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The main aim of this note is to prove a sharp Poincaré-type inequality for vectorvalued functions on S 2 , that naturally emerges in the context of micromagnetics of spherical thin films.

Introduction

The Poincaré-type inequalities are a crucial tool in analysis, as they provide a relation between the norms of a function and its gradient. As such they are deeply relevant in analytic models appearing in geometry, physics and biology. Such models often exhibit different qualitative behaviours for various ranges of parameters and therefore sharply estimating the Poincaré constant is fundamental for a proper understanding of a model.

The Poincaré-type inequalities always involve some constraints on the target of the function in order to eliminate the constants, which are not seen by the gradient part. The most commonly used ones, for scalar-valued functions, involve either local restrictions (zero values on the boundary of the domain) or non-local ones (zero mean). The optimal constant strongly depends on the type of constraint imposed and provides a piece of significant geometric information about the problem under consideration [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF][START_REF] Zhu | On the extremal functions of Sobolev-Poincaré inequality[END_REF][START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF].

There exists an enormous body of literature about Poincaré-type inequalities for scalar-valued functions but virtually nothing about vector-valued ones despite their use in many physical contexts. The last four decades have witnessed an extraordinary interest in manifold-valued function spaces but Poincaré inequalities naturally relevant in this context have not been explored much. The various constraints on the range of the vector-valued function, motivated by physical or geometrical considerations reduce the degrees of freedom allowed on the function and generate natural questions concerning the optimal constants. Such questions require special approaches, going beyond what is available in the scalar case.

We are interested in proving a sharp Poincaré-type inequality for vector-valued functions on the 2-sphere S 2 := ξ ∈ R 3 : |ξ| = 1 and using this result to obtain non-trivial information about magnetization behaviour inside thin spherical shells. Topological magnetic structures arising in non-flat geometries attract a lot of interest due to their potential in the application to magnetic devices [START_REF] Streubel | Magnetism in curved geometries (topical review)[END_REF]. Thin spherical shells are one of the simplest examples where an interplay between topology, geometry and curvature of the underlying space results in non-trivial magnetic structures [START_REF] Sloika | Geometry induced phase transitions in magnetic spherical shell[END_REF].

The magnetization distribution u ∈ H 1 (S 2 , S 2 ) in thin spherical shells can be found by minimizing the following reduced micromagnetic energy [START_REF] Fratta | Dimension reduction for the micromagnetic energy functional on curved thin films[END_REF][START_REF] Kravchuk | Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions[END_REF] 

F κ (u) = S 2 ∇ * ξ u(ξ) 2 dξ + κ S 2 (u(ξ) • n(ξ)) 2 dξ, (1) 
where n(ξ) := ξ is the normal field to the unit sphere and κ ∈ R is an effective anisotropy parameter.

Here, we have denoted by

∇ * : H 1 (S 2 , R 3 ) → L 2 (S 2 , R 3 ) the tangential gradient on S 2 .
The existence of minimizers can be easily obtained using direct methods of the calculus of variations and non-uniqueness of minimizers follows due to the invariance of the energy F κ under the orthogonal group. An exact characterization of the minimizers in this problem is a non-trivial task and so far has been carried out only numerically [START_REF] Sloika | Geometry induced phase transitions in magnetic spherical shell[END_REF]. However, sometimes it is enough to obtain a meaningful lower bound on the energy in order to gain some information of the ground states. This lower bound is typically obtained by relaxing the constraint u ∈ S 2 to the following weaker constraint

1 4π S 2 |u(ξ)| 2 dξ = 1. (2) 
This kind of relaxation, which physically corresponds to a passage from classical physics to a probabilistic quantum mechanics perspective, has been proved to be useful in obtaining non-trivial lower bounds of the ground state micromagnetic energy (see eg [START_REF] Brown | The fundamental theorem of the theory of fine ferromagnetic particles[END_REF]). Mathematically, replacing a constraint u ∈ S 2 with (2) puts us in a realm of Poincare-type inequalities, where in many cases the relaxed problem can be solved exactly and the dependence of the minimizers on the geometrical and physical properties of the model made explicit. Sometimes this relaxation turns out to be helpful to obtain sufficient conditions for minimizers to have specific geometric structures (see eg [START_REF] Brown | The fundamental theorem of the theory of fine ferromagnetic particles[END_REF]).

