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Abstract

A simple thermodynamic closure for the simulation of multiphase reactive

flows is presented. It combines a fully explicit thermodynamic closure ap-

propriate for weakly thermal multiphase flow simulations, with the classical

variable heat capacity ideal gas thermodynamic closure, commonly used for

reactive flows simulations. Each liquid and gas component is assumed to

follow the recent Noble-Abel Stiffened Gas equation of state, fully described

by a set of five parameters. A new method for setting these parameters is

presented and validated through comparisons with NIST references. Com-

parisons with a well-known cubic equation of state, Soave-Redlich-Kwong,

are also included. The Noble-Abel Stiffened-Gas equation of state is then

extended as to cope with variable heat capacity, to make the mixture ther-

modynamic closure appropriate for multiphase reactive flows.

Keywords: thermodynamics, equation of state, multiphase flows, reactive

flows, computational fluid dynamics
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Fluid mechanics are governed by mass, momentum, and energy conser-

vation equations. Any attempt at solving them requires consideration of a

so-called thermodynamic closure to account for the pressure work, by pro-

viding the relation between pressure, mass and energy.

For compressible flows, implementation of such relation in a solver is non-

trivial [1], as large pressure ratios are encountered. Additional difficulties are

encountered when the flow is also multiphase [2, 3], with large density ratios

being now encountered. When exothermic reactions also require consider-

ation – e.g. for a burning liquid jet – the temperature also exhibits large

ratios, and implementing an appropriate closure is challenging [4–6]. Within

that last category, one of the various variants of the cubic Van der Waals

equation of state [7–10] is often adopted [4–6], for they are relatively simple

and valid over large density-pressure-temperature ranges.

In subcritical conditions, however, the liquid and gas phases have such

different thermodynamic properties that it can be easier to use separate equa-

tions. In that direction, Stiffened Gas (SG) EOS are a common option: they

include very few independent parameters and can easily be tuned to well de-

scribe conditions of interest [11]. The Noble-Abel Stiffened-Gas (NASG) EOS

is an improved version of the SG EOS proposed recently [12]. The authors’

strategy for setting the equation of state parameters is, as in their previous

work in the SG EOS context [11], based on the sole fitting of the saturation

properties in terms of temperature, pressure, density and enthalpy. The ap-

proach is reasonable for multiphase flows remaining close to the saturation

conditions, but this study shows that significant errors are obtained as soon

as the flow departs significantly from the saturation properties. This will be
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especially overriding in multiphase reactive flows, where it is important to

accurately assess the energy necessary to heat a product over wide ranges of

temperatures. This work’s objective is to offer an alternative method, allow-

ing a good asymptotic representation in the pure liquid and vapor limits of

the fluid.

The paper is organized as follows. First, the NASG EOS main features

will be recalled [12] along with its advantages over the SG description. The

next section of the paper will describe a new method for setting the NASG

EOS parameters. Validation of the new parameters will be shown, by com-

paring with the original work [11, 12] as well as the well known SRK EOS

[9]. In the following section, the NASG EOS is extended as to cope with

variable heat capacity. This extension finds its importance for applications

that are both multiphase and reactive. Associated to the last section is an

extension of the thermodynamic closure for two-phase flows consisting of a

liquid and a multicomponent gas, all assumed to follow the NASG EOS (or

associated stiffened or ideal gas simplifications).

2. The Noble-Abel Stiffened-Gas Equation of State

The NASG EOS for each phase reads:

p(ρ, T ) =
ρ(γ − 1)CvT

(1− ρb)
− p∞, (1)

where the usual notations are used. p is the pressure, ρ the density, γ the

heat capacity ratio, Cv the mass heat capacity at constant volume (or at

constant pressure, Cp = γCv), b the covolume, and p∞ is another parameter

representing the molecular attraction in the liquid phase. Following [12], the

coefficients γ, Cv, b and p∞ are assumed to be constants.
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Equation (1) will be used for the liquid phase, whereas for the gas phase

b and p∞ are set to zero, reducing to a perfect gas description.

Figure 1 compares the density and enthalpy as obtained at constant pres-

sure with the NASG EOS [12], the SRK EOS, and the reference from the

NIST database for water H2O. A clear disadvantage of the SRK EOS is that

it leads to errors in liquid density on the order of 20%, with the latent heat

of vaporization overestimated by 5%. Because the liquid and gas phases have

separate EOS in the SG and NASG framework, it is easier to obtain more

accurate thermodynamic properties in both phases.

