 6= 0.

Note that b = ∇v is isotropically realizable in the open sets {x1, x2 > 0} and {x1, x2 < 0}
with the simpler conductivity x 7→ (x1x2)

−2. However, Theorem 2.3 here provides a suitable
explicit conductivity in the two larger connected domains {x1 + x2 > 0} and {x1 + x2 < 0}.

3 Existence of a positive invariant measure in the torus

under the gradient invertibility

3.1 Non-existence of a positive invariant measure

In this section we will show that the isotropic realizability in Rd of Theorem 2.1 under the
positivity assumptions (2.1) and (2.3) cannot be extended to the torus, namely the existence of
a positive Yd-periodic invariant measure. In particular, note that any vector field b ∈ C0

] (Yd)
d

satisfies conditions (2.1) and (2.3) with b in place of ∇u, if there exists a constant α > 0 such
that

∀ k ∈ {1, . . . , d}, bk ≥ α in Yd or ∀ k ∈ {1, . . . , d}, bk ≤ −α in Yd. (3.1)

First, we have the following non-existence result if some component of b changes sign.

Proposition 3.1. Let b a periodic vector field in L∞] (Yd)
d. Assume that for some k = 1, . . . , d,

say k = 1 without loss of generality, there exist two measurable subsets A1, B1 of [0, 1] with
positive Lebesgue measure, such that{

∀x1 ∈ A1, b1(x1, x
′) > 0 a.e. x′ ∈ Rd−1

∀x1 ∈ B1, b1(x1, x
′) < 0 a.e. x′ ∈ Rd−1.

(3.2)

Then, the vector field b has no positive invariant measure σ ∈ L∞] (Yd).

Proof of Proposition 3.1. Assume by contradiction that there exists some positive function
σ ∈ L∞] (Yd)

d such that div(σb) = 0 in Rd, or equivalently in the torus sense

∀ϕ ∈ H1
] (Yd),

ˆ
Yd

σ(x)b(x) · ∇ϕ(x) dx = 0.

If the function ϕ only depends on the variable x1, the former equation leads us to

∀ϕ ∈ H1
] (0, 1),

ˆ 1

0

(ˆ
Yd−1

σ(x1, x
′) b1(x1, x

′) dx′

)
ϕ′(x1) dx = 0,

which implies the existence of a constant c ∈ R such that

ˆ
Yd−1

σ(x1, x
′) b1(x1, x

′) dx′ = c a.e. x1 ∈ [0, 1].
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Then, by assumption (3.2) combined with the Fubini theorem we get that

ˆ
A1×Yd−1

σ(x1, x
′) b1(x1, x

′)︸ ︷︷ ︸
>0

dx = c |A1| > 0

ˆ
B1×Yd−1

σ(x1, x
′) b1(x1, x

′)︸ ︷︷ ︸
<0

dx = c |B1| < 0,

which yields a contradiction. �

However, the positivity property (3.1) satisfied by a vector field b is not sufficient to ensure
the existence of a positive periodic invariant measure as shows the following example.

Example 3.2. Consider the Y2-periodic continuous gradient field b = ∇u defined in R2 by

u(x) := αx1 + αx2 + 2 cos(2πx1) cos(2πx2) for x ∈ R2, where α > 4π.

We have ∂xku ≥ α − 4π > 0 in Y2 for k = 1, 2, such that the gradient field b = ∇u satisfies
condition (3.1). On the other hand, make the change of function

v(y) := u(x) = cos(4πy1) + 2αy2 + cos(4πy2), where

{
x1 = y1 + y2
x2 = y2 − y1.

Then, the gradient field ∇yv is still Y2-periodic. Moreover, by virtue of Proposition 3.1 ∇yv
has not a Y2-periodic positive invariant measure, since ∂y1v only depends on the variable y1
and changes sign. Also note that the orthogonality of the change of variables x = Py, where
PP T = 2 I2, preserves the isotropy. Indeed, for any σ ∈ L∞] (Y2), and for any ϕ ∈ C∞c (R2) and
ψ(y) := ϕ(x), we have ∇yψ(y) = P T∇xϕ(x), and

ˆ
R2

σ(Py)∇yv(y) · ∇yψ(y) dy =

ˆ
R2

σ(x)PP T∇u(x) · ∇ϕ(x) | detP |−1 dx

=

ˆ
R2

σ(x)∇u(x) · ∇ϕ(x) dx,

which implies that

divy
(
σ(Py)∇yv

)
= 0 in R2 ⇔ div(σ∇u) = 0 in R2,

where the positive function y 7→ σ(Py) belongs to L∞] (Y2). Hence, the gradient field ∇u cannot
have a Y2-periodic positive invariant measure since ∇yv has not one. Therefore, the Y2-periodic
gradient field ∇u satisfies condition (3.1), but has not a Y2-periodic positive invariant measure.

