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ABSTRACT

We investigated the possibility of developing a decision support system (DSS) that integrates eye-fixation
measurements to better adapt its suggestions. Indeed, eye fixation give insight into human decision-making:
Individuals tend to pay more attention to key information in line with their upcoming selection. Thus, eye-
fixation measures can help the DSS to better capture the context that determines user decisions. Twenty-two
participants performed a simplified Air Traffic Control (ATC) simulation in which they had to decide to accept or
to modify route suggestions according to specific parameter values displayed on the screen. Decisions and
fixation times on each parameter were recorded. The user fixation times were used by an algorithm to estimate
the utility of each parameter for its decision. Immediately after this training phase, the algorithm generated new
route suggestions under two conditions: 1) Taking into account the participant's decisions, 2) Taking into ac-
count the participant's decisions plus their visual behavior using the measurements of dwell times on displayed
parameters. Results showed that system suggestions were more accurate than the base system when taking into
account the participant's decisions, and even more accurate using their dwell times. Capturing the crucial in-
formation for the decision using the eye tracker accelerated the DSS learning phase, and thus helped to further
enhance the accuracy of consecutive suggestions. Moreover, exploratory eye-tracking analysis reflected two
different stages of the decision-making process, with longer dwell times on relevant parameters (i.e. involved in
a rule) during the entire decision time course, and frequency of fixations on these relevant parameters that
increased, especially during the last fixations prior to the decision. Consequently, future DSS integrating eye-
tracking data should pay specific care to the final fixations prior to the decision. In general, our results emphasize
the potential interest of eye-tracking to enhance and accelerate system adaptation to user preference, knowledge,
and expertise.

1. Introduction

making in complex activities, do not fully take into account the dy-
namic nature of airport ground management. In addition, previous re-

In dynamic environments, human operators must constantly
monitor and integrate incoming information in order to optimize their
decision-making. This is particularly true in Air Traffic Control (ATC)
ground operations, which require fast, safe, and efficient management
of aircraft and vehicles on taxiways and runways. Indeed, today's in-
crease of aircraft traffic (Eurocontrol, 2016) challenges not only airport
infrastructure but also the operators’ cognitive capacities. Therefore,
developing automated tools to assist Air Traffic Controllers (ATCo) in
the ground flow management seems to be the best solution. However,
current Decision Support Systems (DSS), i.e. tools that support decision-
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search has considered separately airports and ATCo, without in-
tegrating the interplay of both (Atkin et al., 2010; Jiang et al., 2015).
Routing operations often require real-time adaptation from the system,
and therefore the integration of human expertise, preference, decisions,
and knowledge is an important factor for the development and ro-
bustness of a system. Moreover, the collection of the user's actions
would be more complete with the awareness of what features of the
interface are visually inspected and what strategies the user exhibits
(Bednarik, 2005).

The ability of a system to learn from experience improves its
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knowledge base and avoids repeating the same mistakes. In the ATC
domain, Bonzano et al. (1996) and Liang (2015) showed that a Case-
Based Reasoning (CBR) approach can be used in DSS during conflict
resolution tasks. The principle of CBR is to solve a new situation by
reusing the solution of the most similar previous case. However, the
evaluation of the distance between the new situation and the previous
one is complex and difficult to objectify. Actually, the number of fea-
tures (or parameters) that differentiate two situations can be huge and
highly context sensitive. Features that are relevant in a given situation
may not be equally significant in another one. For example, during ATC
ground operations, the importance of parameters such as aircraft type/
size can be more critical for the decision (to determine the best route)
when visibility is poor. The analysis of the eye fixation of the operator
on the interface may give reliable indications regarding the user's de-
cision-making process and would allow specifying weights for each
parameter in a machine learning model, according to its “presumed”
criticality in the decision.

1.1. Eye movements as a window into attentional processing and decision-
making

Past studies in experimental psychology (Deubel and Schneider,
1996; Hoffman and Subramaniam, 1995; Kowler et al., 1995) and
neuropsychology (Kustov and Lee Robinson, 1996; Mohler and Wurtz,
1976) established the close link between eye movements and atten-
tional processes. Carrasco (2011) describes visual attention as a selec-
tive process that enables us to prioritize and process relevant visual
information in a current task. This tendency to gaze towards a parti-
cular area according to the current goal was demonstrated a long time
ago in the seminal study of Yarbus (1967). In his experiment, Yarbus
demonstrated that the trajectories followed by the gaze on a scene (e.g.
a painting) are strongly dependent on the instructions given to the
participants (e.g. remember the people's clothes on the painting). Many
past studies also indicated that the decision maker tends to gaze more at
attributes with greater importance (Glockner and Herbold, 2011;
Wedell and Senter, 1997). This trend to overwhelmingly attend to im-
portant or high utility information is called the “utility effect” and has
been demonstrated across a variety of tasks (for a review, see
Orquin and Loose, 2013). For example, in a risky choice task, partici-
pants were asked to make quick decisions between two gamble sets
with different expected values. They showed that attention to a gamble
outcome increased when its expected value is higher, resulting in a
more comprehensive information search (amount of fixations) and
deeper processing (mean length of a single fixation).

