Teddy Pichard 
email: teddy.pichard@polytechnique.edu
  
Nina Aguillon 
email: aguillon@ljll.math.upmc.fr
  
  
  
EXISTENCE OF STEADY TWO-PHASE FLOWS WITH DISCONTINUOUS BOILING EFFECTS

Keywords: 2010 Mathematics Subject Classification. 35R05, 35Q35, 34A36 Discontinuous source term, Ordinary differential equation, Steady state, Carathéodory solution, Well-posedness

We aim at characterizing the existence and uniqueness of steady solutions to hyperbolic balance laws with source terms depending discontinuously on the unknown. We exhibit conditions for such differential equations to be well-posed and apply it to a model describing boiling flows.

1.

Introduction. The aim of this paper is to present a framework for the study of steady states of 1D balance laws with sources defined as a discontinuous function of the unknown. Such steady states satisfy systems of the form

d dx F (U )(x) = S(U (x)), (1a) 
where the source is jumps when a certain function h reaches a threshold, i.e.

S(U

) = S -(U ) if h(U ) < 0, S + (U ) if h(U ) ≥ 0. ( 1b 
)
The discontinuity of S with respect to the unknown leads to both theoretical and numerical difficulties. Especially, Picard-Lindelöf theory is unavailable and extensions are required. The application we have in mind is the study of boiling flows. We aim at studying the homogenized two-phase flow model based on a drift-flux model ( [START_REF] Ishii | Thermo-fluid dynamics of two-phase flows[END_REF][START_REF] Ishii | One dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow[END_REF][START_REF] Hibiki | One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes[END_REF]) used for the developpement of the FLICA4 code ( [START_REF] Toumi | Flica-4: A three-dimensional twophase flow computer code with advanced numerical methods for nuclear applications[END_REF][START_REF] Bergeron | Assessment of the flica-iv code on rod bundle experiments[END_REF][START_REF] Royer | Flica4: status of numerical and physical models and overview of applications[END_REF])

∂ t U + ∂ x F (U ) = S(U ), (2a) 
U = αρ v , ρ, ρu, ρ e + u 2 2 T , (2b) 
F (U ) = αρ v u, ρu, ρu 2 + p, ρ (e + u 2 2 + p ρ )u T , (2c) 
S(U ) = (0, 0, 0, φ)

T if h(U ) < h b , (Kφ, 0, 0, φ) T if h(U ) ≥ h b , (2d) 
with a constant K > 0. Here, αρ v is the density of vapor alone, and ρ, ρu, ρe are the density, momentum and energy of the homogenized flow, i.e. of liquid and vapor together. The source term models the heating of the fluid, through the term φ > 0 in the energy equation, and the creation of vapor (in the first equation) when the enthalpy h is above a boiling threshold h b .

In the next two sections, we first present a framework that guarantees the existence and uniqueness of solution of (1), first on a very simple scalar case, then on a more general vectorial framework. This is applied to the problem (2) in Section 4. Section 5 is devoted to conclusion and outlooks.

Preliminaries. Consider the Cauchy problem

dU dx = S(U, x), U (0) = U 0 . (3) 
Here, S : R N × R → R N is a function of U ∈ R N and x ∈ R that may be discontinuous. As S is not continuous, we need a definition of solutions to (3) in a weak sense. In order to illustrate the difficulties emerging with discontinuous right-hand-side (RHS) in (3), let us first consider the following simple scalar case (inspired by [START_REF] Lobry | Équations différentielles à second membre discontinu[END_REF][START_REF] Hajek | Discontinuous differential equations[END_REF])

d dx u = s -if u < 0, s + if u ≥ 0, u(0) = u 0 . (4) 
The behavior of u away from 0 is well understood. Difficulties arise when u reaches 0. We can list three types of behavior (represented on Fig. 1):

