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Abstract. In 2008 and 2009, Gaudry and Diem proposed an index calculus method for the resolution
of the discrete logarithm on the group of points of an elliptic curve defined over a small degree exten-
sion field Fqn . In this paper, we study a variation of this index calculus method, improving the overall
asymptotic complexity when n = Ω( 3

√
log2 q). In particular, we are able to successfully obtain relations

on E(Fq5), whereas the more expensive computational complexity of Gaudry and Diem’s initial algo-
rithm makes it impractical in this case. An important ingredient of this result is a variation of Faugère’s
Gröbner basis algorithm F4, which significantly speeds up the relation computation. We show how this
index calculus also applies to oracle-assisted resolutions of the static Diffie-Hellman problem on these
elliptic curves.

Key words: elliptic curve, discrete logarithm problem (DLP), index calculus, Gröbner basis computation,
summation polynomials, static Diffie-Hellman problem (SDHP)

1 Introduction

Given a finite group G and two elements g, h ∈ G, the discrete logarithm problem (DLP) consists in computing
– when it exists – an integer x such that h = gx. The difficulty of this problem is at the heart of many existing
cryptosystems, such as the Diffie-Hellman key exchange protocol [12], the ElGamal encryption and signature
scheme [14], DSA, or more recently in pairing-based cryptography. Historically, the DLP was first studied
in the multiplicative group of finite fields. In such groups, now standard index calculus methods allow to
solve the DLP with a subexponential complexity. Therefore, the key size necessary to achieve a given level
of security is rather large. For this reason, in 1985, Miller [34] and Koblitz [30] suggested using for G the
group of points of an elliptic curve, thus introducing algebraic curves to the cryptographic community.

Up to now, very few algorithms exist that solve the DLP in the group of points of an elliptic curve
defined over a finite field (ECDLP). In most cases, only generic methods such as Baby-step Giant-step [42]
or Pollard rho and kangaroo algorithms [37, 38] are available. Their complexity is exponential in the size
of the largest prime factor of the group cardinality; more precisely, the running time is of the order of the
square root of this largest prime factor [36]. However, for some specific curves more powerful attacks can be
applied; they usually move the DLP to another, weaker group. The first approach is to lift the ECDLP to
a characteristic zero field, either global (i.e. Q) or local (i.e. p-adic numbers Qp): so far, this works only for
subgroups of E(Fpn) of order pi [39, 40, 44]. The second approach is to transfer via the Weil or Tate pairing
the DLP on E(Fq) to F∗qk : this includes the Menezes-Okamoto-Vanstone [33] and Frey-Rück [19] attacks for
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elliptic curves with small embedding degree k. The last approach is to transfer via Weil descent the DLP
on an elliptic curve defined over an extension field Fqn to a second algebraic curve, defined over Fq but of
greater genus g; this is efficient when the resulting genus g is small, which occurs only with specific curves
[27].

In [41], Semaev proposed for the first time an index calculus method for the ECDLP, which unfortunately
turned out to be impractical. However, combining Semaev’s ideas and Weil restriction tools, Gaudry and
Diem [11, 21] independently came up with an index calculus algorithm for elliptic curves defined over small
degree extension fields, which has a better asymptotic complexity than generic algorithms. More precisely,
the complexity of their algorithm over E(Fqn) for fixed n is in Õ(q2−2/n), but with a hidden constant in

n that grows over-exponentially, in 2O(n2). If one also allows n to go to infinity, then Diem shows that the
complexity is subexponential as long as n is in Θ(

√
log2(q)).

In this article, we investigate a variant of Gaudry and Diem’s method and obtain the following result:

Theorem 1 Let E be an elliptic curve defined over Fqn and let G be a cyclic subgroup of its group of rational
points. Then there exists an algorithm that solves the DLP in G and whose asymptotic complexity, under
Assumptions 1 and 2, is

Õ
(

(n− 1)!
(

2(n−1)(n−2)en n−1/2
)ω

q2
)

where ω is the effective complexity exponent of matrix multiplication.

Consequently, this new approach is asymptotically better than generic attacks like Pollard rho when n ≤
1
2ω log2 q, as qn grows to infinity. Compared to Gaudry and Diem, it provides an asymptotic speed-up factor

of 2(3−ω)n2

q−2/n, and hence is faster when n ≥
(

2
3−ω log2 q

)1/3
.

log2 q

n

n=2

Θ(log2 q)

Θ( 3
√

log2 q)

[Pollard]

[this work]

[Gaudry-Diem]

Fig. 1. Asymptotic comparison (for large values of q) of Pollard rho method, Gaudry and Diem’s method and this
paper for ECDLP over Fqn , n ≥ 2.

The paper is organized as follows. First, we give a summary of Gaudry and Diem’s index calculus; the
main ideas are the use of the Weil restriction to obtain a convenient factor base and of Semaev’s summation
polynomials to test decompositions. More precisely, Gaudry and Diem check whether a given point can be
decomposed as a sum of n points of this factor base, where n is the degree of the extension field. This
amounts to solving a multivariate polynomial system of n equations in n variables of degree 2n−1, arising
from the (n+ 1)-th summation polynomial. Next, we introduce our variant: we check if a point decomposes
as a sum of n − 1 points instead of n. This reduces the likelihood of finding a relation, but greatly speeds
up the decomposition process; as mentioned above, this trade-off is favorable when n is bigger than some
multiple of 3

√
log2 q. We then give a detailed analysis of the complexity of our variant, enabling us to prove
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Theorem 1, and show that our trade-off is better than the one that could be provided by the hybrid approach
of [4]. The following sections are devoted to several optimizations of the decomposition process. As already
noted by Gaudry, the polynomial system that has to be solved is inherently symmetrical, so it pays off to
reduce its total degree by writing down the equations in terms of the elementary symmetric functions before
the resolution. A convenient way to do so is to use (partially) symmetrized summation polynomials instead
of Semaev’s; in section 3, we detail two different ways to directly compute these polynomials. The second
optimization concerns the resolution of the symmetrized system. The fastest available method is to compute
a Gröbner basis for an appropriate monomial order, using one of Faugère’s algorithms [15, 16]. Since each
relation search leads to a system with the same specific shape, we propose an ad hoc variant of F4 which
takes advantage of this particularity to remove all reductions to zero. Finally, we present a variation of
our algorithm which solves the oracle-assisted static Diffie-Hellman problem (SDHP, introduced in [6]) over
E(Fqn). As in the case of finite fields presented in [28], solving the SDHP, after some oracle queries, is faster
than solving the corresponding discrete logarithm problem. More precisely, we show that an attacker is able,
after at most q/2 well-suited oracle queries, to compute an arbitrary SDHP instance reasonably quickly.

2 Index calculus algorithms for elliptic curves over extension fields

We begin by briefly recalling the principle of index calculus methods. We consider a finite abelian group G
and two elements h, g ∈ G such that h = [x]g (in additive notation) where x is the secret to recover. For
simplicity, we assume g has prime order `. The basic outline consists of three main steps:

1. Choice of a factor base, i.e. a set F = {g1, . . . , gN} of elements of G, generating the whole group G.
2. Relation search: for “random” integers ai, bi ∈ Z/`Z, try to decompose [ai]g+ [bi]h into the factor base3,

i.e. write

[ai]g + [bi]h =

N∑
j=1

[cij ]gj , where cij ∈ Z. (1)

3. Linear algebra: once k relations of the form (1) have been found where k is large enough, construct the
matrices A =

(
ai bi

)
1≤i≤k and M = (cij) 1≤i≤k

1≤j≤N
, and find an element v =

(
v1 . . . vk

)
in the left kernel of

M such that vA 6=
(
0 0
)

mod `. Such an element v exists and can be computed with elementary linear
algebra as soon as k is greater than N and the relations are linearly independent. The logarithm of h is
then x = − (

∑
i aivi) / (

∑
i bivi) mod `.