Gaze behavior is also modulated by preferences and by the stage of
the decision process, as showed by another study using a forced-choice
decision task (Glaholt and Reingold, 2009). Participants were asked to
select a preferred image, or the most modern image. The authors de-
monstrated robust biases in both gaze duration and gaze frequency
towards the chosen items, regardless of the nature of the decision. In-
terestingly, dwell duration and dwell frequency reflected different
stages of the decision process, with a first “screening” stage char-
acterized by selective processing, in which relevant stimuli are encoded
in greater depth (longer dwell times) and irrelevant stimuli are less
encoded (shorter dwell times) or excluded from further processing; and
a later “evaluative stage” of processing that involves the comparison of
alternatives and results in a higher frequency of dwells on the chosen
item. In this interpretation, the dwell duration bias is related to the
encoding of decision alternatives whereas the dwell frequency bias may
reflect another process (possibly post-encoding) such as the evaluation
and comparison of relevant alternatives. This dissociation of the visual
processing in terms of two-stage models, or in two routes of visual
processing in the brain, can be found in numerous publications.
Trevarthen (1968) coined the terms “ambient” and “focal” as labels for
distinct brain mechanisms that serve parallel functions of spatial or-
ientation (the subcortical pathway) and visual identification (the

cortical pathway). Different patterns of eye movements were attributed
to the focal-ambient modes of information acquisition (Unema et al.,
2005; Velichkovsky et al., 2005), that has been variably referred to as
evaluating-orienting (Ingle, 1967), examining-noticing
(Weiskrantz, 1972), skimming and scrutinizing (Lohmeyer and
Meboldt, 2015), or exploring and exploiting (Dehais et al., 2017; Dehais
et al., 2015). In the last example, a fixation/saccade ratio expresses the
balance between different visual strategies: visual search and visual
processing (Goldberg and Kotval, 1999).

1.2. Using eye movements to improve system adaptation

Taking this link between attention and eye movement into account,
a wide variety of applications have emerged (Duchowski, 2002).
Giannopoulos et al. (2016) used eye-tracking in order to provide gui-
dance to the user facing pervasive environments with high density of
visual information. Their experiment took place in a virtual retail, and
guidance was contingent upon gaze position. For example, when the
user's gaze was directed towards a product on a shelf (e.g. cereal pro-
ducts), an advertisement video of this product was shown on a monitor
located in the vicinity. Furthermore, when a gaze fixation on the
monitor occurred, an attention-getter (flashing) at the position of the
advertised product was triggered in order to redirect the attention back
to the product. This idea of using an eye tracker to provide real-time
guidance and to reduce attentional effort is also explored in a study of
Kajan et al. (2016). They developed an eye-tracking based technology
that extracts information that is most likely relevant to the user. These
extracted pieces of information are presented to the user and sorted
according to their estimated importance, in the so called “PeepList”. As
the user interacts with the display, for each item on the screen, a vector
of gaze metrics (gaze time, fixation count, visit counts, and fixated last)
is computed. Results showed that eye-tracking was a valuable real-time
implicit source of information about what the user was searching and
the PeepList principle considerably improved the efficiency of obtaining
required information. In the learning context, Hutt et al. (2016) used
different gaze metrics to detect the occurrence of mind wandering, an
unintentional shift of attention from task-related to task-unrelated
thoughts, which can be deleterious to the learning process. Participants
self-reported mind wandering episodes by responding to thought-
probes (“yes” or “no” based on whether they were mind wandering at
the time of the probe). Their eye movements were monitored and a
supervised machine learning technique was then used to try to dis-
criminate between positive and negative responses to the probes. By
studying several eye movement metrics (fixation duration, saccade
duration, fixation to saccade ratio etc.), they were able to automatically
classify mind wandering events, which may help to re-engage learners
and thus improve learning.

In the automobile domain, Doshi and Trivedi (2009) explored the
possibility of developing an intelligent driver assistance system capable
of predicting drivers’ intent to change lanes. They used a combination
of eye gaze position (among nine possible locations) and head motions
to feed a discriminative classifier. Head motions, together with lane and
vehicle data, served as a very good indicator of lane-change intent.
However, eye gaze was less informative than head motions in their
study. According to the authors, the driver has a premeditated gaze
target when planning to change lanes, and thus prepares the gaze shift
with a preliminary head movement. Thus, the intention of the driver is
captured earlier with head monitoring than waiting for the subsequent
eye-gaze shift. However, such results certainly do not apply to systems
displayed on a classical computer screen, as they do not require large
head movements. In the same domain, Fletcher and Zelinsky (2009)
used eye movements for the online detection of inattention in drivers.
They showed that correlating eye gaze with the road scene allowed to
detect missed road events and to warn the driver, providing them the
time to react before an impeding accident. More recently,
Tremblay et al. (2018) proposed to explore the possibility of using eye-



Fig. 1. Experimental set-up. 1) The upper screen with all parameters. 2) The lower touch screen with the interactive ATC interface. 3) The eye-tracking system,

located below the upper screen.

tracking to optimize the visual circuits of surveillance operators who
must monitor a large number of screens. One objective is to provide
alerts when ocular behavior is considered sub-optimal (e.g. too much
focused on a single screen), in order to avoid attentional tunneling or
inattentional blindness. Importantly, several studies showed that it is
possible to use eye movement to better understand the operator's de-
cision-making (Morrison et al., 1997; Wilson et al., 2012) and up-
coming choices (Peysakhovich et al., 2015), which would allow pro-
viding personal information to users (Majaranta and Bulling, 2014) and
to capture their preferences and/or expertise.

