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Contemporary Mathematics

Field extensions and index calculus on algebraic curves

Vanessa Vitse

Abstract. Discrete logarithm index calculus algorithms are usually more effi-
cient for non-hyperelliptic curves (Diem’s method) than for hyperelliptic curves

(Gaudry’s method). However when the field of definition is not prime, Nagao’s
algorithm is even faster asymptotically, but is more efficient for hyperelliptic

curves than for non-hyperelliptic ones. A natural question is then whether it is

possible to adapt Nagao’s method and design an index calculus that takes ad-
vantage of both the field extension and the non-hyperellipticity. In this work

we explain why this is not possible, and why the asymptotic complexity of

Nagao’s algorithm is optimal using the known decomposition techniques.

Keywords : discrete logarithm problem, hyperelliptic curve cryptography,

index calculus, divisor class group, Jacobian variety.

1. Introduction

Because of its relevance to cryptography, the discrete logarithm problem (DLP)
is one of the most studied in the field of algorithmic number theory. We recall
briefly that its consists of finding an integer k (the discrete logarithm) such that
h = k.g, where g and h are two given elements in a group G. Initially only the
multiplicative group F∗q of a finite field was considered for G [4]. But of course,
any finite group whose law is efficiently computable while sufficiently not trivial
can be used, and for cryptographic applications Koblitz and Miller proposed in
the mid-eighties to use the divisor class group (or Jacobian variety) of algebraic
curves defined over finite fields [14, 16]. However, it turns out that the difficulty
of the discrete logarithm problem is quite sensitive to the type of curves considered
and their field of definition, for a fixed (prime) group size. Currently, only genus
1 (i.e. elliptic curves) and genus 2 curves, defined over prime fields or degree 2
extensions of prime fields, are considered secure enough for cryptography. Still,
because of the existence of transfer attacks [6], assessing the concrete difficulty of
computing discrete logarithms in the divisor class group of curves is an important
problem, both from a theoretical and a practical point of view.

Today, the most successful approach to the discrete logarithm problem is the
index calculus method. Originally developed for factoring integers, it has been
successfully applied to the multiplicative group of finite fields, and more recently
to Jacobian varieties. Basically, it consists of several phases; more details will be
given in Section 3. In an initial stage, a small subset F of G (called the factor
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2 VANESSA VITSE

base) is chosen, or progressively constructed; the overall contribution of this step
is mostly negligible. Then in the relation search stage, one tries to obtain relations
between elements of the factor base, and potentially of the challenge, of the form

ag + bh =
∑
i

cigi, gi ∈ F ∀i.

Such a relation (or decomposition) immediately translates into a similar linear
equation between the discrete logarithms of the elements of F . The main difficulty
is to devise an efficient way to compute such relations, for a small enough factor
base. Once sufficiently many relations have been found (i.e. ≈ #F), one proceeds
to the linear algebra stage. The goal is to find a non-trivial linear combination of
relations for which the right-hand term vanishes, yielding the requested discrete
logarithm. This amounts to determining the kernel of the relation matrix, which
is huge but extremely sparse. It is a well-known problem, and its resolution has a
complexity which is quadratic in the size of the matrix, i.e. quadratic in #F .

The main parameter in this description is the size of the factor base. In the
“large genus” case, i.e. when the genus g of the curve grows faster than the size of
its field of definition, the complexity is asymptotically subexponential [5]. On the
other hand, in the “small genus” case, i.e. when g is fixed and q goes to infinity, then
the linear algebra stage becomes the main bottleneck. The best known workaround
is the so-called double large prime technique. A second factor base F ′, the “small
primes” base, is chosen; it is a small subset of F , the “large primes” base. Then
during the relation search, the relations that involves more than two elements of
F \ F ′ are discarded; those that remain are stored in a graph or tree (see [9] for
details). Once enough relations are found, it is possible to combine them and
eliminate the large primes, and then proceed to the linear algebra phase with a
smaller matrix, still sparse and of size given by the cardinality of F ′.

