
HAL Id: hal-01981553
https://hal.science/hal-01981553

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Programs with Conjunctive Queries
Florent Capelli, Nicolas Crosetti, Joachim Niehren, Jan Ramon

To cite this version:
Florent Capelli, Nicolas Crosetti, Joachim Niehren, Jan Ramon. Linear Programs with Conjunctive
Queries. ICDT 2022 - 25th International Conference on Database Theory, Mar 2022, Edinburgh,
United Kingdom. �hal-01981553�

https://hal.science/hal-01981553
https://hal.archives-ouvertes.fr

Linear Programs with Conjunctive Queries1

Florent Capelli, Nicolas Crosetti, Joachim Niehren, Jan Ramon2

Univ. Lille, Inria, CNRS, UMR 9189 - CRIStAL, F-59000 Lille, France3

Abstract4

In this paper, we study the problem of optimizing a linear program whose variables are answers5

to a conjunctive query. For this we propose the language LP(CQ) for specifying linear programs6

whose constraints and objective functions depend on the answer sets of conjunctive queries. We7

contribute an efficient algorithm for solving programs in a fragment of LP(CQ). The naive approach8

constructs a linear program having as many variables as elements in the answer set of the queries.9

Our approach constructs a linear program having the same optimal value but fewer variables. This10

is done by exploiting the structure of the conjunctive queries using hypertree decompositions of11

small width to group elements of the answer set together. We illustrate the various applications12

of LP(CQ) programs on three examples: optimizing deliveries of resources, minimizing noise for13

differential privacy, and computing the s-measure of patterns in graphs as needed for data mining.14

2012 ACM Subject Classification Computer Science, Logic, Databases.15

Keywords and phrases Database queries, linear programming, hypergraph decomposition.16

Digital Object Identifier 10.4230/LIPIcs...17

1 Introduction18

When modeling optimization problems it often seems natural to separate the logical con-19

straints from the relational data. This holds for linear programming with AMPL [7] and20

for constraint programming in MiniZinc [17]. It was also noticed in the context of database21

research, when using integer linear programming for finding optimal database repairs as22

proposed by Kolaitis, Pema and Tan [14], or when using linear optimization to explain the23

result of a database query to the user as proposed by Meliou and Suciu [16]. Moreover, tools24

like SolveDB [21] have been developed to better integrate mixed integer programming and25

thus linear programming into relational databases.26

We also find it natural to define the relational data of linear optimization problems27

by database queries. For this reason, we propose the language of linear programs with28

conjunctive queries LP(CQ) in the present paper. The objective is to become able to specify29

weightings of answer sets of database queries, that optimize a linear objective function subject30

to linear constraints. The optimal weightings of LP(CQ) programs can be computed in a31

naive manner, by first answering the database queries, and then solving a linear program32

parametrized by the answer sets. We then approach the question – to our knowledge for the33

first time – of whether this can be done with lower complexity for subclasses of conjunctive34

queries such as the class of acyclic conjunctive queries.35

As our main contribution we present a more efficient algorithm for computing the optimal36

value of a program in the fragment of so-called projecting LP(CQ) programs for which we37

also bound the hypertree width of the queries. The particular case of width 1 covers the class38

of acyclic conjunctive queries. By using hypertree decompositions, our algorithm is based on39

a factorized interpretation of any projecting LP(CQ) program over a database to a linear40

program without conjunctive queries. The factorized interpretation uses other linear program41

variables, that represent sums of the linear program variables in the naive interpretation.42

The number of linear program variables in the factorized interpretation depends only on the43

widths of the hypertree decompositions of the queries in the LP(CQ) program, rather than44

on the number of query variables. In this manner, our more efficient algorithm can decrease45

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Linear Programs with Conjunctive Queries

the data complexity, i.e., the degree of the polynomial in the upper bound of the run time of46

the naive algorithm. With respect to the combined complexity, the special case of projecting47

LP(CQ) programs with bounded quantifier depth becomes tractable for acyclic conjunctive48

queries, while it is NP-complete in general.49

We prove the correctness of the factorized interpretation with respect to the naive50

interpretation. For this we have to show a correspondence between weightings of answer sets51

on the naive interpretation, and weightings of answer sets on the factorized interpretation.52

This correspondence can be seen as an independent contribution as it shows that one can53

reconstruct a relevant weighting of the answer set of a quantifier free conjunctive query by54

only knowing the value of the projected weighting on the bags of the tree decomposition.55

Conjunctive queries with existential quantifier are dealt with by showing that one can find56

an equivalent projecting LP(CQ) program using only quantifier free conjunctive queries.57

1.1 Applications58

A wide range of applications of linear programs can benefit from conjunctive queries.59

Resource Delivery Optimization. We consider a situation in logistics where a60

company received orders for specific quantities of resource objects. The objects must be61

produced at a factory then transported to a warehouse before being delivered to the buyer.62

The objective is to fulfill every order while minimizing the overall delivery costs and respecting63

the production capacities of the factories as well as the storing capacities of the warehouses.64

Let F be the set of factories, O the set of objects, W the set of warehouses and B the set65

of buyers. We consider a database D with elements in the domain D = F] O]W] B] R+.66

The elements d ∈ D encoding a positive real number can be decoded back by applying the67

database’s functions numD, yielding the positive real number numD(d) ∈ R+. The database68

D has four tables. The first table prodD ⊆ F× O× R+ contains triples (f, o, q) stating that69

the factory f can produce up to q units of object o. The second table orderD : B×O× R+70

contains triples (b, o, q) stating that the buyer b orders q units of object o. The third table71

storeD ⊆ W × R+ contains pairs (w, l) stating that the warehouse w has a storing limit of72

l. The fourth table routeD : (F×W × R+) ∪ (W × B× R+) contains triples (f, w, c) stating73

that the transport from factory f to warehouse w costs c, and triples (w, b, c) stating that74

the transport from warehouse w to buyer b costs c. The query:75

dlr(f, w, b, o) = ∃q.∃q′.∃c∃c′. prod(f, o, q) ∧ order(b, o, q′) ∧ route(f, w, c) ∧ route(w, b, c′)76

selects from the database D all tuples (f, w, b, o) such that the factory f can produce some77

objects o to be delivered to buyer b through the warehouse w. Let Q = dlr(f ′, w′, b′, o′). The78

questions is to determine for each of these possible deliveries the quantity of the object that79

should actually be sent. These quantities are modelled by the unknown weights θαQ of the query80

answers α ∈ solD(Q). For any factory f and warehouse w the sum
∑
α∈solD(Q∧w′ .=w∧f ′ .=f) θ

α
Q81

is described by the expression weight(f ′,w′,b′,o′):f ′ .=f∧w′ .=w(Q) when interpreted over D.82

We use the LP(CQ) program in Figure 1 to describe the optimal weights that minimize83

the overall delivery costs. The weights depend on the interpretation of the program over the84

database, since D specifies the production capacities of the factories, the stocking limits of85

the warehouses, etc. The program has the following constraints:86

- for each (f, o, q) ∈ prodD the overall quantity of object o produced by f is at most q.87

- for each (b, o, q) ∈ orderD the overall quantity of objects o delivered to b is at least q.88

- for each (w, l) ∈ storeD the overall quantity of objects stored in w is at most l.89

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:3

minimize∑
(f,w,c):route(f,w,c) num(c) weight(f ′,w′,b′,o′):f ′ .=f∧w′ .=w(Q)

+
∑

(w,b,c):route(w,b,c) num(c) weight(f ′,w′,b′,o′):w′ .=w∧b′ .=b(Q)
subject to
∀(f, o, q):prod(f, o, q). weight(f ′,w′,b′,o′):f ′ .=f∧o′ .=o(Q) ≤ num(q)
∀(b, o, q):order(b, o, q). weight(f ′,w′,b′,o′):b′ .=b∧o′ .=o(Q) ≥ num(q)
∀(w, l):store(w, l). weight(f ′,w′,b′,o′):w′ .=w(Q) ≤ num(l)

Figure 1 A LP(CQ) program for the resource delivery optimization where Q = dlr(f ′, w′, b′, o′).

By answering the query Q on the database D and introducing a linear program variable90

θαQ for each of the query answers α, we can interpret the LP(CQ) program in Figure 1 as91

a linear program. However the number of answers of Q and thus the number of variables92

in this program could be cubic in the size of the database, which quickly grows too big.93

Our factorized interpretation for the projecting LP(CQ) program in Figure 1 produces a94

linear program that only has a quadratic number of variables, since query Q has a hypertree95

decomposition of width 2 as well as the whole LP(CQ) program.96

Minimizing Noise for ε-Differential Privacy. The strategy of differential privacy is to97

add noise to the relational data before publication. Roughly speaking, the general objective98

of ε-differential privacy [5] is to add as little noise as possible, without disclosing more99

than an ε amount of information. We illustrate this with the example of a set of hospitals100

which publish medical studies aggregating results of tests on patients, which are to be kept101

confidential. We consider the problem of how to compute the optimal amount of noise to102

be added to each separate piece of sensitive information (in terms of total utility of the103

studies) while guaranteeing ε-differential privacy. We show that this question can be solved104

(approximately) by computing the optimal solution of a projecting program in LP(CQ)105

with a single conjunctive query that is acyclic, i.e., of hypertree with 1. While the naive106

interpretation yields a linear program with a quadratic number of variables in the size of107

the database, the factorized interpretation requires only a linear number. The example is108

worked out in Appendix A.109

Computing the s-Measure for Graph Pattern Matching. A matching of a subgraph110

pattern in a graph is a graph homomorphism from the pattern to the graph. The s-measure111

of Wang et al. [23] is used in data mining to measure the frequency of matchings of subgraph112

patterns, while accounting for overlaps of different matchings. The idea is to find a maximal113

weighting for the set of matchings, such that for any node of the subgraph pattern, the set of114

matchings mapping it on the same graph node must have a overall weight less then 1. This115

optimization problem can be expressed by a projecting LP(CQ) program over a database116

storing the graph. The conjunctive query of this program expresses the matching of the117

subgraph pattern. The hypertree width of this conjunctive query is bounded by the hypertree118

width of the subgraph pattern. Our factorized interpretation therefore reduces the size of119

the linear program for subgraph patterns with small hypertree width. More information on120

the LP(CQ) program can be found in Appendix B.121

XX:4 Linear Programs with Conjunctive Queries

1.2 Related Work122

Our result builds on well-known techniques using dynamic programming on tree decompos-123

itions of the hypergraph of conjunctive queries. This techniques were first introduced by124

Yannkakis [24] who observed that so-called acyclic conjunctive queries could be answered125

in linear time using dynamic programming on a tree whose nodes are in correspondence126

with the atoms of the query. Generalizations have followed in two directions: on the one127

hand, generalizations of acyclicity such as notions of hypertree width [9, 10, 11] have been128

introduced and on the other hand enumeration and aggregation problems have been shown129

to be tractable on these families of queries such as finding the size of the answer set [19]130

or enumerating it with small delay [1]. More recently, these tractability results have been131

explained by the mean of factorized databases [18], observing that the answer set of bounded132

width conjunctive queries could be succinctly represented by circuits enjoying interesting133

syntactic properties allowing to efficiently solve numerous aggregation problems on it in134

polynomial time in the size of the representation. While the complexity of several aggregation135

problems in databases have been studied on such structures [2, 20], our result is, to the best136

of our knowledge, the first one to exploit the structure of conjunctive queries to solve linear137

programs more efficiently. While our result could be made to work on factorized representa-138

tions of queries answer sets, we choose to directly work on tree decompositions because the139

semantic of the query is clearer in its conjunctive form than its factorized representation.140

Since one of our contribution is to offer a language to describe linear programs parametrized141

by the answer set of queries, this aspect is important to write intelligible linear programs.142

Organization of the paper. Section 2 contains the necessary definitions to understand143

the paper. Section 3 presents the language LP(CQ) of linear programs parametrized by144

conjunctive queries and gives its semantics. Section 4 defines a fragment of LP(CQ) for145

which we propose a more efficient algorithm. Finally, Section 5 presents encouraging practical146

results on solving the delivery optimization problem using this algorithm. Due to space limit,147

most proofs and full details on applications to differential privacy and s-measure computation148

have been moved to the appendix.149

2 Preliminaries150

Sets, Functions and Relations. Let B = {0, 1} be the set of Booleans, N the set of natural151

numbers including 0, R+ be the set of positive reals subsuming N, and R the set of all reals.152

Given any set S and n ∈ N we denote by Sn the set all n-tuples over S and by S∗ = ∪n∈NSn153

the set of all words over S. A weighting on S is a (total) function f : S → R+.154

Given a set of (total) functions A ⊆ DS = {f | f : S → D} and a subset S′ ⊆ S, we155

define the set of restrictions A|S′ = {f|S′ | f ∈ A}. For any binary relation R ⊆ S × S,156

we denote its transitive closure by R+ ⊆ S × S and the reflexive transitive closure by157

R∗ = R+ ∪ {(s, s) | s ∈ S}.158

Variable assignments. We fix a countably infinite set of (query) variables X . For any159

set D of database elements, an assignment of (query) variables to database elements is a160

function α : X → D that maps elements of a finite subset of variables X ⊆ X to values of161

D. For any two sets of variable assignments A1 ⊆ DX1 and A2 ⊆ DX2 we define their join162

A1 ./ A2 = {α1 ∪ α2 | α1 ∈ A1, α2 ∈ A2, α1|I = α2|I} where I = X1 ∩X2.163

We also use a few vector notations. Given a vector of variables x = (x1, . . . , xn) ∈ Xn we164

denote by set(x) = {x1, . . . , xn} the set of the elements of x. For any variable assignment165

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:5

Linear sums S, S′ ∈ Sum ::= c | ξ | cS | S + S′

Linear constraints C,C ′ ∈ Lc ::= S ≤ S′ | C ∧ C ′ | true
Linear programs L ∈ Lp ::= maximize S subject to C

Figure 2 The set of linear programs Lp with variables ξ ∈ Ξ and constants c ∈ R.