One of the advantages of the NASG EOS over the SG EOS [12] is that it

allows a much better description of the liquid phase. This is made possible

by the introduction of the covolume b, which allows to lift the following

limitations of the SG framework:

• ρ is not no longer inversely proportional to T at constant pressure,

leading to a better description of the density low-range temperature

dependence.

• the hypothesis that ∂h
∂p

)

T
= 0 is lifted, with ∂h

∂p

)

T
= b in the NASG

framework.

• the SG sound speed c2 = γ.r.T , implies ∂c
∂T

)

p
> 0, whereas the oppo-

site is observed for most liquids. The NASG framework corrects that

behavior, since

c2 = γ.r.T

(

1 + b.
(p+ p∞)

r.T

)2

,

with the second term in the parenthesis becoming dominant at low

temperatures.
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Figure 1: H2O density and enthalpy as functions of the temperature, at p =1 and 10 bars.
Included (thick light gray) are the NIST reference [13], the SRK EOS (dashed, red), and
the NASG EOS [12] (plain). The dotted curve corresponds to the saturation curves.

Despite these advantages, significant errors in the gas heat capacity were

obtained, as hinted by the enthalpy plots of Fig. 1: water heat capacities Cp

reported in [12] are 903 or 1401 J/kg/K depending on the temperature range,

very far from its actual value of 1996 J/kg/K. Similar errors were obtained

in the case of dioxygen O2, as later shown in Tab. 1.

This error comes from the method [12], in which the parameters are

computed as to fit the reference saturation curves. Fig. 1.b illustrates well the

error source: the saturation curve is not tangent to the isobaric properties.

3. Proposed method for obtaining the NASG EOS parameters

This Section presents a new method for setting the NASG EOS parame-

ters. Instead of fitting the parameters as to match the saturation properties

as in [12], the idea is to loosen the precision at saturation, and instead fo-

cus on obtaining satisfying behavior over a wide range of temperature and

pressure. In particular, equality between the liquid and gas phase chemical
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potentials

g = (γCv − q′)T − CvT ln
T γ

(p+ p∞)γ−1
+ bp+ q, (2)

at the saturation curve p = psat(T ) will not be automatically satisfied. Re-

ciprocally, this implies that the saturation pressure relation p = psat(T ) will

not be obtainable from the EOS parameters. The implications of relaxing

that constraint are discussed in Sec. 3.4. Under that assumption, we can then

set the coefficients for each phase independently, significantly simplifying the

procedure.

Within the NASG framework, the specific volume v = 1/ρ, mass enthalpy

h, internal energy e and sound velocity c read respectively











































v(p, T ) =
(Cp − Cv)T

p+ p∞
+ b

h(p, T ) = CpT + bp+ q,

e(p, T ) =
p+ γp∞
p+ p∞

CvT + q,

c2(p, v) =
γv2 (p+ p∞)

v − b
.

(3)

where the following parameters are needed for each phase : γ, p∞, Cv (or Cp),

q and b. Let us now determine the EOS parameters for O2 as an example.

3.1. Coefficients for the liquid phase

From deriving Eq. (3), we can write:

Cp =
∂h

∂T

)

p
, and b =

∂h

∂p

)

T
. (4)

These parameters can then readily be measured from fitting linearly the

NIST reference mass enthalpy data:
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• the heat capacity Cp is to be obtained from the enthalpy curve at a

pressure p0 far below the critical pressure as to exclude any real gas

effect.

• similarly, the covolume b is deduced from the enthalpy curve at a tem-

perature T0 sufficiently low (far from the critical temperature).

The procedure is illustrated in Fig. 2, for O2. The left plot indicates that
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Figure 2: Evolution of O2 enthalpy with the temperature at the pressure 0.1bar (to the
right) and with the pressure at the temperature 55K (left) for the dioxygen with the NIST
reference (solid grey cruves) and with the linear regressions (dashed red curves)

Cp=1676 J.kg−1.K−1, and the right plot shows that b = 6.335× 10−4m3.kg−1.