3.2 Criterium for the existence of a positive invariant measure

In this section we will give a criterium on a regular Yd-periodic vector field b so that it has a
positive Yd-periodic invariant measure. Let b be a periodic vector field in C1

] (Yd)
d, and consider

the associated flow X defined by (1.3).
We have the following result.

Theorem 3.3. Let b ∈ C0
] (Yd)

d. Then, the following assertions are equivalent:

11



i) There exist a positive function σ ∈ C0
] (Yd)

d and a vector field V = (v1, . . . , vd) ∈ C1(Rd)d

with DV ∈ C0
] (Yd)

d×d, such that

b · ∇v1 = 1 in Yd, (3.3)

σb =

{
R⊥∇v2 if d = 2

∇v2 × · · · × ∇vd if d ≥ 3,
in Yd. (3.4)

ii) There exist a vector field W ∈ C1(Rd)d and a non-zero vector ξ ∈ Rd such that

DW ∈ C0
] (Yd)

d×d with 〈DW 〉 = Id, det (DW ) 6= 0 in Yd, (DW )T b = ξ in Yd. (3.5)

Remark 3.4.

1. The gradient invertibility (3.3) may seem rather sharp. But Proposition 3.5 below gives
some general cases for which it holds true.

2. In dimension d = 2 due to the representation of divergence free functions as orthogonal
gradients, condition (3.4) is equivalent to the fact that σ is a positive Y2-periodic invariant
measure. In higher dimension condition (3.4) only implies the existence of a positive Yd-periodic
invariant measure, since a divergence free vector field in Rd with d ≥ 3, is not necessarily of
the form (3.4).

Proposition 3.5.

i) Let b ∈ C0
] (Yd)

d. Assume that

∃ k ∈ {1, . . . , d}, bk(x) = bk(xk) > 0 for x ∈ Rd, (3.6)

then equality (3.3) holds true.

ii) Let b ∈ C1
] (Yd)

d. Assume that for some k ∈ {1, . . . , d}, there exists a function u ∈ C1(Rd)

such that ∇u is Yd-periodic, b · ∇u > 0 in Y d, and the mapping

Φ : (t, x) 7−→ DxX(t, x)∇u(X(t, x))

(b · ∇u)(X(t, x))
is bounded and uniformly continuous in R× Rd. (3.7)

Then, condition (3.3) still holds true.

iii) Let v1, . . . , vd be d ≥ 2 functions in C1(Rd) such that

∀ k ∈ {1, . . . , d}, ∇vk is Yd-periodic and ‖∇vk − ek‖L∞(Yd)d < ε. (3.8)

Then, for any small enough ε > 0, the vector field b ∈ C0
] (Yd)

d defined by

σ := det (∇v1,∇v2, . . . ,∇vd) > 0 and σb :=

{
R⊥∇v2 if d = 2

∇v2 × · · · × ∇vd if d > 2,
(3.9)

satisfies condition (3.3).

Remark 3.6.

1. Condition (3.6) is a particular case of (3.7). Indeed, assuming (3.6) and choosing u(x) := xk
we have

Xk(t, x) = F−1
(
t+ F (xk)

)
where F (t) :=

ˆ t

0

b−1k (s) ds. (3.10)
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It follows that for any (t, x) ∈ R× Rd,

DxX(t, x)∇u(X(t, x))

(b · ∇u)(X(t, x))
=
∇xXk(t, x)

bk(X(t, x))
=

1

bk(X(t, x))

F ′(xk) ek
F ′(Xk(t, x))

=
ek

bk(xk)
,

which clearly satisfies (3.7).

2. In condition (3.8) we may replace the canonical basis by any basis (ξ1, . . . , ξd) of Rd such
that det (ξ1, . . . , ξd) > 0.