We note that the constraint |u| 2 = 1 a.e. on S 2 is equivalent to the following two energy constraints in terms of the L 2 and L 4 norms:

1 4π S 2 |u(ξ)| 2 dξ = 1 and 1 4π S 2 |u(ξ)| 4 dξ = 1. (3) 
This observation follows from the Cauchy-Schwartz inequality

4π = (|u| 2 , 1) L 2 (S 2 ,R 3 ) |u| 2 L 2 (S 2 ,R 3 ) 1 L 2 (S 2 ) = 4π, (4) 
where equality holds when |u| 2 is a constant. Therefore our relaxed problem is the one obtained by removing the L 4 constraint.

Main results. Our results include the precise characterization of the minimal value and global minimizers of the energy functional F κ , defined in (1), on the space of H 1 (S 2 , R 3 ) vector fields satisfying the relaxed constraint [START_REF] Barrera | Vector spherical harmonics and their application to magnetostatics[END_REF]. In particular, we prove the following Poincaré-type inequality:

Theorem 1 (Poincaré inequality on S 2 ). Let κ ∈ R. For every u ∈ H 1 (S 2 , R 3 ) the following inequality holds:

S 2 ∇ * ξ u(ξ) 2 dξ + κ S 2 (u(ξ) • n(ξ)) 2 dξ γ(κ) S 2 |u(ξ)| 2 dξ, (5) 
with

γ(κ) := κ + 2 if κ -4, 1 2 ((κ + 6) - √ κ 2 + 4κ + 36) if κ > -4 . ( 6 
)
For any κ ∈ R the equality in [START_REF] Di Fratta | A generalization of the fundamental theorem of brown for fine ferromagnetic particles[END_REF] holds if and only if the function u has the following form in terms of vector spherical harmonics (see Section 2, Definition 1)

u(ξ) = c 0 y (1) 0,0 (ξ) + 1 j=-1 σ j y (1) 1,j (ξ) + τ j y (2) 1,j (ξ), (7) 
where coefficients c 0 , (σ j , τ j ) |j| 1 are defined as follows

• if κ < -4 then c 0 = ± √ 4π, σ j = τ j = 0 for |j| 1; • if κ > -4 then c 0 = 0, τ j = -2 √ 2 (γ(κ) -2) σ j ∀|j| 1, |j| 1 σ 2 j = 2π -(κ + 2) + √ κ 2 + 4κ + 36 √ κ 2 + 4κ + 36 ; (8) 
• if κ = -4 then

τ j = √ 2 2 σ j ∀|j| 1, 2c 2 0 + 3 |j| 1 σ 2 j = 8π. (9) 
We discover, surprisingly, that for k -4 the unique minimizer of the relaxed problem coincides with the unique minimizer of F κ under the pointwise constraint |u(ξ)| = 1. Thus, as a byproduct of Theorem 1 we obtain the following characterization of micromagnetic ground states in thin spherical shells.

Theorem 2 (Micromagnetic ground states in thin spherical shells). For every κ ∈ R, the normal vector fields ±n(ξ) are stationary points of the micromagnetic energy functional F κ given by (1) on the space H 1 (S 2 , S 2 ). Moreover, they are strict local minimizers for every κ < 0 and are unstable for κ > 0. If κ -4, the normal vector fields ±n(ξ) are the only global minimizers of F κ . 5) holds for any κ ∈ R, it is sometimes more convenient to restate it in the standard form where both the term on the right side and the term on the left side are non-negative. Therefore when κ 0 we can use ( 5) and if κ < 0 we note that |u(ξ)×n(ξ 2 , and rewrite relation [START_REF] Di Fratta | A generalization of the fundamental theorem of brown for fine ferromagnetic particles[END_REF] in the following way

)| 2 -|u(ξ)| 2 = -(u(ξ) • n(ξ))
S 2 ∇ * ξ u(ξ) 2 dξ + |κ| S 2 |u(ξ) × n(ξ)| 2 dξ (|κ| + γ(κ)) S 2 |u(ξ)| 2 dξ, (10) 
with |κ| |κ| + γ(κ) 0 and the tangential part of the vector field appearing on the left-hand side. Plots of the best constants κ ∈ R → γ(k) and κ ∈ R → γ(k) + |κ| for κ > 0 and κ < 0, respectively, are given in Figure 2. Examples of vector fields for which the equality sign is attained in ( 5) are depicted in Figure 1. We note that for κ < -4 the minimizing configurations are normal vector fields, for κ 1 the tangential configurations are favoured and for the critical case κ = -4 various minimizing states may coexist.

