

GLOBAL AND REGIONAL POTENTIAL FOR BIOMASS ENERGY WITH CARBON CAPTURE AND STORAGE

Olivia RICCI

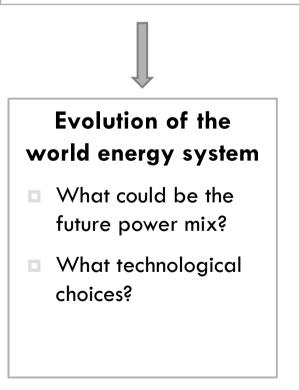
Orleans Economic Laboratory University of Orleans – CNRS France

Sandrine SELOSSE

Centre for Applied Mathematics, MINES ParisTech, Chair ParisTech Modeling for sustainable development France

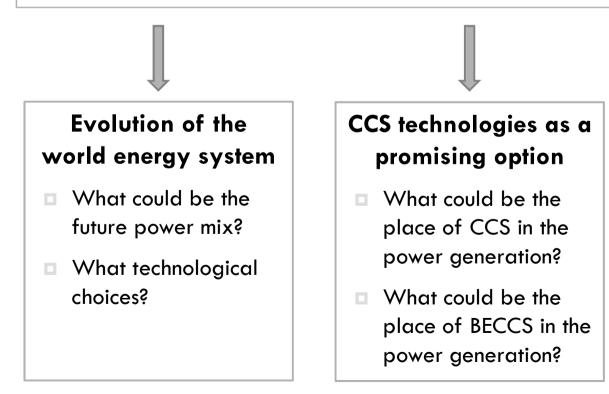
September 19-22, 2011 Poland

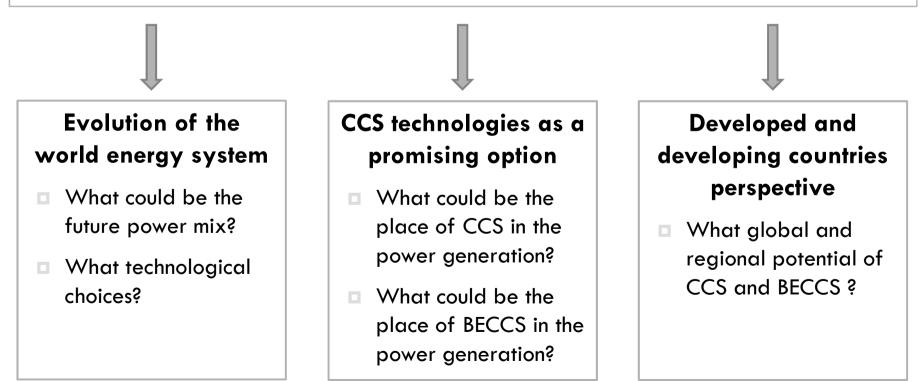
CaRe Tech 2011


2/12					1
	Objectives	TIAM-FR and Scenarios	Results	Conclusion	

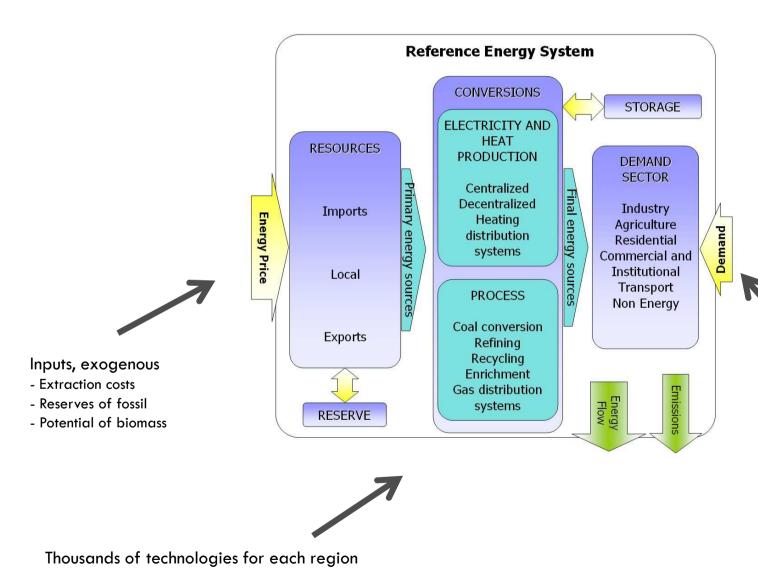
2° C objective expressed since COP15 induces CO₂ mitigation policies which involve transformation of the world energy system and technological choices