Expressions E1, . . . , En ∈ ExC ::= x | a
Conjunctive queries Q,Q′ ∈ CqΣ ::= E1

.=E2 | r(E1, . . . , En) | Q ∧Q′ | ∃x.Q | true

Figure 3 The set of conjunctive queries CqΣ with schema Σ = ((R(n))n∈N, C) where x ∈ X ,
a ∈ C, and r ∈ R(n).

α : X → D with set(x) ⊆ X we denote the application of the assignment α on x by166

α(x) = (α(x1), . . . , α(xn)).167

Linear programs. Let Ξ be a set of linear program variables. In Figure 2, we recall the168

definition of the sets of linear sums Sum, linear constraints Lc, and linear programs Lp169

with variables in Ξ. We consider the usual linear equations S .=S′ as syntactic sugar for the170

constraints S ≤ S′∧S′ ≤ S. For any linear program L = maximize S subject to C we call171

S the objective function of L and C the constraint of L. Note thatminimize S subject to C172

can be expressed by maximize − 1 S subject to C up to negation.173

The formal semantics of linear programs is recalled in Figure 10. Since we will only be174

interested in variables for positive real numbers – and do not want to impose positivity175

constraints all over – we restrict variables of linear programs to always be positive real176

numbers. For any weightings ω : Ξ→ R+, the value of a sum S ∈ Sum is the real number177

JSKω ∈ R, and the value of a constraint C ∈ Lc is the truth value JCKω ∈ B. The optimal178

solution JLK ∈ R of a linear program L with objective function S and constraint C is179

JLK = max{JSKω | ω : Ξ→ R+, JCKω = 1}. It is well-known that the optimal solution of a180

linear program can be computed in polynomial time [12].181

Rooted trees. A digraph is a pair (V, E) with node set V and edge sets E ⊆ V × V. A182

digraph is acyclic if there is no v ∈ V for which (v, v) ∈ E+. For any node u ∈ V, we denote183

by ↓ u = {v ∈ V | (u, v) ∈ E∗} the set of nodes in V reachable over some downwards path184

from u, and by ↑u = {v ∈ V | (v, u) ∈ E∗} the set of nodes that are in the context of or equal185

to u. A rooted tree is an acyclic digraph where (u, v), (u′, v) ∈ E implies u = u′, and there186

exists a node r ∈ V such that V = ↓ (r). In this case, r is unique and called the root of the187

tree. Observe that in this tree, the paths are oriented from the root to the leaves of the tree.188

Relational Databases. A database schema is a pair Σ = (R, C) where C a finite set of189

constants ranged over by a, b and R = ∪n∈NR(n) is a finite set of relation symbols. The190

elements r ∈ R(n) are called relation symbols of arity n ∈ N.191

A database D ∈ dbΣ is a tuple D = (Σ, D, ·D), where Σ is a schema, D a finite set of192

database elements, and rD ⊆ Dn a relation for any relation symbol r ∈ R(n) and aD ∈ D a193

database element for any constant a ∈ C. We also define the database’s domain dom(D) = D.194

A database with real numbers is a tuple D = (Σ, D, ·D,numD) such that D = (Σ, D, ·D) is195

a relational database and numD a partial function from D to R.196

Conjunctive Queries. In Figure 3 we recall the notion of conjunctive queries on relational197

databases. An expression E ∈ ExC is either a (query) variable x ∈ X or a constant a ∈ C.198

XX:6 Linear Programs with Conjunctive Queries

The set of conjunctive queries Q ∈ CqΣ is built from equations E1
.=E2, atoms r(E1, . . . , En),199

the logical operators of conjunction Q ∧ Q′ and existential quantification ∃x.Q. Given a200

vector x = (x1, . . . , xn) ∈ Xn and a query Q, we write ∃x.Q instead of ∃x1.∃xn.Q.201

The set of free variables fv(Q) ⊆ X are those variables that occur in Q outside the scope202

of an existential quantifier. A conjunctive query Q is said to be quantifier free if it does not203

contain any existential quantifier.204

For any conjunctive query Q ∈ CqΣ, set X ⊇ fv(Q) and database D ∈ dbΣ we define205

the answer set solDX(Q) in Figure 11. It contains all those assignments α : X → dom(D) for206

which Q becomes true on D. We also write solD(Q) instead of solDfv(Q)(Q). Observe that207

solD(∃x.Q) = solD(Q)|fv(Q)\set(x).208

Hypertree Decompositions. Hypertree decompositions of conjunctive queries are a209

way of laying out the structure of a conjunctive query in a tree. It allows to solve many210

aggregation problems (such as checking the existence of a solution, counting or enumerating211

the solutions etc.) on quantifier free conjunctive queries in polynomial time where the degree212

of the polynomial is given by the width of the decomposition.213

I Definition 1. Let X ⊆ X be a finite set of variables. A decomposition tree T of X is a214

tuple (V, E ,B) such that:215

- (V, E) is a finite directed rooted tree with edges from the root to the leaves,216

- the bag function B : V → 2X maps nodes to subsets of variables in X,217

- for all x ∈ X the subset of nodes {u ∈ V | x ∈ B(u)} is connected in the tree (V, E),218

- each variable of X appears in some bag, that is
⋃
u∈V B(u) = X.219

Now a hypertree decomposition of a quantifier free conjunctive query is a decomposition220

tree where the variables of each atom of the query is covered by at least one bag:221

I Definition 2 (Hypertree width of quantifier free conjunctive queries). Let Q ∈ CqΣ be a222

quantifier free conjunctive query. A generalized hypertree decomposition of Q is a decompos-223

ition tree T = (V, E ,B) of fv(Q) such that for each atom r(x) of Q there is a vertex u ∈ V224

such that set(x) ⊆ B(u). The width of T with respect to Q is the minimal number k such that225

every bag of T can be covered by the variables of k atoms of Q. The generalized hypertree226

width of a query Q is the minimal width of a tree decomposition of Q.227

We call a conjunctive query α-acyclic if it has general hypertree width 1. The query228

r(x, y) ∧ r(y, z) has the generalized hypertree decomposition (V, E ,B) with V = {1, 2, 3},229

E = {(1, 2), (1, 3)}, and B = [1/{x}, 2/{x, y}, 3/{y, z}] of width 1, so it is α-acyclic.230

Many problems can be solved efficiently on conjunctive queries having a small hypertree231

width. We will mainly be interested in the problem of efficiently computing solD(Q).232

I Lemma 3 (Folklore). Given a tree decomposition T = (V, E ,B) of a quantifier free233

conjunctive query Q ∈ CqΣ of width k and a database D ∈ dbΣ, one can compute the234

collection of bag projections (solD(Q)|B(u))u∈V in time O((|D|k log(|D|)) · |T |).235

Lemma 3 is folklore and can be proven by computing the semi-join of every bag in a236

subtree in a bottom-up fashion, as it is done in [15, Theorem 6.25]. It gives a superset Su of237

solD(Q)|B(u) for every u. Then, with a second top-down phase, one can remove tuples from238

Su that cannot be extended to a solution of solD(Q).239

Note that ifQ contains n atoms, solD(Q) may be of sizeO(|D|n) whereas (solD(Q)|B(u))u∈V ,240

that has size O(|D|k · |T |) where k is the width of T . In the particular case of α-acyclic241

conjunctive queries, where n = 1, the overall size of the projections is linear. It gives a242

succinct way of describing the set of solutions of Q that we exploit in this paper.243

Parts of our result will be easier to describe on so-called normalized decomposition trees:244

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:7

Constant numbers N ∈ NumC ::= c | num(E)
Linear sums S, S′ ∈ SumΣ ::= weightx:Q′(Q) |

∑
x:Q S | NS | S + S′ | N

Linear constraints C,C ′ ∈ LcΣ ::= S ≤ S′ | C ∧ C ′ | true | ∀x:Q.C
Linear programs L ∈ LpΣ ::= maximize S subject to C

where fv(S) = fv(C) = ∅.

Figure 4 LP(CQ) programs L ∈ LpΣ where c ∈ R, E ∈ ExC, x ∈ X ∗ and Q,Q′ ∈ CqΣ.

I Definition 4. Let T = (V, E ,B) be a decomposition tree. We call a node u ∈ V of T :245

- an extend node if it has a single child u′ and B(u) = B(u′) ∪ {x} for some x ∈ X \ B(u′),246

- a project node if it has a single child u′ and B(u) = B(u′) \ {x} for some x ∈ X \ B(u),247

- a join node if it has k ≥ 1 children u1, ..., uk with B(u) = B(u1) = ... = B(uk).248

We call T normalized if all its nodes in V are either extend nodes, project nodes, join nodes,249

or leaves.1250

It is well-known that tree decompositions can always be normalized without changing the251

width. Thus normalization does not change the asymptotic complexity of the algorithms.252

I Lemma 5 (Lemma of 13.1.2 of [13]). For every tree decomposition of T = (V, E ,B) of253

Q of width k, there exists a normalized tree decomposition T ′ = (V ′, E ′,B′) having width k.254

Moreover, one can compute T ′ from T in polynomial time.255

3 Linear Programs with Conjunctive Queries256

3.1 Syntax257

We want to assign weights to the answers of a conjunctive query on a database, such that258

they maximize a linear objective function subject to linear constraints. For this, we introduce259

the language LP(CQ) of linear programs with conjunctive queries that we also call linear260

Cq-programs. Its syntax is given in Figure 4. Note that an example of an LP(CQ) program261

for optimal warehouse selection was already given in Figure 1.262

LP(CQ) programs are interpreted as linear programs whose variables describe the solutions263

of conjunctive queries. As a consequence, they do not contain any explicit linear program264

variables. Instead, they may contain weight expressions weightx:Q′(Q) over conjunctive265

queries Q,Q′ ∈ CqΣ. Intuitively, this expressions is interpreted as a linear sum over linear266

program variables representing a solution of Q ∧Q′. Variables of Q and Q′ however may be267

bound in the context, for example through universal quantifiers or Σ-operators. The query268

variables in x are bound by the expression taking scope over Q and Q′. The free (query)269

variable of weight expressions must however be bound by the context, so that they will be270

instantiated to some database values before evaluation. Weight expressions without free271

variables reason about an unknown weighting of the answer set of query Q on the given272

database D with the variables in set(x). Its value is then the sum over the weights of tuples273

in answer set of Q ∧Q′ on the database D with variables in set(x).274

Beside weight expressions, linear sums in SumΣ may also contain expression N ∈ NumC275

or NS where S ∈ SumΣ and N is a constant number expression, which is either a real number276

1 In the literature this property is referred to as “nice” tree decompositions.

XX:8 Linear Programs with Conjunctive Queries

fv(c) = ∅ fv(num(E)) = fv(E)
fv(weightx:Q′(Q)) = fv(Q) ∪ fv(Q′) \ set(x) fv(

∑
x:Q S) = fv(S) ∪ fv(Q) \ set(x)

fv(NS) = fv(N) ∪ fv(S) fv(S ≤ S′) = fv(S) ∪ fv(S′)
fv(S + S′) = fv(S) ∪ fv(S′) fv(C ∧ C ′) = fv(C) ∪ fv(C ′)
fv(∀x:Q. C) = fv(Q) ∪ fv(C) \ {x} fv(true) = ∅
fv(maximize S subject to C) = ∅