1.3. Objectives and hypotheses

DSS with learning capabilities are developed since several years
(e.g. Gultepe et al., 2014; Piramuthu et al., 1993) but to the authors’
knowledge, very few integrate objective measures of the operator such
as eye movements. Some studies on DSS employed eye-tracking, but
this was done to evaluate the display (Morrison et al., 1997), or to
examine how the information presentation facilitates or affects deci-
sion-making (Kuo et al., 2009). These studies did not attempt to im-
prove suggestions from the DSS on the basis of the eye movements,
which is the core of the current paper. The recording of the visual scans
can contribute not only to an evaluation of the design of a DSS but also
to our understanding of how information was acquired and used for
decision-making tasks. Enabling the understanding of the ATCo's deci-
sion with eye-tracking can be useful to improve the adaptation of a
system to user preferences, knowledge, or expertise. Indeed, when the
number of parameters that differentiate two situations is high, the
learning phase of the CBR system can be long and sub-optimal if it is
only based on the previous user choices and the indistinctive analysis of
all parameter values (high combinatorial possibilities).

In this paper, we describe the technical development and the testing
of a DSS, integrating objective measurements from the user. We com-
puted a route suggestion algorithm that can integrate both previous
route choices from the ATCo's and the total dwell times on each para-
meter. The measure of the time spent gazing at the parameters enabled

to specify higher weights to the parameters that were likely important
for the decision. The objective of this study was twofold. First, we ex-
plored the performance of our DSS according to several levels of au-
tomatic adaptation during an ATC ground taxiing operation simulation.
Second, we explored more deeply the dynamics of visual attention
during decision-making. We hypothesized that 1) the use of the pre-
vious decisions will allow an improvement of the performance of the
adaptive route suggestion, and that 2) parameters that are relevant for
the decision will be gazed for a longer period of time, and therefore
specifying higher weights to parameters subjected to longer fixation
will help to further enhance the performance of the adaptive route
suggestion. Finally, 3) we hypothesized that fixations on relevant
parameters should be longer and/or more frequent, more specifically in
the last moments of the decision-making process.

2. Materials and methods
2.1. Participants

Twenty-two healthy volunteers (7 women and 15 men, mean
age = 25.0 years, SD = 4.56) were recruited for this study. All were
French undergraduate students or researchers familiar with the aero-
nautical domain. None of them had a history of neurological disease,
psychiatric disturbance, substance abuse, or taking psychoactive med-
ications. All participants gave written informed consent in accordance
with the local ethical board committee. The study complied with the
Declaration of Helsinki for human experimentation.

2.2. Procedure

Participants were seated in front of two screens placed on top of
each other with their respective interfaces, see Fig. 1. Several para-
meters with associated values were displayed on the upper screen. The
lower touchscreen provided an interactive interface (developed during
the Modern Taxiing project, MoTa) representing the south part of
Roissy-Charles-de-Gaulle airport (Paris, France) and showed DSS
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routing suggestions. On this latter interface, route suggestions can be
either accepted or modified, by adding a waypoint or changing the
destination using a stylus.

2.3. ATC task

Participants performed a task simulating airport taxiing operations.
We designed an ATC-like synthetic environment that provides an op-
timal balance between ecological validity and experimental control.
Such microworld simulates key features of dynamic systems within a
controlled setting. The generic design and the underlying tasks make it
applicable beyond the ATC domain to a range of surveillance/mon-
itoring activity (Imbert et al., 2014). Another advantage of using syn-
thetic microworld is that it allows recruiting participants that are not
necessarily qualified professionals. Several studies employing synthetic
ATC simulations involved novices in the ATC domain or students with
some ATC knowledge (Hou et al., 2017; Salden et al., 2006). For ex-
ample, in the current experiment, a fully realistic simulation would
have required numerous qualified controllers with a specific training
for the Roissy-Charles-de-Gaulle airport.

Concretely, at the beginning of each trial, the call sign of a new
aircraft was presented on the upper screen. The participant selected the
corresponding aircraft in the lower screen with the stylus (the call sign
of each aircraft was displayed on its radar label). Once selected, a set of
parameters with associated values, including time, type, origin, desti-
nation, weather, wind speed, delay, and datalink availability, were
displayed on the upper screen, below the call sign; and a route sug-
gestion was simultaneously displayed (a grey line) on the lower screen,
see Fig. 2. The participant had to accept or modify the suggested tra-
jectory, basing the decision on the parameter values displayed on the
upper screen.

All possible values of the parameters are synthesized in Table 1.
After having visualized the parameters and the suggested route, the
participant had to accept or modify it according to a set of rules.