The reference energy q can then be obtained from either curve, by using the

origin coordinate as:

q = hfit(p = 0, T0)− Cp.T0 = −1.926× 105 − 1676× 55 = −284 730 J kg−1

(5)

Note that using the other formula hfit(p0, T = 0)− b.p0 leads to a close value

q = −284 746 J kg−1, showing the accuracy of the procedure, as well as the

relevance of the NASG thermodynamic description.
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Indeed, fitting the parameters on such a limited pressure and temperature

ranges is voluntary, and does not preclude a much larger validity, as shown

in the next Section. The idea is simply to choose the parameters based on

reference data as far as possible from the saturation and/or the critical point,

where the properties show almost non-linearity.

The only remaining parameters are now γ (alternatively Cv) and p∞.

The strategy is to set the parameters as to obtain asymptotically accurate

thermodynamic properties at low temperatures. The specific volume and

sound speed equations (3) may be rewritten as to obtain

γ =
c2(v − b)2

v2CpT
+ 1, (6)

which can be evaluated in conditions far from the critical point. At T = 55K

(≈ Tc/3), the NIST reference database gives, for O2

v = 7.670× 10−4 m3 kg−1, c = 1.127× 103 ms−1,

leading to γ = 1.42. p∞ can then be obtained from rewriting (3), to give

p∞ =
(γ − 1)CpT

γ(v − b)
− p, (7)

to be evaluated under the same conditions, giving p∞ = 2.034× 108 Pa.

3.2. Coefficients for the vapor phase

For the vapor phase, we assume b and p∞ to be zero, reducing the system

to the ideal gas equation of state with constant heat capacity. In that case,

a single parameter is left to determine, as Cp and Cv relate through Mayer’s

relation Cp − Cv = r, where r = R/W , R being the universal gas constant

and W the gas molar mass. For instance, we can choose Cv as to fit the

low temperature range, as illustrated in the left plot of Fig. 3, leading to

Cv = 6.500× 102 J kg−1 K−1.
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Figure 3: Dioxygen isochoric heat capacity and mass enthalpy dependence with temper-
ature at 1bar. Thick light gray: NIST reference. Dashed lines: NASA coefficients (for
T < 208K), and constant Cv as obtained Sec. 3.2. Plain line: Cv(T ) as obtained following
4.

3.3. Results

The parameters obtained by following the above step-by-step procedure

are summarized in Tab. 1, which also reports the previous set of parameters

obtained in [12]. Note that the heat capacity ratio and heat capacity Cp have

now satisfactory values, much closer to the naive expectation of γ = 1.4 for

a diatomic gas.

The corresponding density and enthalpy temperature dependencies are

reported in Fig. 4, showing excellent agreement over the whole temperature

range, given the pressure remains sufficiently below the critical pressure pc,

or approximately p < pc/3. Note that no thermochemical equilibrium is

used here: the use of either phase parameters (liquid or gas) is solely decided

according to the sign of T − Tsat. Accurate solvers for the thermo-chemical

equilibrium are available within this context [14, 15].

The procedure was repeated for H2, H2O, N2 and C12H26, for which the

9



O2(l) O2(g) O2(l)[12] O2(g)[12]
Cp (J kg−1 K−1) 1.676× 103 9.194× 102 1.741× 103 5.520× 102

γ 1.419 1.414 2.200 1.850
b (m3 kg−1) 6.335× 10−4 0 4.570× 10−4 0
p∞ (Pa) 2.034× 108 0 2.036× 108 0
q (J kg−1) −2.847× 105 −2.104× 103 −2.902× 105 2.927× 104

Table 1: NASG parameters in SI units, as obtained following the procedure presented in
Sec. 3 at the left and following [12] at the right, for dioxygen.
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Figure 4: Dioxygen density and mass enthalpy temperature dependencies as obtained with
the new set of parameters (red plain line) at p = 105Pa and p = 106Pa. The light-gray
heavy line reproduces the NIST reference, the dotted-dashed curve the SRK EOS, and the
dashed curves the NASG, with the previous method [12].
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parameters are reported in Tab. 2. Results for density and enthalpy as

functions of temperature at 105Pa and 106Pa are included in Fig. 5.

H2(l) H2(g)

Cp 7.100× 103 1.040× 104

γ 1.358 1.681
b 1.106× 10−2 0
p∞ 1.355× 107 0
q −1.531× 105 2.543× 105

H2O(l) H2O(g)

Cp 4.185× 103 1.908× 103

γ 1.012 1.328
b 9.203× 10−4 0
p∞ 1.835× 108 0
q −1.143× 106 1.957× 106

N2(l) N2(g)

Cp 2.021× 103 1.045× 103

γ 1.674 1.407
b 8.054× 10−4 0
p∞ 1.476× 108 0
q −2.784× 105 −2.355× 103

C12H26(l) C12H26(g)

Cp 2.356× 103 2.688× 103

γ 1.220 1.020
b 9.600× 10−4 0
p∞ 3.325× 108 0
q −1.189× 106 −1.049× 106

Table 2: Parameters in SI units, as obtained following the procedure presented Sec. 3, for
dihydrogen, water, nitrogen and dodecane.