This approach has first been applied by Gaudry, Thériault, Thomé and Diem
following earlier works of Gaudry and Thériault [7, 9, 19]. Their method solves
the DLP in the Jacobian variety of a genus g hyperelliptic curve defined over Fq
in Õ(q2−2/g), asymptotically as q → ∞ and g fixed. Actually, it works for any
algebraic curves of genus g > 2, but is less efficient in the non-hyperelliptic case
as the hidden constant in the Õ notation is much worse. At the same time, Diem
[2] showed that for most genus g curves, but specifically excluding the hyperelliptic

curves, it was possible to solve the DLP in complexity Õ(q2−2/(g−1)). In other
words, it is possible to take advantage of the non-hyperellipticity to speed up the
index calculus method.

A few years later, Nagao [17] (following Gaudry [8]) investigated the case where
the field of definition is an extension field, i.e. of the form Fqn with n > 1. He showed
that it is possible to use this fact and proposed an index calculus algorithm solving
the DLP in Õ(q2−2/ng) on a hyperelliptic genus g curve defined over Fqn , which is
of course asymptotically better than with Gaudry’s or Diem’s method. Here again,
this algorithm designed for hyperelliptic curves can be adapted to arbitrary curves,
but with degraded performances.

hyperelliptic non-hyperelliptic

n = 1 Õ(q2−2/g) (Gaudry) Õ(q2−2/(g−1)) (Diem)

n > 1 Õ(q2−2/ng) (Nagao) ?
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The table above summarizes the current situation. A natural question then
arises : is it possible to combine both the non-hyperellipticity and the extension
? Or differently : why are non-hyperelliptic curves weaker than hyperelliptic ones
when defined over prime fields, but not when defined over extension fields ? The
goal of this paper is to answer these questions, and our main result is that Nagao’s
complexity is optimal for n > 1, at least within the currently known relation search
techniques. Of course, we will begin by explaining these techniques and fit all
existing algorithms in a unified framework. This uses the notion of linear system
of divisor as well as Weil restriction, which are recalled in Section 2. The following
section recapitulates the known methods, and Section 4 deals with the general case
and the proof of our main result.

2. Index calculus and the divisor class group

2.1. Quotient description and decompositions. Index calculus usually
relies on arithmetical formations. We refer to [5, 13] for a complete treatment,
but the main idea is that the group G is given as a quotient of a free commutative
monoid or group M over a countable set of prime or irreducible elements. For
instance, if G = (Z/pZ)∗ then M is the set N \ pN of integers coprime to p,
which is the free commutative monoid (for the multiplication law) generated by the
prime numbers different from p. Similarly, if G = (Fpn)∗ with p small, then M is
Fp[X] \ (P (X)), which is the monoid generated by the irreducible polynomials over
Fp coprime to the degre n irreducible polynomial P (X). Note that in each case,
elements of G are always described by a representative in M.

To apply the index calculus method in this setting, we choose for the factor
base F a finite subset of “small” elements of the generating set of M, that we
identify with their equivalence classes inG. Then for the relation search, we produce
elements of G in some controlled way (for instance known multiples of the challenge
elements) and consider representatives inM, for which there is a well-defined notion
of factorization. We obtain a relation each time a representative is smooth, i.e. all
its irreducible factors belongs to F . One of the main difficulty is thus finding smooth
representatives of a given group element. The size of the factor base is clearly an
important factor here, since it affects the smoothness probability; if F is too small,
very few elements will be smooth, whereas if it is too large we will need too many
relations for the linear algebra step.

Index calculus in the divisor class group (or Jacobian variety) of an algebraic
smooth curve C defined over Fqn (n ≥ 1) fits in this description; the role of M is
played by the set DivFqn

(C) of Fqn -rational divisors, which is a free abelian group
over the set of irreducible divisors. We recall briefly that a divisor D is a formal
sum of the form

D =
∑

P∈C(F̄q)

nP (P )

where the nP ’s are integers and only a finite number of them are non-zero, and
C(F̄q) is the set of points of C in the algebraic closure of Fqn . If K is an algebraic
extension of Fqn , then a divisor D is defined over K (or K-rational) if it is invariant
under the natural action of the Galois group Gal(F̄q/K), induced by its action on
C(F̄q). The abelian group of K-rational divisors is noted DivK(C); note that its
elements are usually not formal sums of K-rational points of C.
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A divisor D is called effective if nP ≥ 0 ∀P ∈ C(F̄q). More generally, we
can define a partial order by setting