Participants had to apply four basic rules during the experiment
(Table 2). Each of the four rules was defined by a combination of two
(R2 and R4) or three (R1 and R3) parameter values, associated to an
aircraft route constraint. A rule was applicable during a given trial
when all of the parameter values (context) were present. The objective
of the participants was to identify if a rule was applicable, and in that
case, to ensure that the trajectory of the aircraft respected the route
constraint. For example, if “Middle2” and “A380” values were

1 i, —— 1L Call sign
Time — i o, ——t Type
Origin —— ¢ w — Destination
Weather —— .7, e ———e'Wind speed
Delay —— v == Datalink

Fig. 2. Focus on the two interfaces used for the airport routing task: 1) Upper
screen displaying the call sign of the aircraft currently under control and its 8
associated parameter values (time, type etc.). Each red rectangle (except the
call sign) represents an area of interest used in the eye-tracking analysis to
estimate the time spent gazing at each parameter; 2) lower screen displaying
the airport and the DSS route suggestions (the path was displayed in grey, and
then it turned to yellow, as shown in the illustration, when participants mod-
ified it). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1

All possible parameter values of the simulation.
Type A319, A320, A321, A330, A380, B767, B772, E190
Origin G, RP2, RP5, GE9, P3, J, S1, S2, S3, MIDDLE2
Destination RP1, RP3, KL4, GE3, RP6, UC4, P2, 26R, 27L
Datalink yes, no
Delay (min) 0,1,5,10
Weather sunny, cloudy, snowy
Time 07:00, 12:00, 15:00, 18:00
Wind speed 0, 8, 16, 22

Table 2

The four rules given to the participants, indicating the relevant context and the
associated route constraints.

Rules  Context Route constraint Known by the

DSS
R1 Weather = snowy Go through taxiway No
Time = 07:00 W9 (Z1)
Dest = 26R
R2 Origin = Middle2 Avoid taxiway E (Z2) Yes
Type = A380
R3 Delay = 10 Go through taxiway No
Datalink = yes RP (Z3)
Dest = 26R
R4 Datalink = yes Go through taxiway R Yes
Dest = RP3 (z4)

displayed for the parameters “Origin” and “Type”, respectively, rule R2
had to be applied. In this case, the participant had to ensure that the
aircraft did not use taxiway E (see Table 2, Rule R2), otherwise the
participant had to reject the DSS trajectory suggestion and modify the
path of the aircraft (in order to avoid taxiway E) by adding waypoints
or by changing the route with the stylus, before the validation. If the
route suggestion respected the route constraint of the applicable rule, or
if no rules were applicable, the participant simply had to validate the
route suggestion. A printed document with all four rules was made
available to the participants during the entire experiment.

Fig. 3 shows the lower screen with the four taxiways that were in-
volved in the four rules. According to the route constraint of a given
rule, the indicated taxiway should be followed (Z1, Z3, or Z4) or
avoided (Z2) by the aircraft under control during the current trial. The
order of rules varied across participants to avoid an order effect. In each
trial, zero or one rule was applicable. Two rules were known by the
route suggestion algorithm (R2, R4) and two others were unknown (R1,
R3). Consequently, the system always provided a correct suggestion for
R2 and R4 and had to learn the two other rules. The information con-
cerning the fact whether the rule was known or unknown by the system
was not provided to the participants.

2.4. Eye-tracking measurements

During the experiment, eye fixations on the upper screen were re-
corded with a remote SMI RED eye tracker (SensoMotoric Instruments
GmbH, Germany) at a 60 Hz sampling rate. For all eye movement
analyses, the detection threshold that defined a fixation was set to
80 ms (Causse et al., 2016; Quétard et al., 2016; Salvucci and Goldberg,
2000). Eight areas of interest (AOIs) were defined, one for each para-
meter (red rectangles around the parameters in Fig. 2, call sign was not
included in the analysis as this parameter was never involved in a rule).
For each trial, the total dwell times on each of the eight AOIs was re-
corded, and these values were used by the routing suggestion algorithm
in order to weight the parameter, i.e. a longer total dwell time on an
AOI will result in a higher weight for the corresponding parameter. It is
important to note that the algorithm was never aware about the re-
levance (i.e. involved in a rule or not in the current trial) of the different
AOIs. The algorithm determined the importance (weight) of each AOIL
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Fig. 3. Route constraints to apply in the specific context of each of the four rules. Taxiways Z1, Z3, and Z4 had to be used by the aircraft when rules R1, R3, and R4
were applicable, respectively. Taxiway Z2 had to be avoided when R2 was applicable.

only on the basis of the total dwell time spent on it by the participant.
Also, in order to provide a deeper understanding of the dynamics of the
ocular behavior during the decision-making process, we examined
other metrics such as the mean dwell times/dwell frequencies on the
relevant and irrelevant parameters for the entire trial duration and then
during the first dwells (all dwells occurring before a given AOI was
revisited for the first time in the current trial, so a maximum of eight
first dwells could occur during each trial) and the revisit dwells (all
dwells starting from the first time an AOI was revisited). We also in-
vestigated the temporal evolution of these metrics in a more detailed
manner, i.e. during the first three dwells and the last three dwells be-
fore the decision. These exploratory metrics were not used by the al-
gorithm.

2.5. Experimental design

In order to familiarize themselves with the task, each participant
performed a training phase on 32 unique trials, after which they per-
formed the experiment.

The experiment was divided into two parts:

e A learning phase with the participant performing the ATC task. Each
participant completed 54 trials (presented randomly), split 30/24:
30 trials where no rules were applicable and 24 trials in which a rule
(R1, R2, R3, R4) was applicable (six trials for each of the four rules);

® A testing phase (automated), in which the algorithm computed
twice new route suggestions for new 42 trials, split 14/28 (seven
trials for each of the four rules). This phase took place once the
participant finished the learning phase, thus the testing phase never
included data from other participants.