Remark 1.2. Note that the maximum value of γ(κ) (see Figure 2) is reached at κ = +∞, where γ(+∞) = 2. It follows that for purely tangential vector fields one has the Poincaré inequality

1 2 S 2 ∇ * ξ u(ξ) 2 dξ S 2 |u(ξ)| 2 dξ. (11) 
The inequality [START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF] is sharp as equality is achieved, for instance, by a vector field u(ξ) = ± √ 4πy

(2)

1,0 (ξ). In fact, one can characterize all vector fields delivering optimal Poincaré constant by taking the limit for κ → +∞ of the coefficients τ j in (8).

Remark 1.3. We note that Theorem 2 implies that the minimizers of micromagnetic energy don't have full radial symmetry in the case κ > 0. It follows from the fact that the only radially symmetric vector fields are ±n(ξ) and these are unstable for κ > 0.

Remark 1.4. It is worth noting that, in the language of modern physics, the two ground states ±n carry a different skyrmion number (or topological charge). Indeed, since deg(±n) = ±1, by Hopf theorem [START_REF] Milnor | Topology from the differentiable viewpoint[END_REF], these two configurations cannot be homotopically mapped one into the other and are, therefore, topologically protected against external perturbations and thermal fluctuations. These considerations make the two ground states ±n promising in view of novel spintronic devices [START_REF] Fert | Nobel lecture: Origin, development, and future of spintronics[END_REF][START_REF] Fert | Skyrmions on the track[END_REF].

We also want to point out a correspondence between our Theorem 2 and Brown's fundamental theorem on fine ferromagnetic particles [4, 5, 1], as Theorem 2 implies an existence of a critical value κ 0 < 0 below which the only ground states are ±n(ξ).

In the following, in Section 2, we define suitable vector spherical harmonics. Afterwards, in Section 3, by the means of these vector spherical harmonics, we recast the minimization problem for F κ as a constrained minimization problem on a suitable space of sequences. Then, in Section 4, by proper use of the Euler-Lagrange equations in sequence space, we derive necessary minimality 5) and [START_REF] Freeden | Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup[END_REF] for κ > 0 and κ < 0, respectively. conditions which allow us to reduce the infinite dimensional problem to a finite dimensional one. Finally, arguments based on the method of Lagrange multipliers complete the proof of Theorem 1 and afterwards of Theorem 2.

Notation and setup. Vector Spherical Harmonics

In this section, we define a natural basis and characterize vector spherical harmonics on the unit sphere S 2 , see [START_REF] Freeden | Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup[END_REF]. Every point ξ ∈ S 2 can be expressed via the polar coordinates parametrization

σ(ϕ, t) = 1 -t 2 cos ϕ, 1 -t 2 sin ϕ, t , (12) 
where ϕ ∈ [0, 2π) is the longitude, t = cos θ ∈ [-1, 1] is the polar distance and θ ∈ [0, π] the latitude. We can define the surface gradient operator ∇ * ξ for a.e. ξ ∈ S 2 in the following way

∇ * ξ = ε ϕ 1 √ 1 -t 2 ∂ ϕ + ε t 1 -t 2 ∂ t , (13) 
where ε ϕ (ϕ, t) := (-sin ϕ, cos ϕ, 0), ε t (ϕ, t) := -t cos ϕ, -t sin ϕ, √ 1 -t 2 . For any u ∈ C 2 (S 2 , R), the Laplace-Beltrami operator is defined as

∆ * ξ u(ξ) := ∇ * ξ • ∇ * ξ u(ξ). ( 14 
)
Notation 2.1. We denote by N the set of positive integers, by N 0 the set of non-negative integers.

For every n ∈ N we set N n := {1, 2, . . . , n} and Z n := {0, ±1, . . . , ±n}, for every N ∈ N 0 we introduce the set

J N ⊆ N 0 × Z consisting of all pairs (n, j) ∈ N 0 × Z such that n N and |j| n. We set J := J ∞ .
Vector spherical harmonics are an extension of the scalar spherical harmonics to square-integrable vector fields on the sphere; in fact, they can be introduced in terms of the scalar spherical harmonics and their derivatives. Motivated by different physical problems, various sets of vector spherical harmonics have been introduced in the literature. The system that best fit our purposes is the one introduced in [START_REF] Barrera | Vector spherical harmonics and their application to magnetostatics[END_REF], and obtained from the splitting of vector fields into a radial and tangential component. We have the following definition (see [START_REF] Freeden | Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup[END_REF]).