Density and enthalpy are better described in the liquid phase with the

NASG EOS than with the SRK EOS (especially for H2 and H2O). Dark lines

in the H2O plot indicate the results as obtained with the parameters derived

in [12], showing a significant improvement of the enthalpy prediction in both

phases. The density is also better predicted in the liquid phase.

Indeed, as indicated by the H2 plots of Fig. 5, results get worse as

the pressure get closer to the critical pressure (especially low for H2: pc =

1.300× 106 Pa). Yet, density and enthalpy predictions in the limits far from

saturation are better than with the SRK EOS. That case aside, the other

significant departure from the NIST reference concerns H2O at high tem-

perature (from 800K and above). This error can be suppressed, however,

accounting for the variable Cp as shown in Sec. 4.
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Figure 5: Validation of the NASG parameters: density and enthalpy temperature depen-
dences at 105Pa and 106Pa as obtained with the parameters from Tab. 2. Dashed lines
report results from [12] when available.

3.4. Implications of not using the saturation curves in the proposed method

Even though the saturation curves are not used in fitting the param-

eters as recommended in [12], agreement on saturation properties remains

excellent in the sub-critical range of pressure. This is illustrated in Fig 6,

comparing the saturation pressure and latent heat dependencies with tem-

perature as obtained with the new set of parameters with the NIST reference.

Since the chemical potentials equality is not strictly enforced at saturation,

the use of an analytic approximation for the saturation pressure is recom-

mended for phase transfers computations such as [14, 15], which remain fully

compatible. Figure 6 shows that use of Antoine’s equation with appropriate

coefficients [16] leads to a saturation pressure indistinguishable from the ref-

erence, whereas slight departures are obtained with the NASG formulation
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at high temperatures. For this Figure, we used the coefficients recommended

on the NIST website [13] to approximate the saturation pressure (Pa.) as a

function of T(K) as

psat(T ) = 10A−
B

C+T , (8)

with A = 3.9523, B = 340.024 and C = −4.144.
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Figure 6: Dioxygen saturation pressure (left) and latent heat (right) dependence with
temperature. The light-gray heavy lines reproduce the NIST reference, and the red-dashed
curve correspond to the NASG values obtained with updated parameters from Table 1.
The solid line in the left plot, indistinguishable from the NIST reference corresponds to
the saturation pressure as obtained with Antoine’s equation [16].

In addition from providing a wider validity range, our approach to com-

pute the NASG parameters also allows significant cpu cost reduction: The

obtention of psat following the initial proposal [12] requires a root-finding

procedure, whereas it is here replaced by an analytical expression (8).

4. NASG extension to variable heat capacity

In configurations where the temperature varies significantly (e.g. in re-

active flows), the constant heat capacity approximation fails, as is clearly
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visible in the H2O mass enthalpy plot of Fig. 5. It is therefore worth investi-

gating whether this assumption can be relaxed within the NASG framework.

Let us now, as is rather classical for reactive flows, consider a heat capacity

Cp dependent on the temperature

∂h

∂T

)

p

= Cp(T ), (9)

which, through integration, leads to

h(p, T ) =

∫

Cp(T )dT + f(p). (10)

Assuming a linear profile of the function f(p) = b.p+ q with constant covol-

ume b and reference energy q (as in [12]), we have

∂h

∂p

)

T

= f ′(p) = b, (11)

which, combined with the third Maxwell’s relation

∂h

∂p

)

T

= v − T
∂v

∂T

)

p

, (12)

yields

v − b = T
∂v

∂T

)

p

(13)

and eventually










h(p, T ) =
∫

Cp(T )dT + b.p+ q,

v(p, T ) = g(p).T + b,

(14)

where g(p) is the function of p arising from integration of (13), shown in

AppendixA to be of the form

g(p) =
r

p+ p∞
, (15)
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with r = Cp(T )− Cv(T ), and p∞ being two constants.