New route suggestions were computed twice in order to test the two
levels of adaptation:

e Using previous decisions of the learning phase;

e Using previous decisions plus parameters weights of the learning
phase (the weights were calculated based on the total dwell times
spent on each AOI by the participant during the learning phase).

Fig. 4 presents the time course of the experiment. Parameter values,
route suggestions, validated routes (i.e., simply accepted routes or
routes modified by the participant), and the total time spent gazing at
each parameter were saved after each trial. The recording of the eye
movement started as soon as the participant selected the aircraft on the

lower screen (which triggered the display of the various parameter
values on the upper screen). Each trial (and thus the recording of the
dwell times) ended when a route was validated (modified or not).

2.6. Route suggestion algorithm

The route suggestion algorithm relied on three main components
illustrated Fig. 5: (A) a classifier using k-nearest neighbor, (B1) a graph-
based route suggestion, and (B2) an historic-based suggestion. The
graph-based algorithm updated its edge weights for each new context
using fixed rules. The classifier used the previous route validations to
classify, for a given context, if the suggestion given by component (B1)
would be accepted or refused. This classification was done using a k-
nearest neighbor (knn), which selects the k feature vectors that have a
minimal distance regarding the distance metric. The k-value of the knn
was fixed as k = 3. This value was a good compromise, a k-value too
small can lead to noisy decision boundaries, and a k-value too large can
lead to over-smoothed boundaries.

Each context was represented by a feature vector C, defined with the
parameter values as follows:

[ ¢, type [e.g., A319, A320, etc.]

c,: origin [e.g., G, RP2, RPS5, etc.]
c3: destination [e.g., RP1, RP3, etc.]
cs: datalink [yes | no]

cs: delay [0, 1, 5]

ce: weather [e.g., sunny, cloudy, etc.]
c;: time [e.g., 07: 00, etc.]

| cs: windspeed [e.g., 0, 8, etc.] | )

Each feature vector in the case base was associated with a weight
vector W:

We [ diype dorigin ddestination ddatatink ddelay d:
[11111111],

diime dwindspeed]” s if using gaze data

otherwise

(2)
where d, represents the total dwell time on parameter i, and W is nor-
malized as W = W/ ||W| , where

l n
Wil = «Z wy’
i=1

Each graph-based route suggestion was labeled as accepted when
the route suggestion (Rsuggestea) Was similar to the validated route
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Fig. 4. Timeline of the experiment (the 32 training trials were not used by the algorithm during the testing phase).

(Ryalidatea) OF refused otherwise:

_ 1, graph — based suggestion accepted
v= 0, graph — based suggestion modified 3)

One validated route suggestion is represented by:

< >0

T =
Rsuggested
Rvalidated (4)

The distance between a new context C and one previous validated
route suggestion T (trial) was computed by summing the product of the
difference between each feature of the two contexts and its corre-
sponding weight from the weight vector Eq. (5) and ((6)):

© 1y= Y Wid(es cp)
Z; T T (5)

5(a, b) = {1, a#b
0, a=b 6)
For each new context, component (A) predicted if the graph-based
shortest path would be accepted or refused using the knn algorithm. If
(A) predicted that the graph-based route suggestion will be accepted,
then this route was used. If (A) predicted that the graph-based route
suggestion will be refused, then the validated route from the previous
decisions with the shortest distance context from the current context
(based on the similarity of the eight parameter values) was used (noted
as Rpistoric)- As this route was not necessarily going through the actual
vehicle position, a new route was computed by finding the shortest path
between the current vehicle position and one point of the Ry;sioric route.
Instances were chosen to ensure that using only previous decisions

- A3197 T Fig. 5. Route suggestion process. The classifier
G R C =[A320 G RP1yes 2 sunny 07:00 1] (A) uses the current context and the historic of
RP1 W = [0.02 0.49 0.85 0.0 0.03 0.15 0.12 0.02]7 the previous routes validated by the partici-
yes T, = y=1 pant to predict if the graph-based route sug-
C= 1 Rsuggested gestion (B1) will be accepted or refused. If
sunny Ryalidated acceptation was predicted, the graph-based
12:00 WAICALE route suggestion (B1) was displayed to the
g | user, and in the other case, the historic-based
Tss route suggestion (B2) was displayed.

‘—l_’ \ T

Acceptance prediction of
the graph-based
suggestion (A)

Accepted

Refused

y € {0,1}

Graph-based route

Suggestion (B1)

v

Route suggestion

Historic-based route

Suggestion (B2)
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would not allow the algorithm to reach 100% accuracy. Indeed, several
trials shared several common parameter values but they did belong to
different rules (e.g., several trials are highly similar and shared six
parameter values but they still correspond to different rules, whereas
other trials shared few common parameter values but correspond to the
same rule). Thus, the maximal performance of the algorithm using only
previous decisions (in case the participants accepted or modified all the
suggestions appropriately) was 85.71% (36 out of 42 trials), as different
rules had to be followed in these very similar instances.