1. If s -≥ 0 and s + ≤ 0, then for all u 0 ∈ R

u(x) =    u 0 + s -x if u 0 ≤ 0 and x ≤ -u 0 s -, u 0 + s + x if u 0 ≥ 0 and x ≤ -u 0 s + . (5a) 
However this solution can not be extended for x larger than u 0 /s ± . 2. If s -≤ 0 and s + ≥ 0, then for all u 0 ∈ R

u(x) = u 0 + s -x if u 0 ≤ 0, u 0 + s + x if u 0 ≥ 0. ( 5b 
)
Remark that, if u 0 = 0, the functions x → s -x and x → s + x are two Carathéodory solutions of (4). 3. If s -and s + have strictly the same sign, say positive, then for all x ≥ 0,

u(x) =          u 0 + s + x if u 0 ≥ 0, u 0 + s -x if u 0 ≤ 0 and x ≤ -u 0 s -, u 0 + s --u 0 s -+ s + x - -u 0 s - if u 0 ≤ 0 and x ≥ -u 0 s -. (5c) 
The solutions defined in these three cases are depicted in the phase space (x, u) on Fig. 1. Remark that on this simple example, neither existence nor uniqueness of

u x s -> 0 s + < 0 u x s -< 0 s + > 0 u x s -> 0 s + > 0 Figure 1.
Solutions of (5) depending on the signs of s -and s + : from left to right, solutions of (5a), (5b) and (5c) a solution is guaranteed. Thus, further considerations are necessary to obtain the well-posedness of (3) in a general case or of (1) for our applications.

In the next section, we focus on a vectorial ODE. We prove its well-posedness under a condition corresponding to a vectorial version of the third case (5c).

A framework for ODE with Heavyside RHS. Consider now the problem

d dx U (x) = S -(U (x), x) if h(U (x)) < 0, S + (U (x), x) if h(U (x)) ≥ 0, U (0) = U 0 , (6) 
where the unknown U (x) ∈ R N is vectorial and the enthalpy h(U ) is scalar.

We seek a natural framework for ( 6) to be well-posed. The result below could be obtained as a corollary of e.g. [START_REF] Pucci | Sistemi di equazioni differenziali con secondo membro discontinuo rispetto all'incognita[END_REF][START_REF] Bressan | Unique solutions for a class of discontinuous differential equations[END_REF][START_REF] Bressan | Existence and continuous dependence for discontinuous o.d.e.'s. Boll[END_REF] or through Filippov's theory ( [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF][START_REF] Aubin | Differential Inclusions, Set-Valued Maps And Viability Theory[END_REF][START_REF] Brézis | Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]). Here we present a simple condition on the surface h(U ) = 0 under which any solution changes sign at most once. The solution is then obtained by gluing together two solutions obtained with the Picard-Lindelöf theorem. Lemma 3.1. Suppose that

• h ∈ C 1 (R N ),
• Both S -and S + satisfy the hypothesis of the Picard-Lindelöf theorem: continuity with respect to x and locally Lipschitz continuity with respect to U ,

• (6) has a Carathéodory solution U , • ∀x ∈ R, and ∀V ∈ R N , such that h(V ) = 0, (∇ U h(V ).S -(V, x)) > 0 and (∇ U h(V ).S + (V, x)) > 0. ( 7 
)
Then, there exists at most one point x 0 ∈ R such that h(U )(x 0 ) = 0, and h(U ) is strictly negative on x < x 0 and strictly positive on x > x 0 .

h(V ) < 0 h(V ) > 0 h(V ) = 0 ∇ U h(U (x 0 )) × U 0 S -(U (x 0 )) U (x) S + (U (x 0 )) Figure 2. Representation, for a problem of the form (6) in R 2 , of the solution U (x) ∈ R 2 , the hypersurface {V ∈ R 2 s.t. h(V ) = 0} and the vectors S -(U (x 0 )), S + (U (x 0 )) and ∇ U h(U (x 0 )) Remark 1. The vector ∇ U h(V ) is normal to the hypersurface {U ∈ R N , s.t. h(U ) = 0}.
Thus, the condition [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] imposes that the vector fields S -and S + are both pushing the solution toward the same side of h(U ) = 0. The solution is then constructed by following S -until it reaches h(U ) = 0, and then following S + (see Fig. 2).