Within this framework, the density, specific enthalpy and internal energy

then read


























v(p, T ) = rT
p+p∞

+ b

h(p, T ) =
∫

Cp(T )dT + bp+ q

e(p, T ) = h(p, T )− pv(p, T ) =
∫

Cv(T )dT + rTp∞
p+p∞

+ q

(16)

In addition,
∂s

∂T

)

p

=
Cp(T )

T
(17)

and (Maxwell’s relation)
∂s

∂p

)

T

= −
∂v

∂T

)

p

, (18)

which can be combined into

s(p, T ) =

∫

Cp(T )/TdT − r ln (p+ p∞) + q′ (19)

where q′ is a constant.

From equations (16) and (19),

ds =
Cv(T )

(p+ p∞)
dp+

Cp(T )

(v − b)
dv (20)

finally leading to the speed of sound as

c2 = −v2
∂p

∂v

)

s

=
Cp(T )

Cv(T )

(p+ p∞)

(v − b)
v2 (21)

Finally, the density, specific enthalpy, internal energy, entropy, chemical
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potential and sound speed read


















































































v(p, T ) = rT
p+p∞

+ b

h(p, T ) =
∫

Cp(T )dT + bp+ q

e(p, T ) =
∫

Cv(T )dT + rTp∞
p+p∞

+ q

s(p, T ) =
∫

Cp(T )/TdT − r ln (p+ p∞) + q′

g(p, T ) = h(p, T )− Ts(p, T )

=
∫

Cp(T )dT − T
∫

Cp(T )/TdT − Tq′ + rT ln (p+ p∞) + bp+ q

c2(p, T ) = Cp(T )

Cv(T )
rT
(

1 + b (p+p∞)
rT

)2

(22)

The Noble-Abel Stiffened gas equation of state defined as above can then

tackle variable heat capacity. In particular, for reactive flows, implementing

the NASA polynomials is now straight-forward for example. As illustrated

in Fig. 3 for O2, and anticipated in the previous Section, the possibility to

account for variable Cp fully corrects the errors at high temperature observed

in Fig. 5.

Appended with variable Cp formulation, it is shown in AppendixB that

∂2e

∂s2

)

v

∂2e

∂v2

)

s

−
(

∂2e

∂v∂s

)2

=
rT 2

(Cp(T )− r)(v − b)2
> 0, (23)

confirming that the resulting EOS remains convex regardless of the fit re-

tained for Cp(T ).

5. Practical implementation: a thermodynamic closure for the sim-

ulation of multiphase reactive flows

The NASG equation of state, with updated coefficients, can directly be

used in multiphase flow solver based upon Kapila’s 7-equation model [17], or
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any solver using separate EOS for each phase [3]. When the flow is assumed

to be in thermal and mechanical equilibrium locally [18], the derivation of

relations relating the mixture conservative variables (v, e) with the intensive

quantities (p, T ) becomes necessary. In particular, since computation of the

pressure has to be performed at each grid point every time-step, an explicit

formulation for p is of high interest, as it is typically much faster than a

root-finding procedure.

This Section provides explicit analytic thermodynamic closure for a mix-

ture consisting of a liquid phase and a multi-component gas phase.

5.1. Constant heat capacity

Let us remind the formulation obtained in the case of constant heat ca-

pacity obtained in [15]. The given mixture described by a mass fraction

distribution Yk, where k identifies the kth component of the mixture. In

our approach, the Yk are mass fractions within a control volume, which con-

tains both the liquid and gas phases. In particular, we identify the following

components:

• k = 1 for the considered liquid (fuel, oxidizer, water, depending on the

application),

• k = 2 for the gas component corresponding to vapor of species 1,

• k = 3, . . . , N for the remaining gas components, considered non-condensable.

Using the notations introduced above, one can obtain (v, e) from (p, T )

17



through


























v =
N
∑

k=1

Ykvk(p, T ),

e =
N
∑

k=1

Ykek(p, T ),

(24)

where the vk and ek are calculated with (3), with use of the coefficients for

the kth component.

Inverting System 24 to obtain (p, T ) from (v, e) is less straight-forward.

