

Power system and carbon capture under climate policy: a water impact analysis with TIAM-FR

Sandrine SELOSSE Stéphanie BOUCKAERT, Edi ASSOUMOU and Nadia MAIZI

MINES ParisTech/Center for Applied Mathematics ParisTech Chair Modeling for Sustainable Development

November 27th, 2012

COP 18 – Doha – European Pavilion

Overview

- Context of Energy/Climate issues
- The attainability of stringent CO₂ mitigation targets depends notably on
 - A wide range of different reduction options
 - The technology « readiness » of advanced technologies
- Among these options : Carbon capture and storage
 - Fossil fuels: dominant source of energy over the next decades (CO₂ emissions will drastically increase: unsustainable level)
 - Bioenergies + CCS (BECCS) : opportunity for a net carbon removal from the atmosphere (negative emissions)

Tools: TIAM-FR

 $(1+\alpha)^{n(t-1)}$

- TIMES Integrated Assessment Model
 - ETSAP (Energy Technology Systems Analysis Program) from IEA
- Bottom-up optimization model
 - Minimization of the total discounted cost of the system
- Based on the concept of Reference Energy System (RES)
 - Detailed description of existing and future technologies
 - From extraction to energy services demands

Simplified RES

Agriculture Energy needs Commercial Cooling Refrigeration Cooking Space heat Hot water Lighting Office equipment Other Industry Chemicals Iron and Steel Pulp and Paper Non-ferrous metals Non Metals Other Residential Cooling Clothes drying Clothes washing Dishwashing Space heat Hot water Cooking Lighting Refrigeration Other Transport Aviation: domestic Aviation: international Road: bus Road: three wheels Road: heavy trucks Road: light vehicle Road: medium trucks Road: auto Road: two wheels Rail: freight

Road: commercial trucks Rail: passengers Navigation: domestic internal Navigation: international

Tools: TIAM-FR (2)

World integrated model in 15 regions

- Time horizon: 2005-2050
- GHG emissions and climate module
 - CO_2 , CH_4 and N_2O
 - Atmospheric concentration, temperature change and radiative forcing
- Carbon capture and sequestration technologies
 - Fossil and Bioenergy
- Water consumption of processes

Simplified RES

Agriculture Energy needs Commercial Cooling Refrigeration Cooking Space heat Hot water Lighting Office equipment Other Industry Chemicals Iron and Steel Pulp and Paper Non-ferrous metals Non Metals Other Residential Cooling Clothes drying Clothes washing Dishwashing Space heat Hot water Cooking Lighting Refrigeration Other Transport Aviation: domestic Aviation: international Road: bus Road: commercial trucks Road: three wheels Road: heavy trucks Road: light vehicle Road: medium trucks Road: auto Road: two wheels Rail: freight

Rail: passengers

Navigation: domestic internal Navigation: international

Assumptions

- Climate policies
 - Radiative forcing : 2.6 W/m² (450 ppm CO_2 -eq)
 - Radiative forcing : 3.7 W/m^2 (550 ppm CO₂-eq)
- Technology availability
 - Scenario without BECCS with co-firing (coal/biomass)
 - Scenario without BECCS without co-firing
 - Scenario without CCS
- Resources availability
 - Biomass potential: 234 EJ/yr in 2050
 - Carbon sink potential: 9 392 Gt CO₂
 - Water consumption

Results

World power generation (TWh) Under climate constraint

$\overline{(1+\alpha)^{n(t-1)}}$ i€TCH

Fresh water consumption (km³) World – Power plants

Technological sensitivity

World power generation (TWh) No BECCS

World power generation (TWh) No BECCS – No co-firing

World power generation (TWh) No BECCS – No co-firing – No CCS

Fresh water consumption (km³) World – Power plants -

Conclusion

 $(1+\alpha)^{n(t-1)}$ $\sum_{i\in TCE}$ $ixom_i(t)$

CCS/BECCS technologies: an increasing option But their contribution to the CO₂ mitigation policy depends on the interplay of several factors:

- The large scale availability of technologies
- Cost/advantages according to alternatives
- Political choices
 - Incentives to CCS/BECCS
 - Climate change stake versus social objectives (social acceptance about storage sites)
- Water consideration with higher consumption
 - Regional perspectives (CO₂ mitigation targets and water scarcity)

Annex

Reference energy system