Figure 5 Free variables of linear sums, constraints, and linear Cq-programs.

c ∈ R or a number expression num(E) with E ∈ X ∪ C. An expression num(a) denotes the277

real number numD(aD) if this value is defined. Note that the real value of num(a) over D is278

constant from the perspective of the linear program once the database D is fixed.279

Linear constrains C ∈ LcΣ are conjunctions of inequalities S ≤ S′ between linear sums280

S, S′ ∈ SumΣ, and universally quantified constraints ∀x:Q. C ′ requiring that C ′ must be281

valid for all possible values of x in the solution of Q over the database (after instantiation of282

the free variables of the ∀x:Q. C ′). The bound variables in x have scope over Q and C.283

LP(CQ) programs or equivalently linear Cq-programs L ∈ LpΣ are build from linear284

sums in SumΣ and linear constraints in LpΣ as one might expect. Note, however, that free285

query variables are ruled out at this level, while being permitted in nested linear constraints286

in LcΣ and linear sums in SumΣ.287

The sets of free variables of linear sums, constraints, and programs are formally defined288

in Figure 5. For instance, the following linear constraint C from the warehouse example has289

three free variables in fv(C) = {f, o, q}:290

weight(f ′,w′,b′,o′):f ′ .=f∧o′ .=o(dlr(f ′, w′, b′, o′)) ≤ num(q)291

The variables f ′, w′, b′, o′ are bound by the weight expression. The free variables f, o, q292

are bound by a quantifier in the context, which in the resource delivery example is the293

universal quantifier ∀(f, o, q):prod(f, o, q).294

3.2 Semantics295

We next define the semantics of a LP(CQ) program L ∈ LpΣ with respect to a database296

D ∈ dbΣ with real numbers by an interpretation to a linear program 〈L〉D ∈ Lp, that we will297

refer to as the naïve interpretation from now on.298

For doing so, one step is to replace the free query variables of the LP(CQ) programs by299

elements from the database. For this we assume that we have constants for all elements of the300

database domain, that is dom(D) ⊆ C and define for any conjunctive query Q and variable301

assignment γ : Y → D where fv(Q) ⊆ Y a conjunctive query sbsγ(Q), by replacing in Q all302

free occurrences of variables y ∈ Y by γ(y). The formal definition is given in Figure 12.303

In order to define the semantics of a linear program L over a database D we consider the304

following set of linear program variables:305

ΘD
L = {θαsbsγ(Q) | S = weightx:Q′(Q) in L,α : set(x)→ dom(D), γ : fv(S)→ dom(D)}306

Let S = weightx:Q′(Q) be a weight expression and γ : Y → dom(D) a variable assignment307

for the free variables fv(S) ⊆ Y such that set(x) ∩ Y = ∅. The interpretation of the weight308

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:9

〈weightx:Q′(Q)〉D,γ =
∑
α∈solDset(x)(sbsγ̃(Q∧Q′)) θ

α
sbsγ̃(Q)

〈∀x:Q. C〉D,γ =
∧
γ′∈solDset(x)(sbsγ̃(Q))〈C〉D,γ̃∪γ

′

〈
∑

x:Q S〉D,γ =
∑
γ′∈solDset(x)(sbsγ̃(Q))〈S〉D,γ̃∪γ

′

〈NS〉D,γ = 〈N〉D,γ〈S〉D,γ
〈num(a)〉D,γ = numD(aD) (may be undefined)

〈S1 + S2〉D,γ = 〈S1〉D,γ + 〈S2〉D,γ
〈S1 ≤ S2〉D,γ = 〈S1〉D,γ ≤ 〈S2〉D,γ
〈C1 ∧ C2〉D,γ = 〈C1〉D,γ ∧ 〈C2〉D,γ
〈true〉D,γ = true
〈c〉D,γ = c

〈maximize S subject to C〉D = maximize 〈S〉D,∅ subject to 〈C〉D,∅

Figure 6 Naïve interpretation of linear expressions (sums, constraints, programs) with conjunctive
queries F over database D as standard linear expression (sums, constraints, and respectively programs)
FD,γ , where γ : Y → dom(D) and fv(F) ⊆ Y ⊆ X and γ̃ = γ|Y \set(x).

expression 〈S〉D,γ is the overall weight of the solutions α ∈ solDset(x)(sbsγ̃(Q′ ∧ Q)) where309

γ̃ = γ|Y \set(x) in the table solDset(x)(sbsγ̃(Q)). It is described by the following linear sum:310

〈S〉D,γ =
∑

α∈solDset(x)(sbsγ̃(Q∧Q′))

θαsbsγ̃(Q)311

The (naive) interpretations 〈S〉D,γ and 〈C〉D,γ of other kinds of linear sums S ∈ SumΣ and312

constraints C ∈ LcΣ over a database D and an environment γ are rather obvious. Note that313

LP(CQ) program L can be interpreted as linear program 〈L〉D ∈ Lp without any environment314

as they do not have free variables. The definitions are summarized in Figure 6.315

We note that α-renaming the bound variables in weight expressions does not always316

preserve the semantics of LP(CQ) programs. It may make previously equal queries different,317

so that different weights may be assigned to their answer sets.318

3.3 Example from Resource Delivery Optimization319

Reconsider the LP(CQ) program L from Figure 1 with the following database D:320

prodD = {(F,O1, 1.5), (F,O2, 2.2)} storeD = {(W1, 0.9), (W2, 2.5)}
routeD = {(F,W1, 0.5), (F,W2, 0.4), orderD = {(B,O1, 0.8), (B,O2, 1.4)}

(W1, B, 0.6), (W2, B, 0.8)}
321

The answer set of query Q = dlr(f ′, w′, b′, o′) on D is to be weighted. We denote every322

answer α : {f ′, w′, b′, o′} → dom(D) by (α(f ′), α(w′), α(b′), α(o′)). Then:323

solD(dlr) = {(F,W1, B,O1), (F,W2, B,O1), (F,W1, B,O2), (F,W2, B,O2)}324

The naive interpretation 〈L〉D is the following linear program with variables in ΘD
L:325

minimize 0.5 (θ(F,W1,B,O1)
Q + θ

(F,W1,B,O2)
Q) + 0.4 (θ(F,W2,B,O1)

Q + θ
(F,W2,B,O2)
Q)

+0.6 (θ(F,W1,B,O1)
Q + θ

(F,W1,B,O2)
Q) + 0.8 (θ(F,W2,B,O1)

Q + θ
(F,W2,B,O2)
Q)

subject to θ
(F,W1,B,O1)
Q + θ

(F,W2,B,O1)
Q ≤ 1.5 ∧ θ

(F,W1,B,O2)
Q + θ

(F,W2,B,O2)
Q ≤ 2.2

∧ θ
(F,W1,B,O1)
Q + θ

(F,W2,B,O1)
Q ≥ 0.8 ∧ θ

(F,W1,B,O2)
Q + θ

(F,W2,B,O2)
Q ≥ 1.4

∧ θ
(F,W1,B,O1)
Q + θ

(F,W1,B,O2)
Q ≤ 0.9 ∧ θ

(F,W2,B,O1)
Q + θ

(F,W2,B,O2)
Q ≤ 2.5

326

The term (θ(F,W1,B,O1)
Q + θ

(F,W1,B,O2)
Q) in the objective function of this linear program is327

obtained by computing the value of the expression weight(f ′,w′,b′,o′):f ′ .=s∧w′ .=e(Q) with328

XX:10 Linear Programs with Conjunctive Queries

the environment [f ′/F,w′/W1]. Similarly the term θ
(F,W1,B,O1)
Q + θ

(F,W2,B,O1)
Q in the first329

constraint is obtained by computing the value of weight(f ′,w′,b′,o′):f ′ .=f∧o′ .=o(Q) with the330

environment [r/O1, f/F]. Observe that both weight expressions share the same linear331

program variable θ(F,W1,B,O1)
Q so they are related semantically.332

4 An Efficiently Solvable Fragment333

We introduce a class of projecting LP(CQ) programs and define a notion of width of linear334

Cq-program in this fragment through a collection of hypertree decompositions of the queries335

they contain. We then show one can find the optimal solution of such programs L more336

efficiently than by explicitly computing the interpretation over a database D as a linear337

program 〈L〉D. For this we will present an alternative factorized interpretation of L to a338

linear program having fewer variables, while preserving the optimal solution.339

4.1 Projecting LP(CQ) Programs340

We start with the definition of projecting LP(CQ) programs, whose main restriction resides341

on how they can use conjunctive queries.342

I Definition 6. The fragment LP(CQ)proj is the set of LP(CQ) programs L such that:343

- for any subexpression weightx:Q′(Q) of L, we have that set(x) = fv(Q) and Q′ is a344

projecting query of the form x′ .=y with set(x′) ⊆ set(x) and set(x) ∩ set(y) = ∅.345

- for any sum
∑

x:Q S and any universal quantifier ∀x:Q. C of L, the query Q is of the346

form ∃z.r(y) for some relation symbol r ∈ R(n), vector y ∈ Xn and vector z ∈ X ∗ such347

that set(x) ⊆ fv(Q).348

We denote by LP(CQqf)proj the subset of LP(CQ)proj where every conjunctive query Q349

appearing in a weight expression quantifier free.350

Any expression weightx:Q′(Q) of a projecting LP(CQ) program is restricted to projection351

in Q′. Furthermore Q may not have any variables that are free in the weight expression.352

This condition ensures that the interpretation in environment γ of Q does not substitute any353

variables, that is sbsγ(Q) = Q. Thus, it is interpreted as a sum over θαQ variables where α354

are solutions of Q taking the same value γ(y) on variables x′. Our algorithm will exploit355

this fact by utilizing tree decompositions of Q to interpreter weightx:Q′(Q) of LP(CQqf)proj356

with one variable instead of |solD(Q ∧Q′)| needed in the naive interpretation.357

Another restriction of LP(CQ)proj is that universal quantifiers and sums are guarded by358

a database relation. Our algorithm does not exploit the structure of conjunctive queries in359

universal quantifiers and sums so we interpret these expressions in the same way as in Figure 6.360

To avoid a blow up in the number of constraints, we chose to guard these constructions.361

Hypertree Width of Projecting LP(CQ) Programs. We next lift the concept of generalized362

hypertree width from quantifier free conjunctive queries to LP(CQqf)proj programs. The363

complexity of our algorithm will depend thereof.364

For any program L in LP(CQ)proj , we define the set of queries cqs(L) that are weighted365

when interpreting L as cqs(L) = {Q | weightx:Q′(Q) is a subexpression of L}. Observe that366

the resource delivery problem L is in LP(CQ)proj with cqs(L) = {dlr(f ′, w′, b′, o′)}.367

I Definition 7. Let L be an LP(CQqf)proj program and T = (TQ)Q∈cqs(L) a collection of368

decomposition trees. We call T a tree decomposition of L if for any expression weightx:x′ .=y(Q)369

in L, TQ = (VQ, EQ,BQ) is a tree decomposition of Q and there is a node u of TQ such that370

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:11

ρT,D,γ(∀x:r(x).C) =
∧
γ′∈solD(r(x)) ρ

T,D,γ∪γ′(C)
ρT,D,γ(

∑
x:r(x) S) =

∑
γ′∈solD(r(x)) ρ

T,D,γ∪γ′(S)
ρT,D,γ(NS) = ρT,D,γ(N)ρT,D,γ(S)
ρT,D,γ(num(a)) = numD(aD)

(may be undefined)

ρT,D,γ(S1 + S2) = ρT,D,γ(S1) + ρT,D,γ(S2)
ρT,D,γ(S1 ≤ S2) = ρT,D,γ(S1) ≤ ρT,D,γ(S2)
ρT,D,γ(C1 ∧ C2) = ρT,D,γ(C1) ∧ ρT,D,γ(C2)
ρT,D,γ(true) = true
ρT,D,γ(c) = c

ρT,D,γ(weightx:x′ .=y(Q)) =
{
ξQ,u,β if β = [x′/γ(y)] ∈ solD(Q)|BQ(u)
0 else

where u is a node of TQ such that set(x′) = BQ(u).

ρT,D(maximize S subject to C)
= maximize ρT,D,∅(S) subject to ρT,D,∅(C) ∧

∧
Q∈cqs(L) lscT,D(Q)

Figure 7 T-factorized interpretation of LP(CQqf)proj programs L with respect to a database D.