It leads to a second-order polynomial equation with a single positive root

[15] for p:

p(v, e) =
b+

√
b2 + 4ac

2a
, (25)

with






























a = C̄v,

b =

(

e− q̄

v − b̄

)

(

C̄p − C̄v

)

− p∞,1C̄v − p∞,1Y1 (Cp,1 − Cv,1) ,

c =

(

e− q̄

v − b̄

)

p∞,1

[

C̄p − C̄v − Y1 (Cp,1 − Cv,1)
]

,

(26)

where mixture quantities are introduced:

C̄v =
N
∑

k=1

YkCv,k, C̄p =
N
∑

k=1

YkCp,k, q̄ =
N
∑

k=1

Ykqk, b̄ =
N
∑

k=1

Ykbk. (27)

Once the pressure is known, the temperature is easily obtained as

T =
(

v − b̄
)

(

N
∑

k=1

Yk(Cp,k − Cv,k)

p+ p∞,k

)−1

. (28)

We refer the reader to [14, 15, 19] for computational examples with the

above thermodynamic closure.
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5.2. Variable heat capacity

When considering variable heat capacity, obtaining (v, e) from the in-

tensive variables (p, T ) remains possible through equation (24), with use of

updated vk(p, T ) and ek(p, T ) expressions (22).

However, because of the
∫

CvdT term in the energy expression, it is no

longer possible to obtain explicit expressions for (p, T ) from (v, e). The brute

force method consists in writing an iterative solver for p, and deducing T from

(28) (or, alternatively, iteratively solving for T and analytically obtain p).

It has to be noted, however, that solving for p is typically done at every

point and time step of a multiphase flow numerical simulation so efficiency

in its computation is of paramount importance.

A faster and more efficient method can be obtained by noting that the

constant heat capacity assumption only fails at high temperatures, where the

liquid is no longer present. We then suggest to define the Cp(T ) function as

a continuous C0 function (piece-wise C∞) with:










Cp(T ) = Cvar
p (T ) if T > T0

Cp(T ) = Cp,0 if T ≤ T0,

(29)

where Cvar
p (T ) can be any function (e.g. a NASA polynomial), and Cp,0 is

that found in Sec. 3. T0 simply has to be calculated such as Cvar
p (T0) = Cp,0

which, in the case of O2 leads to T0 = 208K with the parameters from Tab.

2 (577K for water). That temperature is high enough to ensure that the flow

is mono-phase in the variable Cp domain. If the gas phase consists of various

gas components, each should be given the same T0 as to maintain the validity

of (25). The method is illustrated in Fig. 2, in which was added the Cv(T )

and h(T ) curves following the formalism of Eq. (29).
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The obvious advantage of this method is that the multi-phase flow ther-

modynamic closure for the pressure (25) remains valid and explicit, and, most

importantly, remains unique in the sense that the same formulation is used

everywhere in the multiphase flow. Also, the simple explicit phase transition

solvers presented previously [14, 15] remain valid.

Note that this method is also applicable on the liquid side, where a vari-

able Cp could be implemented below a certain temperature, should the ap-

plication require it. In the unlikely event where a constant Cp is not a viable

assumption on either side of saturation, the present work can still serve with

the implementation of an iterative solver for the pressure.

6. Conclusion

A new method for setting the parameters in the Noble-Abel Stiffened-

Gas equation of state has been presented. Instead of focusing on fitting the

thermodynamic properties at saturation, the proposed method considers the

properties of the liquid and gas state entirely independently. As a result, large

ranges of validity are obtained, typically from freezing point to way above

saturation (e.g. H2O: 273-800K, O2: 55-600K,...). Saturation properties

predictions are shown to remain excellent with the new method, given the

pressure remains sub-critical.

To further expand the temperature validity range up to combustion tem-

peratures, this work also extends the Noble-Abel Stiffened gas equation of

state as to encompass variable heat capacities, while preserving its convexity.

Through consideration of NASA polynomials for the gas phase [13], the up-

per temperature limit is effectively lifted, making the thermodynamic closure

valid for combustion applications that include a liquid phase.
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The explicit thermodynamic closure previously derived [15] has been up-

dated accordingly, as to include these novelties, providing a suitable thermo-

dynamic closure for the simulation of multiphase reactive flows.
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AppendixA. Variable Cp NASG equation of state derivation

This Section provides the proof required to fill the gap between Eqs. (14)

and (22). Starting over from (14), the internal energy reads, by definition,

e(p, T ) = h(p, T )− p.v(p, T ) =

∫

Cp(T )dT + q − pTg(p) (A.1)

Combining this expression for the internal energy with the differential form

de =
∂e

∂p

)