∑
P∈C(F̄q) nP (P ) ≥

∑
P∈C(F̄q) n

′
P (P ) if nP ≥

n′P ∀P ∈ C(F̄q); a divisor is thus effective if it is greater than or equal to the zero
divisor. The degree of a divisor is deg(D) =

∑
P np, and the set of degree zero

divisors forms a subgroup of DivK(C). A non-zero, effective divisor D ∈ DivK(C)
is called irreducible if it cannot be written non-trivially as a sum of K-rational
effective divisors. Obviously degree 1 effective divisors are irreducible, and are in
one-to-one correspondence with the K-rational points of C; they are the only ones if
K = F̄q, but not otherwise. In any case DivK(C) is easily seen to be the free abelian
group generated by the irreducible divisors, with the set of effective divisors as
submonoid. Therefore, elements of DivFqn

(C) admit a well-defined decomposition
in irreducible elements, and thus a notion of smoothness.

The divisor class group of C is obtained as the quotient of DivFqn
(C) by the

subgroup of principal divisors; we recall that a principal divisor div(f) is the divisor
formed by the zeroes and poles (with multiplicities) of the function f ∈ Fqn(C). It
is a classical fact that the elements of the degree zero subgroup of the divisor class
group are in one-to-one correspondence with the points of the Jacobian variety of
C, hence the notation JacC(Fqn) for both. Consequently, elements of JacC(Fqn) can
be described either with equivalence classes of divisors, or with coordinates associ-
ated to a projective embedding of the variety, typically given by Theta functions.
However, this second point of view does not correspond to an arithmetical forma-
tion, and has not yet found applications to index calculus. Thus the description of
JacC(Fqn) as the quotient of DivFqn

(C) is the only one available for our purpose,
and the main practical way of finding relations; note that it does not depend of
the model of the curve. By contrast, the multiplicative group of a finite field can
be expressed as a quotient in different ways, for instance by varying the irreducible
polynomial P (X) defining Fpn as Fp[X]/(P (X)). Using two different quotient rep-
resentations is the basis for the improved performances of the function field sieve
(notwithstanding the recent progress of [1]) and to a certain extent of the number
field sieve.

2.2. Linear systems of divisors. Another difference between divisor class
groups and finite fields is that the search space is finite dimensional: for any D in
DivFqn

(C), there are finitely many effective divisors linearly equivalent to D. To be
precise, the set

|D| = {D′ ∈ DivFqn
(C) | D′ ∼ D, D′ ≥ 0},

which is called a complete linear system on C, has the natural structure of a pro-
jective space over Fqn : it is in one-to-one correspondence with the projectivisation
of the Riemann-Roch vector space

L(D) = {f ∈ Fqn(C)∗ | div(f) ≥ −D} ∪ {0}.

The dimension `(D) of this vector space (that is thus one more than the dimension
of |D|) is related to the degree of D by the Riemann-Roch formula

`(D)− 1 ≥ deg(D)− g,

with equality if deg(D) ≥ 2g − 1. More generally, a linear system of divisors
d is a non-empty projective subspace of a complete linear system |D| for some
D ∈ DivFqn

(C).
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Both quantities deg(D) and `(D) are important for our purpose. Indeed, for
any D′ ∈ |D| we have deg(D′) = deg(D), and the smoothness probability of an
effective divisor clearly decreases with its degree. More precisely, one can show that
the probability for a random effective degree d divisor to be split, that is, to be a
sum of degree 1 Fqn -rational divisors, is asymptotically equal to 1/d!. We would
like this estimate to hold for arbitrary divisors in a linear system, but as such it
cannot be true because a linear system d may not be base-free, i.e. there may exist
a non-zero, effective divisor Db (the base locus) such that D ≥ Db for any D ∈ d.
We will however make the following heuristic assumption, which is quite accurate
in practice:

Assumption.
Divisors in a base-free linear system d behave like random effective divisors of the
same degree.