Proof of Theorem 3.3. We prove the case d ≥ 3. The case d = 2 is quite similar.

i)⇒ ii) By (3.4) we have

σ = σb · ∇v1 = det (∇v1, . . . ,∇vd) = det (DV ), (3.11)

which by the quasi-affinity of the cofactors (see, e.g., [8, Sec. 4.3.2]) implies that

det
(
〈DV 〉

)
=
〈
det (DV )

〉
= 〈σ〉 > 0.

Hence, the matrix 〈DV 〉 is invertible, so that we may define the matrix M of Rd×d by

M := 〈DV 〉−1. (3.12)

Let W be the vector field defined by

W := MTV ∈ C1(Rd)
d, (3.13)

and let ξ be the vector defined by
ξ := MT e1. (3.14)

Then, by (3.3), (3.4) and (3.14) we get that

(DW )T b = MT (DV )T b = MT


b · ∇v1
b · ∇v2

...
b · ∇vd

 = ξ. (3.15)

Moreover, by (3.12) and (3.13) we have 〈DW 〉 = Id, and by (3.11) we obtain that

det (DW ) = det (M) det (DV ) = det (M)σ 6= 0 in Yd.

Therefore, the function W satisfies the desired condition (3.5).

ii)⇒ i) Let W be a vector field satisfying (3.5). Consider an invertible matrix M ∈ Rd×d such
that equation (3.14) holds true, and define the vector field V by (3.13). Then, we have the
equalities (3.15) which combined with (3.14) yield

b · ∇v1 = 1 and b · ∇v2 = · · · = b · ∇vd = 0 in Yd, (3.16)

which implies in particular (3.3). Moreover, we have

det (DW ) = det (M) det (DV ) = det (M)∇v1 · (∇v2 × · · · × ∇vd) 6= 0 in Yd.

Therefore, using a continuity argument and up to change v2 in− v2, the orthogonality conditions
of (3.16) imply the existence of a positive function σ ∈ C0

] (Yd) such that condition (3.4) holds
true, which concludes the proof. �
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Proof of Proposition 3.5.

Proof of i). Assume that (3.6) holds true for some k ∈ {1, . . . , d}, and let v1 be the function
defined by

v1(x) :=

ˆ xk

0

b−1k (s) ds for x ∈ Rd.

Therefore, ∇v1 = b−1k ek is Yd-periodic, and b · ∇v1 = 1 in Yd.

Proof of ii). Let x ∈ Rd. Define the function f by f(t) := u(X(t, x)) for t ∈ R. There exists a
constant c > 0 such that

∀ t ∈ R, f ′(t) = (b · ∇u)(X(t, x)) ≥ c,

which implies that the range of f is R. Hence, there exists a unique τ(x) ∈ R such that
f(τ(x)) = 0, and by the implicit functions theorem τ belongs to C1(R). Moreover, by the
semi-group property of the flow combined with the uniqueness of τ(x), we have

∀ t ∈ R, τ(X(t, x)) = τ(x)− t.

On the one hand, taking the derivative with respect to t and choosing t = 0, we get that

b · ∇τ = −1 in Rd. (3.17)

On the other hand, differentiating with respect to x the equality u(X(τ(x), x)) = 0, we get that

(b · ∇u)(X(τ(x), x))∇τ(x) +DxX(τ(x), x)∇u(X(τ(x), x)) = 0,

or equivalently,

∇τ(x) = − DxX(τ(x), x)∇u(X(τ(x), x))

(b · ∇u)(X(τ(x), x))
= −Φ(τ(x), x).

This combined with (3.7) implies that ∇τ is bounded and uniformly continuous in Rd. Hence,
by the Ascoli theorem the average of gradient functions

x 7−→ −1

(2n+ 1)d

∑
κ∈Zd∩[−n,n]d

∇τ(x+ κ)

converges uniformly, up to a subsequence of n, to some continuous gradient ∇v1 in any compact
set of Rd. The function ∇v1 is clearly Yd-periodic, and equality (3.17) implies (3.3).