Definition 1. The vector spherical harmonics y

(1) n,j , y [START_REF] Barrera | Vector spherical harmonics and their application to magnetostatics[END_REF] n,j , and y [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] n,j of degree n and order j, with (n, j) ∈ J, are defined by

y (1) n,j (ξ) := Y n,j (ξ)n(ξ), y (2) n,j (ξ) := 1 √ n * ∇ * ξ Y n,j (ξ), y (3) n,j (ξ) := 1 √ n * ∇ * ξ ∧ Y n,j (ξ), ( 15 
)
where n * := n(n + 1). Here, for every (n, j) ∈ J, the function Y n,j is the real-valued scalar spherical harmonics of degree n and order j, defined by

Y n,j (ξ) :=    √ 2X n,|j| (t) cos(jϕ) if -n j < 0, X n,0 (θ) if j = 0, √ 2X n,j (t) sin(jϕ) if 0 < j n, ( 16 
)
where for every t ∈ [-1, 1] and every 0 j n X n,j (t) = (-1) j 2n + 1 4π

(n -j)! (n + j)! P n,j (t), [START_REF] Streubel | Magnetism in curved geometries (topical review)[END_REF] and P n,j is the associate Legendre polynomial given by P n,j (t

) := 1 2 n n! (1 -t 2 ) j/2 ∂ n+j t (t 2 -1) n .
It is well-known (cf. [START_REF] Barrera | Vector spherical harmonics and their application to magnetostatics[END_REF][START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF]) that the system (Y n,j ) (n,j)∈J so defined is a complete orthonormal system for L 2 S 2 , R , consisting of eigenfunctions of the Laplace-Beltrami operator. Precisely, for every n ∈ N 0 we have -∆ * ξ n,j = n * Y n,j with n * := n(n + 1). Not so widely known seems to be that the system of vector spherical harmonics is complete in L 2 (S 2 , R 3 ) and forms an orthonormal system (cf. [START_REF] Freeden | Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup[END_REF]). Therefore, any vector field u ∈ L 2 (S 2 , R 3 ) can be represented by its Fourier series:

i∈N3 (n,j)∈J û(i) (n, j)y (i) n,j = u in L 2 (S 2 , R 3 ) , ( 18 
)
with the Fourier coefficients û(i) being given by û(i) (n, j) := (u, y

(i) n,j ) L 2 (S 2 ,R 3 )
. As the minimizers of our problem will be fully characterized in terms of the first vector spherical harmonics, it is worth to explicitly write down their explicit expressions. By the relation y [START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF] n,j (ξ) := Y n,j (ξ)n(ξ) we get, for n = 0, that

y (1) 0,0 (ξ) = 1 √ 4π n(ξ). ( 19 
)
For n = 1, we get

µ (1) y (1) 1,-1 (ξ) = sin θ cos ϕ n(ξ), (20) 
µ (1) 

y (1) 1,0 (ξ) = cos θ n(ξ), (21) µ (1) y (1) 
1,1 (ξ) = sin θ sin ϕ n(ξ), (22) with µ (1) := 4π/3. Also, by the relation y

(2) n,j (ξ) := 1 √ n * ∇ * ξ Y n,j (ξ)
, we obtain, for n = 1, the following identities:

µ (2) y (2) 1,-1 (ξ) = cos θ cos ϕ τ θ (ξ) -sin ϕ τ ϕ (ξ), ( 23 
)
µ (2) y (2) 1,0 (ξ) = -sin θ τ θ (ξ), ( 24 
)
µ (2) y (2) 1,1 (ξ) = cos θ sin ϕ τ θ (ξ) + cos ϕ τ ϕ (ξ), (25) 
with µ (2) := 8π/3, τ θ (ξ) := (cos θ cos ϕ, cos θ sin ϕ, -sin θ), and τ ϕ (ξ) := (-sin ϕ, cos ϕ, 0). Note that the tangent vectors τ θ and τ ϕ have unit norms. The previous expressions turn out to be extremely useful to obtain both a qualitative and a quantitative comprehension of the energy landscape as in Figure 1.

Remark 2.1. Throughout the paper, we use summations which formally involve also y [START_REF] Barrera | Vector spherical harmonics and their application to magnetostatics[END_REF] 0,0 = y (3) 0,0 = 0, with the understanding that û(2) (0, 0) = û(3) (0, 0) = 0. Indeed, although these vectors are not officially present in the orthonormal system of vector spherical harmonics, such a convention allows us to express the Fourier series representation of u in the compact form i∈N3 (n,j)∈J û(i) (n, j)y

(i) n,j .