Other variants exist for steps 2 and 3, such as the precomputation-and-descent: all relations considered
are of the form (1) with bi = 0, and the linear algebra yields the logarithms in base g of all factor base
elements; then only one relation involving h is needed to obtain its logarithm. This method is much more
efficient when one has more than one discrete logarithm to compute in base g.

For example, if G is the multiplicative group of Fp, p prime, we can take for F the set of equivalence
classes of prime integers smaller than a fixed bound B. An element is then decomposable in this factor base
if its representative in [1, p−1] is B-smooth. There is obviously a compromise to be found: if B is large, then
most elements are decomposable, but many relations are necessary and the matrices involved in the linear
algebra step are comparatively large. On the other hand, if the factor base is small, the required number of
relations is small and the linear algebra step is fast, but finding a relation is much less probable. In any case,
the matrix M is usually very sparse and appropriate techniques can be used to compute its kernel quickly.

3 For the complexity analysis, it is usually necessary to assume that the elements to decompose are chosen randomly
in G. If the group generated by g is different from G, this can be achieved by considering elements g1, . . . , gt ∈ F
that together with g generate G. One then tries to decompose random combinations of the form [ai]g + [bi]h +
[ci,1]g1 + . . .+ [ci,t]gt.
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One major obstruction to index calculus when G is the group of rational points of an elliptic curve defined
over Fq, is that there exist no obvious factor bases. The second, related difficulty is that decomposing an
element as in (1) is really not straightforward. In [41], Semaev proposes the first efficient way to find such
decomposition, yet his approach could not work for lack of an adequate factor base.

2.1 The versions of Gaudry and Diem

In [11, 21], Gaudry and Diem propose to apply an index calculus method in the group of rational points of
elliptic curves defined over small degree extension fields. To do so, they combine ideas from Semaev’s index
calculus proposal and Weil descent attack, to get a multivariate polynomial system that one can solve using
Gröbner basis techniques. More precisely, if E is an elliptic curve defined over Fqn , Gaudry’s choice of factor
base is the set of points whose x-coordinate lies in the base field: {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈
Fqn}. Actually, since this set is invariant under negation, it is possible to consider only one half of it; if E is
given in reduced Weierstrass form in characteristic different from 2 or 3, the factor base becomes:

F = {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈ S}

where S is a subset of Fqn such that Fqn = S ∪ (−S) and S ∩ (−S) = {0} (for example, assuming that −1
is not a square in Fqn , we can choose for S the set of quadratic residues together with 0). The same kind of
twofold reduction can also be done for a general equation of E.

To compute the discrete logarithm of Q ∈ 〈P 〉 with an index calculus algorithm, we first need to find
relations, i.e. to decompose combinations of the form R = [a]P + [b]Q where a, b are random integers, as
sum of points in F . Following Semaev’s idea, Gaudry suggests to consider only relations of the form

R = ±P1 ± P2 ± . . .± Pn (2)

where n is the degree of the extension field and Pi ∈ F (1 ≤ i ≤ n). Getting such relations can be
done by using a Weil restriction process. One considers Fqn as Fq[t]/(f(t)) where f(t) is an irreducible
polynomial of degree n over Fq, in order to represent points P = (xP , yP ) ∈ E(Fqn) by 2n coordinates:
xP = x0,P + x1,P t + . . . + xn−1,P t

n−1 and yP = y0,P + y1,P t + . . . + yn−1,P t
n−1. Instead of writing down

an equation with (n + 1)n unknowns from the decomposition (2), it is rather convenient to use Semaev’s
summation polynomials to get rid of the yPi

variables. We recall here the definition and properties of such
polynomials.

Proposition 2 Let E be an elliptic curve defined over a field K. The m-th Semaev’s summation polynomial
is an irreducible symmetric polynomial fm ∈ K[X1, . . . , Xm], of degree 2m−2 in each variable, such that given
P1 = (xP1

, yP1
), . . . , Pm = (xPm

, yPm
) ∈ E(K) \ {OE}, we have

fm(xP1
, . . . , xPm

) = 0⇔ ∃ε1, . . . , εm ∈ {1,−1}, ε1P1 + . . .+ εmPm = OE .

These summation polynomials can be effectively computed by induction, see [41] or section 3. At this
point, we replace (2) by the equivalent equation

fn+1(xP1 , . . . , xPn , xR) = 0, (3)

using the (n+ 1)-th summation polynomial fn+1 ∈ Fqn [X1, . . . , Xn+1]. The unknowns xP1 , . . . , xPn actually

lie in Fq, so if we sort (3) according to powers of t, we obtain
∑n−1

i=0 ϕi(xP1 , . . . , xPn) ti = 0 where each
ϕi is a symmetric polynomial over Fq, of degree at most 2n−1 in each variable (and whose coefficients
depend polynomially on xR, a and b). This leads to a system of n symmetric polynomials, which, as advised
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by Gaudry, can be written as a system of polynomials of total degree 2n−1 in terms of the elementary
symmetric functions e1, . . . , en of the variables xP1 , . . . , xPn :

ϕ0(e1, . . . , en) = 0, ϕ1(e1, . . . , en) = 0, . . . ϕn−1(e1, . . . , en) = 0. (4)

Given the (n+1)-th summation polynomial, writing down such a system is almost immediate, but solving it is
much more complicated. Actually, the resolution cost is hard to estimate precisely, but is at least polynomial
in the degree of the corresponding zero-dimensional ideal, which according to [11] is generically equal to the
Bézout bound 2n(n−1). This over-exponential complexity causes the attack to be unfeasible for n ≥ 5 on
current personal computers.

In order to deduce a relation of the form (2) from a solution of the symmetrized equation (4), we first
need to find the roots of the univariate polynomial F (x) = xn − e1xn−1 + . . .+ (−1)nen ; this can easily be
done using classical algorithms like Cantor-Zassenhaus’s [20, chap. 14]. When F is split over Fq, it suffices
to construct the points of F whose x-coordinates are roots of F and then test the 2n possible arrangements
of signs until the decomposition of R is found. The cost of this desymmetrization and sign-finding step
is negligible compared to the resolution of the polynomial systems involved. We remark that when F is
split, it is a priori possible that some of its roots do not correspond to x-coordinates of points in F : this
is the case if the associated y-coordinates lie in a quadratic extension F(qn)2 but not in Fqn . However,
these points belong to the subgroup G′ = ϕ(E′(Fqn)) ⊂ E(Fq2n), where E′|Fqn

is the quadratic twist of E

and ϕ is a Fq2n -isomorphism between E′(Fq2n) and E(Fq2n). The decomposition of R given by F is thus
R = ±P1 ± . . .± Pk ± Pk+1 ± . . .± Pn where Pi ∈ F if i ≤ k and Pi ∈ G′ otherwise. This can be rewritten
as R ∓ P1 ∓ . . .∓ Pk = ±Pk+1 ± . . .± Pn, where the left-hand side is in E(Fqn) and the right-hand side in
G′. Since the intersection of these two groups is reduced to E(Fqn)[2], this means that ±Pk+1 ± . . . ± Pn

is a decomposition of a 2-torsion point in only n − k points with x-coordinate in Fq. While possible, the
existence of such a decomposition for a given elliptic curve is highly unlikely, so that in practice we always
get a decomposition in F when F is split. Note that the cost of sign-finding can be reduced by a factor
of 2 by fixing the sign of P1 to + and by considering the 2n−1 possible signs for the other points, stopping
when the corresponding sum is either R or −R (this is efficiently tested by looking at the abcissa of the sum
P1 ± P2 ± . . .± Pn).

Once we get enough equations like (2), we proceed to the linear algebra step. After collecting k > #F '
q/2 distinct (independent) relations of the form:

[ai]P + [bi]Q =

N∑
j=1

[cij ]Pj , where N = #F , cij ∈ {0; 1;−1} and

N∑
j=1

|cij | = n,

we get a vector A =
(
ai bi

)
1≤i≤k and a matrix M = (cij) which is very sparse since it has only n entries per

row. It remains to find a element tv ∈ ker(tM) such that vA 6= 0 mod `, which yields the discrete logarithm
x = − (

∑
i aivi) / (

∑
i bivi) mod ` of Q in base P .