BQ(u) = set(x′). We define the width of T to be the maximal width of TQ for Q ∈ cqs(L).371

The size of T is defined to be |T| =
∑
Q∈cqs(L) |VQ|.372

The rest of the section is dedicated to proving the following theorem:373

I Theorem 8 (Main). Let L be a LP(CQqf)proj program, T a decomposition of L of width374

k and D a database. There exists an interpretation ρT,D(L) of L having the same value as375

〈L〉D and O(|T||D|k) variables.376

Observe that the number of variables of 〈L〉D is roughly the total number of solutions377

of the conjunctive queries in cqs(L), which may be up to O(|D|n), where n is the number378

of atoms in the conjunctive queries. In Theorem 8, the degree of the polynomial now only379

depends on the width of the queries, which may be much smaller, resulting in a more succinct380

linear program that is easier to solve. In the resource optimization example, this allows to381

go from a cubic number of variables to a quadratic one, but the improvement may be much382

better on queries having many atoms and small width.383

4.2 Factorized Interpretation384

Based on hypertree decompositions we present an alternative factorized interpretation to385

smaller linear program having the same optimal value.386

In this section, we explain how we can exploit tree decompositions of projecting LP(CQ)387

programs with quantifier free conjunctive queries to find a smaller interpretation. We fix a388

program L of LP(CQqf)proj . Let T = (TQ)Q∈cqs(L) be a tree decomposition of L of width k389

where TQ = (VQ, EQ,BQ). The T-factorized interpretation ρT,D(L) of L is formally defined390

in Figure 7. It mainly mirrors the naïve interpretation of Figure 6 but significantly differs in391

two places: the first one is the way weightx:x′ .=y(Q) is interpreted and one can observe the392

addition local soundness constraints lscT,D(Q) to the program.393

The set of linear program variables for the factorized interpretation ρT,D(L) is defined by:394

ΞT,DL = {ξQ,u,β | Q ∈ cqs(L), u ∈ VQ, β ∈ solD(Q)|BQ(u)}.395

Observe that since TQ is a tree decomposition of Q of width at most k, solD(Q)|BQ(u) is of396

size at most |D|k. Thus we have at most |T||D|k variables in ρT,D(L), as stated in Theorem 8.397

XX:12 Linear Programs with Conjunctive Queries

One can see that given a context γ such that ρT,D,γ(weightx:x′ .=y(Q)) = ξQ,u,β , the398

usual interpretation would have been 〈weightx:x′ .=y(Q)〉D,γ =
∑
α∈solDset(x)(Q):α|x′=β

θαQ, that399

is, intuitively, ξQ,u,β represents the linear sum of variables θαQ in the naive interpretation400

with α compatible with β.401

To prove that ρT,D(L) has the same optimal value as 〈L〉D, we will reconstruct a solution402

to 〈L〉D from a solution to ρT,D(L) such that the value of ξQ,u,β indeed corresponds to the sum403

of the values of variables θαQ with α compatible with β and vice-versa. To ensure that this is404

always possible, we have to be careful that variables ξQ,u,β and ξQ,v,β′ are compatible with405

one another because they may correspond to two sums on θαQ variables having a non-empty406

intersection. We ensure this through local soundness constraints lscT,D(Q) for every query407

Q ∈ cqs(L) (where A = solD(Q)):408

lscT,D(Q) =
∧

(u,v)∈EQ

∧
γ∈A|BQ(u)∩BQ(v)

∑
β∈A|BQ(u),β|BQ(u)=γ

ξQ,u,β
.=

∑
β′∈A|BQ(v),β′|BQ(v)=γ

ξQ,v,β′ .409

Observe we added at most |D|k|EQ| constraints for each Q ∈ Q. Moreover constructing410

ρT,D(L) from L and D mainly relies on being able to compute solD(Q)|B(u) for every node u411

of TQ. This is possible in polynomial time by dynamic programming on TQ, see Lemma 3.412

4.3 Correctness413

Weightings on Tree Decompositions. One can observe that the key idea in the definition414

of ρT,D(L) is to introduce linear program variables that will intuitively encode the sum of415

several linear program variables in the naive interpretation 〈L〉D. A solution to 〈L〉D maps a416

variable θαQ to a non-negative real number where α ∈ solD(Q). In other words, it assigns a417

weight ω(α) ∈ R+ to every α ∈ solD(Q) for every Q ∈ cqs(L). A solution to ρT,D(L) maps a418

variable ξQ,u,β to a non-negative real number where β ∈ solD(Q)|BQ(u). In other words, it419

assigns a weight Wu to every β that is in solD(Q)|B(u) for every node u of TQ.420

To reconstruct a solution of 〈L〉D from a solution W of ρT,D(L), we need to be able to421

reconstruct a weighting ω of solD(Q) such that
∑
α|BQ(u)=β ω(α) = Wu(β). In this section,422

we explain that this is always possible as long as the Wu are compatible with one another,423

which is ensured by local soundness constraints lscT,D(Q) in ρT,D(L).424

The technique is not specifically tied to the fact that the weights are assigned to the425

solutions of a quantifier free conjunctive query, thus we formulate our result in a more general426

setting by considering weightings on a set A ⊆ DX = {α | α : X → D} for a finite set427

of variables X. Intuitively however, one can think of A as solD(Q) for a quantifier-free428

conjunctive query Q.429

We start by introducing a few notations. Let X ′ ⊆ X ⊆ X . For any α′ : X ′ → D we430

define the set of its extensions into A by A[α′] = {α ∈ A | α|X′ = α′}. Moreover, given a431

weighting ω : A→ R+ of A, we define the projection πX′(ω) : A|X′ → R+ such that for all432

α′ ∈ A|X′ : πX′(ω)(α′) =
∑
α∈A[α′] ω(α).433

We now fix T = (V, E ,B) a decomposition tree for X. Given two nodes u, v ∈ V we434

denote the intersection of their bags by Buv = B(u) ∩ B(v).435

I Definition 9. A family W = (Wv)v ∈V is a weighting collection on T for A if it satisfies436

the following conditions for any two nodes u, v ∈ V:437

- Wu is a weighting of A|B(u), i.e., Wu : A|B(u) → R+.438

- Wu is sound for T at {u, v}, i.e., πBuv (Wu) = πBuv (Wv).439

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:13

Intuitively, the soundness of a weighting collection on T is a minimal requirement for the440

existence of a weighting ω of A such that Wu is the projection of ω on the bag B(u) of T ,441

that is Wu = πB(u)(ω) since we have the following:442

I Proposition 10. For any weighting ω : A→ R+, the family (πB(v)(ω))v∈V is a weighting443

collection on T for A.444

What is more interesting is the other way around, that is, given (Wu)u∈V a weighting445

collection on T , whether we can find a weighting ω of A such that Wu = πB(u)(ω) for every446

u. It turns out that soundness is not enough to ensure the existence of such a weighting.447

However it becomes possible when A is conjunctively decomposed:448

I Definition 11. Let T = (V, E ,B) be a decomposition tree of X ⊆ X . We call a subset449

of variable assignments A ⊆ DX conjunctively decomposed by T if for all u ∈ V and450

β ∈ A|B(u): {α1 ∪ α2 | α1 ∈ A|B(↑u)[β], α2 ∈ A|B(↓u)[β]} ⊆ A[β] where B(V) =
⋃
v∈V B(v)451

for any V ⊆ V.452

Note that the inverse inclusion holds in general. Of course, this property holds if A is the453

answer set of a conjunctive queries and the tree is a tree decompositions of Q:454

I Proposition 12. For any tree decomposition T of a quantifier free conjunctive query455

Q ∈ CqΣ and database D ∈ dbΣ, the answer set solD(Q) is conjunctively decomposed by T .456

Proposition 12 does not hold when Q is not quantifier free. It explains why the technique457

only works for the fragment LP(CQqf)proj . We however explain how one can use the same458

technique on LP(CQ)proj in Section 4.4.459

Soundness and conjunctive decomposition are enough to prove this correspondence460

theorem that allows us to transform solutions of ρT,D(L) to solutions of 〈L〉D and vice-versa.461

I Theorem 13 (Correspondence). Let T = (V, E ,B) be a normalized decomposition tree of462

X ⊆ X and A ⊆ DX be a set of variable assignment that is conjunctively decomposed by T .463

1. For every weighting ω of A, (πB(u)(ω))u∈V is a weighting collection on T for A.464

2. For any weighting collection W on T for A there exists a weighting ω of A such that465

∀u : Wu = πB(u)(ω).466

While the first item of Theorem 13 follows by Proposition 10 and can be proven by a simple467

calculation, the second item is harder to prove. We present here one way of constructing ω468

from (Wu)u∈V . The proof of correctness of this construction can be found Appendix C.469

Let T = (V, E ,B) be a normalized decomposition tree of X andW = (Wu)u∈V a weighting470

collection on T for A ⊆ DX . For any node u ∈ V , we inductively construct ωu : A|B(↓u) → R+.471

If u is a leaf of T , we define ωu such that for all α ∈ A|B(↓u), ωu(α) := Wu(α).472

Now, assume ωu′ is defined for all children u′ of u. Let α ∈ A|B(↓u) and denote by473

β = α|B(u). We define ωu(α) as follows:474

If u is an extend node with a child v then ωu(α) := Wu(β)
Wv(α|B(v))ωv(α|B(↓v)) ifWv(α|B(v)) >475

0 and ωu(α) := 0 otherwise.476

If u is a project node with a child v then ωu(α) := ωv(α|B(↓v)).477

If u is a join node with children v1, . . . , vk then ωu(α) :=
∏k

i=1
ωvi (α|B(↓vi))

Wu(β)k−1 ifWu(β) > 0478

and ωu(α) := 0 otherwise.479

Finally, we let ω be ωr where r is the root of T . The proof that ∀u : Wu = πB(u)(ω) is480

done via two inductions. The first one is a bottom-up induction to prove that Wu = πB(u)(ω)481

for every node u in the tree decomposition. Then, by top-down induction, one can prove that482

XX:14 Linear Programs with Conjunctive Queries

ωu = πB(↓u)(ωr). The proof is tedious and mainly rely on calculations and careful analysis483

on how A is decomposed along T .484

Correctness Proof. We are now ready to prove that, given a tree decomposition T of a485

linear Cq-program L of LP(CQqf)proj , ρT,D(L) and 〈L〉D have the same optimal value.486

For any weighting .
ω: ΘL → R+ we define a weighting Π(.ω) : ΞT,DL → R+ such that for all487

ξQ,u,β ∈ ΞT,DL : Π(.ω)(ξQ,u,β) =
∑
α∈solD(Q)[β]

.
ω (θαQ).488

Observe that .
ω can be seen as a collection of weightings of solD(Q) for Q ∈ cqs(L). It489

turns out that evaluating linear sums and constraints of 〈L〉D with .
ω returns the same value490

as the evaluation of linear sums and constraints of ρT,D(L) with Π(.ω):491

I Lemma 14. For any T−projecting sum S ∈ SumΣ and environment γ : X → dom(D)492

where fv(S) ⊆ X it holds that J〈S〉D,γK .ω = JρT,D,γ(S)KΠ(
.
ω).493

I Lemma 15. For any constraint C ∈ LcΣ that is T−projecting and environment γ : X →494

dom(D) where fv(C) ⊆ X: J〈C〉D,γK .ω = JρT,D,γ(C)KΠ(
.
ω).495

Lemma 14 and Lemma 15 rely on Proposition 10. It is easy to see that they imply that if496
.
ω is a solution of 〈L〉D (the fact that it respects the local soundness constraints follows from497

Proposition 10), then Π(.ω) is a solution of ρT,D(L) with the same value. Thus, the optimal498

value of ρT,D(L) is greater or equal than the optimal value of 〈L〉D.499

To prove the equality, it remains to prove that the optimal value of 〈L〉D is greater or500

equal than the optimal value of ρT,D(L). To this end, consider a solution of ρT,D(L). It is a501

weighting
.

W of ΞT,DL which respects the local soundness constraints. By Theorem 13, we502

will be able to reconstruct a weighting .
ω of ΘL which respects the constraint of 〈L〉D. It is503

formalized in the following lemma whose proof can be found in the appendix.504

I Lemma 16. For any weighting
.

W of ΞT,DL such that J
∧
Q∈Q lscT,D(Q)K .

W
= 1, there exists505

a weighting .
ω of ΘQ such that

.

W= Π(.ω).506

I Proposition 17. Let D be a database and T a collection of decomposition tree. Any507

T−projecting LP(CQ) program L = (maximize S subject to C) ∈ LpΣ satisfies that:508

1. For any solution .
ω of 〈L〉D there is a solution

.

W of ρT,D(L) s.t. J〈S〉D,∅K .ω = JρT,D(S)K .

W
.509

2. For any solution
.

W of ρT,D(L) there is a solution .
ω of 〈L〉D s.t. J〈S〉D,∅K .ω = JρT,D(S)K .