3. Results

The results of this study were divided in two parts: First, we ana-
lyzed the performance of the routing suggestion algorithm according to
the three levels of adaptation: 1) No adaptation (the same route sug-
gestions as during the learning phase), 2) using previous decisions of
the learning phase, and 3) using previous decisions plus the total dwell
times on each AOI of the learning phase. As previously mentioned, the
algorithm was not given the input regarding the relevance of the
parameters, and this information was never used during the training
phase. For each of the 24 trials, we predetermined (during the experi-
mental design) whether a rule was applicable or not (i.e. according to
the parameter values). In case it was applicable, the parameters in-
volved in this rule were labeled as relevant, whereas the others were
considered as irrelevant for the decision. This information was available
to us for post-hoc analysis purposes only (comparison of the weight
values for relevant vs. irrelevant parameters and all exploratory eye-
tracking analyses). Second, we conducted exploratory eye-tracking
analysis to better understand the behavior underlying the decision
process, in particular, the mean dwell times on the relevant and irre-
levant parameters, and the probability to dwell on a relevant parameter
according to specific periods of the decision-making process. Two
participants were excluded from the analysis, one due to incorrect re-
cording of the data and the other for eye-tracking signal loss during the
acquisition.

3.1. Performance of the route suggestion algorithm

Fig. 6 presents the results of the testing phase: The mean percentage
of correct suggestions for each level of adaptation. ANOVA showed a
significant effect of the level of adaptation (F(1, 19) = 191.76,
p < 0.001, #% = 0.90) and Tukey's post-hoc test revealed that accuracy
increased across each of these levels (p < 0.001). As previously men-
tioned, the route suggestion algorithm was not informed on R1 and R3,
and consequently all trials in which R1 or R3 were applicable required a
modification from the user. Thus the route suggestion accuracy without
adaptation was necessarily 66.67%, corresponding to 28 trials out of 42
with correct suggestions, 14 correct suggestions because the algorithm
knew two rules (R2 + R4 = 14 trials) plus 12 trials were no rule was
applicable (thus any trajectory was correct). Using previous validation
decisions, the route suggestions were accurate at an average of 82.62%
(SD = 4.37%) and the performance again improved when the total
dwell times on each AOI was used to weigh the distance function, with
an average of 89.17% of correct suggestions (SD = 6.06%). Weights
were significantly impacted by the relevance (t(19) = 16.82,
p < 0.001): The use of total dwell times spent on parameters in our
algorithm resulted in higher mean weights for relevant (M = 0.43,
SD = 0.05) vs. irrelevant parameters (M = 0.18, SD = 0.03). This result
indicates that participants gazed more in the direction of the relevant
parameters (because weights are directly computed on the basis of this
eye metric).

3.2. Exploratory eye-tracking analysis

All following exploratory eye-tracking analyses were performed
only on the 24 trials of the learning phase in which a rule was

100 4 *kk ork

Correct Suggestions (%)

No adaptation

Previous Decisions Previous Decisions +
Total Dwell Times

Adaptation Level

Fig. 6. Percentage of correct route suggestions reached by the algorithm as a
function of the level of adaptation. The existing data variability in the previous
decisions and previous decisions plus total dwell times condition was due to
variations in the route modification (e.g. participants could erroneously vali-
date route suggestions that did not respect the rule constraints) and in the in-
dividual eye fixation patterns over the interface. Error bars represent the
standard error of the mean, triple Asterisks indicates p < 0.001.

applicable. We present how visual behavior evolved according to the
relevance of the parameters (known only to the experimenter, never
used by the algorithm) in each trial.

3.2.1. Total fixation time on parameters according to their relevance for the
decision

We examined how fixations were distributed between the relevant
and irrelevant parameters (total dwell time on each type). Logically,
and as suggested by the higher mean weights for relevant parameters,
the total dwell times spent by participants on relevant parameters was
significantly higher than the one spent on the irrelevant parameters
(M = 514.30 ms, SD = 122.83ms; M = 242.21 ms, SD = 85.16 ms, re-
spectively) (¢(19) = 13.01, p < 0.001), as presented in Fig. 7. Triple
Asterisks indicates p < 0.001.

3.2.2. Temporal dynamics of the fixations during decision-making
In order to examine how participants’ visual attention evolved

600 *okk

Total Dwell Times (ms)

Irrelevant

Relevant

Relevance of the parameters

Fig. 7. Total dwell times (i.e. the average sum of all dwell times) on relevant
and irrelevant parameters during the decision-making process. Error bars re-
present the standard error of the mean, triple Asterisks indicates p < 0.001.
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during the decision time course, we explored the mean dwell times on
the relevant and irrelevant parameters and the frequency of the dwells
on relevant parameters during the first dwells and the revisit dwells,
and in a more detailed manner during the first three dwells and the last
three dwells before choice (note that a dwell can be categorized in
several serial positions in the few trials in which less than six fixations
were performed. For example, when only three fixations were observed,
the three dwells were labeled as first/—3, 2/—2, and 3/last, respec-
tively).

3.2.3. Mean fixation time for first versus revisit dwells according to the
parameter relevance

We conducted a 2 x 2 ANOVA crossing the relevance (whether the
dwell was in a relevant or an irrelevant parameter) and the position of
dwells (first dwells = dwells prior to the first refixation on a given
parameter, and revisit dwells = all others). We found higher mean
dwell times for the relevant (M = 330.35ms, SD = 80.43 ms) vs. irre-
levant parameters (M = 280.42 ms, SD = 49.60 ms) (F(1, 19) = 39.52,
p < 0.001, 5%, = 0.68; Tukey's HSD post hoc test, p < 0.001 in both
comparisons). However, no main effect of the dwell position (F
(1,19) = 1.25, p = 0.28) neither Relevance x Position interaction (F
(1,19) = 1.34, p = 0.26) was found on mean dwell times, see Fig. 8.
These results showed that there was a bias in dwell duration towards
relevant parameters all throughout the decision-making process.