Since we are looking for split divisors, it is better if we can manage to work with
low degree divisors. On the other hand, when `(D) grows, so does the dimension
of |D|, and we can use the additional degrees of freedom to improve the efficiency
of the relation search; this will be made more precise in Section 4.

2.3. Weil restriction. An important tool when dealing with extension fields
is the Weil restriction, or restriction of scalars. The idea is quite simple: if L/K is
a degree n field extension, then any variety V of dimension d defined over L can
be viewed as a variety of dimension nd defined over K, in the exact same way that
algebraic curves over C are viewed as real surfaces. More precisely, we obtain a
functor WL/K, which sends varieties defined over L to varieties defined over K.

If V is defined over L, then the two sets V (L) and WL/K(V )(K) are equal,
but their algebraic structures are different and the latter has a finer topology.
In particular, the Weil restriction of C(Fqn) contains many algebraically defined
subsets; we will use this fact for the definition of the factor bases. Also, since
linear systems of divisors are projective spaces and hence algebraic varieties, we
will consider their Weil restriction for the relation search.

3. Known index calculus methods

In what follows, we consider as given the algebraic curve C defined over Fqn
(n ≥ 1) as well as two divisors D0 and D1 on C forming a DLP challenge, i.e. our
goal is to find the discrete logarithm of [D1] in base [D0] in the divisor class group
of C.

3.1. Common outline. We focus in this article on the small genus case,
i.e. when the genus g of C is fixed. We also fix the extension degree n; only the
cardinality of the base field Fq grows to infinity. In this case, the factor base F
only contains degree one Fqn-rational effective divisors (or rather their equivalence
classes in the divisor class group), which are in one-to-one correspondence with the
Fqn -rational points of C.

The known index calculus methods on algebraic curves use different techniques,
but they can be all described in a united framework.

(1) Choice of the factor bases:
• if n = 1, the “large prime” factor base is F = {(P ) | P ∈ C(Fq)} ⊂

DivFq
(C);
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• if n > 1, we use the Weil restriction structure and set F = {(P ) | P ∈
V(Fq)} ⊂ DivFqn

(C) where V is a dimension one subvariety ofWFqn/Fq
(C).

In both cases, the cardinality of F is approximately equal to q. In order
to apply the double large prime technique, we also define a “small prime”
factor base F ′, which is an arbitrary subset of F of size in the order of
qα.

(2) Relation search: until ≈ q relations are found,
(a) we compute a linear system d ∈ |D|, where the divisor D depends

of the elements of the DLP challenge and of the factor bases, the
equation of the curve, and potentially a randomness source;

(b) we look for divisors D′ ∈ d which are sums of elements of F ′ and
at most two “large primes”, i.e. elements of F ; this search can be
narrowed down using several techniques as discussed below. Each
such divisor gives a relation in the divisor class group, of the form
D′ ∼ D.

(3) Double large prime stage: the relations obtained in 2. are combined in
order to eliminate the large primes and produce more than #F ′ relations
involving only small primes, i.e. elements of F ′, and the DLP challenge.

(4) Linear algebra stage: using sparse matrix techniques, we compute the
kernel of the relation matrix and use this knowledge to solve the DLP
challenge.

Of course, this outline is subject to adaptations. For instance, some authors suggest
to construct the factor base F ′ progressively, during a first part of the relation
stage [15]. Similarly, the double large prime stage is often merged with the relation
search. Also, a descent phase can be needed in order to express the elements of
the DLP challenge in terms of elements of the factor base, but it is usually just a
variation around the relation search.

3.2. Gaudry’s method. Gaudry’s pioneering approach to the DLP on alge-
braic curves [7] originally did not use the double large prime technique and was
designed for (imaginary) hyperelliptic curves. The double large prime variation,
already used for the factorization of integers (hence its name), was later incorpo-
rated in the algorithm by Gaudry and Thériault, Thomé and Diem [9], still in the
context of hyperelliptic curves. However, the generalization to arbitrary curves is
not difficult; the only difference is that computations in the divisor class group are
more complex but possible thanks to e.g. the works of Hess [10]. For simplicity, we
will refer to this algorithm as Gaudry’s. Since it does not rely on Weil restriction,
the field of definition of C will be simply denoted by Fq (even though q can be a
prime power).