Complexity estimate of Gaudry and Diem’s algorithm

As a preliminary step, we should check that F contains enough points. Heuristically, it is clear that there is
approximately q/2 elements in the factor base; this statement can be made rigorous. The geometric object
corresponding to F is C = {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq} ∪ {OE}, which is the disjoint union (up
to 2-torsion points) of F and −F together with the point at infinity. This is a projective curve contained
in the Weil restriction WFqn/Fq

(E) of E, relatively to the extension Fqn/Fq (note that the GHS attack uses
precisely the Jacobian of an irreducible component of C for the transfer of the DLP [22]). It turns out that it
is quite easy to determine when C is irreducible and to bound its genus, so that we can estimate its number of
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points. According to Diem, we ask that the curve E satisfies the following condition, which is a reformulation
of Condition 2.7 of [11]:

Condition 3 There exists a 2-torsion point P = (xP , yP ) ∈ E(Fqn) such that for all i ∈ {1, . . . , n − 1},
σi(xP ) 6= xP and σi(xP ) is not the x-coordinate of a 2-torsion of point of E, where σ is the exponentiation
by q.

Technically, this is a condition on the Weierstrass equation of E (and not on E itself). Diem showed that it is
always possible to find an equation for E such that this condition is satisfied, even if E is initially defined over
a proper subfield of Fqn . Under this condition, the number of points in C is greater than q+1−n2n+2(

√
q+1)

(see [11], proof of Proposition 4.11); as soon as n ≤ c log2 q where c < 1/2, this is greater than q/2 for q
large enough. Thus we have the following proposition:

Proposition 4 For any ε > 0, there exists a constant C > 0 such that for any q > C and n < (1/2−ε) log2 q,
the factor base F associated to an elliptic curve defined over Fqn satisfying Condition 3 contains more than
q/4 elements.

Note that even when n > log2(q)/2, it is probable that the factor base F has more than q/4 points. In fact,
the possible values for the cardinality of an irreducible curve defined over Fq are concentrated near q+ 1, so
that it is rather unlikely that no equation of an elliptic curve E|Fqn

would yield a factor base with enough
elements.

The first main step of the algorithm consists of collecting around #F ' q/2 relations of the form
(2) to build the matrix M . The (n + 1)-th summation polynomial can be determined once for all using

Poly(e(n+1)2 log2 q) operations for a fixed elliptic curve [11]. The representation of this summation polynomial
in terms of elementary symmetric functions can be done by using Gröbner elimination techniques for example,
we refer to section 3 for improvements of this computation. The probability of finding a decomposition of a
point R ∈ E(Fqn) is approximately

#Cn/Sn

#E(Fqn)
' qn

n!

1

qn
=

1

n!
,

and the cost of checking if the point R is actually decomposable in the factor base, noted c(n, q), is the cost
of the resolution of a multivariate polynomial system of n equations defined over Fq with n variables of total
degree 2n−1. As we need at least #F relations, the total complexity of the first step is about n! c(n, q) q/2.

The estimation of the cost c(n, q) is not straightforward as it thoroughly depends on the algorithm used.
Following Diem’s analysis [11, section 4.5], the polynomial system considered is generically of dimension 0
since it has a finite number of solutions over Fq, and using resultant techniques we get an upper bound for
c(n, q):

c(n, q) ≤ Poly(n! 2n(n−1) log2 q).

The sparse linear algebra step can then be done in a time of Õ(nq2) with an adapted version of Lanczos or
Wiedemann’s algorithm [8, §20.3.3]. However, in order to improve the complexity of the algorithm, Gaudry
suggests to rebalance the matrix-building cost against the linear algebra cost using “large primes” techniques
adapted from [23] and [45] (see [21] for more details). By doing so, he needs to obtain approximately q2−2/n

relations instead of q. The cost of the first main step becomes thus n! c(n, q) q2−2/n. By contrast, the cost
of the linear algebra step is reduced to Õ(n q2−2/n), which is negligible compared to the previous step. As a
result, the elliptic curve discrete logarithm problem over Fqn for fixed n can be solved in an expected time

of Õ(q2−2/n), but the hidden constant grows extremely fast with n. A complete complexity estimate using
Diem’s bound is:

n! Poly(n! 2n(n−1) log2 q) q
2−2/n.
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2.2 Our version

The bad behaviour (over-exponential) in n occurring in the complexity of Gaudry and Diem’s algorithm
remains a serious drawback and makes their approach practical only for very small extension degrees, namely
n = 3 or 4. Since the cost of the multivariate system resolution heavily depends on the degree of the
summation polynomial, the complexity can be considerably improved by considering only decompositions of
combinations R = [a]P + [b]Q as sum of (n− 1) points in F , instead of n points as in [11, 21]. Even though
we are lowering the probability of getting such a decomposition when q grows, the gain is sufficient to make
this approach realistic for n = 5.

We can solve the equation:
[a]P + [b]Q = ±P1 ± . . .± Pn−1, (5)

where a and b are random integers and the Pi belong to F , in the same way as explained in the previous sec-
tion. The differences are that only the n-th summation polynomial is involved, and that the resulting system
of n polynomials is in (n− 1) variables and of total degree only 2n−2. Since this system is overdetermined,
its resolution is greatly sped up, as compared to the previous case. The trade-off is that it is less probable
to find a decomposition.

A toy example: we consider the curve

E : y2 = x3 + ax+ b, a = 60t2 + 52t+ 44, b = 74t2 + 87t+ 58

defined over F1013 ' F101[t]/(t3 + t+ 1); it has prime order #E = 1029583. Let P = (84t2 + 24t+ 75, 92t2 +
18t+ 61) be a random generator of E and Q = (50t2 + 98t+ 89, 2t2 + 95t+ 15).

We first try to decompose the random multiple R = [47044]P+[956092]Q = (37t2+84t+85, 86t2+3t+15)
as a sum of two points in F . The third symmetrized Semaev’s polynomial (see section 3) is

f̃3(e1, e2, xR) = (e21 − 4e2)x2R − 2(e1(e2 + a) + 2b)xR + (e2 − a)2 − 4be1.

Replacing a, b and xR by their respective values, we obtain the equation

(59t2 +29t+100)e21 +(27t2 +34t+32)e1e2 +(31t2 +71t+55)e1 +e22 +(48t2 +83t+17)e2 +32t2 +16t+81 = 0

whose Weil restriction yields the system
100e21 + 32e1e2 + 55e1 + e22 + 17e2 + 81 = 0

29e21 + 34e1e2 + 71e1 + 83e2 + 16 = 0

59e21 + 27e1e2 + 31e1 + 48e2 + 32 = 0

This system has no solution, hence the point R (like most points of the curve) is not decomposable.

We then try to decompose the random multiple R = [5620]P+[679359]Q = (16t2+94t+21, 80t2+34t+41).
We obtain the equation

(61t2 +78t+59)e21 +(69t2 +14t+59)e1e2 +(40t2 +20t+57)e1 +e22 +(40t2 +89t+80)e2 +12t2 +11t+77 = 0

yielding the system 
59e21 + 59e1e2 + 57e1 + e22 + 80e2 + 77 = 0

78e21 + 14e1e2 + 20e1 + 89e2 + 11 = 0

61e21 + 69e1e2 + 40e1 + 40e2 + 12 = 0

This time the system has a unique solution (e1, e2) = (69, 75), and the trinomial X2−69X+75 has two roots
6 and 63 ∈ F101, corresponding to the points P1 = (6, 77t2+93t+35) and P2 = (63, t2+66t+2) ∈ F∪−F . We
check that indeed R = P1 +P2. Since #(F ∪−F) = 108, we need about 54 such decompositions to complete
the relation search step. Once these relations are collected, we can deduce with sparse linear techniques that
the discrete logarithm of Q in base P is x = 715339.
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Complexity analysis

In order to estimate the complexity of our variant, we need to bound the probability that a random point is
decomposable as a sum of n− 1 points of F and to determine the cost of the resolution of the corresponding
polynomial system.