Proof. First, we remark that, as h is C 1 (R N ) and the Carathéodory solution U is absolutely continuous, then h(U ) is continuous and has a derivative almost everywhere which is

d dx h(U )(x) = ∇ U h(U )(x).S(U (x), x). (8) 
Reasoning similarly for y < 0, there exists a point x 0 such that h(U (x 0 )) = 0. Then, for all y ≥ 0,

h(U (x 0 + y)) = x0+y x0 ∇ U h(U )(x).S(U (x), x)dx ≥ x0+y x0 min(∇ U h(U )(x).S -(U (x), x), ∇ U h(U )(x).S + (U (x), x))dx,
The function in the last integral is continuous and strictly positive at x = x 0 by [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF]. Thus there exists > 0 such that

∀x ∈]x 0 , x 0 + [, h(U )(x) > 0, and ∀x ∈]x 0 -, x 0 [, h(U )(x) < 0. ( 9 
)
Suppose by contradiction that there exists x 1 > x 0 such that h(U )(x 1 ) = 0. The continuity of h(U ) and ( 9) yield the existence of x 2 in (x 0 , x 1 ), such that h(U (x 2 )) = 0. Repeating this operation, we construct a sequence (x i ) i∈N of distinct points where h(U ) is null, and that converges towards a limit denoted by x ∞ . Considering that

|h(U )(x ∞ )| = h(x i ) + x∞ xi ∇ U h(U )(x).S(U (x), x)dx ≤ |x ∞ -x i | ∇ U h(U )(x) ∞,[x0,x1] S(U (x), x) ∞,[x0,x1] .
we obtain x i → i→+∞ x ∞ and h(U (x ∞ )) = 0, which contradicts [START_REF] Hibiki | One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes[END_REF]. Once we know that h(U ) has at most one zero, (9) gives its sign.

Proposition 1. Under the hypothesis of Lemma 3.1, for all initial conditions U 0 ∈ R N , there exists a unique maximal solution U to (6) absolutely continuous. Furthermore, this solution U depends continuously on U 0 .

Proof. We prove the case h(U 0 ) < 0, the other one being completely similar. According to Lemma 3.1, there is at most one point x 0 where h(U ) switches sign, and as h(U (0)) < 0 it is larger than 0. Thus, any Carathéodory solution U takes the form

U (x) = U 0 +        x 0 S -(U (y), y)dy if x < x 0 , x0 0 S -(U (y), y)dy + x x0
S + (U (y), y)dy otherwise.

(

) 10 
The existence and uniqueness follows from the Picard-Lindelöf theory. Indeed on x < x 0 the solution coincides with the solution of the Cauchy problem

V (x) = S -(V (x), x), V (0) = U 0
which exists and is unique as S -is continuous and locally Lipschitz continuous with respect to its first variable. Then on x ≥ x 0 , it coincides with the solution of the Cauchy problem

V (x) = S + (V (x), x), V (x 0 ) = U (x 0 ).
To conclude the proof it remains to show that x 0 is a continuous function of the initial data U 0 . Fix U 0 and x 0 such that

ϕ(U 0 , x 0 ) = h(U (x 0 )) = h U 0 + x0 0 S -(U (y), y)dy = 0 As ∂ϕ ∂x0 (U 0 , x 0 ) = ∇ U h (U (x 0 )) • S -(U (x 0 ), x 0 )
is not null by [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], the implicit function theorem yields the result. [START_REF] Bressan | Unique solutions for a class of discontinuous differential equations[END_REF]. Application to homogenized two-phase fluid models. First, we rewrite Proposition 1, then we apply it to a reformulation of (2). Corollary 1. Suppose that

• F ∈ C 1 (R N ), • h ∈ C 1 (R N ),
• S -and S + are continuous w.r.t. x and locally Lipschitz continuous w.r.t. U ,