2/12					1
	Objectives	TIAM-FR and Scenarios	Results	Conclusion	


 2° C objective expressed since COP15 induces CO₂ mitigation policies which involve transformation of the world energy system and technological choices


 2° C objective expressed since COP15 induces CO₂ mitigation policies which involve transformation of the world energy system and technological choices

2°C objective expressed since COP15 induces CO₂ mitigation policies which involve transformation of the world energy system and technological choices



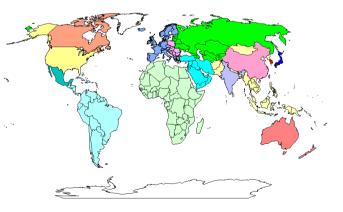
3/12				
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

- TIMES Integrated Assessment Model developed by ETSAP- IEA (Energy Technology Systems Analysis Program)
- □ A technological detailed bottom-up energy system model

Simplified RES

Demand for energy services

Agricultural demand


Commercial Cooling Commercial Cooking Commercial Space Heat Commercial Hot Water Commercial Lighting **Commercial Office Equipment Commercial Other Commercial Refrigeration** Chemicals Iron and Steel Pulp and Paper Non-ferrous metals Non Metals **Other Industries** Industrial and Other Non Energy Uses Non Energy Uses Other non-specified consumption **Residential Cooling Residential Clothes Drying Residential Clothes Washing Residential Dishwashing Residential Other Electric Residential Space Heat Residential Hot Water Residential Cooking Residential Lighting Residential Other Residential Refrigeration Domestic Aviation** International Aviation **Road Bus Demand Road Commercial Trucks Demand** Road Three Wheels Demand Road Heavy Trucks Demand Road Light Vehicle Demand Road Medium Trucks Demand Road auto Road Two Wheels Demand Rail-Freight **Rail-Passengers Domestic Internal Navigation** International Navigation

Model: TIAM-Fr, the French world version of TIMES

3/12				
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

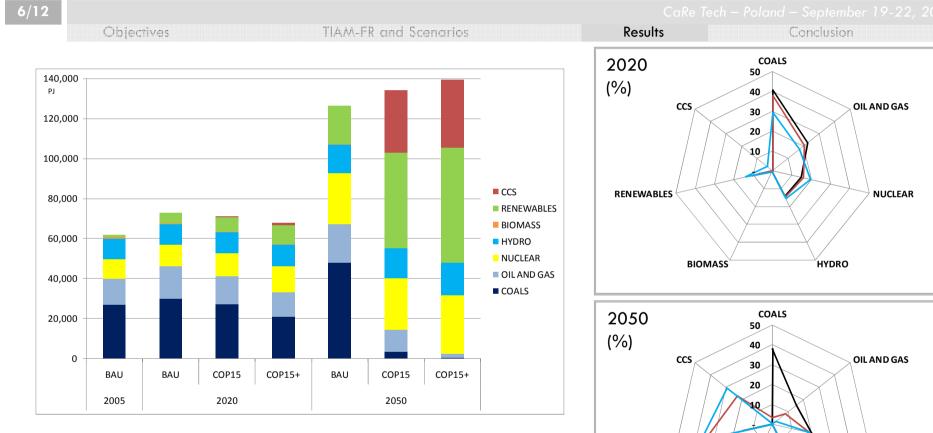
- TIMES Integrated Assessment Model developed by ETSAP- IEA (Energy Technology Systems Analysis Program)
- □ A technological detailed bottom-up energy system model
- □ A linear programming model minimizing the total discounted cost of the system
- □ A geographically integrated model in 15 world regions
- $\hfill\square$ A time horizon from 2005 to 2100
- □ GHG emissions and integrated climate module
 - CO_2 , CH_4 and N_2O
 - Atmospheric concentration and temperature changes
- □ Carbon capture and sequestration technologies
 - Fossil and Bio-Energies CCS