Proof of iii). Condition (3.8) implies that

σ = det (e1 +∇v1 − e1, . . . , ed +∇vd − ed) = 1 +O(ε),

so that σ is positive when ε is small enough. Then, the vector field b defined by (3.9) satisfies

b · ∇v1 =

{
σ−1∇v1 ·R⊥∇v2 if d = 2

σ−1∇v1 · (∇v2 × · · · × ∇vd) if d > 2

}
= σ−1 det (∇v1, . . . ,∇vd) = 1 in Yd,

which concludes the proof. �
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4 Applications

4.1 Asymptotics of the flow

There exists an interesting by-product of Theorem 3.3 in terms of the asymptotics of the flow
X defined by (1.3), which gives an alternative approach to the classical ergodic approach.

We have the following result.

Corollary 4.1. Let b ∈ C1
] (Yd)

d be a vector field such that conditions (3.3) and (3.4) hold true

with functions vk ∈ C2(Rd). Then, there exists a vector ξ ∈ Rd such that the flow X defined by
(1.3) satisfies

∀x ∈ Rd, lim
|t|→∞

X(t, x)

t
= ξ =

〈σb〉
〈σ〉

(4.1)

Moreover, if there exists a non-zero vector λ ∈ Rd such that b · λ = 0 in Yd, and if either σb is
not constant in dimension d = 2 or σb is not of the form λ×∇w in dimension d = 3, then the
flow X is not ergodic.

Remark 4.2.

1. Condition (3.4) implies the existence of a positive Yd-periodic invariant measure for the
flow X associated with the vector field b ∈ C1

] (Yd)
d. Hence, by virtue of the Birkhoff ergodic

theorem (see, e.g., [12, Chap. II, §5])

b∗(x) := lim
|t|→∞

X(t, x)

t
exists for a.e. x ∈ Rd, (4.2)

with respect to the Lebesgue measure, and b∗ is invariant by the flow X, i.e.

b∗(X(t, x)) = b∗(x) ∀ t ∈ R, a.e. x ∈ Rd. (4.3)

Under the extra assumption (3.3) Corollary 4.1 shows that limit (4.2) holds actually for every
x ∈ Rd. Moreover, the limit b∗ turns out to be the constant ξ of (3.5), while the flow X is not
in general ergodic as shown in Example 4.3. Therefore, to prove (4.1) we need to use a different
approach from the classical ergodic approach.

2. Formula (3.10) shows that in dimension d = 1, under condition (3.3) or equivalently assuming
that b is a non-vanishing function in C1

] (R), the flow X is ergodic and asymptotics (4.1) holds
with σ = b−1 and the harmonic mean ξ = 〈b−1〉−1.

3. In the particular case of dimension two, assume that the vector field b ∈ C1
] (Y2)

2 has a
positive measure invariant σ ∈ C0

] (Y2) and does not vanish in R2. Then, using the Kolmogorov
theorem (see [14, Lect. 11] or [16, Section 2]) Tassa [16, Section 3] obtained the following
asymptotics

lim
t→±∞

X(t, x)

t
= a∗(e1 + γ e2) for any x ∈ Rd, where γ :=

〈σb2〉
〈σb1〉

,

with the alternative according to the so-called rotation number γ:

• If γ /∈ Q, or equivalently the flow X is ergodic, we have

a∗ =
〈σb1〉
〈σ〉

and a∗(e1 + γ e2) =
〈σb〉
〈σ〉

.
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• If γ ∈ Q, we have in general

a∗(e1 + γ e2) 6=
〈σb〉
〈σ〉

.

In this case the gradient invertibility (3.3) cannot hold.

In view of the two points above, condition (3.3) gives the same asymptotics (4.1) than in
the ergodicity setting, but does not imply the ergodicity of the flow. Moreover, the loss of
condition (3.3) does not imply the loss of the ergodicity assumption. Therefore, condition (3.3)
can be regarded as a substitute for the classical ergodicity assumption, since it induces a new
and different regime for getting (4.1).

4. Peirone [11, Theorem 3.1] proved the asymptotics (4.1) everywhere in R2 under the sole
condition that the vector field b ∈ C1

] (Y2)
2 is non-vanishing in R2, using to this end the Birkhoff

ergodic theorem combined with the Poincaré-Bendixson theorem (see, e.g., [9, Sec. 10.5]).
Moreover, he provided [11, Lemma 4.6] an example of a non-vanishing vector field b in R3 such
that the asymptotics (4.1) does not hold at some point.