T

dp+
∂e

∂T

)

p

dT, (A.2)

or, alternatively

∂e

∂T

)

v

= Cv(T ) =
∂e

∂p

)

T

∂p

∂T

)

v

+
∂e

∂T

)

p

, (A.3)

yields














∂e

∂T

)

p

= Cp(T )− p.g(p)

∂e

∂p

)

T

= −T (g(p) + p.g′(p))

. (A.4)
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Reformulating (14) as

∂p

∂T

)

v

=

(

∂T

∂p

)

v

)

−1

=
−g(p)

g′(p)T
, (A.5)

Equation (A.3) leads to

Cv(T ) = Cp(T ) +
g(p)2

g′(p)
. (A.6)

Cv and Cp depending only on temperature,

Cv(T )− Cp(T ) =
g(p)2

g′(p)
= −r, (A.7)

where r is a constant. Integration of (A.7) leads to :

g(p) =
r

(p+ rC)
(A.8)

where C is another constant.

Maxwell’s second relation implies

∂e

∂v

)

T

= T
∂p

∂T

)

v

− p, (A.9)

which, combined with Eqs. (A.5) and (A.8) yields

∂e

∂v

)

T

=
−g(p)

g′(p)
− p = rC, (A.10)

and, through integration

e(v, T ) = Crv + f(T ) (A.11)

where f(T ) remains to be determined.

With the help of (A.3),

∂e

∂T

)

v

= Cv(T ) = Cp(T )− r = f ′(T ) (A.12)
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allowing the determination of function f as

f(T ) =

∫

Cp(T )dT − rT +D, (A.13)

with D being yet another integration constant. Eq. (A.11) now provides an

expression for the internal energy in function of specific volume and temper-

ature

e(v, T ) = Crv +

∫

Cp(T )dT − rT +D (A.14)

which, combined with (14) leads to

e(p, T ) =

∫

Cp(T )dT −
rTp

(p+ rC)
+D + rCb. (A.15)

Eventually, comparing Eqs. (A.1) and (A.15) relates the integration con-

stants as

D = q − rCb (A.16)

Summarising now the equations obtained so far as


























v(p, T ) = rT
(p+rc)

+ b

e(p, T ) =
∫

Cp(T )dT + q − rTp

(p+rC)

e(v, T ) =
∫

Cp(T )dT + q − rT + rC(v − b)

, (A.17)

setting C = p∞
r
, by analogy with the NASG EOS [12] eventually leads to the

intended system of equations (22) given in Section 4.

AppendixB. Convexity of the NASG EOS including variable Cp

Convexity is examined in this part and the state function e(v, s) is needed.

This one is not explicit but the following derivatives are available :














∂e
∂s

)

v
=

∂e
∂T

)

v

∂s
∂T

)

v

∂e
∂v

)

s
= ∂e

∂v

)

T
− ∂s

∂v

)

T

∂e
∂s

)

v

, (B.1)
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From (22), the following relations are readily obtained :







































∂e
∂T

)

v
= Cv(T )

∂e
∂v

)

T
= p∞

∂s
∂v

)

T
= r

v−b

∂s
∂T

)

v
= Cv(T )

T

, (B.2)

Then (B.1) becomes :










∂e
∂s

)

v
= T

∂e
∂v

)

s
= −p

, (B.3)

The second derivatives of e(v, s) must now be computed with the help of the

preceding relations:

∂2e

∂v2

)

s

= −
∂p

∂v

)

s

= −
∂p

∂T

)

s
∂v
∂T

)

s

=
Cp(T )

Cv(T )

(p+ p∞)

(v − b)
> 0 (B.4)

∂2e

∂s2

)

v

=
∂T

∂s

)

v

=
1

∂s
∂T

)

v

=
T

Cv(T )
> 0 (B.5)















∂2e

∂v∂s
=

∂T

∂v

)

s

=
−rT

Cv(T )(v − b)
∂2e

∂s∂v
= −

∂p

∂s

)

v

=
−rT

Cv(T )(v − b)
=

∂2e

∂v∂s

(B.6)

From (B.4), (B.5) and (B.6) the following term is unconditionally positive

as:
∂2e

∂s2

)

v

∂2e

∂v2

)

s

−
(

∂2e

∂v∂s

)2

=
rT 2

Cv(T )(v − b)2
> 0 (B.7)

The equation of state (22) is thus convex whatever the polynomial profiles

of Cp(t), or alternately Cv(T ).
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