W
.510

4.4 Treatment of Existential Quantifiers511

The previous method of factorized interpretation only works for the LP(CQqf)proj fragment,512

where conjunctive queries are supposed to be quantifier free. It turns out that one can513

similarly solve linear programs of LP(CQ)proj programs by applying a simple transformation.514

For any LP(CQ)proj program L we can move the existential quantifiers of the con-515

junctive query into the weight expression as follows, yielding an LP(CQqf)proj program516

mvq(L): we replace every subexpression weightx:Q′(∃z.Q) of L, where Q is quantifier free,517

by weightxz:Q′(Q) where xz is the concatenation of vectors x and z. We have:518

I Theorem 18 (Removing Existential Quantifiers). For any projecting LP(CQ) program, the519

LP(CQqf)proj program mvq(L) has the same optimal value as L.520

Observe that we can use this technique for the resource delivery problem L. In mvq(L),521

there is only one query on variables (f ′, o′, q, q′, b′, w′, c, c′). It is easy to see that it has522

hypertree width 2 since we can construct a tree decomposition having two connected bags523

B(u) = {f ′, o′, b′, q, q′} and B(v) = {f ′, w′, b′, c, c′}. B(u) is covered by the first two atoms524

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:15

Figure 8 Number of variables and performances of GLPK for naive (blue) and factorized (red)
interpretation of the resource delivery problem with respect to table size.

and B(v) by the last two. Now, because of the weight expressions, we also need to add a525

bag for {f ′, w′}, {w′} and {w′, b′} which can safely be connected to v, and for {f ′, o′} and526

{b′, o′} which can safely be connected to u. It gives a decomposition of L of width 2, showing527

that factorized interpretation will have less variables than the naive interpretation.528

5 Preliminary Experimental Results529

The practical performances of our idea heavily depends on how linear solvers perform on530

factorized interpretation. We compared the performances of GLPK on both the naive531

interpretation and the factorized interpretation of the resource delivery problem from the532

introduction using some synthetic data. We used Python and the Pulp library to build the533

linear programs. The tree-decomposition of the dlr query is hard-coded. The tests were run534

on an office laptop by making the number of tuples in the randomly filled prod, order and535

route tables vary. A summary of our experiments is displayed on Figure 8.536

As expected when comparing both linear programs we observed a larger number of537

constraints (due to the soundness constraints) and a smaller number of variables in the538

factorized interpretation. While building the naive interpretation quickly became slower539

than building the factorized interpretation, we do not analyze this aspect further since we540

are not using a database engine to build the naive interpretation and solve it directly from541

the tree decomposition, which may not be the fastest method without further optimizations.542

Most interestingly solving the factorized interpretation was faster than solving the naive543

interpretation in spite of the increased number of constraints thanks to the decrease in the544

number of variables. In particular for an instance with an input size of 2000 lines per table,545

the naive interpretation had roughly 1.5 million variables while the factorized interpretation546

had only roughly 150000. The solving time was also noticeably improved at 22s for the547

factorized case against 106s for the naive one.548

Conclusion and Future Work Our preliminary experiments seem to confirm the efficiency549

of factorized interpretation, in accordance with our complexity results. More thorough550

benchmarking is needed to evaluate the practical relevance though. Another direction to551

explore would be to better integrate our approach into a database engine, in the way it is552

done by SolveDB for example. Finally, other optimization problems may benefit from this553

approach such as convex optimization or integer linear programming. It would be interesting554

to define languages analogous to LP(CQ) for these optimization problems and study how555

conjunctive query decompositions could help to improve the efficiency.556

XX:16 Linear Programs with Conjunctive Queries

References557

1 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries558

and constant delay enumeration. In International Workshop on Computer Science Logic, pages559

208–222. Springer, 2007.560

2 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and561

ordering in factorised databases. Proceedings of the VLDB Endowment, 6(14):1990–2001, 2013.562

3 Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In Pacific-Asia563

Conference on Knowledge Discovery and Data Mining, pages 858–863. Springer, 2008.564

4 Toon Calders, Jan Ramon, and Dries Van Dyck. All normalized anti-monotonic overlap graph565

measures are bounded. Data Mining and Knowledge Discovery, 23(3):503–548, 2011.566

5 Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy.567

Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.568

6 Mathias Fiedler and Christian Borgelt. Support computation for mining frequent subgraphs569

in a single graph. In MLG. Citeseer, 2007.570

7 Robert Fourer, David M Gay, and Brian W Kernighan. A modeling language for mathematical571

programming. Management Science, 36(5):519–554, 1990.572

8 Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman573

New York, 2002.574

9 G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries.575

Journal of Computer and System Sciences, 64(3):579–627, May 2002. arXiv: cs/9812022.576

10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. On tractable queries and constraints. In577

International Conference on Database and Expert Systems Applications, pages 1–15. Springer,578

1999.579

11 Martin Grohe. The structure of tractable constraint satisfaction problems. In International580

Symposium on Mathematical Foundations of Computer Science, pages 58–72. Springer, 2006.581

12 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Comb.,582

4(4):373–396, 1984. doi:10.1007/BF02579150.583

13 Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &584

Business Media, 1994.585

14 Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of inconsistent586

databases with binary integer programming. Proceedings of the VLDB Endowment, 6(6):397–587

408, April 2013. URL: http://dl.acm.org/citation.cfm?doid=2536336.2536341, doi:10.588

14778/2536336.2536341.589

15 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.590

16 Alexandra Meliou and Dan Suciu. Tiresias: The database oracle for how-to queries. In591

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,592

SIGMOD ’12, pages 337–348, New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/593

10.1145/2213836.2213875, doi:10.1145/2213836.2213875.594

17 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and595

Guido Tack. Minizinc: Towards a standard cp modelling language. In International Conference596

on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.597

18 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.598

ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015.599

19 Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive600

queries. Journal of Computer and System Sciences, 79:984–1001, September 2013.601

20 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression models over602

factorized joins. In Proceedings of the 2016 International Conference on Management of Data,603

pages 3–18. ACM, 2016.604

21 Laurynas Šikšnys and Torben Bach Pedersen. SolveDB: Integrating optimization problem605

solvers into SQL databases. In Proceedings of the 28th International Conference on Scientific606

and Statistical Database Management, page 14. ACM, 2016.607

https://doi.org/10.1007/BF02579150
http://dl.acm.org/citation.cfm?doid=2536336.2536341
https://doi.org/10.14778/2536336.2536341
https://doi.org/10.14778/2536336.2536341
https://doi.org/10.14778/2536336.2536341
http://doi.acm.org/10.1145/2213836.2213875
http://doi.acm.org/10.1145/2213836.2213875
http://doi.acm.org/10.1145/2213836.2213875
https://doi.org/10.1145/2213836.2213875

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:17

22 Natalia Vanetik, Ehud Gudes, and Solomon Eyal Shimony. Computing frequent graph patterns608

from semistructured data. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE609

International Conference on, pages 458–465. IEEE, 2002.610

23 Yuyi Wang, Jan Ramon, and Thomas Fannes. An efficiently computable subgraph pattern611

support measure: counting independent observations. Data Mining and Knowledge Discovery,612

27(3):444–477, November 2013.613

24 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the Seventh614

International Conference on Very Large Data Bases - Volume 7, VLDB ’81, pages 82–94.615

VLDB Endowment, 1981.616

XX:18 Linear Programs with Conjunctive Queries

A Minimizing Noise in ε-Differential Privacy617

The strategy of differental privacy is to add noise to the relational data before publication.618

Roughly speaking, the general objective of ε-differential privacy [5] is to add as few noise as619

possible, without disclosing more than an ε amount of information. We illustrate this with620

the example of a set of hospitals which publish medical studies aggregating results of tests on621

patients, which are to be kept confidential. We consider the problem of how to compute the622

optimal amount of noise to be added to each separate piece of sensitive information (in terms623

of total utility of the studies) while guaranteeing ε-differential privacy. We show that this624

question can be solved (approximately) by computing the optimal solution of a projecting625

LP(CQ) program with an acyclic conjunctive query.626

A.1 Hospital Database about Medical Studies on Patient Tests627

We consider a database D with signature Σ = {H,Test, St,Priv,Sens} whose domain provides628

patients, hospitals, studies, and positive real numbers. The relations of D are the following:629

(pat, hosp) ∈ HD: the patient pat is in the hospital hosp.630

(pat, st) ∈ TestD: the patient pat participates in the study st.631

(test, st) ∈ StD: the test test is used in the study st.632

(obj, ε) ∈ PrivD: the object obj is either a patient or a hospital. The positive real number633

ε indicates the privacy budget for obj.634

(st, test, val) ∈ SensD: the value (in terms of study results) of a patient participating in635

a study and contributing a unit of information on their result on test test.636

The following query defines the sensitive information that will be revealed to the research-
ers performing the medical studies. It selects all pairs of patients pat and tests test, such pat
did the test which was then used by some study st.

InStudy(pat, test) = ∃st. Test(pat, test) ∧ St(test, st)

More precisely, the sensitive information is the answer set of this query over the database
D. We want to assign a weight to all the pairs in the answer set. The weight of a sensitive
pair states the amout of information that may be disclosed about the pair after the addition
of the noise. The needed amount of noise for the pair is then inversely proportional to the
amount of information that may be disclosed, i.e, the weight of the pair, which is also called
its privacy budget. The weight of a patient pat and a test test is specified by the weight
expression:

weight(pat′,test′):test′ .=test∧pat′ .=pat(InStudy(pat′, test′))

In an environment γ for the global variables pat and test this weight expression is interpreted
as the linear program variable:

θ
[pat′/γ(pat),test′/γ(test)]
InStudy(pat′,test′)

The overall weight of all sensitive tests of the same patient pat is described by the weight
expression:

weight(pat′,test′):pat′ .=pat(InStudy(pat′, test′))

In an environment γ for the global variable pat this weight expression is interpreted as the
following sum of linear program variables:∑

α∈solD(InStudy(pat′,test′)∧pat′=γ(pat))

θ
[pat′/γ(pat),test′/α(test′)]
InStudy(pat′,test′)

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:19

Queries
InStudy(pat, test) = ∃st. Test(pat, test) ∧ St(st, test)

Constraints

CPat = ∀(pat, ε):Priv(pat, ε).
weight(pat′,test′):pat′ .=pat(Q(pat′, test′)) ≤ num(ε)

CHosp = ∀(hosp, ε):Priv(hosp, ε).
∑

(pat):H(pat,hosp)
weight(pat′,test′):pat′ .=pat(InStudy(pat′, test′)) ≤ num(ε)

Program

maximize
∑

(st,test,val):Sens(st,test,val)
num(val) weight(pat′,test′):test′ .=test(InStudy(pat′, test′))

subject to CPat ∧ CHosp

Figure 9 An LP(CQ)proj program for differential privacy when publishing medical studies
aggregating patient tests in hospitals.