In this method, we consider a particular point O ∈ C(Fq); if C is imaginary
hyperelliptic then this is the point at infinity. Then for many random values of a
and b, we compute the unique divisor D′ linearly equivalent to aD0 + bD1 which is
maximally reduced along O (i.e. we compute a[D0]+b[D1] in the divisor class group,
using maximally reduced divisors along O as representatives). This is usually done
using a pseudo-random walk, so that only few operations in the divisor class group
are needed at each step. We obtain a relation of the form

aD0 + bD1 ∼ (P1) + · · ·+ (Pr−2) + (Q1) + (Q2)− r(O)

if D′ (or rather D′ + r(O)) is split with at most two large primes.
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Generically we have r = g, so in our framework Gaudry’s method corresponds
to choosing d = |D| with D = aD0 + bD1 +g(O). This linear system contains (with
overwhelming probability) only one element, namely D′+ g(O). Its splitness prob-
ability is asymptotically 1/g!, which does not depend of q; however the probability
that all elements of the decomposition but two are in the small prime factor base F ′
is asymptotically in Θ(q(α−1)(g−2)) (recall that #F ′ ≈ qα). Thus we need to test
about q.q(1−α)(g−2) divisors in order to generate enough relations to eliminate the
large primes. Since the linear algebra stage requires ≈ q2α operations, we obtain
that the asymptotically optimal value of α is 1− 1/g, equating the cost of the two

main stages for an overall complexity in Õ(q2−2/g).
Note that each trial requires some operations in the divisor class group as well

as a splitting test and decomposition computation, whose costs are polynomial in
log(q) and thus do not impact the above estimate; nevertheless, they are much faster
in the hyperelliptic case than for arbitrary curves. For this reason, even though the
asymptotic complexities are the same in both cases, the actual complexities are
not.

Recently, a different approach has been proposed by Sarkar and Singh ([18], see
also [20]). The idea (reformulated to fit our framework) is to consider the complete
linear system d associated to aD0 + bD1 + (g + 1)(O) (instead of g(O)). This
corresponds to looking for decompositions of a[D0] + b[D1] as sums of g − 1 small
primes and 2 large primes. The probability of obtaining one relation is lower since
there are more elements in the decomposition, but it is compensated by the use of
a sieving technique in the spirit of [11]. This is possible because d has (generically)
dimension one, so there is one parameter to sieve along.

3.3. Diem’s method. Diem’s method [2] uses the fact that most non-hyper-
elliptic curves admit small degree plane models — more precisely, plane models
of degree at most g + 1, where g is the genus of the curve. For a target curve
C defined over Fq and having a plane model given by a degree d homogeneous
equation F (X,Y, Z) = 0, we consider the divisor D∞ given by the zeroes of Z
(i.e. the points at infinity). The relation search works with the dimension two
linear system d ⊂ |D∞| consisting of affine lines, or rather of the intersections of
affine lines with the plane model. It corresponds to the linear subspace Span(1, x, y)
of the Riemann-Roch space L(D∞), with x = X/Z and y = Y/Z.

Instead of sampling the space d randomly, we use the fact that we have two
degrees of freedom and look for divisors in d having specified points in their support.
In details, we repeatedly pick two non-singular, affine points P1 and P2 in the small
factor base F ′ and compute the divisor D′ given by the intersection of the line
passing through these two points with the plane model. If D′ is smooth, i.e. if the
intersection contains d− 2 other rational non-singular points, and if at most two of
these intersection points are not in the small factor base, then we obtain a relation
of the form

D∞ ∼ (P1) + (P2) + (P3) + · · ·+ (Pd−2) + (Q1) + (Q2).