Assumption 1 The number of points of E(Fqn) that can be decomposed as a sum of n − 1 elements of F
is in Ω(qn−1/(n− 1)!).

Let as before C = {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq} ∪ {OE}. Since the cardinality of Cn−1/Sn−1
is approximately qn−1/(n−1)!, this assumption means that the preimage of most points of E under the map
sending an unordered (n− 1)-tuple of elements of C to their sum in E(Fqn) has a cardinality bounded by a
constant independent of q and n.

Actually, this assumption is a corollary of the more precise following conjecture, as soon as the cardinality
of F is in Ω(q) (which is always true provided that Condition 3 holds and that n/(log2 q) stays bounded
away from 1/2, cf. Proposition 4 and the following discussion).

Conjecture. Let C(n−1) = Cn−1/Sn−1 be the (n − 1)-th symmetric product of C, and WFqn/Fq
(E) the

Weil restriction of E relatively to the extension Fqn/Fq. Let ς : (P1, . . . , Pn−1) 7→
∑

i Pi be the summation
morphism C(n−1) →WFqn/Fq

(E), defined over Fq. Then

1. the map ς is a degree one morphism from C(n−1) to ς(C(n−1))
2. the fiber ς−1(R) of a point R ∈ ς(C(n−1)) has positive dimension if and only if there exist P1, . . . , Pn−3 ∈ C

such that R = ς(P1, . . . , Pn−3,OE ,OE).

Part 1 of this conjecture can be verified formally for n = 3 using a computer algebra system, and has
been satisfied for other extension degrees in all our examples. Note that C(n−1) is a projective variety, so
that in practice to check if this property holds, it is sufficient to find a point R ∈ ς(C(n−1)) such that the
fiber ς−1(R) is a zero-dimensional variety of degree 1. Part 2 is less obvious to verify. It is clear that if

R = ς(P1, . . . , Pn−3,OE ,OE) (i.e. R =
∑n−3

i=1 Pi), then the corresponding fiber ς−1(R) has dimension at
least 1: it contains all the (n − 1)-tuples of the form (P1, . . . , Pn−3, Q,−Q). The converse is much more
delicate, but has been verified experimentally (by exhaustive search) on small enough curves when n = 5. It
is however reasonable to suppose that this conjecture holds, if not for all elliptic curves, at least for a large
proportion of them (possibly up to a change of equation). In any case, with Assumption 1, the expected
number of decomposition trials for the relation search is in O((n− 1)! q2).

As mentioned above, the cost of trying to find one decomposition, noted c̃(n, q), is reduced to the cost of
the resolution of an overdetermined multivariate polynomial system of n equations with (n− 1) variables of
total degree 2n−2. Consequently, the complexity of the relation search step becomes O((n− 1)! c̃(n, q) q2).

The value of c̃(n, q) has to be compared to the cost c(n − 1, q): clearly we have c̃(n, q) < c(n − 1, q).
Indeed, solving a system of n equations with (n− 1) variables of degree 2n−2 can be achieved by solving the
system consisting of the first (n− 1) equations, and by checking the compatibility of the solutions with the
last equation. With such an upper bound of c̃(n, q), we obtain the complexity for the first collecting step of

O
(

(n− 1)! q2Poly((n− 1)! 2(n−1)(n−2) log2 q)
)

(6)

The linear algebra step has a complexity of Õ(nq2), which is negligible compared to the first step. Hence
the total complexity of the algorithm is given by (6). We emphasize that because of the q2 factor in the
complexity, Pollard rho or other generic methods remain faster than our variant for n ≤ 4, thus our approach
is actually relevant only for n ≥ 5. On the other hand, estimate (6) shows that there exists a constant c such
that the variant is asymptotically faster than generic methods as soon as 5 ≤ n ≤ c log2 q.
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However, the resultant method yielding (6) is not optimal. A faster way of solving a zero-dimensional
polynomial system over a finite field is to compute a lexicographic order Gröbner basis of the corresponding
ideal. If this ideal is radical, up to a generic linear change of coordinates the resulting system of generators
is of the form:

{X1 − g1(Xn), . . . , Xn−1 − gn−1(Xn), gn(Xn)},

where gn is a univariate polynomial of degree equal to the degree of the ideal, and g1, . . . , gn−1 are univariate
polynomials of degree strictly smaller [3]. It is then easy to determine the set of solutions by finding the
roots of gn and then the corresponding values of the remaining variables. In the general case, the shape of
the basis is not necessary linear in the remaining variables X1, . . . , Xn−1, but it is still simple to recover the
solutions. Nevertheless, the computation of a lexicographic order Gröbner basis is usually difficult: this is not
surprising since polynomial system solving is known to be a hard problem. For zero-dimensional ideals, an
efficient strategy is to first compute a Gröbner basis for the graded reverse lexicographic order (grevlex) and
then obtain the lex basis using a ordering change algorithm, such as FGLM [17]. We give some estimates of
the complexity of the first stage later on; as for the second stage, its complexity is in O(nD3) field operation,
where D is the degree of the ideal and n the number of variables.

In our case, the ideal is given by an overdetermined polynomial system. Generically, i.e. when R /∈
ς(C(n−1)), this ideal is the whole polynomial ring and the corresponding set of solutions is empty; its minimal
Gröbner basis is {1} for any order, including grevlex. Otherwise, i.e. when the decomposition exists, the
set of solutions usually contains a small number of points, actually exactly one if the first part of the
above conjecture holds. In this case, the ideal is maximal and its grevlex Gröbner basis contains only linear
polynomials; recovering the solution is then immediate. If the ideal is zero-dimensional but not of degree 1,
it is still simple to recover the solutions since the degree is small. Exceptionally, e.g. if R decomposes as a
sum of n− 3 points, the dimension of the fiber is positive; this can be easily detected on the grevlex basis.
It is then still possible to deduce some useful relations, but one can also simply discard this rarely occurring
decomposition trial. This situation is in stark contrast with the one in Gaudry and Diem’s algorithm, where
we have seen that the degree of the ideal is generically equal to the Bézout bound 2n(n−1). This means that
the solution set generically contains 2n(n−1) points, although most of them lie in an extension of Fq since the
probability of finding a decomposition is only 1/n!. In their setting, the computation of a degrevlex Gröbner
basis is thus not sufficient to solve the system and the FGLM algorithm is needed. We see below that this
over-exponential degree in n is actually the bottleneck of their approach.

In order to derive effective upper bounds for the complexity of the grevlex Gröbner basis computation of
a zero-dimension system {f1, . . . , fr}, it is necessary to make some additional hypotheses. For instance, one
can assume that the sequence {f1, . . . , fr} is semi-regular [1, 2] or that the set of solutions of the homogenized
system has no positive dimension component at infinity [32]. These properties hold generically, and imply
that the maximum degree of polynomials occurring during the computation of the Gröbner basis is bounded
by the degree of regularity dreg of the homogenized system, which is itself smaller than the Macaulay bound∑r

i=1(deg fi − 1) + 1. The standard algorithms for Gröbner bases (e.g. Buchberger [7], Faugère’s F4 and F5
[15, 16]) can then be reduced to the computation of the row echelon form of the dreg-Macaulay matrix (cf
[32]). In the following, we make a second assumption, which has been verified in all our experiments:

Assumption 2 The maximal degree of the polynomials occurring during the computation of the homogenized
grevlex Gröbner basis of the system {ϕ0, . . . , ϕn−1} arising from (5) is smaller than the Macaulay bound

d =
∑n−1

i=0 (degϕi − 1) + 1.

Using the fact that the system in our variant is composed of polynomials of degree 2n−2 in n−1 variables,
we obtain that d = n2n−2 − n+ 1. The number of columns of the d-Macaulay matrix is at most the number

of monomials of degree smaller than or equal to d, which in our case is bounded by
(
n2n−2

n−1
)
. Similarly, the

number of rows is less than n
(
(n−1)2n−2

n−1
)
, corresponding to the multiples up to degree d of the n initial
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polynomials. Since there are more columns than rows, we obtain with fast reduction techniques the following
bound:

c̃(n, q) = Õ

((
n2n−2

n− 1

)ω)
,

where ω ≤ 3 is the effective complexity exponent of matrix multiplication (in practice, ω = log2(7) when
using Strassen’s multiplication). As n− 1 is negligible compared to n2n−2, using Stirling’s formula we get(

n2n−2

n− 1

)
∼ (n2n−2)n−1

(n− 1)!
∼ 2(n−1)(n−2)en (2πn)−1/2.