This sum may be represented more compactly in factorized interpretation avoiding the637

enumeration of the answer set for the database D.638

The LP(CQ) program for this example is given in Figure 9. The linear privacy constraints639

that are to be satisfied are CPat and CHosp. Constraint CPat states that for all patients pat640

with privacy requirement ε, i.e., ∀(pat, ε) : Priv(pat, ε), the sum of all weights of all sensitive641

pairs (pat, test′) in InStudy must be bounded by ε. This constraint is motivated by the642

composition rule of differential privacy (DP). Suppose we have sensitive pairs pi = (pati, testi).643

If pi is εi-DP for 1 ≤ i ≤ n, then {p1 . . . pn} is (
∑n
i=1 εi)-DP.644

Similarly, constraint CHosp states that for all hospitals hosp with privacy requirement645

ε, i.e., ∀(hosp, ε) : Priv(hosp, ε), the sum of all weights of all sensitive pairs (pat, test) in646

InStudy where pat is a patient of hosp must be bounded by ε. Finally, the objective function647

is to maximize the sum over all triples (st, test, val) in Sens of the weights of pairs (pat′, test)648

in InStudy but multiplied with num(val), the utility of the information for the study.649

This program is projecting, so it is a member of LP(CQ)proj . Furthermore, a hypertree650

decomposition of width 1 is available. While the naive interpretation over a database yields651

a linear program with a quadratic number of variables (in the size of the database), the652

factorized interpretation yields a linear program with a linear number of variables.653

Please note that the approach presented above is only approximate. For example, summing654

over noise variance in the objective function would be more accurate but would only lead655

to a convex program, which motivates us to extend beyond linear programs in future work.656

Also, the composition rule for DP is only approximate, more advanced composition rules657

have been studied but they are more complex and still approximate.658

B Computing the s-Measure for Graph Pattern Matching659

The s-measure has been introduced by Wang et al. [23] to evaluate the frequency of matchings660

of a subgraph pattern in a larger graph. Here, we consider pattern matches as graph661

homomorphism, but we could also restrict them to graph isomorphisms.662

A naive way of evaluating this frequency is to use the number of pattern matches as the663

frequency measure. Using this value as a frequency measure is problematic since different664

XX:20 Linear Programs with Conjunctive Queries

pattern maches may overlap, and as such they share some kind of dependencies that is665

relevant from a statistical point of view. More importantly, due to the overlaps, this measure666

fails to be anti-monotone, meaning that a subpattern may be counter-intuitively matched less667

frequently than the pattern itself. Therefore, the finding of better anti-monotonic frequency668

measures – also known as support measures – has received a lot of attention in the data669

mining community [3, 4, 6]. A first idea is to count the maximal number of non-overlapping670

patterns [22]. However, finding such a maximal subset of patterns essentially boils down to671

finding a maximal independent set in a graph, a notorious NP-complete problem [8].672

The s-measure is a relaxation of this idea where the frequency of pattern matches is
computed as the maximum of the sum of the weights that can be assigned to each pattern
match, under the constraint that for any node v of the graph and node v′ in the subgraph
pattern that the sum of the weights of the matchings mapping v′ to v is at most 1. More
formally, given two digraphs G = (VG, EG) and P = (VP , EP), we define a matching of
the pattern P in graph G as a graph homomorphism h : VP → VG. Recall that a graph
homomorphism requires for all (v, v′) ∈ Ep that (h(v), h(v′)) ∈ EG. We denote by hom(P,G)
the set of matchings of P in G. The s-measure of P in G is then defines as the optimal
value of the following linear program with variables in {θh | h ∈ hom(P,G)} for positive real
numbers:

maximize
∑
h∈hom(P,G) θh

subject to ∀v ∈ VG.∀v′ ∈ VP .
∑
h∈hom(P,G)
h(v′)=v

θh ≤ 1

673

We can consider each graph G as a database D with signature Σ = {node, edge}, domain674

dom(DG) = VG and relations nodeD = VG and edgeD = EG. Since the names of the nodes675

of the pattern do not care for pattern matching, we can assume without loss of generality676

that VP = {1, . . . , `} for some ` ∈ N. We can then define a matching of a pattern P by a677

conjunctive query matchP (x1, . . . , x`):678

matchP (x1, . . . , x`) =
∧

(i,j)∈EP

edge(xi, xj)679

It is clear that α ∈ solD(matchP (x1, . . . , x`) if and only if α ◦ [1/x1, . . . , `/x`] is a pattern
matching in hom(P,Q). One can thus rewrite the previous linear program as LP(CQ)
program as follows:

maximize
∑

(x):node(x) weight(x1,...,xn):x1
.=x(matchP (x1, . . . , xn))

subject to ∀(x) : node(x): ∧`i=1 weight(x1,...,xn):xi
.=x(matchP (x1, . . . , xn)) ≤ 1.

Moreover, the hypertree width of the conjunctive query matchP (x1, . . . , x`) is at most680

the (hyper)tree width of the pattern graph P . By our main Theorem 8, the factorized681

interpretation yields a linear program with at most (|VG| + |EG])k variables, where k is682

the (hyper)tree width of pattern P . The original linear program could have been of size683 (
|VG|
`

)
which is bounded by |VG|`. So the factorized interpretation will pay off if the684

(hyper)tree width k of the pattern is considerably smaller than the number ` of its nodes.685

C Weightings686

C.1 Projections of weightings687

Let X ′ ⊆ X ⊆ X and A ⊆ DX = {α | α : X → D} be a set of variable assignments. For any688

α′ : X ′ → D we define the set of its extensions into A by A[α′] = {α ∈ A | α|X′ = α′}.689

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:21

I Lemma 19. For any two α1, α2 ∈ A|X′ , if α1 6= α2 then A[α1] ∩A[α2] = ∅.690

Proof. If α1 6= α2 ∈ A|X′ , then there exists x′ ∈ X ′ such that α1(x′) 6= α2(x′), so if691

γ1 ∈ A[α1] and γ2 ∈ A[α2] then γ1(x′) = α1(x′) 6= α2(x′) = γ2(x′). J692

I Lemma 20. For A ⊆ DX , X ′′ ⊆ X ′ ⊆ X, α′′ ∈ A|X′′ : A[α′′] =
⊎
α′∈A|X′ [α′′]

A[α′].693

Proof. First note that the union on the right is disjoint by Lemma 19.694

For the inclusion from the left to the right, let α ∈ A[α′′] and α′ = α|X′ . By definition,695

α′ ∈ A|X′ so α ∈ A[α′]. Furthermore, α′ ∈ A|X′ [α′′] so α ∈
⊎
α̃′∈A|X′ [α′′]

A[α̃′].696

For the inclusion from the right to the left, let α ∈
⊎
α′∈A|X′ [α′′]

A[α′] and let α′ ∈ A|X′ [α′′]697

be such that α ∈ A[α′]. By definition, α|X′ = α′ and α′|X′′ = α′′. Since X ′′ ⊆ X ′,698

α|X′′ = α′|X′′ = α′′. Thus α ∈ A[α′′]. J699

For any weighting ω of A and subset of variables X ′ ⊆ X, we define the projection
πX′(ω) : A|X′ → R+ such that for all α′ ∈ A|X′ :

πX′(ω)(α′) =
∑

α∈A[α′]

ω(α)

I Proposition 21. For A ∈ DX , ω : A→ R+, X ′′ ⊆ X ′ ⊆ X: πX′′(ω) = πX′′(πX′(ω)).700

Proof sketch. This is a consequence of the disjoint decomposition of Lemma 20. J701

Proof. Indeed, let α′′ ∈ A|X′′ . We have:702

πX′′(ω)(α′′) =
∑

α∈A[α′′]

ω(α) by definition703

=
∑

α′∈A|X′ [α′′]

∑
α∈A[α′]

ω(α) by Lemma 20704

=
∑

α′∈A|X′ [α′′]

πX′(ω)(α′) by definition of πX′(ω)705

= πX′′(πX′(ω))(α′′) by definition of πX′′(πX′(ω)).706
707

The last equality is well defined since α′′ ∈ A|X′′ = (A|X′)|X′′ . J708

C.2 Weighting collections on decomposition trees709

Let X ⊆ X be a finite set of variables and T = (V, E ,B) a decomposition tree of X. Given
two nodes u, v ∈ V we denote the intersection of their bags by:

Buv = B(u) ∩ B(v)

I Definition 22. Let A ⊆ DX and let T = (V, E ,B) be a decomposition tree for X. We call710

a family W = (Wv)v ∈V a weighting collection on T for A if it satisfies the following two711

conditions for any two nodes u, v ∈ V:712

- Wu is a weighting of A|B(u), i.e., Wu : A|B(u) → R+.713

- Wu is sound for T at {u, v}, i.e., πBuv (Wu) = πBuv (Wv).714

I Proposition 23. Let A ⊆ DX and let T = (V, E ,B) be a decomposition tree for X. For715

any weigthing ω : A→ R+, the family (πB(v)(ω))v∈V is a weighting collection on T for A.716

XX:22 Linear Programs with Conjunctive Queries

Proof. For any u ∈ V let Wu = πB(u)(ω). The first condition on weighting projections holds717

trivially so we only have to show that the soundness constraint holds. By definition of Wu,718

πBuv(Wu) = πBuv(πB(u)(ω)). Observe that Buv ⊆ B(u) so by Proposition 21 πBuv(Wu) =719

πBuv (ω). Similarly πBuv (Wv) = πBuv (ω). J720

We next show that the global soundness at any subset of nodes {u, v} ⊆ V follows from721

the local soundness at all subsets {u, v} such that (u, v) ∈ E .722

I Lemma 24. If W is sound for T at {u, v} for all edges (u, v) ∈ E then W is sound for T723

at all subsets {u, v} ⊆ V.724

Proof. We show by induction on k ≥ 0 for all pairs of nodes (u, v) ∈ (E ∪ E−1)k that725

πBuv (Wu) = πBuv (Wv).726

The base case where k = 0 is obvious. We now show the induction step from k to k + 1.
Let (u, v) ∈ (E ∪E−1)k+1 be arbitrary. Then there exists w ∈ V such that (u,w) ∈ (E ∪E−1)k
and (v, w) ∈ E ∪ E−1. By induction hypothesis, we have πBuw(Wu) = πBuw(Ww). We need
to show that πBuv (Wu) = πBuv (Wv). We first observe that Buv ⊆ B(w) by connectedness of
T which implies that Buv ⊆ Buw and Buv ⊆ Bvw. Therefore, we can conclude as follows:

πBuv (Wu) = πBuv (πBuw(Wu)) by Proposition 21 and Buv ⊆ Buw
= πBuv (πBuw(Ww)) by induction hypothesis
= πBuv (Ww) by Proposition 21 and Buv ⊆ Buw
= πBuv (πBvw(Ww)) by Proposition 21 and Buv ⊆ Bvw
= πBuv (πBvw(Wv)) by local soundness at {v, w}
= πBuv (Wv) by Proposition 21 and Buv ⊆ Bvw

J727

If T is normalized then the local soundness constraint (22) of W at (u, v) ∈ E can be728

rewritten equivalently into a simpler form as follows:729

if u is an extend node with unique child v then: ∀β ∈ A|B(v) :
∑
β′∈A|B(u)[β]Wu(β′) =730

Wv(β),731

if u is a project node with unique child v then ∀β ∈ A|B(u) : Wu(β) =
∑
β′∈A|B(v)[β]Wv(β′),732

if u is a join node with child v then ∀β ∈ A|B(u) : Wu(β) = Wv(β).733

C.3 Conjunctive decomposition734

We need to restrict ourselves to particular subsets of variable assignments, including answer
sets of acyclic conjunctive queries. More generally, we define what it means for a subset
of variable assignments to be conjunctively decomposed by a decomposition tree. For any
decomposition tree T = (V, E ,B) and subset V ⊆ V we define the set of variables:

B(V) =
⋃
v∈V
B(v)

In particular, this defines for any v ∈ V the union B(↑v) of bags of vertices in-the-context-735

or-equal-to v, and the union B(↓ v) of bags of vertices that are descendants-or-equal-to736

v.737

I Definition 25. Let T = (V, E ,B) be a decomposition tree of X ⊆ X . We call a subset of738

variable assignments A ⊆ DX conjunctively decomposed by T if for all u ∈ V and β ∈ A|B(u):739

{α1 ∪ α2 | α1 ∈ A|B(↑u)[β], α2 ∈ A|B(↓u)[β]} ⊆ A[β]740

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:23

Note that the inverse inclusion holds in general. To see this let β ∈ A|B(u). If α ∈ A[β]741

then α ∈ A and β = α|B(u). Hence, α = α|B(↑u) ∪ α|B(↓u), so we can define α1 = α|B(↑u) and742

α2 = α|B(↓u).743

I Proposition 26. For any tree decomposition T of a quantifier free conjunctive query744

Q ∈ CqΣ and database D ∈ dbΣ, the answer set solD(Q) is conjunctively decomposed by T .745

Proof. Let u be a node of T . The proof is based on the following observation: given an atom746

R(x) of Q, either x ⊆ B(↓ u) or x ⊆ B(↑u). Thus Q can be written as Q1 ∧ Q2 with the747

variables of Q1 included in B(↓ u) and the variables of Q2 includes in B(↑u). Moreover, recall748

that B(u) = B(↓ u)∩B(↑u). Thus, given an assignment β of B(u) and α|1 ∈ solD(Q1)[β] and749

α|2 ∈ solD(Q2)[β], we have that α = α1 ∪ α2 ∈ solD(Q)[β]. That is, solD(Q) is conjunctively750

decomposed by T . J751

I Lemma 27. Let T be a decomposition tree of X, u an extend node of T with child v, and
A ⊆ DX a subset of variable assignments. If A is conjunctively decomposed by T then any
assignment β ∈ A|B(u) satisfies:

A|B(↓u)[β]|B(↓v) = A|B(↓v)[β|B(v)]

Proof. For the inclusion from the left to the right let α ∈ A|B(↓u)[β]|B(↓v). Since α ∈ A|B(↓v)752

and α|B(v) = β|B(v) it follows that α ∈ A|B(↓v)[β|B(v)].753

For the inclusion from the right to the left let α ∈ A|B(↓v)[β|B(v)]. Let γ ∈ A|B(↑v)[β] be754

arbitrary and τ = γ ∪ α.755

Note that (τ|B(↓u))|B(↓v) = α, so it is sufficient to show τ|B(↓u) ∈ A|B(↓u)[β].756