• ∀x ∈ [0, L], and ∀V ∈ R N , s.t. h(V ) = 0, ∇ U h(V ).(DF (V )) -1 .S -(V, x) > 0, and ∇ U h(V ).(DF (V )) -1 .S + (V, x) > 0. ( 11 
)
Then, for all initial conditions U 0 ∈ R N satisfying det (DF (U 0 )) = 0, there exists a unique maximal solution U to (1) absolutely continuous and satisfying det (DF (U )) = 0. Furthermore, this solution depends continuously on U 0 .

Remark 2. Requiring that DF (U ) is invertible corresponds to imposing that the flows remains subsonique and admissible, which is commonly admitted for practical applications. This condition may restrict the size of the spatial domain.

Proof. Any Carathéodory solution U to (1) is differentiable almost everywhere. Thus, as F ∈ C 1 (R N ), then F (U ) is absolutely continuous and differentiable almost everywhere, and its derivative equals almost everywhere

d dx F (U )(x) = DF (U )(x). d dx U (x).
Thus any solution to (1) of such regularity and satisfying det (DF (U )) = 0, also solves the Cauchy problem

d dx U (x) = (DF (U )(x)) -1 .S -(U (x), x) if h(U )(x) < 0, (DF (U )(x)) -1 .S + (U (x), x) if h(U )(x) ≥ 0. (12) 
Using Proposition 1 and the hypothesis, ( 12) has a unique solution U and it depends continuously on U 0 .

4.2.

On the boiling flow model. Now, we aim to apply this result to [START_REF] Aubin | Differential Inclusions, Set-Valued Maps And Viability Theory[END_REF]. In order to apply Corollary 1, we rewrite the problem with a new set of unknowns Ũ such that

• we can perform the computations required in [START_REF] Ishii | Thermo-fluid dynamics of two-phase flows[END_REF] ;

• it has a physical interpretation.

We chose for variables Ũ = (c v , q, p, h), where c v is the volume fraction of vapor, q is the momentum. The enthalpy h is chosen among the variables to simplify the definition of ∇ U h and q to simplify the definition of D F . These variables Ũ are commonly defined based on U as

Ũ = φ -1 (U ) = αρ v ρ , ρu, p, e + p ρ , U = φ( Ũ ) = c v τ , 1 τ , q, h τ 
-p + τ q 2 2 ,
where τ = 1 ρ is the specific volume. We close the new system, not by expressing p as a function of U (it is a variable in the new system), but by fixing

τ = c v τ v + (1 -c v )τ l ,
as a convex combination of the vapor and liquid specific volumes τ v and τ l , where τ v (p, h) and τ l (p, h) are given C 1 functions of p and h, and independent of q and c v . These functions are commonly tabulated.

Rewriting the steady state of (2) in terms of Ũ reads

d dx F ( Ũ ) = S( Ũ ) (13) 
F ( Ũ ) = F • φ( Ũ ) = c v q, q, τ q 2 + p, τ 2 q 3 2 + qh , S( Ũ ) = S • φ( Ũ ) = (0, 0, 0, φ) if h < h b , (Kφ, 0, 0, φ) if h ≥ h b .
We obtain in the end the following requirement.

Proposition 2. Suppose that ∀p ∈ R + , q 2 ∂τ ∂p (p, h b ) + 1 > Kq 2 [τ (τ v -τ l )](p, h b ) > 0. ( 14a 
)
Then, for all boundary conditions Ũ (0) = Ũ0 = (c v,0 , q 0 , p 0 , h 0 ) satisfying q 0 = 0, and

q 2 0 ∂τ ∂p + τ ∂τ ∂h (p 0 , h 0 ) + 1 = 0, (14b) 
there exists a unique maximal solution U absolutely continuous to [START_REF] Pucci | Sistemi di equazioni differenziali con secondo membro discontinuo rispetto all'incognita[END_REF]. Furthermore, this solution depends continuously on Ũ0 .