Representation of the energy in a space of sequences

In this section we are going to rewrite the energy (1) in terms of sequences using Fourier representation [START_REF] Zhu | On the extremal functions of Sobolev-Poincaré inequality[END_REF]. According to the representation formula [START_REF] Zhu | On the extremal functions of Sobolev-Poincaré inequality[END_REF], every vector field u ∈ H 1 (S 2 , R 3 ) can be expressed in the form u = i∈N3 (n,j)∈J ûi (n, j)y

(i) n,j in L 2 (S 2 , R 3 ), ( 26 
)
with the Fourier coefficients û(i) being given by û(i) (n, j) := (u, y

(i) n,j ) L 2 (S 2 ,R 3 ) . Also, if u is a vector field, we have ∇ * ξ u 2 L 2 (S 2 ,R 3 ) = (-∆ * ξ u, u) L 2 (S 2 ,R 3 )
. Hence, by making use of the relations (cf. [10, p.237])

-∆ * y (1) n,j = (n * + 2) y (1) n,j -2 √ n * y (2) n,j , ( 27 
) -∆ * y (2) n,j = n * y (2) n,j -2 √ n * y (1) n,j , ( 28 
) -∆ * y (3) n,j = n * y (3) n,j , ( 29 
)
where n * := n(n + 1), we infer that for every u

∈ C ∞ S 2 , R 3 -∆ * ξ u(ξ) = (n,j)∈J
û1 (-∆ * ξ y (1) ) + û2 (-∆ * ξ y (2) ) + û3 (-∆ * ξ y (3) 

) (30) = (n,j)∈J ((n * + 2) û1 -2 √ n * û2 ) y (1) n,j + (n * û2 -2 √ n * û1 ) y (2) n,j + n * û3 y (3) n,j . ( 31 
)
with the understanding that û2 (0, 0) = û3 (0, 0) = 0 and û1 = û1 (n, j), û2 = û2 (n, j), and û3 = û3 (n, j). Thus, for every u

∈ C ∞ S 2 , R 3 , S 2 ∇ * ξ u(ξ) 2 dξ = (n,j)∈J (n * + 2) û2 1 -4 √ n * û1 û2 + n * û2 2 + n * û2 3 , (32) 
and, by density, the same relation holds for every u ∈ H 1 S 2 , R 3 . Also, a straightforward calculation shows that

S 2 (u(ξ) • n(ξ)) 2 dξ = (n,j)∈J û2 1 (n, j). ( 33 
)
Therefore, the surface energy (1), in the sequence space, reads as the functional

G κ (û) = (n,j)∈J (n * -2 + κ) û2 1 + (2û 1 - √ n * û2 ) 2 + n * û2 3 . ( 34 
)
Denoting by 2 (J) the classical Hilbert space of square-summable sequences endowed with the inner product û, v := (n,j)∈J û1 v1 + û2 v2 + û3 v3 , the natural domain of G κ is the subspace 2 (J) of

2 (J) consisting of those sequences in û ∈ 2 (J) such that √ n * û ∈ 2 (J). In 2 (J) the constraint (2)
reads as û, û =

(n,j)∈J

û2 1 + û2 2 + û2 3 = S 2 |u(ξ)| 2 dξ = 4π . ( 35 
)
As before, in the previous relations, to shorten notation, we avoided to explicitly write the dependence of û1 , û2 , û3 from (j, n).

Proof of the Poincaré inequality (Theorem 1)

In this section, we are going to prove the main result of this note -Theorem 1. Without loss of generality, we will focus on the case κ = 0, because for κ = 0 the only minimizers are the constant vector fields with unit modulus. Instead of working with the original continuous formulation (1), we introduce the equivalent formulation in terms of sequences:

min û∈ 2 (J) G κ (û), subject to 1 4π û 2 2(J ) = 1 , (36) 
and provide a complete characterization of the minimizers of (36).

We split the proof into several steps and firstly prove the following useful lemma.

Lemma 1. For any κ ∈ R, the following upper bound on the energy (34) holds min G κ (û) min 2π (κ + 6) -κ 2 + 4κ + 36 , 4π(2 + κ) < 8π.