Therefore, Corollary 4.1 gives an alternative approach for proving (4.1) in dimension two
in the absence of ergodicity assumption, and in higher dimension condition (3.4) gives a large
class of vector fields b such that (4.1) holds true everywhere in Rd.

Example 4.3.

1. Let v1 ∈ C1(R) be a function such that v′1 is positive and 1-periodic, and let v ∈ C1(R) be
a positive, 1-periodic and non-constant function. Define the vector field b ∈ C1

] (Y2)
2 and the

positive function σ ∈ C0
] (Y2) by

b(x) :=
1

v′1(x2)
e2 and σ(x) := v(x1) v

′
1(x2) for x ∈ R2.

We have b · e1 = 0 in Y2, σb = v(x1) e2 is non-constant and divergence free, and condition (3.3)
holds. Therefore, by virtue of Corollary 4.1 the flow X defined by (1.3) is not ergodic and
satisfies for any x ∈ R2,

lim
|t|→∞

X(t, x)

t
=
〈σb〉
〈σ〉

=
〈v(x1) e2〉
〈v(x1)v′1(x2)〉

=
e2

v1(1)− v1(0)
.

2. Let v1, v2, v3 ∈ C1(R3) be 3 functions such that condition (3.8) holds true with small enough
ε > 0, and that v2(x) = v2(x2) has a 1-periodic and non-constant derivative. Then, define the
positive function σ ∈ C0

] (Y3) and the vector field b ∈ C1
] (Y3)

3 by

σ := det (∇v1,∇v2,∇v3) = ∇v1 · (∇v2 ×∇v3) and σb = ∇v2 ×∇v3 = v′2(x2) e2 ×∇v3 in Y3,

so that b · ∇v1 = 1 and b · e2 = 0 in Y3.
On the other hand, for any v ∈ C1(R3) with ∇v Y3-periodic, the functions σb and e2 ×∇v

cannot agree. Otherwise, we have

v′2(x2)
(
∂x3v3(x) e1 − ∂x1v3(x) e3

)
= ∂x3v(x) e1 − ∂x1v(x) e3 for x ∈ R3,

which implies that there exists a function w ∈ C0(R) such that

v(x) = v′2(x2) v3(x) + w(x2) for x ∈ R3.
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Hence, by the Y3-periodicity of ∇v3 and ∇v it follows that

v(x1, x2, x3+1)−v(x) = 〈∂x3v〉 = v′2(x2)
(
v3(x1, x2, x3+1)−v3(x)

)
= v′2(x2) 〈∂x3v3〉 for x ∈ R3,

a contradiction since v′2 is not constant and 〈∂x3v3〉 is close to 1.
Therefore, by virtue of Corollary 4.1 the flow X defined by (1.3) is not ergodic, and by the

quasi-affinity of the cofactors satisfies for x ∈ R3,

lim
|t|→∞

X(t, x)

t
=
〈σb〉
〈σ〉

=
〈∇v2〉 × 〈∇v3〉

〈∇v1〉 · (〈∇v2〉 × 〈∇v3〉)
=

〈∂x3v3〉 e1 − 〈∂x1v3〉 e3
〈∂x1v1〉〈∂x3v3〉 − 〈∂x3v1〉〈∂x1v3〉

.

Proof of Corollary 4.1. By virtue of Theorem 3.3 there exist a function W ∈ C1(R)d and a
non-zero vector ξ ∈ Rd satisfying (3.5). Define the function W] ∈ C1(Rd)

d by

W](x) := x−W (x) for x ∈ Rd. (4.4)

Note that the vector field W] is Yd-periodic since 〈DW 〉 = Id. Then, using that

b = (DW )T b+ (DW])
T b = ξ + (DW])

T b,

we have

X(t, x) = x+

ˆ t

0

b(X(s, x)) ds = x+ t ξ +

ˆ t

0

(
(DW])

T b
)
(X(s, x)) ds

= x+ t ξ +

ˆ t

0

∂

∂s

(
W](X(s, x))

)
ds

= x+ t ξ +W](X(t, x))−W](x).

(4.5)

Since the function W] ∈ C1
] (Yd)

d is bounded in Rd, the former equality implies limit (4.1).

