Computation of globally optimal curvature penalized paths. Applications to radar network configuration.

Jean-Marie Mirebeau, François Desquilbet, Johann Dreo

To cite this version:

Jean-Marie Mirebeau, François Desquilbet, Johann Dreo. Computation of globally optimal curvature penalized paths. Applications to radar network configuration.. 2018. hal-01981955v1

HAL Id: hal-01981955

https://hal.science/hal-01981955v1

Preprint submitted on 15 Jan 2019 (v1), last revised 17 Oct 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Computation of globally optimal curvature penalized paths Applications to image processing and to radar network configuration

Jean-Marie Mirebeau ${ }^{1}$
Francois Desquilbet ${ }^{2}$
Johann Dreo ${ }^{3}$

${ }^{1}$ Laboratoire de Mathématiques d'Orsay, Université Paris-Sud
Email address: jean-marie.mirebeau@math.u-psud.fr
${ }^{2}$ Ecole Normale Supérieure de Paris
Email address: francois.desquilbet@ens.fr
${ }^{3}$ Thales Research and Technology, Palaiseau
Email address: johann.dreo@thalesgroup.com

Abstract

We present a recent numerical method devoted to computing curves that globally minimize an energy featuring both a data driven term, and a second order curvature penalizing term. Applications to image segmentation are discussed. We then describe in detail recent progress on radar network configuration, in which the optimal curves represent an opponent's trajectories.

Keywords. Curvature penalization, anisotropic fast marching, image segmentation, radar network configuration.
Math. classification. 68U10, 49L25, 35F21, 65M06.

1. Globally optimal paths with a curvature penalty

This paper is concerned with planar paths minimizing certain energy functionals, between two given points and with prescribed tangents at these points. The path energy model features a low order datadriven term, and a higher order regularization term. A globally optimal path is found, using optimal control techniques, which involve numerically solving a PDE on the configuration space of positions and orientations. We discuss applications to image segmentation, and motion planning in \S_{2}.

Path energy models. In the models of interest to us, the cost of a smooth planar path $\mathbf{x}:[0, T] \rightarrow$ Ω, parametrized by Euclidean arc length and within a domain $\Omega \subset \mathbb{R}^{2}$, takes the following form:

$$
\begin{equation*}
\mathfrak{C}(\mathbf{x}):=\int_{0}^{T} \alpha(\mathbf{x}(s), \dot{\mathbf{x}}(s)) \mathcal{C}(\|\ddot{\mathbf{x}}(s)\|) \mathrm{d} s \tag{1.1}
\end{equation*}
$$

We denoted by $\left.\alpha: \bar{\Omega} \times \mathbb{S}^{1} \rightarrow\right] 0, \infty[$ an arbitrary continuous data-driven term, depending on the path position and direction. The path local curvature $\kappa=\|\ddot{\mathbf{x}}(t)\|$ (recall that $\|\dot{\mathbf{x}}(s)\| \equiv 1$) is penalized in (1.1) by a cost function $\mathcal{C}(\kappa)$, which may be chosen among the following classical models, here sorted by increasingly stiffness:

$$
\text { Reeds-Shepp: } \sqrt{1+\kappa^{2}}, \quad \text { Euler-Mumford: } 1+\kappa^{2}, \quad \text { Dubins: } \begin{cases}1 & \kappa \leq 1 \tag{1.2}\\ \infty & \text { else }\end{cases}
$$

They are respectively representative of (i) a wheelchair-like robot, (ii) the bending energy of an elastic bar, and (iii) a vehicle with a bounded turning radius. In the case of the Reeds-Shepp model, one must further distinguish between the classical model with reverse gear, and the forward only variant [4].

[^0]J.M. Mirebeau, F. Desquilbet, \& J. Dreo

Viscosity solutions, and the Fast marching algorithm. Data-driven path energies, subject to e.g. fixed endpoints, usually possess many local minima. In order to guarantee that the global minimum is found, path energy minimization must be reformulated as an optimal control problem. The corresponding value function is the unique viscosity solution to a PDE of eikonal type, and the optimal paths can be extracted by backtracking once it is numerically computed [13].