(37)

Moreover, if û = (û 1 , û2 , û3 ) ∈ 2 (J) is a minimizer for G κ then: i) The coefficients û3 (n, j) = 0 for any (n, j) ∈ J. ii) If G κ (û) < 4π(2 + κ) then û1 (0, 0) = 0.
iii) The coefficients û(n, j) = 0 for any n 2 and all |j| n.

Proof. We provide a simple test function û * (n, j) by setting all its terms to 0 except û1 (1, 1) and û2 [START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF][START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF]. Therefore the minimum value of G κ is less than the minimum of α κ (x, y) = (κ + 4)x 2 -4 √ 2xy + 2y 2 under constraint x 2 + y 2 = 4π. By studying the minima of (

α κ • γ)(t) with γ(t) = √ 4π(cos t, sin t), it is easily seen that min (x,y)∈ √ 4πS 1 α κ (x, y) = 2π (κ + 6) -κ 2 + 4κ + 36 . ( 38 
)
Note that, κ 2 + 4κ + 36 > 0 for every κ ∈ R and moreover 2π (κ + 6) -√

κ 2 + 4κ + 36 < 8π for every κ ∈ R, therefore min G κ (û) 2π (κ + 6) -κ 2 + 4κ + 36 < 8π ∀κ ∈ R. (39) 
Next, we provide another test function û * (n, j) by setting all its terms to 0 except û1 (0, 0) and û1 [START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF][START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF]. Therefore the minimum of G κ is less than the minimum of

β κ (x, y) = (κ + 2)x 2 + (κ + 4)y 2 on √ 4πS 1 . By studying the minima of (β κ • γ)(t) with γ(t) = √ 4π(cos t, sin t), it is easily seen that min σ∈ √ 4πS 1 β κ (σ) = 4π(2 + κ). (40) 
Therefore, for every κ ∈ R, relation (37) holds.

i)

We compute the first variation of G κ around the generic point û ∈ 2 (J) to obtain the following Euler-Lagrange equations

(j,n)∈J (n * + 2 + κ) û1 v1 -2 √ n * (û 1 v2 + v1 û2 ) + n * (û 2 v2 + û3 v3 ) = λ(û) • û, v , (41) 
with λ(û) ∈ R the Lagrange multiplier coming from the constraint (35). Plugging v := û and taking into account (35), we obtain λ(û) = 1 4π G κ (û). Thus, the Euler Lagrange equation reads as

1 4π G κ (û) û, v = (j,n)∈J (n * + 2 + κ) û1 v1 -2 √ n * (û 1 v2 + v1 û2 ) + n * (û 2 v2 + û3 v3 ). ( 42 
)
for every v ∈ 2 (J). We test (42) against the sequence v := (v 1 , v2 , v3 ) with v1 = v2 = 0 and v3 = ê(n,j) , with ên,j denoting the sequence (n , j ) ∈ J → ên,j (n , j ) ∈ R such that ên,j (n, j) = 1 and ên,j (n , j ) = 0 if (n , j ) = (n, j). We get that 1 4π

G κ (û)û 3 (n, j) = n * û3 (n, j) (43)
for any n 1 and any |j| n. Thus, for n 1 we have G κ (û) = 4πn * 8π whenever û3 (n, j) = 0. Since the minimum of energy is strictly less then 8π we necessarily have û3 (n, j) = 0 for any n 1. This proves the assertion.

ii) We now evaluate (42) on v := (v 1 , v2 , v3 ), first with v2 = v3 = 0 and v1 = ê(n,j) , then on v2 = ê(n,j) , v3 = 0 and v1 = 0. We get the following two relations

1 4π G κ (û)û 1 (n, j) = (n * + 2 + κ) û1 (n, j) -2 √ n * û2 (n, j) (44) 1 4π G κ (û)û 2 (n, j) = -2 √ n * û1 (n, j) + n * û2 (n, j) (45) 
For n = 0, relation (44) gives G κ (û)û 1 (0, 0) = 4π(2 + κ)û 1 (0, 0) so that if û is a minimizer and û1 (0, 0) = 0, the minimum energy agrees with the limiting value 4π(2 + κ). Therefore, if the minimal energy is strictly less than 4π(2 + κ), then necessarily û1 (0, 0) = 0. This proves the statement.

iii) If û is a minimizer of G κ then for n 1, using (44) and (45), we have that û1 (n, j) = 0 if and only if û2 (n, j) = 0. Equivalently, for any n 1, û1 (n, j)û 2 (n, j) = 0 implies û1 (n, j) = 0 and û2 (n, j) = 0. We now focus on the indices n 1 and, using above observation, rewrite relations (44) and (45) into the form