This directly implies our main result:

Theorem 1 Let E be an elliptic curve defined over Fqn and G a cyclic subgroup of its group of rational
points. If Assumptions 1 and 2 are satisfied, then the DLP in G can be solved with asymptotic complexity

Õ
(

(n− 1)!
(

2(n−1)(n−2)en n−1/2
)ω

q2
)
. (7)

Note however that the upper-bound given for c̃(n, q) (and thus the estimate of Theorem 1) is convenient
but not sharp: it does not take into account the fact that the Macaulay matrix is sparse and heavily structured.
Actually, deriving precise bounds for the computation of Gröbner bases is still an open problem. As an
illustration, for n = 5 the above estimate predicts about 1014 multiplications in Fq to achieve the Gröbner
basis computation, whereas the experimental computation with F4 only requires about 1010 multiplications.
We see in section 4 how to reduce this last amount by a factor 3.

In the same spirit, we can also try to improve the estimate of the complexity of Gaudry and Diem’s
algorithm. We have seen that the resolution of the polynomial system is composed of two main stages:
the computation of a grevlex Gröbner basis followed by the ordering change algorithm FGLM. The cost

of the first step can be roughly estimated in the same way as for our variant and is in Õ
((

n2n−1+1
n

)ω)
=

Õ
((

2n(n−1)en n−1/2
)ω)

. As already mentioned, the complexity of FGLM for a zero-dimensional ideal of

degree D in n variables is Õ(nD3), and this estimate is actually sharp. Consequently, for ω < 3 we find that
the cost of the lexicographic Gröbner basis computation is dominated by the cost of FGLM. Its complexity is
in Õ

(
(2n(n−1))3

)
, and thus the total complexity of Gaudry and Diem’s version is Õ

(
n!23n(n−1)q2−2/n

)
. An

easy computation then shows that our approach is asymptotically faster1, provided n ≥ 3

√(
2

3−ω + ε
)

log2 q.

Similarly, our method is asymptotically faster than Pollard rho algorithm if n ≤
(

1
2ω − ε

)
log2 q. We

stress that these comparisons are only asymptotic; we have seen before that our version is irrelevant if n ≤ 4.
However, this shows that for n > 4, there exists a range of values for q in which our algorithm is the most
efficient.

2.3 Comparison with the hybrid approach

We have seen that the main difficulty in Gaudry and Diem’s algorithm is the resolution of the polynomial
system. Recently, Bettale et al. [4] have proposed a hybrid approach for solving such systems: the idea is

1 Some papers (e.g. [18]) claim that in some special cases and with some modifications, the complexity exponent
of FGLM is actually smaller than 3. If the Gröbner basis computation dominates the cost of the resolution, then
the comparison is somewhat different: our approach would be asymptotically faster than Gaudry and Diem’s for

n ≥
√(

1
ω

+ ε
)

log2 q. Nevertheless, in our experiments the FGLM step was always the longest by a large margin.
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to find a solution by exhaustive search on some variables and Gröbner basis computations of the modified
systems where the selected variables have been specialized (i.e. evaluated). It is thus a trade-off between
exhaustive search and Gröbner basis techniques. A natural choice here would be to specialize (or guess) one
variable. The exhaustive search multiplies by q the number of polynomial systems, but these systems now
consist of n equations in n − 1 variables. At first sight, this seems quite similar to our version; however,
the total degree of the equations in this hybrid approach is 2n−1 whereas it is only 2n−2 in our case. The
following chart summarizes the number of multivariate systems to solve together with their parameters, in
order to find one relation in E(Fqn). It shows that our version provides a better trade-off between the number
of systems to solve and their complexity than the hybrid approach.

Method
average number

of systems
number of
equations

number of
variables total degree

Gaudry-Diem n! n n 2n−1

Gaudry-Diem with
hybrid approach n! q n n− 1 2n−1

this work (n− 1)! q n n− 1 2n−2

2.4 Application to Fq5

The approach of Gaudry and Diem, while theoretically interesting, turns out to be intractable on Fqn as
soon as n ≥ 5. Not only is the computation of the 6-th summation polynomial problematic (cf. section 3),
but also, since the system arising from (3) has a large number of solutions (about 25(5−1) ' 106) in Fq5 , it
is very difficult to solve. Indeed, we remind that the complexity of the resolution (e.g. by using FGLM to
obtain a lex order Gröbner basis) depends of the degree of the ideal generated by the equations, which is
generically 2n(n−1). A natural way of decreasing this degree would be to add the field equations eqi − ei, but
clearly this is not practical for large values of q. In particular, we have not been able to successfully run one
complete relation search with their method, as the requested memory exceeded the capacity of our personal
computer. Nonetheless, using our algorithm and our own implementation of the F4 variant (see section 4),
we are able to check and if necessary compute a decomposition over Fp5 with p a prime number of 32 bits
in about 8.5 sec on a 2.6 GHz Intel Core 2 Duo processor.

In characteristic 2, the computation is much faster: as pointed out by Granger [25], Semaev’s summation
polynomials are sparser than in the odd characteristic case, so that the corresponding systems are much
easier to solve. Note however that the bounds given for the degree of regularity and the degree of the ideals
remain the same, as do the complexity estimates. Timings for testing decompositions up to n = 4 with
Gaudry-Diem approach are given in [25], but the simplification provided by the characteristic 2 case is still
not sufficient to make this approach work for n = 5 on a personal computer. Interestingly, the speedup
noticed by Granger also applies with our method. Indeed, in characteristic 2, testing a decomposition in four
points over F2160 = F(232)5 takes only 30 ms instead of the 8.5 sec given above in large characteristic.

Unfortunately, this is still much too slow to yield in a reasonable time the solution of the ECDLP over
fields of size compatible with current levels of security. To be more precise, we can estimate for which base
fields our algorithm is faster than Pollard rho, knowing that a single decomposition test requires about 3.109

multiplications in Fp for p odd and about 2.107 in F2d for the binary case (since the relation search is the
dominating step, we can neglect the linear algebra part). Our method is then faster as soon as the cardinality
of the base field is greater than 260 in the odd characteristic case, or 245 in characteristic 2.

Nevertheless, our approach provides an efficient attack of non-standard problems such as the oracle-
assisted static Diffie-Hellman problem, as explained in section 5.
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3 Computing the symmetrized summation polynomials

The main difficulty of the previously investigated algorithms is the construction of relations of the form (2)
or (5). Semaev’s summation polynomials were first proposed in [41] to solve, or at least, to reduce this diffi-
culty, allowing to translate this problem into the resolution of the polynomial equation fm(xP1

, . . . , xPm−1
, xR) =

0, where xP1
, . . . , xPm−1

are the unknowns. The m-th polynomial fm is computed only once and is evaluated
in xR for each relation search. As mentioned above, it is more efficient to express this equation in terms of
the elementary symmetric functions of the unknowns

e1 =
∑
i

xPi , e2 =
∑
i<j

xPixPj , . . . , em−1 =
∏
i

xPi ,

before the resolution of the system. This symmetrizing operation greatly reduces the total degree of the
system, and improves a lot its resolution by e.g. Gröbner basis techniques. It can be done once for all at the
beginning of the relation search.

We propose here two distinct improvements: both consider a direct computation of the symmetrized sum-
mation’s polynomials, instead of rewriting the equation fm(xP1

, . . . , xPm−1
, xR) = 0 in terms of elementary

symmetric polynomials after the computation of Semaev’s polynomials, as in [21]. Hence for m = 5, the first
method allows to reduce the computation time and the memory requirement by a factor almost equal to
10; while the second technique seems to provide a less significant advantage in term of computation time, it
allows to reduce the memory requirement by a factor 25 (on Magma V2.17-5 [5]).