Since by design (P1) and (P2) are already in F ′, the probability of having at most
two large primes is in Θ(q(α−1)(d−4)). A simple computation then shows that the
asymptotically optimal value of α is 1 − 1/(d − 2), yielding an overall complexity

in Õ(q2−2/(d−2)). This is smaller than the complexity of Gaudry’s method as soon
as the degree d of the plane model satisfies d ≤ g + 1. Finding such plane models
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is effectively possible for most algebraic curves, but not for the hyperelliptic ones.
For this reason, the DLP in the divisor class group of non-hyperelliptic curves is
considered as weaker than for hyperelliptic ones.

3.4. Nagao’s method. Nagao’s method [17] is a generalization for algebraic
curves C defined over an extension field Fqn of an earlier work of Gaudry [8] on the
DLP for elliptic curves. The main idea is to use the Weil restriction structure to
define the (large) factor base F . Nagao suggests choosing

F = {(P ) | P ∈ C(Fqn), x(P ) ∈ Fq},
but more generally, the last condition can be restated as P ∈ V(Fq), where V is an
algebraic dimension one subvariety of the Weil restriction WFqn/Fq

(C).
As in Gaudry’s method, we choose a distinguished point O, typically the point

at infinity. During the relation search we consider, for many different values of a
and b, the complete linear system d = |D| associated to the divisor D = aD0 +
bD1 +ng(O). We observe that deg(D) = ng and dimFqn

|D| = (n−1)g according to
Riemann-Roch theorem, so as a variety over Fq, the Weil restriction of the projective
space |D| has dimension n(n− 1)g. Since F is defined by algebraic equations, the
condition that a divisor D′ ∈ |D| is a sum of ng elements of F can be expressed
as a system of multivariate polynomial equations. We refer to [17] (cf also [11])
for the details, but informally, asking that a point in the support of D′ belongs
to F gives n − 1 equations over Fq. Since there are ng points in the support, we
obtain a system (over Fq) of (n− 1)ng equations, which is exactly the dimension of
WFqn/Fq

(|D|). Indeed, this system has generically dimension 0, i.e. a finite number
of solutions. Thus for each value of a and b, we solve this multivariate polynomial
system and consider the resulting divisors D′ ∈ |D|. By design, they are sums of
elements of F , but it remains to test if at least ng − 2 ot them are in F ′; this
happens with probability in Θ(q(α−1)(ng−2)).

The main difficulty in Nagao’s method is the resolution of the polynomial sys-
tem. Even for relatively small values of n and g, this resolution quickly exhausts
the resources of a personal computer. In the hyperelliptic case, the n(n−1)g equa-
tions in n(n− 1)g variables are quadratic, and have been solved only for n ≤ 3 and
g ≤ 4. But for non-hyperelliptic curves (hence g ≥ 3), the equations have bigger
degrees and the resolution is infeasible in practice, except by exhaustive search for
small q. Nevertheless, since the number of equations / variables and their degrees
do not depend of q, asymptotically for n and g fixed the complexity of the reso-
lution is polynomial in log(q) as q → ∞. Then the asymptotically optimal value

of α is 1− 1/ng, yielding an overall complexity in Õ(q2−2/ng). This is much lower

than the complexity of Gaudry’s or Diem’s method, which run in Õ(qn(2−2/g)) or

Õ(qn(2−2/(d−2))), since the definition field is Fqn instead of Fq; but we emphasize
that except for hyperelliptic curves and small values of n and g (see e.g. [11]), Na-
gao’s method is impractical because of the intractability of the polynomial system
resolution in the relation search.

4. The general case

4.1. Relation search techniques and their impact on complexity. In
the above examples, we have seen that the different relation search techniques
amount to looking for divisors D′ in a particular linear system d ⊂ |D| such that
D′ is not only split, but also a sum of small primes and at most two large primes.
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Let d = deg(D) be the degree of the elements of d. Since #C(Fqn) ≈ qn, #F ≈ q,
and #F ′ ≈ qα, with our heuristic assumption we see that a random D′ ∈ d yields
a relation with probability in

Θ(qd(1−n).q(α−1)(d−2)) = Θ(q2(1−n)+(d−2)(α−n)).

But obviously, we will not sample d or |D| at random. We recall that the dimension
of |D| is `(D) − 1 as a projective space over Fqn , or n(`(D) − 1) as a variety over
Fq; we will denote by r the dimension of d over Fqn .