Since u is an extend node with child v it follows that B(↑u) = B(↑v), and thus γ ∈757

A|B(↑v)[β]. By conjunctive decomposition of A by T it follows that τ ∈ A[β]. Hence,758

τ|B(↓u) ∈ A|B(↓u)[β] as required. J759

I Lemma 28. Let T be a decomposition tree of X, u a join node of T with children v1, . . . , vk760

where k ≥ 1, and A ⊆ DX a subset of variable assignments. If A is conjunctively decomposed761

by T then any β ∈ A|B(u) satisfies:762

A|B(↓u)[β] = A|B(↓v1)[β] .// A|B(↓vk)[β]

Proof. The inclusion from the left to the right is obvious by projecting an element of763

A|B(↓u)[β] to B(↓ v1) . . .B(↓ vk).764

For the inclusion from the right to the left let α1 ∈ A|B(↓v1)[β], . . . αk ∈ A|B(↓vk)[β]. We765

show by induction that ∀p ∈ [1, k], τp = α1 .// αp ∈ A|Yp [β] where Yp =
⋃p
i=1 B(↓ vi).766

Base case p = 1: Obvious.767

Inductive case: Recall that by induction τp ∈ A|Yp [β] and observe that Yp ⊆ B(↑vp+1) so768

there exists γ ∈ B(↑vp+1)[β] such that γ|Yp = τp.769

By conjunctive decomposition on vp+1, α = γ ./ αp+1 ∈ A. Finally we have α|Yp+1 =770

(γ ./ αp+1)|Yp∪B(↓vp+1) = γ|Yp ./ αp+1|B(↓vp+1) = τp ./ αp+1 = τp+1 so τp+1 ∈ A|Yp+1 .771

Thus τp+1 ∈ Yp[β] because τp+1|B(u) = β.772

J773

XX:24 Linear Programs with Conjunctive Queries

C.4 Weightings correspondence774

We are now ready to prove the main correspondence between weightings of A and weighting775

collection on T :776

I Theorem 29. Let T = (V, E ,B) be a normalized decomposition tree of X ⊆ X and A ⊆ DX
777

be a set of variable assignment that is conjunctively decomposed by T .778

1. For every weighting ω of A, (πB(u)(ω))u∈V is a weighting collection on T for A.779

2. For any weighting collection W on T for A there exists a weighting ω of A such that780

∀u : Wu = πB(u)(ω).781

I Definition 30. Let T = (V, E ,B) be a normalized decomposition tree of X and W =782

(Wu)u∈V a weighting collection on T for A ⊆ DX .783

For any node u ∈ V, ωu : A|B(↓u) → R+ is a weighting defined by induction on well-784

founded order on the nodes of tree T .785

For the base case where u is a leaf of T , we define ωu such that for all α ∈ A|B(↓u):

ωu(α) = Wu(α)

For the induction step we suppose that ωu′ is defined for all children u′ of u. With786

β = α|B(u) we define ωu(α) for all α ∈ A|B(↓u).787

If u is an extend node with a child v then:788

ωu(α) =
{

Wu(β)
Wv(α|B(v))ωv(α|B(↓v)) if Wv(α|B(v)) > 0
0 otherwise.

789

If u is a project node with a child v then

ωu(α) = ωv(α|B(↓v)).

Observe that B(u) = B(v) so B(↓ u) = B(↓ v) thus ωv(α|B(↓v)) = ωv(α).790

If u is a join node with children v1, . . . , vk then791

ωu(α) =


∏k

i=1
ωvi (α|B(↓vi))

Wu(β)k−1 if Wu(β) > 0
0 otherwise.

792

I Proposition 31. For all u ∈ V, Wu = πB(u)(ωu).793

Proof. We show by bottom-up induction on the nodes of T that for all u ∈ V and β ∈ A|B(u),794 ∑
α∈A|B(↓u)[β] ωu(α) = Wu(β).795

The base case is clearly true by the definition of ωu when u is a leaf.796

Case 1 u is an extend node with v its only child.797

Let β ∈ A|B(u) and β′ = β|B(v).798

Case 1.1 Wv(β′) = 0.799

By definition ∀α ∈ A|B(↓u)[β], ωu(α) = 0.800

Recall that by soundness
∑
β′′∈A|B(u)[β′]Wu(β′′) = Wv(β′) = 0. Observe that β ∈801

A|B(u)[β′] so Wu(β) = 0 =
∑
α∈A|B(↓u)[β] ωu(α).802

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:25

Case 1.2 Wv(β′) > 0.803 ∑
α∈A|B(↓u)[β] ωu(α)
=

∑
α∈A|B(↓u)[β]

Wu(β)
Wv(β′)ωv(α|B(↓v)) by definition

= Wu(β)
Wv(β′)

∑
α∈A|B(↓u)[β] ωv(α|B(↓v))

= Wu(β)
Wv(β′)

∑
α′∈A|B(↓v)[β′] ωv(α′) by Lemma 27

= Wu(β)
Wv(β′)Wv(β′) by induction

= Wu(β)

Case 2 u is a project node with only child v.804

∑
α∈A|B(↓u)[β] ωu(α)
=

∑
α∈A|B(↓u)[β] ωu(α) by definition

=
∑
β′∈A|B(v)[β]

∑
α′∈A|B(↓u)[β′] ωv(α) by Proposition 21 and B(v) ⊆ B(↓ u)

=
∑
β′∈A|B(v)[β]Wv(β′) by induction and B(↓ u) = B(↓ v)

= Wu(β) by soundness at (u, v)

Case 3 u is a join node with children v1, . . . , vk.805

Let β ∈ A|B(u).806

Case 3.1 Wu(β) = 0.807

By definition ∀α ∈ A|B(↓u)[β], ωu(α) = 0.808

Thus
∑
α∈A|B(↓u)[β] ωu(α) = 0 = Wu(β).809

Case 3.2 Wu(β) > 0.810

∑
α∈A|B(↓u)[β] ωu(α)

=
∑
α∈A|B(↓u)[β]

∏k

i=1
ωvi (α|B(↓vi))

Wu(β)k−1 by definition

=
∑
α1∈A|B(↓v1)[β] · · ·

∑
αk∈A|B(↓vk)[β]

∏k

i=1
ωvi (αi)

Wu(β)k−1 by Lemma 28

=

∏k

i=1

∑
αi∈A|B(↓vi)[β]

ωvi (αi)

Wu(β)k−1

=
∏k

i=1
Wvi

(β)
Wu(β)k−1 by induction

= Wu(β)k
Wu(β)k−1 by soundness at (u, vi)

= Wu(β)

J811

I Lemma 32. Let v be the child of an extend node u, ∀α ∈ A|B(↓v) with β = α|B(v):

A[α] =
⊎

β′∈A|B(u)[β]

A[α ∪ β′]

Proof. For the inclusion from the left to the right, let τ ∈ A[α] and β′ = τ|B(u). Observe812

that β′ ∈ A|B(u)[β]. Moreover B(↓ u) = B(↓ v) ∪ B(u) so τ|B(↓u) = α ∪ β′ so τ ∈ A[α ∪ β′].813

For the inclusion from the right to the left, let τ ∈
⊎
β′∈A|B(u)[β]A[α ∪ β′]. By definition814

τ ∈ A and τ|B(↓v) = α so τ ∈ A[α]. J815

I Lemma 33. Given a join node u and its children v1, . . . , vk, let α ∈ A|B(↓v1) and β = α|B(u).816

A|B(↓u)[α] = {α} ./ A|B(↓v2)[β] .// A|B(↓vk)[β]

XX:26 Linear Programs with Conjunctive Queries

Proof. Clearly A|B(↓u)[α] = {τ ∈ A|B(↓u)[β] | τ|B(↓v1) = α} because β = α|B(u).817

Thus by Lemma 28, A|B(↓u)[α] = {τ ∈ A|B(↓v1)[β] .// A|B(↓vk)[β] | τ|B(↓u) = α} =818

{α} ./ A|B(↓v2)[β] .// A|B(↓vk)[β] J819

I Proposition 34. For all u ∈ V, ωu = πB(↓u)(ωr).820

Proof. We show by top-down induction on the nodes of T that for all v ∈ V and α ∈ A|B(↓v),821 ∑
τ∈A[α] ωr(τ) = ωv(α).822

The base case is clearly true when v is the root r of T .823

In the following we consider a given α ∈ A|B(↓v). and we let β = α|B(v)824

Case 1 v is the only child of an extend node u.825

By Lemma 32,
∑
τ∈A[α] ωr(τ) =

∑
β′∈A|B(u)[β]

∑
τ∈A[α∪β′] ωr(τ). By induction this is826

equal to
∑
β′∈A|B(u)[β] ωu(α ./ β′).827

Case 1.1 Wv(β) = 0.828

By definition of ωu,
∑
β′∈A|B(u)[β] ωu(α ./ β′) = 0.829

Observe that by Proposition 31,
∑
α′∈A|B(↓u)[β] ωv(α′) = Wv(β) = 0. However ωv is830

non-negative so ωv(α) = 0 =
∑
τ∈A[α] ωr(τ).831

Case 1.2 Wv(β) > 0.832 ∑
β′∈A|B(u)[β] ωu(α ./ β′)
=

∑
β′∈A|B(u)[β]

Wu(β′)
Wv(β) ωv((α ./ β

′)|B(↓v)) by definition

=
∑

β′∈A|B(u)[β]
Wu(β′)

Wv(β) ωv(α)
= ωv(α) by soundness at (u, v)

Case 2 v is the only child of a project node u.833

Observe that B(↓ u) = B(↓ v) because u is a project node so by induction
∑
τ∈A[α] ωr(τ) =834

ωu(α) = ωv(α).835

Case 3 v is the child of a join node u.836

Let v1, . . . , vn be the children of u, we assume wlog that v is v1.837

By Proposition 21,
∑
τ∈A[α] ωr(τ) =

∑
α′∈A|B(↓u)[α]

∑
τ∈A[α′] ωr(τ).838

By induction we obtain
∑
α′∈A|B(↓u)[α] ωu(α′).839

Case 3.1 Wu(β) = 0.840

By definition of ωu,
∑
α′∈A|B(↓u)[α] ωu(α′) = 0.841

Recall that because u is a join node, Wv(β) = Wu(β) = 0 so similarly to Case 1.2,842

ωv(α) = 0 =
∑
τ∈A[α] ωr(τ).843

Case 3.2 Wv(β) > 0.844

By definition of ωu,
∑
α′∈A|B(↓u)[α] ωu(α′) =

∑
α′∈A|B(↓u)[α]

∏k

i=1
ωvi (α

′
|B(↓vi))

Wu(β)k−1 . Moreover845

by Lemma 33 we can split α′ into α× α2 × · · · × αk and the sum into846 ∑
α2∈A|B(↓v2)[β] · · ·

∑
αk∈A|B(↓vk)[β]

∏k

i=1
ωvi (α

′
|B(↓vi))

Wu(β)k−1 . Observe that each term in the847

product only depends on αi (or α for i = 1) and that the denominator only de-848

pends on the fixed β so we can rewrite the formula into the following ωv(α) ·849 ∏k

i=2

∑
αi∈A|B(↓vi)[β]

ωvi (αi)

Wu(β)k−1 which is equal to ωv(α) ·
∏k

i=2
Wvi

(β)
Wu(β)k−1 by Proposition 31.850

Finally observe that by soundness,
∏k
i=2Wvi(β) = Wu(β)k−1.851

Thus
∑
τ∈A[α] ωr(τ) = ωv(α).852

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:27

J853

of Theorem 29. The first item follows directly from Proposition 23.854

For the second item we know by Proposition 31 that Wu = πB(u)(ωu) which is equal to855

πB(u)(πB(↓u)(ωr)) by Proposition 34. Thus Wu = πB(u)(ωr) by Proposition 21. J856

XX:28 Linear Programs with Conjunctive Queries

JcKω = c

JξKω = ω(ξ)
JcSKω = c · JSKω
JS + S′Kω = JSKω + JS′Kω

JtrueKω = 1

JS ≤ S′Kω =
{

1 if JSKω ≤ JS′Kω
0 otherwise.

JC ∧ C ′Kω = JCKω ∧ JC ′Kω

Jmaximize S subject to CK = max({JSKω | ω : Ξ→ R+, JCKω
.=1})

Figure 10 Evaluation of linear sums, constraints and programs.

evalD,α(x) = α(x)
evalD,α(a) = aD

solDX(E1
.=E2) = {α : X → D | evalD,α(E1) = evalD,α(E2)}

solDX(r(E1, . . . , En)) = {α : X → D | (evalD,α(E1), . . . , evalD,α(En)) ∈ rD}
solDX(Q1 ∧Q2) = solDX(Q1) ∩ solDX(Q2)

solDX(∃x.Q) = {α|X | α ∈ solDX∪{x}(Q)} if x 6∈ X
solDX(true) = Xdom(D)

Figure 11 Answer sets of conjunctive queries.