Remark 3. Condition (14b) corresponds to imposing that the flow remains subsonique. This formula is obtained by imposing the invertibility of D F ( Ũ ) which is necessary and sufficient to ensure the uniqueness of a steady solution Ũ . Of course, one also need φ to be a bijection to ensure the existence of a unique solution U to the original equation.

The formula (14b) refers not directly to the speed of sound, because in a nonsteady framework, Ũ is not transported, but U is. The speed of sound would be obtained from the eigenvalues of DF (U ) = D F (φ -1 (U )).Dφ -1 (U ). In the incompressible case ∂ p τ = 0, one finds after computations that those eigenvalues are τ q ± τ / ∂τ ∂h and twice τ q, where one identifies the velocity u = τ q and the speed of sound yields c = τ / ∂τ ∂h .

Proof. First, one verifies that dq dx = 0, thus q = 0 is constant and ( 13) reduces to

d dx F ( Ū ) = S( Ū ) S( Ū ) = (0, 0, φ) if h < h b , (Kφ, 0, φ) if h ≥ h b , Ū = (c v , p, h), F ( Ū ) = c v q, τ q 2 + p, q τ 2 q 2 2 + h . One computes D F ( Ū ) =   q 0 0 q 2 (τ v -τ l ) q 2 ∂τ ∂p + 1 q 2 ∂τ ∂h q 3 τ (τ v -τ l ) q 3 τ ∂τ ∂p q q 2 τ ∂τ ∂h + 1   , (15) 
the determinant of which yields

Det := det D F ( Ū ) = q 2 q 2 ∂τ ∂p + τ ∂τ ∂h + 1 ,
which is non-zero at the boundary by hypothesis. Inverting (15) yields

(D F ( Ū )) -1 = 1 Det     q 1 + q 2 ∂τ ∂p + τ ∂τ ∂h 0 0 -q 3 (τ v -τ l ) q 2 q 2 τ ∂τ ∂h + 1 -q 3 ∂τ ∂h -q 3 τ (τ v -τ l ) -q 4 τ ∂τ ∂p q q 2 ∂τ ∂p + 1     .
Multiplying it by the source term and by ∇ Ū h( Ū ) = (0, 0, 1) leads to

∇ Ū h(V ).(D F (V )) -1 . S-(V, x) = qφ Det 1 + q 2 ∂τ ∂p , ∇ Ū h(V ).(D F (V )) -1 . S+ (V, x) = qφ Det 1 + q 2 ∂τ ∂p -Kτ (τ v -τ l ) . 
If (14b) holds, these two values are positive and we may apply Corollary 1.

Conclusion and outlook.

We have described a theoretical framework in which hyperbolic system of balance laws with discontinuous sources have a unique steady state, and we have applied it for the study of a boiling flow model. The resulting conditions on the physical parameters for such steady flows to exists are twofold. First, the flow needs to remain subsonic in the whole spatial domain, this constrains the domain length and the boundary conditions. Second, if the source is discontinuous along an hypersurface in the phase space, then the source and the flux on both sides need to be defined in such a way that the flow may only cross the discontinuity hypersurface in one direction.

In the present work, we have only considered boundary conditions on one sides, which suffice to study time independent flow. Though, it is more common in this field to use two boundaries with further requirements (see typically [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] for unsteady flows).

At the numerical level, capturing equilibrium states such as steady states for balance laws has been widely studied. Though, the discontinuity of source terms of the form (1) brings new difficulties, the study of which is left for future work.

Definition 2 . 1 .

 21 Let I be an open interval of R containing 0. A function U : I ⊂ R → R is a Carathéodory solution to (3) if it is absolutely continuous and satisfies ∀x ∈ I, U (x) = U 0 + x 0 S(U (y), y)dy.

4. 1 .

 1 With a non-linear flux. When the flux function F in (1) is non-linear, we may simply adapt Proposition 1 into the following result.
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