(1) We can consider divisors having a number a of specified “small primes”
points in their support, as in Diem’s method (where a = 2). In effect, it
replaces d by d− a in the above probability, i.e. it improves the decompo-
sition probability by a factor qa(n−α). Of course, a must be smaller than
or equal to d (the number of points in the support). Looking for such
divisors gives a Fqn -linear constraints, or na Fq-linear constraints, on d.

(2) If n > 1, we can require that b points in the support of D′ belong to
F and express this condition algebraically, as in Nagao’s method (where
b = ng). Since F has codimension (n − 1) in (the Weil restriction of) C,
this gives b(n− 1) non-linear equations or constraints. It still remains to
check that enough points in the support of D′ are actually small primes, so

it improves the decomposition probability by a factor (
qn/qα

q/qα
)b = qb(n−1).

(3) Finally, we can sieve on c parameters, in the spirit of Joux-Vitse or Sarkar-
Singh [11, 18, 20] (where c = 1). The idea is to find coordinates on d such
that c of them directly relate to the choice of F ′ as a subset of F . Then we
iterate through d, but it only requires qα instead of q iterations for each of
the sieved parameters. This process does not improve the decomposition
probability, but provides a speed-up by a factor qc(1−α).

Of course, these three techniques can be combined1. However, we have the two
following inequalities: a+ b ≤ d

an+ b(n− 1) + c ≤ nr ≤ n(`(D)− 1)

The first one simply expresses that we cannot have more conditions on the points
of the support of the divisor than the number of points in this support. The second
one states that we cannot have more constraints on d than its dimension, otherwise
there will be generically no divisor satisfying these constraints in the linear system2.

If these inequalities are satisfied, and remembering that we need ≈ q relations
to eliminate the large primes, we see that the complexity of the relation search is
in

Õ(q.q2(n−1)+(d−2)(n−α).qa(α−n).qb(1−n).qc(α−1)) = Õ(q2α+α(a+c−d)+nd−1−(an+b(n−1)+c)).

1It is not clear if every such combinations can be implemented, but they still provide inter-

esting complexity bounds.
2In practice (i.e. not from the asymptotic complexity point of view), it is sometimes interesting

to work with overdetermined systems, see [12].
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The asymptotically optimal value of α is the one for which this is equal to the
complexity of the linear algebra stage, in Õ(q2α), and a quick computation leads to

α =
nd− 1− (an+ b(n− 1) + c)

d− (a+ c)
.

We will now look for the “best” index calculus choices, i.e. divisors D and values
of a, b and c yielding the smallest α. Our main result is the following:

Theorem. Using the above-mentioned techniques, the asymptotically optimal com-
plexity of the discrete logarithm index calculus method on C is

• Õ(q2−2/g) if C is an hyperelliptic curve defined over Fq;
• Õ(q2−2/ng) if C is defined over Fqn with n > 1.

4.2. The n = 1 case. If n = 1, i.e. if q is prime or more generally if we do
not take into account the field extension, then b is irrelevant and the optimal choice
is a + c = r. A basic result in Riemann-Roch theory is that r ≤ d, so the first
inequality is satisfied as well, and we obtain

α =
d− r − 1

d− r
= 1− 1

d− r
.

Thus we are led to look for linear systems such that d − r is as small as possible.
This means that r should be equal `(D) − 1 (i.e. d = |D|) and deg(D) − `(D) + 1
should be as small as possible, or equivalently the index of speciality i(D) = g+r−d
is as large as possible. However, special divisors (i.e. effective divisors such that
`(D)−1 > max(0,deg(D)−g)) in the hyperelliptic case are uninteresting for index
calculus. Indeed, such divisors are always of the form D = E + (P ) + (ı(P )) with
E effective and ı the hyperelliptic involution. Therefore relations involving D give
as much information as relations only involving E, and this prevents achieving a
better asymptotic complexity than Gaudry’s method.