A Proofs for Section 2 (Preliminaries)857

B Proofs for Section 3 (Linear Programs with Conjunctive Queries)858

B.1 α-Renaming may change the semantics of linear Cq-programs.859

To illustrate this let x = (x1, x2) and L be the following linear Cq-program:

maximize weightx:x2
.=a(r(x)) subject to weightx(r(x)) ≤ 1.

Let D be a database with signature Σ = {r(2)} and interpretation rD = {(0, 0), (0, 1)}. If Q
is the query r(x) then the semantics of this linear Cq-program 〈L〉D is the linear program:

maximize θ(0,1)
Q subject to θ

(0,0)
Q + θ

(0,1)
Q ≤ 1

The optimal value 〈L〉D is J〈L〉DK = 1 since θ(0,0)
Q + θ

(0,1)
Q ≤ 1 and θ

(0,0)
Q ≥ 0. Now let us

α-rename the second occurrence of x in L apart to x′ = (x′1, x′2) yielding the following linear
Cq-program L′:

maximize weightx:x2
.=a(r(x)) subject to weightx′(r(x′)) ≤ 1.

The semantics 〈L〉D is the following linear program where Q′ is r(x′) and Q is r(x):

maximize θ(0,1)
Q subject to θ

(0,0)
Q′ + θ

(0,1)
Q′ ≤ 1

The optimal value of 〈L′〉D is ∞ since θ(0,1)
Q is no more constrained: the renaming made860

the variables of Q and Q′ different, so that the variable assignments answering these queries861

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:29

sbsγ(Q ∧Q′) = sbsγ(Q) ∧ sbsγ(Q′)
sbsγ(∃x.Q) = ∃x.sbsγ|dom(γ)\{x}(Q)

sbsγ(r(t1, . . . , tn)) = r(sbsγ(t1), . . . , sbsγ(tn))

sbsγ(x) =
{
γ(x) if x ∈ dom(γ)
x otherwise

sbsγ(a) = a

Figure 12 Lifting substitutions γ : fv(Q)→ C to queries Q.

become different too. Therefore, different weights may be assigned to them. In other word862

the tables of answers of Q and Q′ are different, since their columns are named by differently,863

by x and respectively x′.864

C Proofs for Section 4 (An Efficiently Solvable Fragment)865

I Lemma 14. For any T−projecting sum S ∈ SumΣ and environment γ : X → dom(D)866

where fv(S) ⊆ X it holds that J〈S〉D,γK .ω = JρT,D,γ(S)KΠ(
.
ω).867

Proof. By induction on the structure of S.868

Case S = weightx:x′ .=y(Q) where set(x′) ⊆ set(x) = fv(Q), set(y) ∩ set(x) = ∅ and869

set(x′) = BQ(u) for some node u of TQ.870

Let β = [x′/γ(y)].871

J〈S〉D,γK .ω = J
∑
α∈solDset(x)(Q∧sbsγ(Q′)) θ

α
QK .ω

= J
∑
α∈solDset(x)(Q∧

∧m

j=1
x′
i
=γ(yi)) θ

α
QK .ω

= J
∑
α∈solDset(x)(Q)
α|B(u)=β

θαQK .ω since set(x′) = BQ(u)

=
∑
α∈solDset(x)(Q)
α|B(u)=β

.
ω (θαQ)

=
∑
α∈solD(Q)[β]

.
ω (θαQ)

We distinguish two cases depending on whether β ∈ solD(Q)|B(u):872

If β /∈ solD(Q)|B(u) then by definition of ρT,D,γ(S):

J〈S〉D,αK .ω =
∑

α∈solD(Q)[β]

.
ω (θαQ) =

∑
α∈∅

.
ω (θαQ) = 0 = ρT,D,γ(S)

.873

If β ∈ solD(Q)|B(u) then ξQ,u,β ∈ ΞT,DL and thus by definition of ρT,D,γ(S):

J〈S〉D,γK .ω =
∑
γ∈solD(Q)[β]

.
ω (θγQ)

= Π(.ω)(ξQ,u,β) by definition of Π
= JξQ,u,βKΠ(

.
ω)

= JρT,D,γ(S)KΠ(
.
ω)

Case S = N .874

Straightforward.875

XX:30 Linear Programs with Conjunctive Queries

Case S =
∑

x:Q S
′.876

J〈S〉D,γK .ω = J
∑

γ′∈solDset(x)(sbsγ(Q))

〈S′〉D,γ∪γ
′
K .ω877

=
∑

γ′∈solDset(x)(sbsγ(Q))

J〈S′〉D,γ∪γ
′
K .ω878

=
∑

γ′∈solDset(x)(sbsγ(Q))

JρT,D,γ∪γ
′
(S′)KΠ(

.
ω) by induction hyp.879

= J
∑

γ′∈solDset(x)(sbsγ(Q))

ρT,D,γ∪γ
′
(S′)KΠ(

.
ω)880

= JρT,D,γ(S)KΠ(
.
ω)881

882

Case S = NS. Straightforward.883

Case S = S′ + S′′.884

Straightforward.885

J886

I Lemma 15. For any constraint C ∈ LcΣ that is T−projecting and environment γ : X →887

dom(D) where fv(C) ⊆ X: J〈C〉D,γK .ω = JρT,D,γ(C)KΠ(
.
ω).888

Proof. By induction on the structure of C.889

Base case 1 C = true Obvious.890

Base case 2 C = S ≤ S′ Straightforward using Lemma 14.891

Induction step 1 C = C ′ ∧ C ′′892

Straightforward.893

Induction step 2 C = ∀x:r(x).C894

J〈C〉D,γK .ω = J〈∀x:r(x). C ′〉D,γK .ω895

= J
∧

γ′∈solDset(x)(r(x))

〈C ′〉D,γ∪γ
′
K .ω896

=
∧

γ′∈solDset(x)(r(x))

J〈C ′〉D,γ∪γ
′
K .ω897

=
∑

γ′∈solDset(x)(r(x))

JρT,D,γ∪γ
′
(C ′)KΠ(

.
ω) by induction898

= J
∧

γ′∈solD(r(x))

ρT,D,γ∪γ
′
(C ′)KΠ(

.
ω)899

= JρT,D,γ(∀x:r(x).C ′)KΠ(
.
ω)900

= JρT,D,γ(C)KΠ(
.
ω)901

902

J903

I Lemma 16. For any weighting
.

W of ΞT,DL such that J
∧
Q∈Q lscT,D(Q)K .

W
= 1, there exists904

a weighting .
ω of ΘQ such that

.

W= Π(.ω).905

F. Capelli, N. Crosetti, J. Niehren and J. Ramon XX:31

Proof. For each Q ∈ Q, let WQ = (WQ
u)u∈TQ where WQ

u (β) =
.

W (ξQ,u,β) for each ξQ,u,β ∈906

ΞT,DL .907

Observe that it follows from the hypothesis that JlscT,D(Q)K .

W
= 1 so given a pair of nodes908

(u, v) in TQ and a γ ∈ solD(Q)|Buv then J
∑
β∈A|B(u)[γ] ξQ,u,βK .

W
= J
∑
β′∈A|B(v)[γ] ξQ,v,β′K .

W
.909

By definition ofWQ we then have
∑
β∈A|B(u)[γ]W

Q
u (β) =

∑
β′∈A|B(v)[γ]W

Q
u (β′). By definition910

of the projection of weightings it follows that πBuv (WQ
u) = πBuv (WQ

v) so WQ is a weighting911

collection on TQ. Thus by Theorem 13 for eachQ ∈ Q, there is a weighting ωQ : solD(Q)→ R+912

such that WQ = (πB(u)(ωQ))u∈V . Finally we define a weighting .
ω: ΘQ → R+ such that913

.
ω (θαQ) = ωQ(α) for each θαQ ∈ ΘQ.914

We fix a ξQ,u,β ∈ ΞT,DL . By definition W (ξQ,u,β) = WQ
u (β) = (πB(u)(ωQ))(β) =915 ∑

α∈solD(Q)[β] ωQ(α). Thus W (ξQ,u,β) = Π(.ω)(ξQ,u,β) by definition of Π. J916

I Proposition 17. Let D be a database and T a collection of decomposition tree. Any917

T−projecting LP(CQ) program L = (maximize S subject to C) ∈ LpΣ satisfies that:918

1. For any solution .
ω of 〈L〉D there is a solution

.

W of ρT,D(L) s.t. J〈S〉D,∅K .ω = JρT,D(S)K .

W
.919

2. For any solution
.

W of ρT,D(L) there is a solution .
ω of 〈L〉D s.t. J〈S〉D,∅K .ω = JρT,D(S)K .

W
.920

Proof. Let Q = cqs(L).921

Case 1 Consider a solution .
ω of 〈L〉D.922

Let
.

W be a weighting of ΘQ such that
.

W= Π(.ω). By hypothesis J〈C〉D,∅K .ω = 1 so923

JρT,D(C)K .

W
= 1 by Lemma 15. Thus

.

W is a solution of ρT,D(L). Moreover J〈S〉D,∅K .ω =924

JρT,D(S)K .

W
by Lemma 14.925

Case 2 Fixed solution
.

W of ρT,D(L)926

By Lemma 16 there is a weighting .
ω of ΘQ such that

.

W= Π(.ω) By hypothesis927

JρT,D(C)K .

W
= 1 so J〈C〉D,∅K .ω = 1 by Lemma 15. Thus

.

W is a solution of ρT,D(L).928

Moreover J〈S〉D,∅K .ω = JρT,D(S)K .

W
by Lemma 14.929

J930

I Theorem 18 (Removing Existential Quantifiers). For any projecting LP(CQ) program, the931

LP(CQqf)proj program mvq(L) has the same optimal value as L.932

Proof. It is clear that every Q appearing in a subexpression weightxz:Q′(Q) of mvq(L) is933

quantifier free by definition. Now, since L is in LP(CQ)proj , Q′ is of the form x′ = y where934

x′ only contains free variables of ∃z.Q. Since fv(∃z.Q) ⊆ fv(Q), we have that x′ only contains935

free variables of Q. Moreover, the other condition of LP(CQ)proj concerning the sum and936

universal quantification are still respected in mvq(L), thus L is in LP(CQqf)proj .937

Now, let .
ω: ΘD

L → R+ be a solution of L. We define .
ω
′: ΘD

mvq(L) → R+ as follows:938

.
ω
′ (θαQ) = 1

N

.
ω (θα|U∃z.Q) where U = fv(∃z.Q) and N = #{β : z→ dom | α ∪ β ∈ solD(Q)}. It939

is readily verified that the value Jweightx:Q′(∃z.Q)K .ω is the same as Jweightx,z:Q′(Q)K .ω′940

and thus that .
ω
′ is a solution of mvq(L) and JLK .ω = Jmvq(L)K .ω′ .941

For the other way around, given .
ω
′: ΘD

mvq(L) → R+ a solution of mvq(L), we construct942

.
ω: ΘD

L → R+ as .
ω (θα∃z.Q) =

∑
β|α∪β∈solD(Q)

.
ω
′ (θα∪βQ). Again, it is readily verified that the943

value Jweightx:Q′(∃z.Q)K .ω is the same as Jweightx,z:Q′(Q)K .ω′ and thus that .
ω is a solution944

of L and JLK .ω = Jmvq(L)K .ω′ . J945

	1 Introduction
	1.1 Applications
	1.2 Related Work

	2 Preliminaries
	3 Linear Programs with Conjunctive Queries
	3.1 Syntax
	3.2 Semantics
	3.3 Example from Resource Delivery Optimization

	4 An Efficiently Solvable Fragment
	4.1 Projecting LP(CQ) Programs
	4.2 Factorized Interpretation
	4.3 Correctness
	4.4 Treatment of Existential Quantifiers

	5 Preliminary Experimental Results
	A Minimizing Noise in -Differential Privacy
	A.1 Hospital Database about Medical Studies on Patient Tests

	B Computing the s-Measure for Graph Pattern Matching
	C Weightings
	C.1 Projections of weightings
	C.2 Weighting collections on decomposition trees
	C.3 Conjunctive decomposition
	C.4 Weightings correspondence

	A Proofs for Section 2 (Preliminaries)
	B Proofs for Section 3 (Linear Programs with Conjunctive Queries)
	B.1 -Renaming may change the semantics of linear Cq-programs.

	C Proofs for Section 4 (An Efficiently Solvable Fragment)