3.2.4. Probability to gaze at a relevant parameter in first versus revisit
dwells

The probability to dwell relevant items was higher during the re-
visits (M = 0.57, SD = 0.09) compared to the first dwells (M = 0.40,
SD = 0.07) (t(19) = 8.10, p < 0.001), as shown in Fig. 9. Taken to-
gether, the two latter results suggest the existence of two biases: A bias
in dwell duration occurring during the entire decision making process
and a bias in dwell frequency mainly occurring in revisit dwells.

3.2.5. Mean dwell times and dwell frequency in the early and late moments
of the decision

We conducted a 2 X 6 ANOVA crossing the relevance (relevant or
irrelevant) and the position of dwells (the first three or last three
dwells) for the dwell times. As expected, higher mean dwell times were
found for relevant (M = 335.25ms, SD = 90.97 ms) vs. irrelevant

parameters (M = 253.75ms, SD =72.26ms) (F(1,19) = 48.44,
p<0.001, #%=0.72). There was also a significant
[ Relevant
400 I Irrelevant
350

Mean Dwell Times (ms)

Revisit Dwells

First Dwells

Dwell type

Fig. 8. Mean dwell times (i.e. average dwell time of each unique consultation)
on relevant and irrelevant parameters for the first dwells and the revisit dwells.
Error bars represent the standard error of the mean, triple Asterisks indicates
p < 0.001.
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Fig. 9. Probability to dwell a relevant parameter for the first dwells and the
revisit dwells. Error bars represent the standard error of the mean, triple
Asterisks indicates p < 0.001.

relevance X position interaction (F(5,95) = 4.67, p <0.01,
7’y = 0.20). Participants demonstrated higher dwell times on relevant
vs. irrelevant parameters (p < 0.001 in all comparisons), except for the
second dwell position (p > 0.05), as seen in Fig. 10.

The frequency of dwells on relevant parameters, presented in par-
entheses above each serial position, was above chance level at each of
the six dwell positions. The chance level was 31.25%, for an average of
2.5 relevant parameters among the eight parameters per trial (in fact
two or three relevant parameters per trial, representing 60 relevant
parameters on a total of 192 parameters that contained the 24 trials
that were associated with a rule). At the beginning of the decision-
making process, 37% of the first dwells were oriented towards a re-
levant parameter. After that, the probability to gaze a relevant para-
meter increased considerably, in particular during the last three dwells,
reaching 69% for the last dwell, see Fig. 10. We conducted a one-way
repeated measure ANOVA, using the position of dwells as the in-
dependent variable and the probability to dwell a relevant parameter as
the dependent variable. The ANOVA confirmed a significant main effect

—=— Relevant

380 4 (042) —e— |rrelevant

360
(0.69)

a0 (037) (0.42) (0.56)
.\

320 (0.63)
300

280

Mean Dwell Times (ms)

260

240 \’\.
Chance level = 0.31

220

T r T T
First 2 3 -3 -2 Last
Position of dwell during decision

Fig. 10. Dwell sequence analysis for the first three dwells and the last three
dwells prior decision. Lines represent mean dwell times (i.e. average dwell time
of each unique consultation) on relevant and irrelevant parameters. The dwell
frequency is presented in parentheses above each position. It represents the
proportion of trials (among the 24 trials in which a rule was applicable) in
which a relevant parameter was gazed at this dwell position (chance
level = 0.31).
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of the serial position of dwell on the probability to dwell a relevant
parameter (F(5,95) = 22.20, p < 0.001, #°, = 0.54). The Tukey's HSD
post hoc test revealed a higher probability to dwell a relevant para-
meter during the last three dwells compared to the first three dwells (all
p < 0.01), and during the last dwell compared to the third last (—3)
(p = 0.01). No difference between the second last (—2) and the last
dwell was found.

4. Discussion
4.1. General discussion

In dynamic environments such as ATC, human operators must
constantly monitor and integrate incoming information in order to
make optimal decisions. Today's increase of aircraft traffic challenges
not only airport infrastructure but also the operators’ cognitive ca-
pacities. However, developing a fully automatic system to support
humans can be sub-optimal without integrating human expertise,
knowledge of unknown rules, preferences, and situation awareness.
We proposed an ATC route suggestion system that takes into account
both the participant's decisions and fixation times on crucial para-
meters displayed at the screen. As expected, the suggestions were
improved by the integration and weighing of the user's previous
decisions. Importantly, determining the critical information for the
decision-maker with eye-tracking helped to further improve the DSS
suggestions. The key point of the introduction of eye data in the al-
gorithm was the capacity to automatically discriminate relevant (i.e.
relevant for the decision because involved in a given rule) from ir-
relevant parameters on the basis of the total dwell duration. This
result is related with past studies that showed systematic “gaze bias”
toward the chosen or preferred item (Glaholt and Reingold, 2009;
Schotter et al., 2010). Parameters that were subjected to longer
fixations received higher weights, which allowed the system to un-
derstand the operator's decisions quicker in comparison to the sole
integration of previous decisions. Since the operator was confronted
with numerous parameters, the number of possibilities that could
explain a decision was high. Therefore, the learning phase of the
algorithm is much more complex when considering all parameters
uniformly. Eye-tracking data helped reducing the amount of data
required for the training of the classifier and the historic based route
suggestion. In the distance function, useful parameters received a
higher weight than parameters that were not/less gazed. As a con-
sequence, it allows reducing the number of situations to explore
before reaching an acceptable classification performance. To the
authors’ knowledge, this study is amongst the first research that as-
sessed the possibility to increase suggestion relevance from a DSS
with eye-tracking. Previous studies did use ocular data to read de-
cision-making with a real-time perspective, but this was done to
modify the participant's decisions, and not to better adapt a system
(Parnamets et al., 2015).