Specification of scenarios

4/12				
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

- COP15 A regional scenario considering post COP15 pledges in 2020 and assuming new targets for 2050
 - The lowest CO₂ mitigation targets by 2020 expressed by Europe, the USA, Australia, Canada, Japan, China and India
 - Assumptions in 2050 representing the international convergence in terms of mitigation for these developed and fast developing countries
- COP15plus A coupled regional and global scenario in line with the consensual 2°C objective
 - The lowest CO₂ mitigation targets by 2020 expressed by Europe, the USA, Australia, Canada, Japan, China and India
 - A limitation of the world CO₂ emissions to 50% in 2050 by comparison with 2000

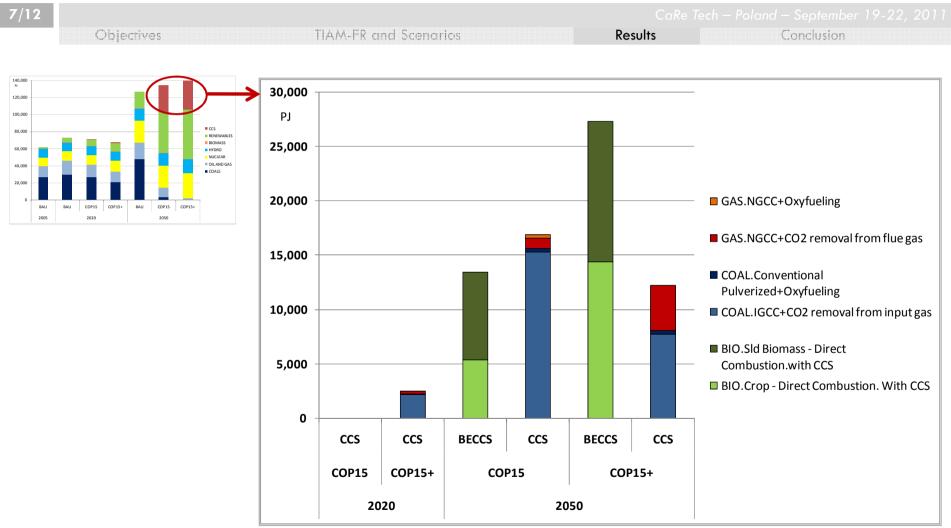
Results


World power generation (PJ) and mix (%)