3.1 Distributing the symmetrization

Let us recall that in [41], the summation polynomials are determined recursively, each inductive step consist-
ing of a resultant computation. Our first improvement is to partially symmetrize after each step: it has the
double benefit of reducing the size of the intermediate polynomials and the cost of the final symmetrization,
by distributing it between the different steps. It is summarized by the following proposition:

Proposition 5 Let E be an elliptic curve defined over a field K of characteristic different from 2 or 3, with
reduced Weierstrass equation y2 = x3 + ax+ b. The symmetrized summation polynomials are determined by
the following induction. The initial value for n = 3 is given by

f̃3(e1,2, e2,2, X3) =
(
e21,2 − 4e2,2

)
X2

3 − 2 (e1,2(e2,2 + a) + 2b)X3 + (e2,2 − a)2 − 4b e1,2

and for m ≥ 3 by

f̃m+1(e1,m , . . . , em,m , Xm+1) = Symm

(
ResY

(
f̃m(e1,m−1, . . . , em−1,m−1, Y ), f3(e1,1, Xm+1, Y )

))
,

where
∗ er,n is the r-th elementary symmetric polynomial in variables X1, . . . , Xn,
∗ f3(X1, X2, X3) = (X1 −X2)2X2

3 − 2 ((X1 +X2)(X1X2 + a) + 2b)X3 + (X1X2 − a)2 − 4b(X1 + X2) is
Semaev’s third summation polynomial,
∗ Symm denotes the operation of rewriting a partially symmetrized polynomial in terms of elementary
symmetric functions 

e1,m = e1,1 + e1,m−1

e2,m = e1,1e1,m−1 + e2,m−1
...

em−1,m = e1,1em−2,m + em−1,m−1

em,m = e1,1em−1,m−1
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Obviously it is also possible to define f̃m from resultants of f̃m−j and f̃j+2 for 1 ≤ j ≤ m−3, as in [41]. This
has the advantage of reducing the number of resultant computations, but increases the complexity of the
symmetrization step. In our context, since m is small (m ≤ 6), the approach of Proposition 5 is the fastest.

3.2 Divisors and elimination

In our second improvement, we replace the computation of resultants and the symmetrization by an elimi-
nation order Gröbner basis computation. Let E be an elliptic curve of equation y2 = x3 +ax+ b defined over
K of characteristic different from 2 or 3. We consider the principal divisor D = (P1) + . . .+ (Pm)−m(OE) ∈
Div0K(E) where P1, . . . , Pm ∈ E(K) are such that P1 + . . . + Pm = OE . Up to a constant, there exists a
unique function gm ∈ K(E) such that D = div(gm) (cf. [43] Corollary 3.5). The same techniques as the ones
used in Miller’s algorithm [35] enable us to express the function gm.

Let li(X,Y ) = 0 (1 ≤ i ≤ m − 1) be the equations of the lines passing through P1 + . . . + Pi and Pi+1

and vi(X,Y ) = 0 (1 ≤ i ≤ m − 2) the equations of the vertical lines passing through P1 + . . . + Pi+1, then
we have

gm(X,Y ) =
l1 . . . lm−1
v1 . . . vm−2

(X,Y ).

An easy induction shows that
gm(X,Y ) = gm,1(X) + Y gm,2(X) (8)

where gm,1 and gm,2 are two polynomials of degree lower than dm,1 and dm,2 respectively:

dm,1 =

{
m/2 if m is even

(m− 1)/2 if m is odd
and dm,2 =

{
(m− 4)/2 if m is even

(m− 3)/2 if m is odd

Note that the function gm is uniquely determined if the equations of li and vi are normalized at the point
at infinity. The intersection between the curve (gm = 0) and E is exactly the set of points Pi, 1 ≤ i ≤ m,
thus the following proposition is quite direct:

Proposition 6 Let E be an elliptic curve of equation y2 = x3+ax+b defined over a field K of characteristic
different from 2 or 3. Let P1, . . . , Pm ∈ E(K) be such that P1 + . . . + Pm = OE and gm,1 and gm,2 be the
polynomials given by equation (8). Then we have gm,1(x)2− (x3 + ax+ b)gm,2(x)2 = 0 if and only if x is the
x-coordinate of one of the points Pi.
Conversely, if gm,1 and gm,2 are two arbitrary polynomials in K[X] with degree dm,1 and dm,2, then the roots
in K of

Fm(X) = gm,1(X)2 − (X3 + aX + b) gm,2(X)2,

counted with multiplicity, are the x-coordinates of points Q1, . . . , Qm ∈ E(K) such that Q1 + . . .+Qm = OE.

The second assertion comes from the fact that in K(E), we have Fm = (gm,1+Y gm,2)(gm,1−Y gm,2). Since
deg(Fm) = m, Fm has exactly m roots counted with multiplicity over K, each of which is the x-coordinate
of two opposite points ±Qi ∈ E(K). Up to a change of sign, we can assume that Qi is a zero of gm,1 +Y gm,2

(and so −Qi is a zero of the second factor gm,1 − Y gm,2). Thus, the principal divisor Div(gm,1 + Y gm,2) is
equal to (Q1) + . . .+ (Qm)−m(OE), which implies Q1 + . . .+Qm = OE .

We can now use this proposition to construct the symmetrized summation polynomials. Let A =
K[α0, . . . , αdm,1

, β0, . . . , βdm,2
, xP1

, . . . , xPm
]. We define the following elements of A[X]:

hm,1(X) =

dm,1∑
i=0

αiX
i, hm,2(X) = Xdm,2 +

dm,2−1∑
i=0

βiX
i,
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Fm(X) = hm,1(X)2 − (X3 + aX + b)hm,2(X)2

Finally, let I be the ideal of A generated by Fm(xP1), . . . , Fm(xPm). We can easily find a different set of
generators of I by identifying the coefficients of Fm with the elementary symmetric functions e1, . . . , em of
the variables xP1

, . . . , xPm
, and consider the result as an ideal J of K[α0, . . . , αdm,1

, β0, . . . , βdm,2
, e1, . . . , em].

Elimination theory (cf. [10]) allows to compute efficiently (e.g. with appropriate Gröbner bases) a set of gener-
ators of the ideal J ′ = J∩K[e1, . . . , em]. According to the second part of Proposition 6, a m-tuple (e1, . . . , em)
belongs to the algebraic set V(J ′) if and only if the roots of the polynomial Tm +

∑m
i=1(−1)ieiT

m−i are
the x-coordinates of points of E(K) whose sum is the point at infinity OE . Actually, using Semaev’s results,
this elimination ideal J ′ is principal, generated by the m-th symmetrized summation polynomial. Hence, this
elimination computes the m-th summation polynomial directly in terms of e1, . . . , em. Note that with this
approach, it is also possible to compute directly the partially symmetrized polynomial f̃m.

A worked example

For m = 5, following the previous construction, we obtain

F5(X) = (α2X
2 + α1X + α0)2 − (X3 + aX + b)(X + β0)2

with a, b ∈ K. By identifying the coefficients of this polynomial with the elementary symmetric polynomials
e1, . . . , e5 of the variables xP1

, . . . , xP4
, xP5

, we deduce the polynomial system

e1 = α2
2 − 2β0

e2 = β2
0 + a− 2α1α2

e3 = 2α0α2 + α2
1

e4 = aβ2
0 + 2bβ0 − 2α0α1

e5 = α2
0 − bβ2

0

and using a Gröbner basis computation with an elimination order, we obtain the fifth summation polynomial
f5 directly in terms of e1, . . . , e5.