In order to better understand the dynamics of decision-making, we
also examined how the fixations evolved over time. Our results re-
vealed that mean dwell times on relevant parameters remained sig-
nificantly higher during almost the entire decision process, whereas
the probability to dwell relevant parameters was particularly im-
portant during the few last dwells prior to choice. These results sup-
port the idea that the decision-making process can be partitioned into
distinct stages, i.e. an initial screening stage followed by a more
thorough evaluation of the few remaining alternatives (Biehal and
Chakravarti, 1986; Lussier and Olshavsky, 1979). In this sense,
Russo and Leclerc (1994) reported longer mean dwell times on the
chosen item all throughout the entire decision-making process (from
the first dwell to the last dwell prior to the choice) whereas the
probability to dwell on a chosen item was higher only in revisit dwells
vs. first dwells. Despite the difference in paradigm, our results fol-
lowed a similar trend with relevant items being gazed at for a longer

duration throughout the entire decision-making process and with
higher frequency of visits especially for the final dwells. More gen-
erally, the number of fixations reflects the importance of an interface
object to the participant (Bednarik, 2005), and the eye-mind as-
sumption (Just and Carpenter, 1980) posits that there is no lag be-
tween what the observer is fixating on and what the mind is proces-
sing. This latter theory also posits that fixation duration reflects the
time to execute comprehension processes. Even if the link between the
gaze and cognitive process may not be so strong, for example, the
mind may be sometimes “ahead” of the eyes (Everatt and
Underwood, 1992), or fixations does not necessarily indicate that in-
formation is processed (Simons and Chabris, 1999), it is reasonable to
state that eye movements are not random and that there is an im-
portant relationship between eye movements and visual attention.
Thus, we suggest that the combination of dwell times during the entire
decision-making process, with dwell frequencies in the last moments
of the decision, seems to be a promising metric to better read the
decision process in the human's eye and could be very useful to im-
prove system adaptation.

4.2. Limitations

While the designed experiment reproduced several ATCO opera-
tions, there were limitations in its ecological validity. First, the nature
of the sample, consisting of 22 participants who were not qualified
ATCOs; second, the fact that the experimental paradigm was simpli-
fied and not identical to a real ground traffic management environ-
ment. We integrated eight key parameters whereas real life settings
take into account many more variables. Moreover, we did not in-
tegrate other vehicles in the route suggestions, i.e. conflict between
aircraft was not considered. Equally though, the simulation lasted less
than 30 minutes while operator performance may decrease over
longer period due to a vigilance decrement, and these may be inter-
esting points for future research. Our ATC-like synthetic environment
was designed to provide an optimal balance between ecological va-
lidity and experimental control. This simplified context allowed re-
cruiting participants without professional ATC qualification. Indeed,
with only a basic ATC knowledge, our participants were all able to
understand and perform the simulation without much difficulty. At a
more advanced stage, it would be necessary to confirm our results
using a more complex and realistic simulation and with ATCOs par-
ticipants. Such an experiment will more closely assess the benefit of
exploiting behavioral and eye-tracking measures with a specialized
population that has developed heuristics and expert strategies. Despite
these limitations, we believe that our experiment constitutes a valu-
able proof of concept of the use of eye-tracking as input for system
adaptation.

4.3. Perspectives and conclusion

The aim of this research was to implement an adaptive system that
takes into account both previous actions and eye fixations on the in-
terface. We explored the use of real-time eye-tracking to understand
decisions and cognitive processes to enhance an adaptive system. Eye-
tracking shed light on features of the interface that were visually in-
spected, and on the strategies exhibited by the user (Bednarik, 2005).
Indeed, objects under visual investigation are most likely located on the
top of the cognitive processing stack, thus giving a reliable indication
on features of the interface that are currently interesting and important
for the user. By giving more importance (higher weights) to the para-
meters that were fixated during a longer period of time during the
decisions, the system was able to enhance its capacity to understand
human decisions, after which it could improve the accuracy of its future
suggestions. Our results also support the idea that the dynamics of the
decision-making process generates two types of visual behavior, with a
first “screening” stage in which relevant stimuli are subjected to longer
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dwell times, and a later “scrutinizing stage” resulting in more frequent
fixations on relevant items. Using gaze behavior as a real-time adap-
tation source is promising. Our work offers a preliminary basis, arguing
in favor of the need to develop new adaptive systems that integrate
human actions and objective measures such as eye data. Lastly, con-
trary to more cumbersome and invasive tools that are often used to
evaluate the mental state of the operator (e.g. electroencephalography,
electrocardiography, etc.), “Eye-Computer Interfaces” (ECI) do not ne-
cessarily require the user to wear a device, at least in the case of remote
eye-tracking, and has the advantage of offering a direct access to visual
attention processes.
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