NUCLEAR

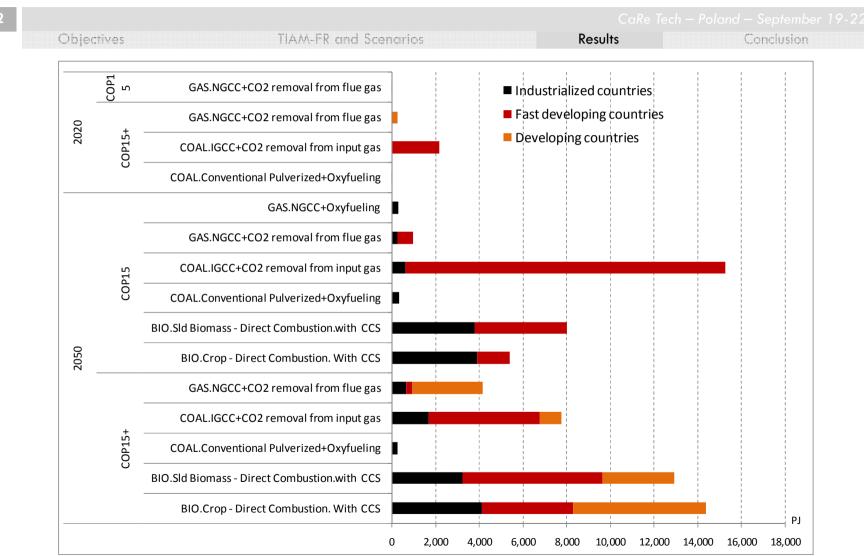
HYDRO

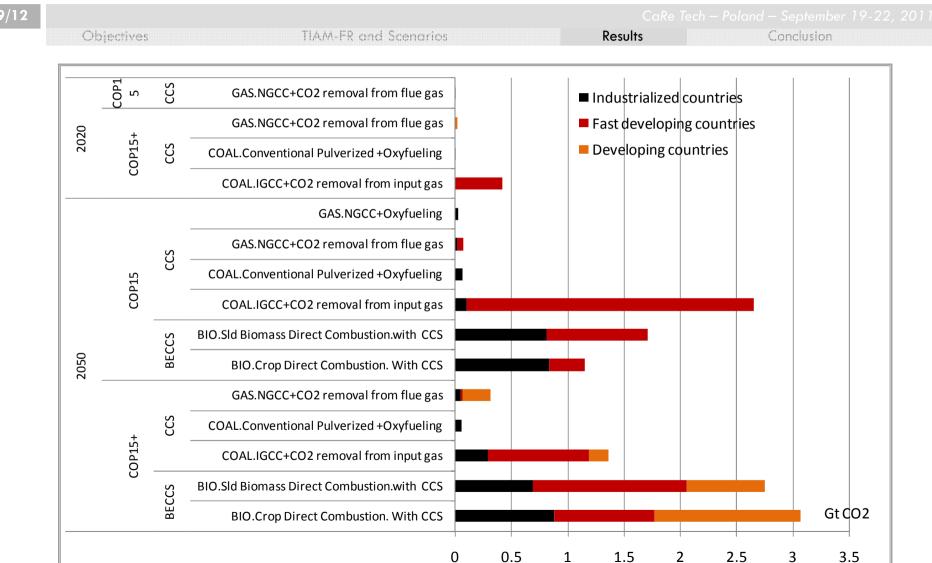
—BAU —COP15 —COP15+


RENEWABLES

BIOMASS

- 2020: Energy switch from fossil to nuclear and renewables in COP15+
- 2050: Deployment of renewables and CCS technologies


World power generation by plants with CCS (PJ)


MINES ParisTech

Regional power generation by plants with CCS (PJ)

Regional CO₂ sequestrated by power plants with CCS (Gt)

Conclusion

11/12				
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

□ The deployment of CCS as a response of carbon constraints

23 % and 29% of CCS in the power mix respectively in COP15 and COP15+ scenarios

□ Investment in BECCS in developed and developing countries

D But: feasibility of this development

Safety problem: Social acceptability and carbon leak back into the atmosphere

Commercialization limits: high costs, scale of production, time of deployment

□ The place of BECCS in developing countries: food competition

u Further development

Investigate different pathways of incentives policy of biomass and biomass + CCS

den.	-		2			
				1	612	

TIAM-FR and Scenarios

Results

Conclusion

□ The deployment of CCS as a response of carbon constraints

23 % and 29% of CCS in the power mix respectively in COP15 and COP15+ scenarios

Investment in BECCS in developed and developing countries

- But: feasibility of this development
 - Safety problem: Social acceptability and carbon leak back into the atmosphere