Only simple first order energies, such as $\int_{0}^{T} \alpha(\mathbf{x}(s))\|\dot{\mathbf{x}}(s)\| \mathrm{d} s$ could originally be addressed in the viscosity solution framework, typically using the Fast Marching Method (FMM) which solves the eikonal PDE in a single pass over the domain [3. Recent progress [4, 2, 8] enabled the extension to (1.1) of the FMM. For that purpose the path is lifted in the configuration space of positions and orientations, defining $\gamma(t)=(\mathbf{x}(t), \theta(t))$ subject to the constraint $\mathbf{x}^{\prime}(t)=(\cos \theta(t), \sin \theta(t))$. This allows to reformulate 1.1) as a first order energy, since $\left|\mathrm{x}^{\prime \prime}(t)\right|=\left|\theta^{\prime}(t)\right|$. See [8] for details and comparison with alternative approaches such as [11, 7].

Applications to image processing. Image segmentation methods based on active contours typically involve path energies balancing low-order data-driven terms, and higher order regularization terms. Unfortunately, many second order models can only be locally optimized [6], resulting in spurious local minima and high sensitivity to initialization. In contrast, first order models [3] can be globally optimized using the FMM, but the lack of smoothness penalization gives way to various artefacts referred to as leaks, shortcuts, and branches combination problems [2].

Our numerical method combines the best of the two worlds: a second order energy model (1.1), and fast global minimization, with prescribed endpoint positions and tangents. This enables to new developments, see for instance [2] on the retina vessel tree segmentation, and [4] on white matter fiber path extraction.

2. Threatening trajectories, and radar network configuration

In a collaboration work with the company Thales, we optimize the configuration of a radar network for protecting an objective within a region, against an enemy assumed to have unlimited intelligence and computing power, and yet whose vehicle is subject to some manoeuverability constraints. The goal is to maximize the probability of detection of the most dangerous trajectory between a given source and target, which will take advantage of any hideout in the terrain, blind spot or physical limitation in the radar network. The trajectory is only subject to a lower bound in the turning radius, due to the vehicle high speed.

We model this problem as a non-cooperative zero-sum game: a first player chooses a setting ξ for the radar detection network Ξ, and the other player chooses a trajectory γ from the admissible class Γ with full information over the network ξ. The players' objective is respectively to maximize and minimize the path cost:

$$
C(\Xi, \Gamma):=\sup _{\xi \in \Xi} \inf _{\gamma \in \Gamma} \mathfrak{C}_{\xi}(\gamma)
$$

where \mathfrak{C}_{ξ} is the function \mathfrak{C} defined in (1.1) but with a data-driven cost term α_{ξ} depending on the setting ξ of the network, and accounting for the local probability of detection. Minimization over $\gamma \in \Gamma$ (given $\xi \in \Xi$) is performed using the fast and reliable techniques of ξ_{1}. We rely on the CMA-ES algorithm (5) for the subsequent optimization over $\xi \in \Xi$, which is rather difficult (non-convex, non-differentiable).

In comparison with earlier works [1, 12], we use the curvature bounded Dubins model (1.2, right) to reject non-physical attacking trajectories, featuring e.g. angular turns or oscillations in the vehicle direction. We also considerably improve, relative to [9, the detection probability model, used to define

GLOBALLY OPTIMAL CURVATURE

Figure 1. (left) blindness map of a radar (simulated data). (top right) dodging a radar through a blind distance, (bottom right) spiraling threatening trajectory

Figure 2. Threatening trajectories, from a circular region towards its center point, with optimized radar positions. (left) Positional factor $\alpha_{\xi}(\mathbf{x})$ in the cost map, where ξ is the radar configuration. (right) Digital elevation map.
$\alpha_{\xi}(\mathbf{x}, \dot{\mathbf{x}})$, taking into account the three following factors respectively related to the radar, the target, and the terrain 10.

- The blindness map accounts for the probability of detection of a generic target by a radar, depending on the distance and the radial speed of the target relatively to the radar, see Figure 1., left. There are blind areas, due to the fact that a radar cannot listen to its signal while emitting it, and to the Doppler effect, which respectively causes blind radial distances and blind

J.M. Mirebeau, F. Desquilbet, \& J. Dreo

radial speeds. The positions of the blind areas are periodical and depend on internal parameters of the radar that can be optimized: signal wavelength, and pulse repetition interval.