In the non-hyperelliptic case, Diem’s method provides a special divisor by con-
structing a small degree plane model, and the smaller the degree the better. More
recently, Diem and Kochinke have proposed a way to work with more special divi-
sors, using singularities of plane models. A limitation then arises from Brill-Noether
theory, which bounds the number of special divisors according to their specialty in-
dex, see [3] for details. Anyhow, this further increases the discrepancy between the
difficulty of the DLP on hyperelliptic and non-hyperelliptic curves.

4.3. The extension case. If n > 1, i.e. if we work with a non-prime base
field and decide to use this property, then we are still interested by special divisors.
However, Clifford’s theorem bounds the possible index of specialty.

Theorem (Clifford). Let D ∈ Div(C) be a divisor such that `(D)−1 > deg(D)−g.
Then `(D)− 1 ≤ deg(D)/2, with equality only if D = 0, or D is canonical, or C is
hyperelliptic.

The following picture sums up the possible values of deg(D) and `(D).
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0 deg(D)

`(D)−1

g 2g

g

excluded by Riemann-Roch

excluded by Clifford

special divisors

0 K hyperelliptic case

In order to prove our main results, we have to consider different cases according
to the values of the degree d = deg(D) of D and the dimension r of d. Note that
since the expression of α does not involve r, we can assume without loss of generality
that r = `(D)− 1, i.e. d is the complete linear system |D|.

• If g ≤ d ≤ ng and d = r + g (this second condition is always satisfied
as soon as d > 2g − 2 thanks to Riemann-Roch theorem), then nr

n−1 =
nd−ng
n−1 ≤

nd−d
n−1 = d, so we can take b = nr

n−1 and a = c = 0. This is optimal

for fixed d, provided nr
n−1 is an integer. Then α = nd−1−nr

d = ng−1
d , which

is smallest when d = ng. We recover the value ng−1
ng = 1−1/ng of Nagao’s

approach.

• If d > ng, then nr
n−1 > d, so the best we can do is choose b between ng

and d, a = d − b, and c = nr − an − b(n − 1) = n(r − d) + b = b − ng.
Then α = nd−1−nr

d−(d−ng) = ng−1
ng , which is not better than for d = ng.

• If d < r + g (and so necessarily d ≤ 2g − 2), then D is special. But
Clifford’s theorem on special divisors asserts that r ≤ d/2. More precisely,
the equality 2r = d occurs only in three cases: D = 0, which does not
happen here; D is a canonical divisor; or C hyperelliptic (see the above
figure). The hyperelliptic case can be ruled out, as we have seen that their
special divisors do not yield more non-trivial relations. The case where D
is canonical is interesting when n = 2; however, it gives only one complete
linear system and can provide only a small number of relations, so it does
not impact the overall complexity.
Otherwise 2r ≤ d − 1. The best choice is again to take a = c = 0

and (assuming it is an integer) b = nr
n−1 ≤

n(d−1)
2(n−1) ≤ d. In particular,

α ≥ nd−1−c(n−1)
d ≥ nd−1−n(d−1)/2

d = n
2 + n−2

2d . Since d ≥ 1 and n ≥ 2,
this is greater than or equal to 1 and thus uninteresting.

Finally, we obtain that the optimal complexity is for α = 1− 1/ng, which can
be reached for d ≥ ng. In particular, it is not possible to improve asymptotically
on the complexity of Nagao’s method.

5. Conclusion

While it is possible to combine the three techniques (sieving, specifying points
directly or via Weil restriction) in different ways, we have seen that Nagao’s method
is optimal in this respect. Our main result can be restated informally as follows :
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index calculus in Div0
Fqn

(C) requires divisors of degree ≈ ng. If n = 1, this gives

plenty of special divisors to choose from, but since special divisors are uninteresting
on hyperelliptic curves, this explains why non-hyperelliptic curves are easier DLP
targets. If n = 2, this leaves available only the canonical divisor, which is interesting
but does not impact the overall complexity. Finally, if n > 2 there is no available
special divisor, and index calculus is not faster on non-hyperelliptic curves.

Besides this result, we have shown that all known index calculus methods on
algebraic curves follow a similar framework, with the same limitations. It seems
reasonable to claim that no essential progress will be made on the DLP on algebraic
curves if one remains within this framework, and it is only by going beyond and
finding new decomposition methods that real advances will be made.
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