 Commercialization limits: high costs, scale of production, time of deployment

□ The place of BECCS in developing countries: food competition

u Further development

Investigate different pathways of incentives policy of biomass and biomass + CCS

The deployment of CCS as a response of carbon constraints

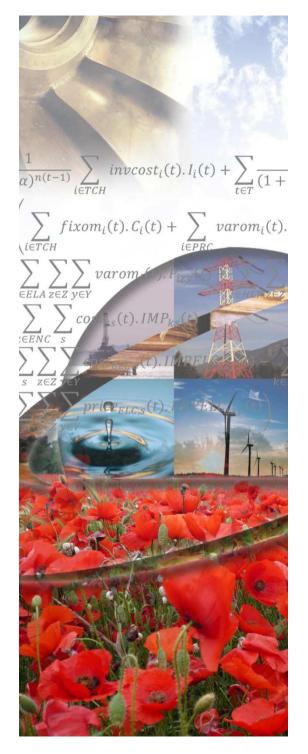
TIAM-FR and Scenarios

23 % and 29% of CCS in the power mix respectively in COP15 and COP15+ scenarios

Results

Conclusion

□ Investment in BECCS in developed and developing countries


- But: feasibility of this development
 - Safety problem: Social acceptability and carbon leak back into the atmosphere

 Commercialization limits: high costs, scale of production, time of deployment

- □ The place of BECCS in developing countries: food competition
- □ Further development

Objectives

Investigate different pathways of incentives policy of biomass and biomass + CCS

THANK YOU FOR YOUR ATTENTION

September 19-22, 2011 Poland

Annexes

Reference Energy System

Specification of scenarios

Objectives	TIAM-FR and Sc	enarios		Resul		and – September Conclusion
	Regions	Year ref.	Year target	Targets	Reduc. type	Level CO2 (Gt)
	WEU-EEU	1990	2020	20%	Emi. Reduc.	3,54
	WEO-EEO	1990	2050	80%	Emi. Reduc.	0,89
		2005	2020	17%	Emi Doduo	4,74
COP15	USA	USA 2005 —	2050	83%	Emi. Reduc.	0,97
		2000	2020	5%	Emi. Reduc.	0,37
A regional scenario	AUS	2000	2050	80%	EIIII. Reduc.	0,08
considering post COP15	CAN	2005	2020	17%	Emi. Reduc.	0,47
pledges in 2020 and	CAN	2005	2050	83%	Emi. Reduc.	0,1
assuming new targets for		1000	2020	25%	Emi Doduo	0,79
2050	JPN	1990	2050	80%	Emi. Reduc.	0,21
		2005	2020	40%	CO2 intensity	6,45
	СНІ	2005	2050	10%	Emi. Reduc.	4,12
		2005	2020	20%	CO2 intensity	2,16
	IND	2005	2050	10%	Emi. Reduc.	0,98

COP15+

A coupled regional and global scenario in line with the consensual 2°C objective

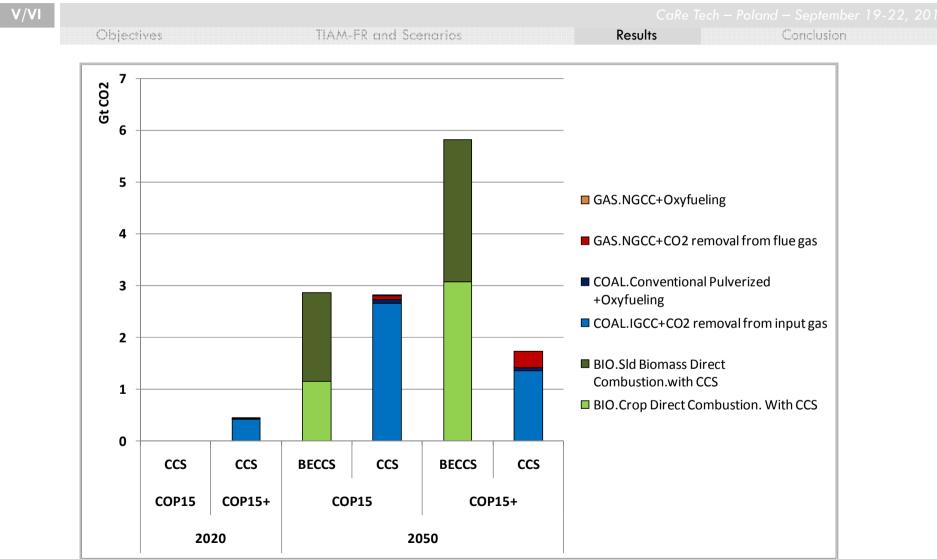
Regions	Year ref.	Year target	Targets	Reduc. Type	Level CO2 (Gt)
WORLD	2000	2050	50%	Emi. Reduc.	11,16