3.3 Some comparisons

Here we give a comparison of computer times between the classical computation using resultants followed
by a final symmetrization and our two methods. In all cases, we have used the software Magma (V2.17-5)
on a 2.6 GHz Intel Core 2 processor; the symmetrizations have been done via an elimination order Gröbner
basis computation. In view of the applications we have in mind, we chose to compute the 5-th symmetrized
summation polynomial on an extension field Fp5 , p prime.

log2(p) resultant + symmetrization 1st method 2nd method
8 1.54 + 10.45 = 11.99 sec 1.04 sec 1.75 sec
16 1.58 + 10.63 = 12.21 sec 1.04 sec 1.77 sec
32 10.23 + 23.16 = 33.39 sec 3.57 sec 11.12 sec

memory requirement 510 MB 66 MB 22 MB

We also tried to perform the same computations for the 6-th symmetrized summation polynomial. Un-
fortunately, in this case, both resultant and Gröbner based computations exceeded the memory capacity
of our personal computer (about 4 GB). However, we were able to obtain with our first method (partially
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symmetrized resultants) the 6-th symmetrized summation polynomial over Fp6 (|p|2 = 27), for a fixed value
of the last variable x6, in about 10 min using 60 MB, expressed in the variables e1,5, . . . , e5,5. In practice,
this would mean that each time we try a decomposition of a new point into 5 points of the factor base, we
would have to pay this extra price of computing the corresponding 6-th symmetrized summation polynomial.
Clearly, this would slow down unreasonably any of the techniques presented in this paper.

3.4 The characteristic 2 case

The previous results can be easily adapted in characteristic 2. We consider an ordinary elliptic curve E
defined over F2d , with reduced Weierstrass equation y2 + xy = x3 + ax2 + b. Then the third Semaev’s
summation polynomial is

f3(X1, X2, X3) = (X1X2 +X1X3 +X2X3)2 +X1X2X3 + b,

see [41], and its partial symmetrization is

f̃3(e1,2, e2,2, X3) = (e1,2X3 + e2,2)2 + e2,2X3 + b.

We can then proceed as in Proposition 5 to compute f̃m. For the second method, one just has to replace
gm,1(X)2 − gm,2(X)2(X3 + aX + b) by gm,1(X)2 +Xgm,1(X)gm,2(X) + (X3 + aX2 + b)gm,2(X)2.

As already mentioned in section 2.4, the summation polynomials are much sparser in characteristic 2,
and are thus faster to compute. For instance, the 5-th partially symmetrized summation polynomial has only
100 terms and its computation takes about 50 ms with our first method over F(231)5 , whereas in the odd
characteristic case, it has 3972 terms and is computed in 4 sec over Fp5 for a prime p of comparable size.

4 An F4-like algorithm without reduction to zero

An efficient way to solve the multivariate polynomial system coming from (2) or (5) is to use Gröbner basis
tools. Currently, the best algorithms for constructing Gröbner bases are Faugère’s F4 and F5 [15, 16], which
are improvements of the classical Buchberger’s algorithm. The second one, F5, is considered as the most
efficient, since it includes a criterion to eliminate a priori almost all critical pairs that eventually reduce
to zero. This criterion is based on the concept of “signature” of a polynomial; the main drawback is that
many reductions are forbidden because they do not respect signature compatibility conditions. Hence, the
polynomials considered in the course of the F5 algorithm are mostly “top-reduced” but their tails are left
almost unreduced; this increases significantly the complexity of the remaining pairs’ reduction. Furthermore,
F5 generates many “redundant” polynomials, i.e. which are not members of a minimal Gröbner basis, but
cannot be discarded for signature reasons [13]. The total number of computed critical pairs thus remains
relatively important, at least compared to what could be expected from the F4 algorithm if all critical pairs
reducing to zero were removed. These drawbacks are especially significant for overdetermined systems such
as those we are considering. As mentioned by Faugère in [16], this is a consequence of the incremental nature
of the F5 algorithm. Indeed, to determine a Gröbner basis of an ideal generated by m polynomials, F5 starts
by computing a basis of the ideal generated by the first m− 1 polynomials. Clearly, the additional equation
of the overdetermined system cannot provide any speed-up at this point. Moreover, in our case, since the
systems considered during the relation search always have the same shape, it is possible to extract from
a precomputation the knowledge of the relevant critical pairs and to remove the pairs that lead to zero
reductions. When such a precomputation is accessible, there is no reason to use F5 instead of F4.

Recall that during the course of the F4 algorithm, a queue of yet untreated critical pairs is maintained. At
each iteration of the main loop, some pairs are selected from this queue (according to some predefined strategy,
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usually all pairs having the smallest lcm total degree) and treated, that is, their S-polynomials are computed
and reduced simultaneously using linear algebra tools and results of former computations. The queue is then
updated with the critical pairs involving the resulting new generators and satisfying Buchberger’s first and
second criteria [7, 24]. Here is a quick outline of the method we used for our computations:

1. For precomputation purposes, run a standard F4 algorithm on the first system, with the following
modifications:
– At each iteration, store the list of all selected critical pairs.
– Each time there is a reduction to zero, remove from the stored list the critical pair that leads to the

reduction.
2. For each subsequent system, run a F4 computation with the following modifications:

– Do not maintain nor update a queue of untreated pairs.
– At each iteration, instead of selecting pairs from the queue, pick directly from the previously stored

list the relevant pairs.

More details on this method as well as applications to other problems are given in [29].

This algorithm is probabilistic since the precomputation is not necessarily compatible with all the fol-
lowing systems. Fortunately, one can always detect when a subsequent system behaves “non-generically”,
and then resume the computation with the classical F4 algorithm. An upper-bound for the probability of
failure is given in [29, Thm. 4] under some worst-case hypotheses. Assuming that the precomputation has
been done in nstep iterations, the variant of F4 computes the Gröbner basis of a system involved in the
decomposition step, with a probability heuristically greater than c(p)nstep , where Fp is the base field and
c(p) = 1− 1/p+O(1/p2). In particular, when p is large, the probability of failure is very close to 0.

As an illustration of this approach we give some examples of the speed gain it provides on Fp5 , using the
equations generated from the fifth summation polynomial. The system to solve is composed of 5 equations
defined over Fp of total degree 8 in 4 variables. We run a degrevlex Gröbner basis computation of the
corresponding ideal over four prime fields of sizes 8, 16, 25 and 32 bits. To be fair, we compare our variant
F4Remake with an implementation of F4 which uses the same primitives and structures (in language C), and
also with the proprietary software Magma (V2.15-15) whose implementation is probably the best publicly
available for the considered finite fields. All tests are performed on a 2.6 GHz Intel Core 2 Duo processor,
the timings are given in seconds. We give the estimated probabilities of failure, thus showing that F4Remake
succeeds for almost all systems.

size of p est. failure probability F4Precomp F4Remake F4 F4/F4Remake F4 Magma

8 bits 0.11 8.963 2.844 5.903 2.1 9.660

16 bits 4.4× 10−4 (19.07) 3.990 9.758 2.4 9.870

25 bits 2.4× 10−6 (32.98) 4.942 16.77 3.4 118.8

32 bits 5.8× 10−9 (44.33) 8.444 24.56 2.9 1046

Step degree F4Remake matrix size F4 matrix size size ratio

14 17 1062× 3072 1597× 3207 1.6

15 16 1048× 2798 1853× 2999 1.9

16 15 992× 2462 2001× 2711 2.2

17 14 903× 2093 2019× 2369 2.5

18 13 794× 1720 1930× 2000 2.8

Fig. 2. Experimental results on E(Fp5)
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The F4Remake algorithm requires a single precomputation of 8.963 sec to generate the list of relevant
pairs. The above timings show that this overhead is largely compensated as soon as there are more than
two subsequent computations. We emphasize that this precomputed list of relevant pairs is the same for
the four cases |p|2 = 8, 16, 25 or 32 bits. We have also solved this system with our own implementation of
the F5 algorithm1. The size of the Gröbner basis computed by F5 at the last step (before minimization) is
surprisingly large: it contains 17249 labeled polynomials whereas both versions of F4 never build more than
2789 polynomials at once, and construct bases containing at most 329 generators. Note that these figures do
not depend on the implementation’s details. The large number of polynomials that F5 computes has obvious
consequences on its performances; in particular, the timings of F5 that we have obtained for this system are
much worse than those of F4 or its variants. This shows that F5 as described in [16] is unsuitable for these
specific systems.