1 4π G κ (û)û 1 (n, j)û 2 (n, j) = (n * + 2 + κ) û1 (n, j)û 2 (n, j) -2 √ n * û2 2 (n, j) (46) 1 4π G κ (û)û 2 (n, j)û 1 (n, j) = -2 √ n * û2 1 (n, j) + n * û2 (n, j)û 1 (n, j). ( 47 
)
If for some n 1 the product û1 (n, j)û 2 (n, j) is negative then from ( 46) and (47) we get

G κ (û) = 4π (n * + 2 + κ) -2 √ n * û2 2 (n, j) û1 (n, j)û 2 (n, j) > 4π(κ + 2) (48) G κ (û) = 4π n * -2 √ n * û2 1 (n, j) û1 (n, j)û 2 (n, j) > 8π ( 49 
)
and û is not a minimizer as a consequence of (37). Thus, if û is a minimizer of G κ then sign(û 1 (n, j)) = sign(û 2 (n, j)) for any n 1.

Hence, from ( 44) and ( 45) we infer

G κ (û) = 4π (n * + 2 + κ) -2 √ n * |û 2 (n, j)| |û 1 (n, j)| , (51) 
G κ (û) = 4π n * -2 √ n * |û 1 (n, j)| |û 2 (n, j)| . ( 52 
)
Imposing the condition G κ (û) 4π(κ + 2) in (51) and the condition G κ (û) < 8π in (52) we get that if û is a minimizer then necessarily (n * -2) |û 2 (n, j)| < 4|û 2 (n, j)|, but this cannot be the case for n 2. Therefore, necessarily û1 (n, j) = û2 (n, j) = 0 for any n 2. This concludes the proof.

Combining the results stated in Lemma 1, we can reduce the infinite dimensional minimization problem for G κ to a finite dimensional one. Precisely, we have the following proposition. Proposition 1. The minimization problem for G κ , subject to the constraint (35), reduces to the minimization, in the variables σ := (û 1 (0, 0), û1 (1, j), û2 (1, j)) |j| 1 , of the constrained function g κ : √ 4πS 6 → R + given by

g κ (σ) = (κ + 2)û 2 1 (0, 0) + 1 j=-1 κû 2 1 (1, j) + 2û 1 (1, j) - √ 2û 2 (1, j) 2 . ( 53 
)
Precisely, any minimizer û = (û 1 (n, j), û2 (n, j), û3 (n, j)) (n,j)∈J of G κ has all the terms zero except for those presented in σ, and coming fom minimizing g κ . Specifically, the following complete characterization of the energy landscape holds:

• If κ < -4, the minimum value of the energy is given by G κ (û ) = 4π(κ + 2) and, in this case, û1 (0, 0) is the only non-zero variable. Therefore, necessarily û1 (0, 0) = ± √ 4π. • If κ > -4 the minimum value of the energy is given by G κ (û ) = 4πγ + (κ) with γ + (κ) := Since -∆ * ξ n(ξ) = 2n(ξ), the vector fields u ± (ξ) := ±n(ξ) satisfy (64) and, therefore, are stationary points of F κ .

Next, consider the second order variation F κ (u, •) of F κ at u ∈ H 1 (S 2 , S 2 ), which reads, for every v ∈ H 1 (S 2 , R 3 ) such that u(ξ) • v(ξ) = 0 for a.e. in S 2 , as 

F κ (u, v) = S 2 |∇ * ξ v| 2 -|∇ * ξ u| 2 |v| 2 dξ + κ S 2 (v • n) 2 -(u • n) 2
1,0 (ξ) from the Remark 1.2 we obtain negativity of the second variation which implies instability of u(ξ) := ±n(ξ).

Finally, for κ -4, the global minimality of ±n(ξ) is clear from Theorem 1 and the fact that F κ is constrained to H 1 (S 2 , S 2 ).

Figure 1 .

 1 Figure 1. Examples of vector fields for which the equality sign is attained in the Poincaré inequality (5). (Left) κ = -8; (Center) κ = -4; (Right) κ = 6.

Figure 2 .

 2 Figure 2. The values of the best constants in the Poincaré inequalities (5) and[START_REF] Freeden | Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup[END_REF] for κ > 0 and κ < 0, respectively.

κ 2 Finalizing the proof of Theorem 1 .Proof of Theorem 2 .