Moreover, by (3.5) and the periodic div-curl lemma we have for any λ ∈ Rd and wλ := Wλ,

〈σ〉 ξ · λ = 〈σ ξ · λ〉 = 〈σb · ∇wλ〉 = 〈σb〉 · 〈∇wλ〉 = 〈σb〉 · λ,
which yields the second equality of (4.1).

Assume that there exists a non-zero vector λ ∈ Rd such that b · λ = 0 in Yd, and that either
σb is not constant in dimension d = 2 or σb is not of the form λ × ∇w in dimension d = 3.
Then, using the quasi-affinity of the determinant and (1.8) we have

det
(
λ, 〈∇v2〉, . . . , 〈∇vd〉

)
=
〈
λ · (∇v2 × · · · × ∇vd)

〉
= 〈σb · λ〉 = 0,

which implies the existence of a non-zero vector (α1, α2, . . . , αd) ∈ Rd such that

α1 λ+ α2 〈∇v2〉+ · · ·+ αd 〈∇vd〉 = 0.

In view of (3.4) it follows that the function v defined by

v(x) := α1 λ · x+ α2 v2(x) + · · ·+ αd vd(x) for x ∈ Rd,

is in C1
] (Yd), and satisfies the equality b · ∇v = 0 in Yd, or equivalently (4.3) with b∗ = ∇v.

Moreover, due to λ 6= 0 one of the coefficients αi for some i ≥ 2, is not null, say α2 6= 0 without
loss of generality.

Now, assume that the function v is constant. Then, when d = 2 we have by (3.4)

0 = ∇v = α1λ+ α2∇v2 = α1λ− α2R⊥σb,

a contradiction with the assumption that σb is not constant. When d = 3 we have by (3.4)

0 = ∇v ×∇v3 = α1λ×∇v3 + α2 σb,

again a contradiction with the assumption on σb. Hence, the function v is a non-constant
invariant periodic function for the flow X. Therefore, the flow X is not ergodic (see [12, Chap.
II, §5]), which concludes the proof. �
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4.2 Homogenization of a linear transport equation

For b ∈ C1
] (Yd)

d and u0 ∈ C1(Rd), consider the following transport equation with an oscillating
drift 

∂uε
∂t
− b(x/ε) · ∇uε = 0 in (0,∞)× Rd

uε(0, x) = u0(x) for x ∈ Rd.

(4.6)

The homogenization of equation (4.6) was studied in the case of a two-dimensional divergence
free vector field b (i.e. with a constant invariant measure) through an ergodic approach by
Brenier [3], then by Hou and Xin [10] with an oscillating initial datum which was specifically
treated by a two-scale approach. Tassa [16] extended these results to any invariant measure in
dimension two. These results show that the ergodicity of the flow associated with b leads us
to a homogenized linear transport equation. In contrast, the loss of ergodicity implies that the
limit of uε is not in general solution to a linear transport equation as Tartar [15] showed. Here,
using the non-ergodic approach of Corollary 4.1 we obtain the following homogenization result
in any dimension.

Corollary 4.4. Let b ∈ C1
] (Yd)

d be a vector field satisfying conditions (3.3) and (3.4) with

functions vk ∈ C2(Rd), and let u0 ∈ C1(Rd). Then, the solution uε in L1
loc(R+ × Rd) to the

transport equation (4.6) converges in C0
loc(R+×Rd) to the function u0(x+ tξ) where the vector

ξ is given by (4.1).

Proof of Corollary 4.4. The flow Xε associated with the oscillating vector field b(x/ε) is
given by

Xε(t, x) = εX(t/ε, x/ε) for (t, x) ∈ R× Rd, (4.7)

where X is the flow associated with b. Hence, due to the equality (4.5) and the boundedness
of the function W] ∈ C1

] (Yd)
d defined by (4.4) it follows that

Xε(t, x) = x+ t ξ + εW](X(t/ε, x/ε))− εW](x/ε) = x+ t ξ +O(ε). (4.8)

On the other hand, it is well known that the solution uε ∈ L1
loc(R+ × Rd) to the transport

equation (4.6) is given by

uε(t, x) = u0(Xε(t, x)) for (t, x) ∈ R+ × Rd.

Therefore, this combined with (4.8) and the continuity of u0 implies that the sequence uε
converges uniformly to u0(x+ t ξ) in any compact set of R+ × Rd.
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