5 Application to an oracle-assisted static Diffie-Hellman algorithm

Semaev’s idea of decomposing points of E(Fqn) into a well-suited factor base leads naturally to an oracle-
assisted resolution of the SDHP, akin to the finite field SDHP algorithm presented in [28]. We first recall
here the definition of oracle-assisted SDHP from [6]:

Definition 7 Let G be a finite group of order #G and P,Q ∈ G such that Q = [d]P where d ∈ [1,#G− 1]
is a secret integer. An algorithm A is said to solve the SDHP in G if, given P,Q, and a challenge X ∈ G,
it outputs [d]X ∈ G.
The SDHP-solving algorithm A is said to be oracle-assisted if, during a learning phase, it can make any
number of queries X1, . . . , Xl to an oracle that outputs [d]X1, . . . , [d]Xl, after which A is given a previously
unseen challenge X and outputs [d]X.

Generally, the ability to decompose points into a factor base F = {P1, . . . , Pl} gives the following oracle-
assisted algorithm:

– learning phase: ask the oracle to compute Qi = [d]Pi for 1 ≤ i ≤ l,
– decompose a challenge X as X =

∑
i[ci]Pi and answer Y =

∑
i[ci]Qi.

This methodology directly applies to the case G = E(Fqn) with the factor base F = {P ∈ E(Fqn) : P =
(xP , yP ), xP ∈ Fq, yP ∈ S}. The only minor difficulty is that a small fraction of points actually decompose
(1 in n! or q (n− 1)! depending of the details). However, we can use a simple variation of the descent step to
circumvent this difficulty:

1. learning phase: ask the oracle to compute Q = [d]P for each P ∈ F
2. descent: given a challenge X, pick a random integer r coprime to the order of G and compute Xr = [r]X
3. check if Xr can be written as a sum of m points of F : Xr =

∑m
i=1 εiPi, with εi ∈ {−1; 1}

4. if Xr is not decomposable, go back to step 2; else output Y = [s] (
∑m

i=1 εiQi) where s = r−1 mod #G.

It should be noted that the same technique can also be used to solve other variants of SDHP, such as the
“Delayed Target” Discrete Logarithm or Diffie-Hellman problem (DTDLP and DTDHP) described in [31].
Note also that a similar approach has been presented independently by Granger in [25].

To our knowledge, the only other known method for solving the SDHP over a general elliptic curve
consists in solving the underlying discrete logarithm problem, i.e. computing d given P and Q = [d]P . It is
not obvious to compare this with our technique because the cost of the learning phase is difficult to estimate.
But if the definition field is large enough, for instance if E is an elliptic curve defined over F2155 , then generic
methods like Pollard rho are currently unable to achieve the resolution of the DLP on E. However, testing

1 At the present time, we have found no public implementation of F5 which achieves the computation of the complete
Gröbner basis in a reasonable time.
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a decomposition on such a curve takes only 22.95 ms on a 2.93 GHz Intel Xeon processor. This means that
it would take less than 2 weeks to find a decomposition with 1000 of the above processors (after a learning
phase of 230 oracle queries), and shows that a complete attack on the oracle-assisted SDHP can be realized
on E(F2155) [26].

In practice, the oracle is often limited to a single device, e.g. a smart card chip, whereas the decomposition
tests can be distributed over several powerful computers. Thus, the oracle queries are clearly the bottleneck
of this SDHP resolution. As explained in [31], it is possible to rebalance the two steps by artificially reducing
the factor base to a subset F ′ of cardinality (#F)/l, where l > 1. This decreases the number of oracle calls
by a factor l, and increases the complexity of the second step (more accurately, the expected number of trials
before finding a decomposition) by a factor lm, where m is the number of points in the decompositions. The
optimal trade-off depends of the oracle and the computing power available. Note that since no linear algebra
is done, this rebalancing is much simpler than the one or double large prime variation.

Using the estimates of section 2.2, we can compare our version with Gaudry-Diem’s for the oracle-assisted
SDHP on E(Fqn). For simplicity, we choose the same reducing factor l for both approaches, so that the
number of oracle calls is q/(2l) in both cases. The complexity of the decomposition step is n! ln c(n, q) with
Gaudry-Diem method vs (n − 1)! ln−1 q c̃(n, q) with ours. An easy computation shows that asymptotically,

our variant is better as soon as n ≥
√

1
3−ω log2(q/l), corresponding to a somewhat smaller range of values

than for the ECDLP, but becoming larger as one wants to lessen the number of oracle calls.

In practice, we have seen that, with current personal computers, we can only decompose a given point
into at most four points of the factor base. For m = 4 on E(FQ), the complexity obtained by reducing the
factor base is Õ(Q1/5) if Q = q4, which is the same complexity as our method when Q = q̃5; however, the
hidden constant is much smaller in our case. Indeed, we can detail the computation in both cases:

Q = q4 Q = q̃5 [this work]

nb of oracle calls
Q
1/4

2l

Q
1/5

2l̃

decomposition cost 4! l4 c(4,Q1/4) 4! l̃4 Q
1/5 c̃(4,Q1/5)

For a fair comparison, we equate the number of oracle calls, i.e. we choose l̃ = lQ1/5/Q1/4 = lQ−1/20.
With this choice, the cost of decomposition in our approach becomes 4! l4c̃(4,Q1/5). As explained in section
2.2, c̃(4,Q1/5) < c(3,Q1/5) � c(4,Q1/4); for instance, for Q = 2575×4, we found c̃(4,Q1/5) = 768 sec and
c(4,Q1/4) = 15476 sec using Magma (V2.15-15). Similarly, in characteristic 2, letting Q = 2160, we find
c̃(4,Q1/5) = 0.67 sec and c(4,Q1/4) = 272 sec. In both cases, we see that, for a given field size, the oracle-
assisted elliptic curve SDHP is easier over degree 5 than over degree 4 extension fields.

6 Conclusion and perspectives

In this article, we have shown that considering decomposition of points on E(Fqn) as sums of n − 1 points
improves the index calculus proposed by [11, 21], when n ≥ 5 and log2 q ≤ O(n3). The key point of our
approach is that such decompositions lead to overdetermined polynomial systems, which are easier to solve
than the systems arising from Gaudry and Diem’s original version. This resolution can be greatly sped up
by using our modified Gröbner basis computation algorithm, which takes advantage of the common shape
of the systems and is therefore faster than F4 and F5. The complexity of our algorithm is still too large
to seriously threaten ECDLP based cryptosystems with the current cryptographic key sizes. However, we
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further illustrate the weakness of elliptic curves defined over small degree extension fields by providing an
efficient way of solving oracle-assisted Diffie-Hellman problems.

For middle degree extension fields Fqn with n > 6, the increased complexity of the decomposition tests
means that none of the approaches presented in this paper can be realistically implemented. Instead of
just reducing the number of points m relatively to n, a more natural choice would be to also enlarge the
factor base F and consider the set of points in E(Fqn) whose x-coordinates lie in a Fq-linear subspace of

dimension d > 1. The probability that a point decomposes becomes approximately qmd−n

m! and the linear

algebra cost is Õ(mq2d), so the best values for d and m involve a trade-off that depends heavily on the cost
of the decomposition test. A major difficulty is that the equations given by the Weil restriction of Semaev’s
polynomials are no longer invariant under the full symmetric group Smd acting on the variables, but only
under the smaller group Sm. Besides, the unsymmetrized systems are too large to be directly solved. To take
into account this Sm-invariance, a first idea, suggested by [9], is to work in the algebra associated to the

invariant polynomial ring Fq [(Xij)1≤i≤m,1≤j≤d]
Sm ; but our experiments using the implementation provided

by Magma have been unsuccessful so far. A more efficient way to solve these symmetric systems would
probably be to use dedicated algorithms, such as SAGBI-Gröbner bases [46].
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23. P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime variation for small genus hyperelliptic
index calculus. Math. Comp., 76:475–492, 2007.
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