Evited CO₂ emissions due to the carbon constraint

III/VI				– Poland – September 19-22, 2011
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

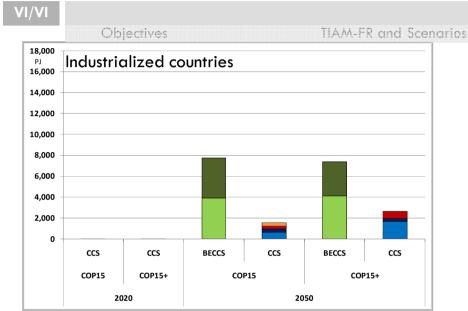
Period	Scenario	Industrialized countries	Fast developing countries	Developing countries	World
	BAU	11	8	8	26
2020	COP15	-1.2	-0.2	0.1	-1.3
	COP15+	-1.5	-1.5	-2.3	-5.3
	BAU	11	17	12	41
2050	COP15	-9	-12	0	-21
	COP15+	-7	-15	-8	-30

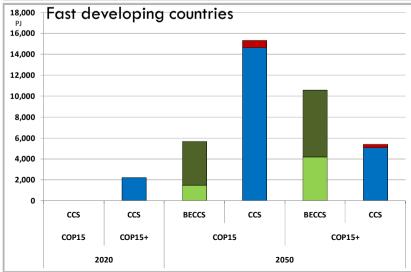
World power mix (%)

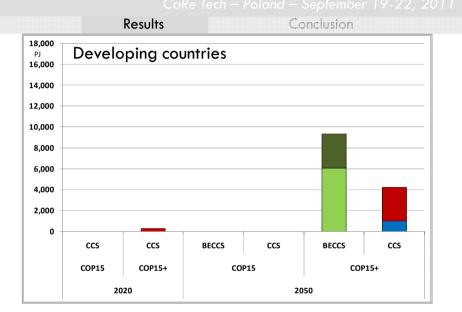


IV/VI				
	Objectives	TIAM-FR and Scenarios	Results	Conclusion

Period	Scenario	COALS	OIL AND GAS	NUCLEAR	HYDRO	BIOMASS	RENEWABLES	CCS
2005	BAU	44	21	16	17	1	2	0
Period	Scenario	COALS	OIL AND GAS	NUCLEAR	HYDRO	BIOMASS	RENEWABLES	CCS
2020	BAU	41	23	15	14	1	7	0
	COP15	38	20	16	15	1	11	0
	COP15+	29	17	19	16	1	14	4
Period	Scenario	COALS	OIL AND GAS	NUCLEAR	HYDRO	BIOMASS	RENEWABLES	CCS
2050	BAU	38	15	20	11	0	15	0
	COP15	3	8	19	12	0	35	23
	COP15+	0	2	19	12	0	37	29


World CO₂ sequestrated by power plants with CCS (Gt)





Regional power generation by plants with CCS (PJ)

GAS.NGCC+Oxyfueling

- GAS.NGCC+CO2 removal from flue gas
- COAL.Conventional Pulverized+Oxyfueling
- COAL.IGCC+CO2 removal from input gas
- BIO.SId Biomass Direct Combustion.with CCS
- BIO.Crop Direct Combustion. With CCS