 212 + 4κ + 36 . In this case, necessarily û1 (0, 0) = 0 andû2 (1, j) = -2 √ 2 (γ + (κ) -2) û1 (1, j) ∀|j| 1. (54)The minimum value is reached on any vector σ = (û 1 (1, j)) |j| 1 such that|σ| 2 = 2π -(κ + 2) + √ κ 2 + 4κ + 36 √ κ 2 + 4κ + 36 . (55) Going back to the minimization problem (1), (2) for the energy functional F κ , the results of Proposition 1 immediately translate into the context of Theorem 1 via the Fourier isomorphism that maps F κ into G κ . It is therefore sufficient to apply the results to F κ (ũ) with ũ := √ 4πu/ u L 2 (S 2 ,R 3 ) . Due to the saturation constraint |u(ξ)| 2 = 1 for a.e. ξ ∈ S 2 , the Euler-Lagrange equations for F κ reads, in strong form, as u(ξ) × (-∆ * ξ u(ξ) + κ(u(ξ) • n(ξ))n(ξ)) = 0 ∀ξ ∈ S 2 . (64)

2 |∇ * ξ v| 2 - 2 |v| 2

 2222 |v| 2 dξ. (65) In particular, for u(ξ) := ±n(ξ), noting that |∇ * ξ n(ξ)| 2 = 2, we getF κ (±n, v) = S (κ + 2)|v| 2 dξ. (66)Now, for u(ξ) := ±n(ξ), the condition u(ξ) • v(ξ) = 0 a.e. in S 2 forces the variation v to be tangent to S 2 . Thus, the Poincaré inequality (11) holds and we end up with the estimateF κ (±n, v) -κ S dξ,from which the strict local minimality follows.To show instability of u(ξ) := ±n(ξ) for κ > 0 we return to the second variation (66). Using a test function u(ξ) = √ 4πy
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• If κ = -4, the minimum value of the energy is given by G κ (û ) = -8π and it is reached on any vector σ such that (54) holds and 2û 2 1 (0, 0) + 3|σ| 2 = 8π.

Remark 4.1. The limiting value κ = -4 represents a special case in which different topological states may coexist. Indeed, for |σ| = 0 we recover the solutions û1 (0, 0) := ± √ 4π formally arising as the limit for κ → -4 -of the family of minimization problems for g κ . Similarly, for û1 (0, 0) = 0, we recover the minimal solutions arising as the limit for κ → -4 + of the family of minimization problems for g κ .

Proof. According to Lemma 1, the Euler-Lagrange equations (42), can be simplified to read, for every v ∈ 2 (J), as

Taking, in the order, v = (ê 0,0 , 0, 0

From equation ( 57) and Lemma 1 we immediately obtain that û1 (0, 0) = 0 if, and only if, G κ (û) = 4π(2 + κ). On the other hand, from (59), setting

Substituting this last expression into (58

, and this, together with (60), implies that if û1 (1, j) = 0 for some |j| 1, then û2 (1, j) is different from zero too, and (G -

We have proved the following implication:

Since γ + (κ) (κ + 2) if, and only if, κ -4, by (37) we infer that for κ < -4 we have G κ (û) < 4πγ + (κ) and û1 (1, j) = û2 (1, j) = 0 ∀|j| 1. Since the variables in σ must be in √ 4πS 6 this means that û1 (0, 0) is the only variable different from zero, and therefore necessarily equal to ± √ 4π. On the other hand, from equation (57) we immediately obtain that if û1 (0, 0) = 0 then G κ (û) = 4π(2 + κ), which, in turn, implies κ -4. Therefore, if κ > -4 then necessarily û1 (0, 0) = 0 and, due to the constraint, at least one of the û1 (1, j) is different from zero. Thus, G κ := 1 4π G κ (û) = γ + (κ). This observation, in combination with (60), implies that for κ > -4 the problem trivialize to the minimization of

). This leads to the already computed minimal value g κ (σ) = γ + (κ) reached on any vector σ = (û 1 (1, j)) |j| 1 such that (55) holds. Finally, for κ = -4, we have γ + (-4) = -2, and again by (60), the problem trivialize to the minimization of g κ (σ) = -2û 2 1 (0, 0) -3|σ| 2 , σ := (û 1 (0, 0), σ), (63) subject to the constraint 2û 2 1 (0, 0)+3|σ| 2 = 8π. This leads to the minimal value g κ (σ) = -8π reached on any vector σ := (û 1 (0, 0), σ) such that 2û 2 1 (0, 0) + 3|σ| 2 = 8π.