- The radar cross section accounts for the probability of detection of a specific target, depending on its orientation relative to the radar. For instance, a furtive plane often has a low probability of detection if seen from the front, and a higher one if seen from the side.
- The elevation map is used to determine blind regions in the terrain due to obstruction of the radar line of sight. In a mountainous area, a target can take advantage of valleys to move "under the radar". The Earth curvature is also taken into account.

The profile of the cost function with regard to the direction of movement is typically non-convex, which is significant only in the presence of a curvature penalization. For that, we choose the Dubins model, in which the curvature radius is bounded. We showcase the following three phenomena.

- Trajectories dodging radars through their blind distances (cf Figure 1., top right). In this picture, only the positional factor in the cost map is shown in greyscale, and not the part of the cost depending on the orientation. The red line represents the optimal trajectory of the target, going from the left to the right of a rectangular domain, with a radar in the center. It features a circle arc, at a precise blind distance from the radar, and two spiral arcs, see below.
- Spiraling threatening trajectories, taking advantage of the blind radial speed (cf Figure 1., bottom right). The red line represents the trajectory of the target, going from the left to the center of the domain where the radar is located, maintening a constant angle with the radar in order to minimize visibility, except at the end due to the imposed bound on path curvature.
- Hiding in valleys (cf Figure 2.). A digital elevation map, of $50 \mathrm{~km} \times 50 \mathrm{~km}$ around the city of Davos in the Alps, is used to construct a probability of detection map, see Figure2. Threatening trajectories tend to concentrate in valleys. The optimized radar positions are close to the target to be defended, and either on high ground or in alignment with long valleys.

Future works will be devoted to further enhancing the model, taking into account limited knowledge of the attacker (e.g. due to the use of passive radar receivers), introducing success criteria more complex than mere detection (e.g. requiring detection early enough for interception), and considering speed and altitude variations along the trajectory.

Bibliography

[1] F Barbaresco. Computation of most threatening radar trajectories areas and corridors based on fast-marching \& Level Sets. In IEEE Symposium On Computational Intelligence For Security And Defence Applications, pages 51-58. IEEE, 2011.
[2] Da Chen, Jean-Marie Mirebeau, and Laurent D. Cohen. Global Minimum for a Finsler Elastica Minimal Path Approach. International Journal of Computer Vision, 122(3):458-483, 2017.
[3] Laurent D Cohen and R Kimmel. Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision, 24(1):57-78, 1997.
[4] Remco Duits, Stephan PL Meesters, Jean-Marie Mirebeau, and Jorg M Portegies. Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis. Journal of Mathematical Imaging and Vision, pages 1-33, 2018.

GLOBALLY OPTIMAL CURVATURE

[5] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 11(1):1-18, 2003.
[6] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331, January 1988.
[7] Wei Liao, Karl Rohr, and Stefan W o rz. Globally Optimal Curvature-Regularized Fast Marching For Vessel Segmentation. Medical Image Computing and Computer-Assisted InterventationMICCAI 2013. Springer Berlin Heidelberg., pages 550-557, 2013.
[8] Jean-Marie Mirebeau. Fast-marching methods for curvature penalized shortest paths. Journal of Mathematical Imaging and Vision, pages 1-32, 2017.
[9] Jean-Marie Mirebeau and Johann Dreo. Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance. In Frank Nielsen and Frédéric Barbaresco, editors, Geometrical Science of Information, April 2017.
[10] Merrill Ivan Skolnik. Radar handbook. 1970.
[11] Petter Strandmark, Johannes Ulen, Fredrik Kahl, and Leo Grady. Shortest Paths with Curvature and Torsion. In 2013 IEEE International Conference on Computer Vision (ICCV), pages 20242031. IEEE, 2013.
[12] Christopher Strode. Optimising multistatic sensor locations using path planning and game theory. In IEEE Symposium On Computational Intelligence For Security And Defence Applications, pages 9-16. IEEE, 2011.
[13] J.N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE transactions on Automatic Control, 40(9):1528-1538, September 1995.

[^0]: This project was partly support by ANR research grant MAGA, ANR-16-CE40-0014.

